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Magnetization dynamics in thin film ferromagnets can be studied using a dispersive hydrodynamic formulation.
The equations describing the magnetodynamics map to a compressible fluid with broken Galilean invariance
parametrized by the longitudinal spin density and a magnetic analog of the fluid velocity that define spin-
density waves. A direct consequence of these equations is the determination of a magnetic Mach number.
Micromagnetic simulations reveal nucleation of nonlinear structures from an impenetrable object realized by an
applied magnetic field spot or a defect. In this work, micromagnetic simulations demonstrate vortex-antivortex
pair nucleation from an obstacle. Their interaction establishes either ordered or irregular vortex-antivortex
complexes. Furthermore, when the magnetic Mach number exceeds unity (supersonic flow), a Mach cone and
periodic wavefronts are observed, which can be well-described by solutions of the steady, linearized equations.
These results are reminiscent of theoretical and experimental observations in Bose-Einstein condensates, and
further support the analogy between the magnetodynamics of a thin film ferromagnet and compressible fluids.
The nucleation of nonlinear structures and vortex-antivortex complexes using this approach enables the study of
their interactions and effects on the stability of spin-density waves.
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I. INTRODUCTION

Magnetization dynamics in thin film ferromagnets provide
an exciting platform to study nonlinear wave phenomena.
This is possible due to the exchange interaction that confers
ferromagnetic order and wave dispersion, nonlinear effects
such as anisotropy, and diverse mechanisms available to
excite magnetization dynamics [1]. In fact, coherent nonlinear
magnetization structures were observed many decades ago,
such as domain walls and vortices [2]. More recently, envelope
solitons [3,4], dissipative droplets [5–9], and skyrmions [10–
13] have also been observed in these materials. Another class
of nonlinear structure in thin film ferromagnets is a spatially
periodic, superfluid-like texture or soliton lattice [14–18] that
is able to carry spin currents due to its nontrivial topology,
opening new pathways to nonlinear phenomena and potential
applications.

Recently, superfluid-like magnetic states have been in-
terpreted in the context of hydrodynamics [18,19]. It was
shown that the Landau-Lifshitz (LL) equation describing
magnetodynamics can be exactly cast as dispersive hydro-
dynamic equations, reminiscent of those describing Bose-
Einstein condensates (BECs) [20] and other superfluid-like
media [21]. An additional, direct, exact connection between
polarization waves in two-component BECs [22] and magneti-
zation dynamics has recently been identified [23,24]. From the
magnetic dispersive hydrodynamic formulation, it is possible
to characterize superfluid-like states as dynamic, uniform
hydrodynamic states (UHSs) or static, spin-density waves
(SDWs) parametrized by a longitudinal spin density n and fluid
velocity u proportional to the spatial gradient of the magneti-
zation’s in-plane phase. By defining the magnetic analog of the
Mach number from classical gas dynamics, M, subsonic and
supersonic flow conditions can be identified. Interestingly, this
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magnetic fluid representation, due to ferromagnetic exchange
coupling, generally exhibits broken Galilean invariance at the
level of (linear) spin-wave excitations [18]. Consequently,
the physics are reference-frame-dependent. This is in stark
contrast to the velocity-dependent dynamics of localized,
topological textures that result from their inherent nonlinear-
ity [25,26].

Intriguing dynamics result from the interaction between a
superfluid-like state and a finite-sized obstacle. Micromagnetic
simulations [18] demonstrated that, in general, SDWs (u �= 0)
at subsonic conditions, M < 1, flow in a stable, laminar fashion
around a point defect, whereas a Mach cone, wavefronts, and
irregular vortex-antivortex (V-AV) pair nucleation take place
at supersonic conditions, M > 1. In the different regime of
thick, homogeneous ferromagnets (u = 0), “spin-Cerenkov”
radiation was observed in the moving reference frame [27]. In
classical fluids, similar coherent structures can be nucleated
from an obstacle. The conditions defining the onset of specific
features usually depend on the flow velocity or, equivalently,
the Mach number. At subsonic conditions, obstacles can
nucleate vortices resulting from an unsteady wake [28,29].
A common example is the von Kármán vortex street, charac-
terized by a train of vortices of alternating circulation. This
has been thoroughly studied as a function of the Reynolds
number for viscous, incompressible fluids [28]. At supersonic
conditions for a compressible gas, a Mach cone can be
generated as typified by a jet breaking the speed of sound.

In contrast, superfluids such as BECs exhibit important dif-
ferences. First, vortices are quantized due to irrotational flow,
and second, BECs are compressible and inviscid. Therefore,
a Reynolds number is not defined in the sense of classical
fluids. However, it has been suggested that an alternative
superfluid Reynolds number can be defined from the onset
of quantum vortex shedding [30]. In fact, V-AV pair dynamics
can occur in superfluids as their numerical nucleation [31]
and instability [32] were demonstrated at subsonic conditions.
Numerical studies also identified the existence of a von
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Kármán–like vortex street [33], which has been recently
demonstrated experimentally [34]. At supersonic conditions,
Mach cones have been observed, both theoretically and
experimentally, accompanied by wave radiation or wavefronts
ahead of the obstacle [35,36], and, at large M, steady, oblique
dark solitons can be generated inside the Mach cone [37].

The similarity between the equations describing BECs and
thin film ferromagnetic magnetodynamics suggests that the
latter may support the many structures mentioned above, with
the possibility of new phenomena due to a ferromagnet’s more
complex geometry. The stability of SDWs in a finite, thin film
ferromagnet may be impacted by V-AV nucleation. It is known
that V-AV pairs in magnets can excite spin waves by diverse
annihilation processes [38], e.g., V-AV interaction with other
V-AVs, with defects, or with physical boundaries. To explore
the existence, dynamics, and stability of nonlinear structures in
thin film ferromagnets, we study analytically and numerically
the interaction between a SDW and an impenetrable, finite-
sized obstacle or defect.

In this paper, we show that in the static, laboratory reference
frame, trains of V-AV pairs nucleated by a sufficiently large
obstacle exhibit stable, linear motion at subsonic conditions,
whereas irregular V-AV dynamics are observed at supersonic
conditions. This is due to the V-AV translation imposed by
the underlying fluid velocity and the interactions between
vortices, leading to translational instabilities or even V-V and
AV-AV rotation. In the moving reference frame with zero
fluid velocity, V-AV pairs generally annihilate, leading to
irregular dynamics. However, at supersonic conditions, V-AV
pairs exhibit structure by describing an oblique path inside
the Mach cone. Wavefronts are observed to nucleate ahead of
the obstacle in both reference frames at supersonic conditions.
For thin film ferromagnets with finite extent, the observed
nonlinear structures are transient as the system relaxes to
an energy minimum. These results are not only relevant for
the stability of a SDW but they also represent a cornerstone
to study V-AV complexes and their interaction with other
nonlinear structures. More generally, our work provides an
avenue to study the proliferation of topological textures
in magnetism. For example, recent numerical results have
demonstrated the generation of skyrmions by spin-transfer
torque from anisotropic obstacles [39], similar to the linear
V-AV vortex motion we show below.

The paper is organized as follows. Section II summa-
rizes the hydrodynamic formulation of the Landau-Lifshitz
equation. The magnetic dispersive hydrodynamic equations
obtained in Sec. II are compared to the equations describing
the mean field dynamics of BECs and two-component BECs
in Sec. III. In Sec. IV, we use a linearized analysis to
predict some properties of the patterns supported by the
dispersive hydrodynamic flow past an obstacle. We also
use analogies to classical fluids and superfluids to identify
common flow patterns. Section V describes the results obtained
from micromagnetic simulations. Finally, we provide our
concluding remarks in Sec. VI.

II. DISPERSIVE HYDRODYNAMIC FORMULATION

Following the formulation outlined in Ref. [18], the
magnetization dynamics of a thin film ferromagnet with

planar anisotropy can be conveniently described by the
nondimensionalized LL equation

∂m
∂t

= −m × heff − αm × m × heff, (1)

with an effective field given by

heff = �m − mzẑ + h0ẑ, (2)

including, respectively, the ferromagnetic exchange field, a
local (zero-thickness limit) dipolar field, and a perpendicular
external field. The dispersive hydrodynamic equations are
obtained by inserting the transformation to Hamiltonian
variables [40],

n = mz, u = −∇� = −∇[arctan (my/mx)], (3)

into Eq. (1), where |n| � 1 is the longitudinal spin density
(|n| = 1 corresponds to the vacuum state) and u is the curl-free
(irrotational) fluid velocity. First, we exactly solve for ∂�/∂t

and obtain

∂�

∂t
= −(1 − |u|2)n + �n

1 − n2
+ n|∇n|2

(1 − n2)2

+h0 − α

1 − n2
∇ · [(1 − n2)u]. (4)

The gradient of Eq. (4) and the equation for n are

∂n

∂t
= ∇ · [(1 − n2)u] + α(1 − n2)

∂�

∂t
, (5a)

∂u
∂t

= ∇[(1 − |u|2)n] − ∇
[

�n

1 − n2
+ n|∇n|2

(1 − n2)2

]

−∇h0 + α∇
[

1

1 − n2
∇ · [(1 − n2)u]

]
. (5b)

These are an exact transformation of the LL equation,
Eq. (1), and fully describe the magnetization dynamics.

The ground-state solutions of Eqs. (5a) and (5b) are static
magnetization textures known as spin-density waves (SDWs),
such that

∂�

∂t
= � = −(1 − ū2)n̄ + h0 = 0 (6)

where the longitudinal spin density and fluid velocity, (n,u) =
(n̄,ūx̂), are constant. This implies that the SDW can have
a constant out-of-plane tilt and a periodic, in-plane spatial
rotation of the azimuthal angle �. For simplicity, we consider
a non-negative fluid velocity along x̂, i.e., ū > 0.

The static condition Eq. (6) at a finite field corresponds
to the ground-state SDW conditions imposed by magnetic
damping. If by some means � �= 0 in Eq. (6), e.g., by an
abrupt jump in the field h0 to another value h1, the associated
dynamic solutions are considered UHSs [18] that undergo a
slow relaxation to a SDW. This relaxation process for n̄(t)
maintains constant ū and can be computed by assuming spatial
uniformity in Eqs. (5a) resulting in the temporal differential
equation for the longitudinal spin density

dn̄

dt
= −α(1 − ū2)(1 − n̄2)

(
n̄ − h1

1 − ū2

)
. (7)
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Upon integration, Eq. (7) yields the implicit relationship

[(
n̄ − h1

1−ū2

)2

1 − n̄2

]1−ū2(
1 + n̄

1 − n̄

)h1

= C exp
{ − 2α

[
(1 − ū2)2 − h2

1

]
t
}

(8)

for n̄(t), where the constant C is determined from the
initial density n̄0 = h0/(1 − ū2). This expression composes
an exponential decay of the density to the static state n̄(t) →
n̄1 = h1/(1 − ū2), t → ∞ for any initial ū.

To study the dynamics originating from the interaction
between a SDW and an obstacle, it is important to characterize
small-amplitude perturbations of the SDW, described by the
generalized spin-wave dispersion relation

ω± = (2n̄u − V) · k ± |k|
√

(1 − n̄2)(1 − ū2) + |k|2, (9)

where k is the wave vector and V is the velocity of an external
observer or Doppler shift. This generalized dispersion relation
reduces to the typical Galilean invariant, exchange-mediated
spin-wave dispersion in the vacuum limit |n̄| ≈ 1. However,
Galilean invariance is broken in general [18], leading to
reference-frame-dependent physics.

From Eq. (9), one can derive the generalized spin-wave
phase and group velocities, respectively, vp and vg ,

vp,± = ω±
|k| k̂

= [(2n̄u − V) · k̂ ±
√

(1 − n̄2)(1 − ū2) + |k|2]k̂, (10a)

vg,± = ∇kω±k̂

=
[

(2n̄u − V) · k̂ ± (1 − n̄2)(1 − ū2) + 2|k|2√
(1 − ū2)(1 − n̄2) + |k|2

]
k̂.

(10b)

The long-wavelength limit |k| → 0 leads to coincident
phase and group velocities, vp = vg , corresponding to the
magnetic sound speeds imposed by the SDW,

s± = 2n̄ū + V̄ ±
√

(1 − n̄2)(1 − ū2), (11)

where we have assumed V = −V̄ x̂ and k̂ = x̂ for simplicity.
Subsonic (counterpropagating waves) and supersonic (co-

propagating waves) flow conditions can be identified from
Eq. (11). In particular, the transition between these regimes,
the sonic curve, occurs when s− = 0 or s+ = 0 in Eq. (11),
resulting in

V̄ (V̄ + 4n̄ū) = (1 − n̄2) − (1 + 3n̄2)ū2. (12)

Equation (12) represents the sonic surface for any V̄ , ū, and
|n̄| < 1, projections of which are shown in Fig. 1. Relatively
simple expressions for Eq. (12) are available when we restrict
to V̄ = 0 or ū = 0 (thicker lines in Fig. 1). Thus, we define
the Mach numbers in these cases as

Mu = |ū|
√

1 + 3n̄2

1 − n̄2
, MV = |V̄ |√

1 − n̄2
, (13)

respectively, so that M = 1 corresponds to Eq. (12).

FIG. 1. Sonic curves calculated from Eq. (12) by varying (a) V̄

and (b) ū in steps of 0.2. The cases for (a) V̄ = 0 and (b) ū = 0 are
emphasized by the thicker solid line, corresponding to Eq. (13).

III. BOSE-EINSTEIN CONDENSATE LIMIT OF THE
DISPERSIVE HYDRODYNAMIC EQUATIONS

The hydrodynamic equations governing the mean-field
dynamics of a BEC can be obtained as a limiting case of
the magnetic, dispersive hydrodynamic equations, Eqs. (5a)
and (5b). For this, one should consider the nearly perpen-
dicular, small velocity, long-wavelength, and low-frequency
expansion

n = 1 − ερ, u = (
1
2ε

)1/2
v,

x̃ = (
1
2ε

)1/2
x, t̃ = εt, U = εh0, (14)

where 0 < ε � 1 measures the magnetization deviation from
the perpendicular, vacuum state. Inserting this expansion into
Eqs. (5a) and (5b) while keeping only the leading-order terms
and setting α = 0 results in

∂ρ

∂t̃
+ ∇̃ · (ρv) = 0, (15a)

∂v
∂t̃

+ (v · ∇̃)v + ∇̃ρ = 1

4
∇̃

[
�̃ρ

ρ
− |∇̃ρ|2

2ρ2

]
− ∇̃U, (15b)

a nondimensional form of the conservative, hydrodynamic
equations of a repulsive BEC with trapping potential U (x̃) (see,
e.g., Ref. [20]). From this analogy it follows that the “healing
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length” defined in BEC as the transition distance between two
states with dissimilar density is simply given by the spatial
scaling in ferromagnetic materials, i.e., the exchange length in
the case of planar ferromagnets [18].

BECs can lose superfluidity when their interaction with
an obstacle results in the generation of small-amplitude
waves [20]. This can be described in terms of the Landau
criterion for superfluidity, which invokes Galilean invariance
to find the conditions in which spontaneous wave generation
is energetically unfavorable. For a BEC described by Eq. (15),
the Landau criterion is |v| < s, where s = √

ρ is the BEC long
wave speed of sound.

For BECs, the Landau criterion and the Mach number are
closely related. Both describe the conditions for subsonic to
supersonic flow transitions. The Mach number for BECs is [20]

MBEC = |v|√
ρ

. (16)

The sonic curve, MBEC = 1, is the critical transition from
subsonic to supersonic conditions and represents the break-
down of superfluidity, i.e., spontaneous wave generation is
energetically favorable. It can be verified that the magnetic
Mach numbers, Eq. (13), reduce to Eq. (16) for small deviation
from vacuum, by use of the transformation (14). Since the
standard derivation of the Landau criterion utilizes Galilean
invariance, it can only be applied to exchange-mediated,
Galilean-invariant spin waves in a perpendicularly magnetized
thin film ferromagnet. Away from this regime, SDWs break
Galilean invariance [18]. The more general identification of
the subsonic to supersonic transition as the breakdown of
superfluidity, Eq. (13), is the appropriate one for SDWs
because the generalized spin-wave dispersion (9) exhibits
nonzero curvature for positive wave numbers.

It is important to stress that Eqs. (15) are conservative,
so that the connection between BECs and exchange-mediated
spin waves is valid insofar as magnetic damping is neglected.
However, because damping is typically weak, 0 < α � 1, we
can invoke conservative arguments to describe the dynamics
and nucleated structures over sufficiently short time scales
(proportional to α−1) when a finite-sized obstacle is intro-
duced.

A more general analog to the magnetic, dispersive hy-
drodynamic equations, Eqs. (5a) and (5b), can be found in
two-component Bose-Einstein condensates, a class of spinor
Bose gases [22] that possess magnetic properties. In particular,
Congy et al. [24] found that the polarization waves in a
one-dimensional, two-component BEC can be described by
approximate dispersive hydrodynamic equations coinciding
exactly with the one-dimensional projection of Eqs. (5a)
and (5b) when α = 0. This suggests that observations in planar
ferromagnets can be applicable to two-component BECs, and
it showcases the effects of exchange coupling between spins
or atoms with a finite magnetic moment. Magnetic damping
is an energy sink for a planar ferromagnet, at which point the
analogy to a superfluid strictly breaks down.

Finally, we remark that there exists yet another exact
mapping of the dispersive hydrodynamic magnetization equa-
tions (4) and (5) (one-dimensional, α = 0) to a continuum
model of a hard-core boson gas [41,42].

IV. NUCLEATION OF NONLINEAR STRUCTURES
IN FERROMAGNETIC THIN FILMS

Inspired by classical, incompressible fluids and BECs, we
discuss the diverse nonlinear structures that can be nucleated
from an impenetrable obstacle in a ferromagnetic thin film.
We numerically confirm the main points of our discussion in
Sec. V.

In the near-vacuum regime, when the magnetodynamics
limit to a BEC (cf. Sec. III), it is possible to qualitatively predict
the resulting dynamics [31–33,35–37]. In the subsonic regime,
M < 1, quantized V-AV pairs are expected to be nucleated
for sufficiently large diameter obstacles. This occurs because
the obstacle gives rise to a local acceleration of the flow,
and the fluid velocity develops a transverse component, uy =
u · ŷ �= 0. Locally, the total fluid velocity reaches supersonic
conditions, making the wake unsteady, periodically nucleating
vortices. We stress that the global topology of the magnetic
texture in an infinite film must remain constant, suggesting that
only V-AV pairs can be nucleated. Consequently, a von Kármán
vortex street composed of single vortices of alternating
circulations is not favorable in ferromagnets, although an
analog utilizing V-AV pairs has been numerically [33] and
experimentally [34] observed in BEC.

As V-AV pairs are nucleated, two types of interactions are
possible. On the one hand, Vs and AVs are attractive and
can annihilate by transferring their energy to spin waves [38].
On the other hand, when there is an underlying flow, a
V-AV pair can form a stable entity exhibiting two types of
dynamical behavior, which we describe in a qualitative fashion
inspired by the well-known dynamics of vortices in classical
incompressible fluids [29] and BECs [31,32]. If each V-AV
pair is decoupled from other V-AV pairs, the flow translates
the V-AV pairs in a train [29], similar to the Kelvin motion
of same-polarity V-AV pairs studied in planar ferromagnets
with u = 0 [43]. However, such a train of parallel V-AVs was
numerically observed to be unstable for propagation according
to the hydrodynamic equations (15) for a BEC [32] and may
accommodate sinuous or varicose modes, where a sinusoid
describes the position of the V-AV pairs or the Vs and AVs in
the train, respectively. When the V-AV pairs are sufficiently
close to each other, V-V and AV-AV interactions can take
place, leading to their rotation about a vorticity center [29].
As we show in the next section, these dynamics are observed
numerically in magnetic hydrodynamic flow past finite-sized
obstacles.

In the supersonic regime, a distinguishable feature is a
Mach cone corresponding to steady, small-amplitude, long
waves. The aperture angle of the Mach cone, referred to
as the Mach angle μ, can be determined by assuming
steady, small-amplitude, long-wavelength perturbations nu-
cleated from the obstacle (see, e.g., Ref. [44]). Because these
are two-dimensional perturbations, we assume a wave vector
k = kx x̂ + ky ŷ with |k| � 1. Let us also assume that the fluid
and external velocities have only x̂ components. The resulting
time-dependent long-wavelength dispersion relation is just
Eq. (9) keeping only the linear in |k| terms,

ω± = (2n̄ū + V̄ )kx ±
√

k2
x + k2

y

√
(1 − n̄2)(1 − ū2). (17)
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FIG. 2. Schematic representation of a wavefront constant phase
line (red solid line), traced by χ (η) and r(χ,η). The wavefronts are
asymptotically parallel to the Mach cone (black dashed line) far from
the obstacle (red circle).

The Mach cone is established as a steady state, thus we
are interested in the relationship between kx and ky when
ω± = 0. The Mach angle μ can be calculated by trigonometric
identities as tan μ = kx/ky . Incorporating this transformation
into Eq. (17) with ω± = 0 and squaring leads to

(2n̄ū + V̄ )2 sin2 μ = (1 − n̄2)(1 − ū2). (18)

Solving Eq. (18) for the cases V̄ = 0 and ū = 0 leads to the
definition of μu and μV , respectively,

μu = sin−1

√
(1 − n̄2)(1 − ū2)

2|n̄ū| � π

2
, (19a)

μV = sin−1

√
1 − n̄2

V̄
= sin−1 1

MV

� π

2
. (19b)

Note that Eq. (19b) reduces to the Mach angle of a classical
gas with Mach number MV [44]. In contrast, Eq. (19a) is a
more complex expression of ū and n̄; note that μu and μV are
real-valued only for Mu,V � 1 (Mu,V = 1, μu,V = π/2). The
nonstandard form of the Mach angle μu is another consequence
of the broken Galilean invariance of the magnetic system.

In steady flow, nonlinear structures are expected to reside
inside the Mach cone [37]. Outside the Mach cone, a static,
ω = 0, structure can also be established. This linear wavefront,
also referred to as Cerenkov radiation [27,35], features a wave
vector with constant phase curves describing an approximate
parabola around the obstacle. As outlined in Ref. [36], the
constant phase curves can be described in polar coordinates
(r,χ ) defined as a function of the angle η, schematically shown
in Fig. 2. This is achieved by assuming slowly modulated,
stationary waves k = |k|(cos ηx̂ + sin ηŷ) = ∇θ . From the
static condition ω± = 0 in Eq. (17), it follows that

|k|2 = (2n̄ū − V̄ )2 cos2 η − (1 − n̄2)(1 − ū2). (20)

This implies, for constant η, that larger fluid or observer
velocities lead to shorter wavelengths. For time-independent k
and noting that ∇ × k = 0 due to irrotationality, it is possible
to introduce a hyperbolic equation for kx and ky that can be
solved by the method of characteristics [37]. Integrating ∇θ

along constant χ yields

tan χ = −∂ω/∂ky

∂ω/∂kx

, (21a)

|r| = − θ

|k| cos ψ
, (21b)

where ψ is the angle between r and k. For fixed phase θ ,
Eqs. (21a) and (21b) represent the solution of a constant phase
curve, as schematically represented by the thick red solid line
in Fig. 2. It is also possible to recast this solution in Cartesian
components (x,y). In the moving reference frame with ū = 0,
V̄ �= 0, the result coincides with that presented in Ref. [36].
In the static reference frame ū �= 0, V̄ = 0, we obtain by
trigonometric identities and algebra

x = θ

|k|
cos χ

cos ψ
= θ cos η(sin2 μu + 1 − 2 cos2 η)

2n̄ū(cos2 η − sin2 μu)3/2
, (22a)

y = θ

|k|
sin χ

cos ψ
= −θ sin η(cos2 η − [sin2 μu]/2)

2n̄ū(cos2 η − sin2 μu)3/2
. (22b)

It must be noted that far away from the obstacle, when
|η| → π/2 and in the limit of long wavelengths |k| � 1,
Eq. (21a) approaches the solution χ → μ. Therefore, the
wavefronts are asymptotically parallel to the Mach cone. Close
to the obstacle, when |η| � 1, a series expansion yields the
approximate parabolic wavefront profile

x ∼ −θ + y2 (2n̄ū)2(1 − sin2 μu)2(4 + sin2 μu)

|θ |(2 − sin2 μu)
. (23)

V. NUMERICAL RESULTS

The existence and dynamics of nonlinear structures hy-
pothesized in Sec. IV for planar ferromagnetic thin films
can be verified by micromagnetic simulations. We consider
impenetrable obstacles with a circular cross section and
diameter d. Due to broken Galilean invariance, we perform
simulations in both the static and moving reference frames, as
described below. It is important to point out that the continuous
nucleation of topological structures requires an energy source,
such as spin injection at a ferromagnetic boundary [15,16]. In
our simulations, we do not consider such an energy source per
se. Rather, the stabilization of nonzero velocity u [although
static, −(1 − n2)u is nevertheless a spin current [18]] is
assumed to result from some external mechanism, analogous
to the sustenance of a flowing classical fluid. The introduction
of an obstacle is a perturbation to the system that imposes a
new energy minimum. This leads to a transient regime where
topological structures are nucleated as the total energy of the
system is minimized. Therefore, we report and interpret the
dynamics observed during such a transient from a dispersive
hydrodynamic perspective.

A. Static reference frame, ū �= 0 and V̄ = 0

We perform finite-difference integration of the LL equa-
tion using the GPU-accelerated micromagnetic package MU-
MAX3 [45]. Although we report solutions of the nondimen-
sional LL equation, Eq. (1), the parameters are consistent with
Permalloy, e.g., saturation magnetization Ms = 790 kA/m,
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exchange stiffness A = 10 pJ/m3, and Gilbert damping α =
0.01. To compare with theory, we consider only local dipolar
fields (zero thickness limit) by incorporating a negative
perpendicular anisotropy constant Ku = −μ0M

2
s /2, where μ0

is the vacuum permeability. With these parameters, space is
normalized to the exchange length λex and time to 1/(γμ0Ms),
where γ is the gyromagnetic ratio. Typical values for these
parameters are λex = 5 nm, 1/(γμ0Ms) = 36 ps, and γ =
28 GHz/T.

An impenetrable obstacle is introduced as a localized
(hyper-Gaussian) perpendicular field that forces n̄ = 1, i.e., the
vacuum state, in a limited area [18]. In fact, a perpendicular
field gradient acts as a potential body force on the fluid as
shown in Eq. (5b). Alternatively, a magnetic defect or absence
of magnetization also constitutes an impenetrable object. As an
initial condition, we impose a SDW given by (n̄,ū = 0.6) with
0 < n̄ < 1, and we guarantee its stability both by applying
a homogeneous, perpendicular magnetic field that satisfies
Eq. (6) and by defining a simulation domain of Lx × Ly =
317 × 156 spatial units that accommodates an exact number
of SDW periods in the x̂ direction. The simulation is discretized
into a mesh with 1024 × 512 gridpoints, and we implement
periodic boundary conditions along the x̂ direction and open
or free-spin conditions in the ŷ direction. The simulation is
evolved to the time t = 112. To prevent any nucleated structure
from propagating through the periodic boundaries, we also
implement a high damping region close to the edge of the
simulation domain. Such an absorbing boundary does not
compromise the stability of the initialized SDW. We emphasize
that the choice of fluid velocity ū = 0.6 was made on the basis
of computational speed. Other fluid velocities give similar
results.

The observed nucleated nonlinear structures can be classi-
fied in the phase space spanned by the parameters n̄ and d,
shown in Fig. 3(a), swept in steps of 0.1 and 1, respectively.
First, we note that laminar flow (region O) is lost as the
diameter of the obstacle increases, even in the subsonic regime
(below the dashed line), indicating that the fluid velocity
locally develops supersonic speed as it is accelerated around
the obstacle. We have verified this fact numerically. The
gray regions represent ordered V-AV pair nucleation. For a
relatively narrow parameter space (region I), the V-AV pairs
translate parallel to each other carried by the underlying flow,
as shown in Fig. 3(b). In region II, the parallel V-AV trains
are unstable [32] [Fig. 3(c)]. We note that the instability
numerically observed for parallel V-AV pairs in BECs [32]
suggests that region I could eventually develop an instability
for larger simulation domains and times. However, simulations
in a domain twice as large, 634 × 212, evolved twice as
long to t = 224 did not show evidence of such an instability.
Finally, region III denotes irregular V-AV nucleation, as shown
in Fig. 3(d). Here, V-V and AV-AV rotation is observed,
schematically shown in Fig. 3(d) by the blue lines defining the
V-V and AV-AV axis and blue arrows denoting the rotation. In
all the cases mentioned above, we observe that the separation
between the V and AV in a pair increases as they translate away
from the obstacle, similar to a Magnus force. This was also
observed in additional simulations in which a single V-AV pair
was nucleated by a field pulse. Such a single pair moves with
a velocity greater than |u| and develops a velocity transverse

FIG. 3. (a) Phase diagram for V-AV nucleation and dynamics
in the static reference frame. Region O represents laminar flow
while the gray regions I-II (III) denote ordered (irregular) V-AV pair
nucleation. Snapshots of the longitudinal spin density, n, exemplify
each region showing V-AV pairs in (b) parallel (region I), (c) unstable
mode (region II), and (d) irregular dynamics (region III), with
corresponding conditions indicated by red asterisks in (a). The red
arrows represent the vortices’ circulation direction, with V and AV
circulations indicated in (b). The blue lines and arrows schematically
show the rotating trajectory of the V-V and AV-AV pairs in the
irregular regime.

to u. This is in contrast to constant V-AV motion in a uniform
magnetic background [43]. An in-depth study of V-AV motion
on a textured background is worthy of future investigation, but
it lies outside the scope of the present paper.

Micromagnetic simulations were performed also in the
case in which a magnetic void with free spin boundary
conditions serves as an obstacle. The resulting n̄ versus d
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FIG. 4. (a) Phase diagram for V-AV nucleation and dynamics
in the static reference frame considering a magnetic defect as
an obstacle. The black region represents laminar flow while the
gray region (white region) denotes ordered (irregular) V-AV pairs
nucleation. Regions I and II agree qualitatively with the dynamics
observed in Fig. 3. Here, region II exhibits a sinuous mode (b), in
contrast to Fig. 3. Additionally, a von Kármán–like vortex street is
observed in region IV (c). We do not show regions I and III as they
are similar to Figs. 3(b) and 3(c), respectively.

phase space is shown in Fig. 4(a) and agrees qualitatively
with the phase diagram obtained with a localized field
[Fig. 3(a)]. We note that in this case, the instability of the
V-AV pairs train develops into a sinuous mode [Fig. 4(b)].
Furthermore, we observe a transition between region II and
III, labeled region IV in Fig. 4(a), where we observe V-V and
AV-AV nucleation reminiscent of von Kármán vortex streets
numerically predicted and recently observed in BECs [33,34].

Irregular V-AV nucleation persists for supersonic condi-
tions, when Mu > 1 [above the red dashed line in Fig. 3(a)].
Additionally, in this regime we also observe a well-defined
Mach cone and the nucleation of wavefronts (Fig. 5). As
discussed in Sec. IV, the Mach angle and curves of constant
phase corresponding to wavefronts are given in Eqs. (19a)
and (22), which describe the numerical results to good
accuracy, as shown by red dotted lines in Fig. 5. Whereas
the Mach angle defines a static boundary, i.e., the Mach cone,
the wavefronts are dynamic due to vortex shedding and the

FIG. 5. Snapshot of the longitudinal spin density, n, in the static
reference frame at a supersonic condition (n̄,ū) = (0.6,0.6) and an
obstacle of diameter d = 6. The Mach cone calculated from Eq. (19a)
and the wavefront calculated from Eq. (22) are shown by red dashed
curves.

concomitant change of flow conditions effected by our energy
minimizing simulations. For this reason, the estimates of
Eq. (20) are only valid for timescales shorter than the relaxation
time imposed by damping. By fitting θ and a horizontal shift
from the obstacle, the red dashed line outlining the wavefront
in Fig. 5 is obtained. The wavelength 2π/|k| = λ = 19 at
η = 0 is well-described by Eq. (20) and is found to be within
the same order of magnitude as the numerically calculated
wavefront wavelengths throughout the simulation evolution
λsim = 12.21 ± 2.1. This agreement is possible due to the
fact that the equations are effectively conservative for short
timescales and the concepts used for BEC are approximately
applicable.

B. Moving reference frame, ū = 0 and V̄ �= 0

In the moving reference frame, we use a pseudospectral
method [46] to solve the nondimensionalized LL equation,
Eq. (1). Here, the localized, perpendicular field moves with
velocity V̄ while the fluid velocity is zero. The simulation
domain in this case has the same size as the simulations
in the static reference frame, but it is discretized into the
coarser 256 × 128 number of grid points by virtue of the
accuracy of the pseudospectral method. We initialize the
simulation with a homogeneous magnetization with n̄ = h0 =
0.7, ū = 0 and we use periodic boundary conditions along and
across the thin film. We evolve the simulation to t = 2000.
The longer simulation time in this case reflects the slower
dynamics in the moving reference frame. The value of the
homogeneous perpendicular field bias magnitude, h0, was
chosen to minimize the strength of the localized perpendicular
field needed to impose hydrodynamic vacuum.

The phase space for the nucleated nonlinear structures
and dynamics as a function of V̄ and d are shown in
Fig. 6(a), swept in steps of 0.1 and 1, respectively. As in
Fig. 3(a), subsonic laminar flow (region O) is lost as the
obstacle diameter increases. Regions I to III denote V-AV pair
nucleation. In contrast to the static reference frame, the absence
of an underlying fluid velocity in this case, ū = 0, precludes
significant vortex translation or Kelvin motion. Instead, the
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FIG. 6. (a) Phase diagram for V-AV nucleation and dynamics
in the moving reference frame. Region O represents laminar flow,
where vortices are not nucleated. The gray regions I-II (region III)
denote irregular (ordered) V-AV pair nucleation. Snapshots of the
longitudinal spin density, n, show V-AV (b) annihilation (region I),
(c) irregular dynamics (region II), and (d) ordered dynamics (region
III) inside the Mach cone with conditions indicated by red asterisks
in (a). The red arrows represent the vortices’ circulation direction.

V-AV pairs are attracted to each other due to magnetic damping
(energy dissipation) and subsequently annihilate, expelling
spin waves. For this reason, the V-AV pairs nucleated at
subsonic conditions (region I) are unstable and lead to an
unevenly spaced V-AV train as well as irregular dynamics close
to the obstacle [Fig. 6(b)]. At supersonic conditions, above the
red dashed line in Fig. 6(a), a narrow phase space (region II)
leads to irregular V-AV pairs inside the Mach cone, shown
in Fig. 6(c) by red dashed lines calculated from Eq. (19b).

FIG. 7. Snapshots of the longitudinal spin density, n, in the
moving reference frame at supersonic conditions. The moving
localized field has a diameter d = 5. The Mach cone calculated from
Eq. (19a) and the wavefront calculated from Eq. (21a) are shown by
red dashed lines. Instabilities in the wavefronts lead to V-AV pairs,
shown by red circles.

Finally, in region III, the V-AV pairs become mostly ordered.
In Fig. 6(d) we observe two V-AV pairs establishing an oblique
path with respect to the obstacle. This is reminiscent of oblique
solitons [37], but here the structure immediately breaks down
into V-AV pairs.

As discussed above, a Mach cone and wavefronts are also
established at supersonic conditions in the moving reference
frame. These agree to good accuracy with Eqs. (19b) and (21),
where the curves of constant phase for x and y, analogous
to Eq. (22), are determined as in Ref. [36]. Figure 7 shows
the comparison between theory and numerics. However, we
observe instabilities in the wavefronts that develop for large
obstacle velocities. This is shown in Figs. 7(a) and 7(b) for,
respectively, velocities similar to and larger than the sonic
curve. In particular, the short wavefronts in Fig. 7(b) are
observed to break into V-AV pairs due to this instability
(encircled in red) suggesting nonlinear effects. The study of
such effects is beyond the scope of the current paper.

VI. CONCLUSION

In summary, we demonstrate that nonlinear structures and
V-AV complexes can be nucleated from an obstacle in a thin
film planar ferromagnet. These observations are in qualitative
agreement with structures nucleated in classical fluids and
superfluids, providing further evidence for the hydrodynamic
properties of thin film planar ferromagnets.

Both in the moving and static reference frames, we observe
nucleation of V-AV pairs, as qualitatively expected for an
unsteady wake formed behind an impenetrable obstacle. These
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V-AV pairs experience diverse dynamics and are nucleated as
long as the system is out of equilibrium. In the static reference
frame, we observe Kelvin motion, instability, and V-V, AV-AV
rotation. In the moving reference frame, V-AV pairs are also
nucleated but generally annihilate, forming an irregular pattern
and spin waves. For supersonic conditions, a Mach cone and
the formation of wavefronts are observed, as expected for
superfluids. Good quantitative agreement is found between the
numerically observed structures and theoretical results derived
from the linearized, conservative, long-wave equations.

Although nonlinear structures and V-AV complexes are
observed in both the static and moving reference frames,
there are important differences in their dynamics. In partic-
ular, irregular V-AV dynamics are observed in supersonic
conditions in the static reference frame, ū > 0 and V̄ = 0, and
subsonic conditions in the moving reference frame, ū = 0 and
V̄ > 0. This is due to the fact that the underlying flow, ū �= 0,
induces V-AV translation in contrast to the moving reference
frame with ū = 0. In other words, a topological texture is
required to support ordered vortex structures. This suggests
that for a fixed ū > 0, the introduction of V̄ �= 0 leads to
irregularity in the subsonic regime. Additionally, the numerical
observation of an apparently stable V-AV train propagating on
the textured background ū > 0 is to be contrasted with the
unstable propagation of a train of counter-rotating vortices
in a BEC. This intriguing ordered regime requires further
analysis.

It is noteworthy that we explore a two-dimensional param-
eter space with a fixed ū in the static reference frame and a
fixed n̄ in the moving reference frame, as opposed to the full
three-dimensional parameter space where n̄, d, and ū or V̄

are varied. However, we argue that the phase spaces shown
in Figs. 3(a) and 6(a) represent general qualitative features
of the full parameter space. The phase space can collapse to
two dimensions, spanning Mu = Mu(n̄,ū) or MV = MV (n̄,V̄ )
versus d. Micromagnetic simulations performed with several
choices of n̄ and ū and V̄ for, respectively, the static and moving
reference frames indeed return qualitatively similar dynamics
for matching Mach numbers and obstacle diameters.

The above results show that V-AV complexes can be
nucleated in a thin film ferromagnet with planar anisotropy
following well-defined patterns analogous to superfluids and
compressible fluids. Our observations are relevant for the sta-
bility of spin-density waves and the study of V-AV interactions
with other nonlinear textures such as spin-density waves, other
V-AV pairs, and wavefronts.
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