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Abstract

High-quality ballistic electronic devices made from graphene are becom-
ing an experimental reality. Carbon-based electronics is heralded if not
to succeed or surpass then to complement the existing semiconducting
technology. This thesis investigates graphene-based devices from a theo-
retical point of view with the focus on high-frequency applications, where
the material is expected to have a large impact. We develop a quantum-
mechanical description of time-dependent transport in mesoscopic graphene
samples based on a scattering matrix approach similar to Landauer-Büttiker
treatment of non-relativistic charge carriers. We investigate scattering pro-
cesses involved in transport through a GFET and identify resonant mech-
anisms that lead to enhancement of the source-drain current under an
oscillating gate signal. We propose a tunable selective frequency multi-
plication scheme and a radiation detector with operation relying on such
mechanisms. The performance of the proposed devices is investigated in
terms of their shot noise and Fano factor, which we show to be suppressed
due to Klein tunnelling even for strong driving of the system. Finally, we
apply the formalism to a quantum pump based on an asymmetric potential
profile with respect to the gate electrode doping and compute the current
through it, revealing that the temperature and the back gate bias can be
used to switch the direction of the current.

Keywords: graphene, ballistic quantum transport, Floquet scattering
matrix, Fano resonance, Landauer-Büttiker theory
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Phys. Rev. B 95, 165420 (2017)

IV Resonant single-parameter pumping in graphene
Y. Korniyenko, O. Shevtsov, and T. Löfwander
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Chapter 1

Introduction

1.1 Graphene

Carbon is the fourth most abundant element in the universe by mass and
the second after oxygen in the human body. It is a key component of liv-
ing organisms as we know them. The element has been known to mankind
since antiquity making it one of the most studied subjects. Yet it seems we
still have many things to discover about it. The key to its abundance in
organic matter lies perhaps in the fact that it has 4 valence electrons avail-
able to make bonds with other atoms. In fact, the electronic configuration
of Carbon is 1s22s22p2, allowing one of the outer shell s electrons to pro-
mote itself to the p subshell when forming a bond with another atom. In
addition, the Carbon atom is the smallest among group IV of the periodic
table of elements, making its covalent bond to itself the strongest among
those. Its ability to form long covalent bond chains is the basis of the great
number of organic compounds that are present on earth. Speaking of pure
Carbon compounds, 4 valence electrons allow it to be in several different
bond configurations, hybridizations sp, sp2 and sp3 formed by hybridiza-
tion of its s and p orbital electrons. One of the most well-known allotropes
of Carbon, diamond has sp3 hybridization, forcing the Carbon atoms to
form tetrahedral structures, responsible for high mechanical hardness of
diamond. On the other hand, it involves all of available electrons in bond
formation, making diamond a great insulator. Carbon in sp2 configuration
is found in graphite. Despite it being readily available to mankind, the in-
ternal structure of graphite in commonly used pencil remained unclear until
early 20th century. The crystallographic structure of it contains plains of

1



2 Introduction

carbon atoms loosely held together by van der Waals forces. The relative
ease with which these bonds break is responsible for success of pencil as
a writing tool (until MS Word was invented, of course). A single layer of
graphite, graphene has not been studied well until Wallace [1] derived its
band structure in 1947. The reason for the lack of study on the material
lies perhaps in the fact that it is just a single layer of atoms and precision
of available technology had to catch up. The major discovery by Wallace
was that graphene displayed a linear band structure close to corners of the
Brillouin zone. Such a dispersion relation is typical for relativistic parti-
cles, while common materials all display a quadratic dispersion relation.
Moving forward, the parallel between it and Dirac particles was drawn by
the late 20th century [2]. But it was still not until 2004 [3] when the mate-
rial was actually confirmed to exists on its own experimentally. Knowing
that physical systems can be mapped onto each other if their Hamiltonians
have the same structure, one can only imagine the excitement of the sci-
entific community when, quoting M. I. Katsnelson, ”CERN on one’s desk”
became available. It allowed to test exotic physical phenomena that could
be observed only in high-energy physics. The extensive studies of it re-
vealed a number of other interesting properties that might not have been
foreseen by Wallace 70 years ago.

The unusual dispersion relation of graphene supports fundamental stud-
ies of exotic effects like anomalous Quantum Hall regime [4], Veselago
lensing [5] and Klein tunneling [6]. Its crystal structure guarantees me-
chanical robustness, making it one of the strongest materials available [7].
Graphene, being just one atom thin presents a higher level of electron con-
finement to a single plane than even two-dimensional electron gas (2DEG).
On top of that, delocalized π-bonds in sp2 hybridization provide graphene
with remarkable electronic and thermal conductivity [8, 9].

As graphene possesses a unique combination of mechanical, electrical
and thermal properties, it is still attracting large interest of the scientific
community. In addition, the discovery of graphene has boosted research
into other possible two-dimensional materials, with obvious candidates of
silicene and germanene [10, 11], but the list now includes many more, e.g.
BN [12] and MoS2 [13]. Such materials display fascinating properties of
their own and/or can be complementary to graphene. An interesting direc-
tion of research is combining these planar materials into heterostructures
[14, 15], producing new material properties not achievable in either of the
individual components. The number of applications of the material is con-
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stantly growing and the reader is kindly referred to many review papers on
the subject [16–19] to learn more about intriguing properties of graphene.

1.2 Motivation

As graphene fabrication technology is leaping forward, high-quality defect-
free graphene samples can be produced nowadays with electronic mean free
paths over a micron long [20, 21]. On one hand, it allows to study very ex-
otic phenomena like hydrodynamics of electrons in graphene [22, 23] which
is only possible when the electron-phonon interactions are no longer the
most dominant relaxation mechanism, but rather electron-electron inter-
actions start to play a major role. On the other hand, ballistic devices
in combination with high electron mobility, tunable charge density and
interesting properties of graphene beg for research into high-frequency ap-
plications of it. The experimental effort in this direction has enjoyed a
moderate success with graphene-based field-effect transistors (FETs), fre-
quency multipliers, and detectors produced [24–26]. The aim of this project
is to examine the possibility of utilizing graphene in high-mobility tran-
sistors for high-frequency applications from a theoretical point of view.
On one side we have ballistic transport which is an interesting field of
research in itself, on the other RF electronics has a so-called terahertz
gap [27], meaning that there are fewer high-quality sources and detectors
in this frequency range. Studying graphene as a possible candidate for
bridging this gap is one target of the thesis. From a theoretical point of
view, there exists a description of mesoscopic conduction in 2DEGs, the
so-called Landauer-Büttiker [28] theory. However, unique properties of
graphene call for reexamination of this theory and development of a quan-
tum theory of mesoscopic time-dependent transport in the context of Dirac
fermions, which is another goal of this work.

1.3 Thesis outline

In this section we provide the reader with this book’s structure. It is a
compilation thesis, meaning that the main research findings of the author
are presented in the form of appended papers. The main text of the thesis
is aimed at giving the reader a comprehensive introduction to the concepts
used in the papers, establishing the relation between them and putting the
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thesis into a broader perspective. The main text and the appended papers
should therefore be viewed as complementary to each other.

Chapter 2 introduces basic concepts about graphene as a material.
Starting with its crystal structure, we derive its low energy electronic
band structure based on a tight-binding model, followed by an overview of
presently used graphene fabrication techniques with their respective fields
of use. Finally, a graphene-based field-effect transistor, related to all of the
appended papers, is discussed, and its possible applications in electronics
are mentioned together with the current state of the field.

In Chapter 3 the core notions behind electron transport trough a static
potential landscape are introduced, which lays the foundation for the dis-
cussion in the chapters that follow. We describe quantum-mechanical phe-
nomena in simple setups, introducing concepts of Fabry-Pérot interference,
tunnelling through potential barriers and formation of bound states in po-
tential wells. The boundary conditions for rectangular and delta barrier in
graphene are analysed and compared to the analogous setups in materials
with quadratic dispersion relation. All these concepts play an important
role in the appended papers. Double barrier tunnelling is introduced to
supplement discussion in Paper II.

The framework built in the preceding chapters is expanded in Chap-
ter 4 by introducing a time-dependent potential. The solution strategies
to Schrödinger and Dirac equations with such term are discussed in the
context of Tien-Gordon theory. We analyse formation of sidebands and
associated inelastic processes governing scattering from a harmonic scat-
terer. In particular, Fano and Breit-Wigner resonances are described, their
formation is the main subject of study in Paper I.

We present the main theoretical tool used in all of the appended papers,
namely the scattering theory, in Chapter 5. All important steps in the de-
velopment of it in relation to mesoscopic transport in 2DEG are outlined,
introducing waveguides, scattering matrix and its Floquet state analogue
and statistical averages of operators, finally arriving at the electronic cur-
rent. We conclude the chapter with remarks about the scattering theory
in graphene, developed in Paper I and used in subsequent papers, which is
perhaps the most important result of the research presented in this work.

A short overview of the developments in each of the appended papers
is presented in Chapter 6. We proceed with summary and outlook for
possible extensions and improvements of the presented work in Chapter 7,
which concludes the thesis.



Chapter 2

Graphene essentials

2.1 Basic properties

In this chapter we review some of the fundamental properties of graphene,
its crystal structure and how it manifests itself in a relativistic low energy
dispersion relation in particular. We present an overview of common fabri-
cation techniques and possible fields of use in graphene technology. Finally
we show an idea behind graphene-based field-effect transistor devices along
with the current progress and challenges in the field.

2.1.1 Crystal structure

Monolayer graphene is a two-dimensional carbon allotrope with C atoms
arranged in a honeycomb lattice, as shown in Fig. 2.1 (a). The carbon-
carbon bond length is a0 = 1.42 Å. Carbon atoms are in sp2 hybridization,
with covalently bound to three neighbours, leaving exactly one pz-orbital
electron per atom. Due to the dumbbell shape of p-orbitals, these electrons
form a continuous conjugated π-bond above and below the atomic plane,
which is responsible for the great electrical conductivity of it. One can
note that a0 is shorter than a normal sp2-hybridized carbon bond of 1.47
Å exactly due to the additional π bond.

Graphene’s unit cell consists of two inequivalent atoms, or in other
words there are two sublattices that are inequivalent from a crystallo-
graphic point of view, we will call them A and B. One can define vectors
connecting an atom A with its nearest neighbours on sublattice B as

δ1 = a0(1,0), δ2 = a0
2 (−1,

√
3), δ3 = a0

2 (−1,−
√

3). (2.1)

5



6 Graphene essentials

Figure 2.1: (a) Honeycomb graphene lattice with two inequivalent sublattices A
and B, showing nearest neighbour vectors δ and primitive lattice vectors a. (b)
Reciprocal space showing the first Brillouin zone, it’s lattice vectors b and Dirac
points K and K’.

To generate a single triangular sublattice we can use primitive vectors

a1 = a0
2 (3,

√
3), a2 = a0

2 (3,−
√

3) (2.2)

We can also construct a reciprocal lattice using its primitive vectors

b1 = 2π
3a0

(1,
√

3), b2 = 2π
3a0

(1,−
√

3) (2.3)

Of particular importance are corners of the first Brillouin zone, see Fig. 2.1
(b), with two inequivalent points

K = 2π
3a0

(1, 1√
3

), K ′ = 2π
3a0

(1,− 1√
3

) (2.4)

In the following section we are going to show how the dispersion relation for
electrons can be linearized around these points, from which many unusual
properties of graphene arise.

2.1.2 Dirac Hamiltonian

As derived in App. A, the eigenenergies of the honeycomb carbon lattice
Hamiltonian form two bands

E(k) = ±t
∣∣∣1 + e−ik·a1 + e−ik·a2

∣∣∣ , (2.5)
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where t ∼ 3 eV is the nearest-neighbour hopping energy for electrons in π
bands [29]. Taking the absolute modulus results in

E(k) = ±t
√

3 + f(k), (2.6)

where f(k) = 2 cos(
√

3kya0) + 4 cos(3
2kxa0) cos(

√
3

2 kya0). It is interesting
to note that band structure calculations for graphene were available more
than half a century before the experimental extraction [1], and including
the second nearest-neighbour hopping the bands look like

E(k) = ±t
√

3 + f(k)− t′f(k), (2.7)

where the second nearest-neighbour hopping strength is t′ ∼ 0.1 eV [30]. It
is worth noting that presence of this correction destroys conduction (E > 0)
and valence (E < 0) band symmetry with respect to each other around
E = 0. However, since t′ � t and we will focus on low-energy properties,
the second nearest-neighbour correction will be neglected throughout the
thesis. Not only the conduction and valence bands are symmetric with
respect to each other, they also touch at E = 0 at Dirac points from (2.4),
see Fig. 2.2. Since for every Carbon atom there is only one π electron
participating in π bond formation, while it can accomodate two electrons
due to spin degeneracy, the Fermi energy of ideal pristine graphene lies
exactly at E = 0.

Using the fact that energy is exactly zero at Dirac points, we can expand
(A.7) for low energies, or, equivalently, low momentum κ with respect to
points K and K’, k = K + κ, κ� K, giving us

Eλ,ν(κ) = λ
3a0t

2 |νκx − iκy| = λ~vFκ, (2.8)

where λ is the energy band index, + for electrons and − for holes, while ν
is the Dirac cone index, + for K valley and − for K’, and we defined Fermi
velocity in graphene vf = 3a0t

2~ ∼ 106m/s. Equivalently, we can expand the
Hamiltonian relation to the hopping parameter (A.8), giving

Hν = ~vF

(
0 νκx − iκy

νκx + iκy 0

)
. (2.9)

Recalling that κ = −i∇ one arrives at expression

H+ = −i~vF (σ · ∇), H− = i~vF (σ∗ · ∇), (2.10)
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Figure 2.2: Energy bands of graphene. The edges of the first Brillouin zone are
shown with a solid black line. At its corners, Dirac points K and K’, conductance
and valence bands touch at E = 0.

where σ = (σx, σy) is the Pauli matrix vector in two dimensions. The
corresponding eigenvectors are given by

ψν = 1√
2

(
1

νκx+iκy

κ

)
(2.11)

The low-energy dispersion relation (2.8) is linear in momentum and does
not depend on electron mass. It can be seen in Fig. 2.2 as cones emerg-
ing from K points. This type of dispersion relation is characteristic for
relativistic particles, although here the role of speed of light is played by
Fermi velocity. Due to this similarity we refer to all these quantities as
Dirac Hamiltonian, points, cones, etc. For fused benzene rings the HOMO-
LUMO energy gap decreases with increasing the number of rings due to
degeneracy of each separate ring, thus if we view graphene as an infinite
limit of this case, it is quite intuitive that a continuum of former progres-
sively lower LUMO states, a valence band, touches the conduction band.
This simple analogy can be successfully extended to similar 2D materials,
e.g. silicene and germanene - they also display zero band gap [11].
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Here we should note, that the linearization procedure above imposes
limitations on the scales we operate on. We have to assume that elec-
tron wavelength is larger than C-C bond distance, so that we are treating
graphene as a continuum medium rather than a lattice of discrete sites.
Nevertheless, the contributions from the sublattices are still distinguish-
able. Thus, we describe it as an internal degree of freedom, chirality,
since it is similar in mathematical description to the chirality of spin, but
here it is due to pseudospinor (2.11) having components on both A (top)
and B (bottom) sublattices. We also should note that we have written
Hamiltonians for K and K’ cones, implying that we neglect any intervalley
scattering. So what does the assumption about non-intermixing valleys
mean? We have to assume that the potential cannot scatter the paticles
by a large enough wave vector to bring them from one K valley to another.
Since this is done in k-space, in real space it would mean that the potential
is smooth on the atomic scale thus covering both types of sublattices. In
addition, our sample of graphene should be large on the mesoscopic scale
since quantization due to standing waves can mix the valleys together and
open up a band gap [31]. In the most general case of intervalley scat-
tering, we have to deal with a four-by-four Hamiltonian matrix and the
pseudospinor eigenvectors thus have four components. The real spin de-
gree of freedom enters trivially, since we do not include magnetic field and
spin-orbit interaction in our model.

2.2 Fabrication

Graphene, inherently being atomically flat, has long been considered unre-
alistic. Mere existence of another dimension allows for a multitude of relax-
ation processes in the direction perpendicular to the hypothetical graphene
plane. Thus fluctuations, e.g. in temperature, were deemed to destroy the
long-range ordering in two dimensions making the lattice unstable [32, 33].
But it was not until the experimental isolation of graphene in 2004 [3],
which brought Geim and Novoselov the Nobel Prize in Physics in 2010,
when the final word in the debate has been said. Graphene can be treated
as purely two-dimensional to a good degree of approximation, but indeed
deviations from a perfect planar structure exist in the form of bulging and
curling at the edges [34]. Several fabrication methods have been developed
over the years, the main directions being exfoliation, chemical vapour de-
position and epitaxial growth of graphene [35].
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The original ”Scotch tape” method of Novoselov et. al [3] is based
on micromechanical exfoliation of graphene from graphite. The latter is
known to have crystallographic structure consisting of graphene planes
weakly bound by interplanar van der Waals forces [36]. The method capi-
talises on it by attaching an adhesive material to graphite effectively over-
coming the van der Waals forces and stripping multiple layers of graphene
from the original structure. Applied iteratively, it eventually leads to a
single graphene layer being isolated. The strength of this method lies
in the simplicity of the setup, and high-quality samples with area up
to 2000 µm2 [37] are now readily obtainable, thus boosting fundamental
graphene research in the labs around the world. The quality of exfoliated
graphene flakes is high enough for experimental observation of such exotic
phenomena as fractional quantum Hall effect [38] and ballistic transport
[39]. Several other variations of the exfoliation process have been devel-
oped since the mechanical exfoliation is not scalable to industrial standards
[35]. Liquid-phase exfoliation involves solution of graphite or graphite ox-
ide in a liquid [40–42]. This method relies on hydrodynamic forces are to
separate the layers. Separation in the liquid phase is commonly done via
ultrasonication [40, 43, 44] or stirring and shaking [45, 46]. The disadvan-
tage of using pristine graphite in liquid phase exfoliation is that it usually
results in very low yield [40, 47]. As a way to overcome this limitation,
graphite oxide is often used as a precursor material instead [48]. Oxidation
and chemical intercalation [49, 50] increase the distance between graphene
planes in graphite thus decreasing the van der Waals forces and facili-
tating exfoliation. In addition, graphite oxide, in contrast to graphite, is
hydrophilic, which helps to separate layers from each other in liquid. Exfo-
liated graphite oxide monolayers are then reduced to graphene. However,
due to the invasive nature of chemical methods, the resulting graphene is
often with a number of defects in the crystal lattice and is generally of
lower quality than in micromechanically exfoliated samples [51]. Another
alternative is thermal exfoliation. Gas pressure between graphene layers is
used to facilitate peeling [52]. The method therefore utilizes graphite oxide
or its other functionalized derivatives, or intercalated graphite compounds
as precursor materials. It is generally faster than mechanical exfoliation (at
high temperatures) [53] and is done in gaseous environments, thus avoiding
some culprits of liquid solutions.

Chemical vapor deposition (CVD) uses carbon-containing gas (e.g.
methane) flown over typically a metallic (e.g. copper) substrate [54],
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heated to a high temperature, that acts as a catalyst for decomposition
of the gas. Carbon atoms remain on the metallic surface and graphene
islands grow around the initial nucleation centres. The growth process
is very sensitive to the type of gaseous precursor used, variations in gas
pressure and temperature. Lack of precise control over the parameters
results in CVD samples having many grain boundaries between the nucle-
ation domains with different crystalline orientation. Substrate defects and
particle contamination are also of concern in this growth mechanism. Low-
pressure CVD is therefore used for production of higher-quality films [55].
Millimetre-size grains have been achieved so far [54, 56]. Another issue is
related to transfer of graphene from a metallic substrate to an insulating
one for electronic applications. In this regard encapsulation in hexagonal
boron nitride has been gaining ground [57, 58].

Thermal decomposition of silicon carbide is yet another method to pro-
duce graphene [59–61]. SiC substrate is heated to ∼ 1200 ◦C when sublima-
tion of silicon atoms from the surface occurs, leaving behind carbon atoms
that form a honeycomb lattice. Si-terminated face reportedly provides bet-
ter control over the thickness and uniformity of produced graphene. As the
monolayer graphene develops on top of the substrate, a so-called ”buffer
layer” of carbon atoms forms underneath it [62]. It is still strongly bound
to SiC and generally does not display electrical properties characteristic for
graphene, although shares the same honeycomb lattice. Due to interaction
between the monolayer graphene, the buffer layer and SiC substrate, there
is reduced experimental control over certain parameters e.g. carrier den-
sity and Fermi level, which can be detrimental to electronic applications
[63, 64]. Another drawback is the ten-fold price difference between SiC
substrates and conventional Si wafers [65]. The direct advantage of this
method is that graphene is grown directly on a semi-insulating SiC thus re-
quiring no transfer to another substrate unlike the case for CVD graphene
on metals.

In summary, let us discuss possible applications of graphene from afore-
mentioned synthesis processes. Exfoliated graphene is best used in fun-
damental research and applications where precise control over the layer
structure is not crucial. Such applications include composites, where pres-
ence of functional groups is beneficial [49], and in transparent conducting
films for photovoltaics [66, 67]. CVD-grown graphene is attractive due to
potential cheapness, scalability and flexibility of technology. Transfer to
different substrates allows applications in flexible electronics, photovoltaics
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and field-effect transistors [68]. Epitaxial growth on SiC results in expen-
sive but high-quality samples. It is not suitable for transistors or sensors
due to the coupling to the buffer layer, but it does not impede it from
high-frequency applications [24]. Graphene from SiC is also perfect for the
development of the metrological resistance standard [69, 70]. Production
of graphene is of course only one step towards the actual device applica-
tions, and in the next section we describe the motivation behind building
transistors out of it.

2.3 Graphene FET

A transistor is an essential building block of virtually all modern electronic
devices. The ability to mass-produce minituarized transistors together
with falling costs per individual transistor were behind the computerization
revolution of the 21st century. In this thesis we focus on a graphene-based
field-effect transistor (FET), a device that uses an electric field to control
its output. For the setup we discuss in the thesis the device uses four
terminals, as shown in Fig. 1 of Paper I. Two contacts, the source (S)
and the drain (D) work as charge reservoirs and are used to inject and
collect electrons from graphene, which serves as the channel medium. The
other two contacts are gates, they control transport of the injected charge
carriers through the device. A back gate electrode moves the Fermi level
of the graphene sheet up and down the Dirac cone in the channel region
connecting the source and the drain. A top gate is used to apply a control
signal to a small region in between the source and the drain. Operation
of a typical FET depends on the modulation of the conductivity in the
channel as a function of the signal applied to the top gate. The first main
application of the transistor is as a switch. It’s ”on” (high source-drain
current) and ”off” states can be used in digital logic to construct gates and
from them more complicated circuitry. The other usage is as an amplifier
for signal processing, communication, etc.

The most frequently used benchmark for material performance in tran-
sistors is electron mobility µ, which sets the drift velocity of electrons under
an external electric field

vd = µE. (2.12)

Devices with faster operation require smaller size or higher drift velocity
and therefore higher mobility. FETs operation deteriorates due to so-called
short channel effects [71, 72], which are predicted to be less detrimental
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for higher ratio of device length to the thickness of the channel. Potential
appeal of graphene is that it has both high intrinsic carrier mobility [73, 74]
and the thinnest possible channel length since it is only one atom thick.
Typical silicon-based FET technology channel has variation of thickness
throughout the device for overall thickness of a few nanometers [75], which
degrades the mobility. And that is still 10 times thicker than what graphene
technology potentially allows.

However, there is an important drawback for application of GFETS in
logical circuits. Typical device operation requires transistors to be switched
to the ”off” state with no current passing through it. This is achieved by
moving the channel into the band gap of a semiconductor, which is typ-
ically on the order of 1 eV. Graphene has no band gap, thus increasing
dramatically power consumption of a hypothetical GFET-based device.
Some effort has been put into altering graphene band structure to open up
a band gap in it by using narrow nanoribbons [76, 77], inducing strain [78],
applying bias to two different layers in bilayer graphene [79], or through
interaction with the substrate material [80]. However, opening of a band
gap destroys linear spectrum and turns it into a parabolic one, thus in-
creasing the effective mass of charge carriers and decreasing the mobility.
In addition, the mobility in general goes down with increasing of the band
gap, and projected graphene device operation is therefore subpar compared
to the existing semiconductor technology [81–83]. Research into other 2D
materials, which naturally have a band gap, e.g. MoS2 is quite possibly a
better direction [84, 85].

Fortunately, intergrated circuit logic is not the only area where elec-
tronic devices are used. There are radiofrequency (RF) applications that
do not require the ”off” state of the transistor, thus allowing utilization of
the strong side of GFETs. A typical RF device operation superimposes
a small time-dependent gate signal on top of a dc operating point. The
small variation changes the number of carriers in the channel and therefore
the drain current. For high-frequency applications, where the gate length
is short, mobility stops being the most important device characteristics,
since it is used to describe transport under low electric field. The figure
of merit for high-field transport is saturation velocity of charge carriers,
which is caused primarily by optical phonons, which increase scattering
rates of electrons at high energies. It is reportedly several times higher
than that of conventional semiconductors [86]. Other figures include the
cutoff frequency fT , at which a short-circuit gain is unity, and which de-
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fines the highest possible operational frequency of the transistor. Graphene
devices are performing well in comparison with state-of-the-art semicon-
ductor technology [87]. Another important parameter is the maximum
oscillation frequency fmax, at which the transistor can still amplify power
of the small signal. Here graphene devices are lagging behind the semi-
conductor competitors, but one of the arguments is that this parameter
depends strongly on the circuitry the device is connected to, and that part
has not been as optimized for graphene as the well-established Si-based
technology [88]. Therefore, nowadays a big effort is dedicated to mini-
mization of parasitic resistances, capacitances, etc. present in electrical
circuits [89].

There is one more area,where GFETs have a clear advantage compared
to the traditional technology - flexible and printable electronics. The obvi-
ous drawback of traditionally used semiconductors is that the devices are
rigid, so they simply cannot be used here. Until recently, the area has been
dominated by organic semiconductors, which typically have mobilities sev-
eral orders of magnitude lower than those of various graphene setups, see
Fig. 8 in a comprehensive review by F. Schwierz [88].

One has to keep in mind that traditional FET theory has been de-
veloped for diffusive transport, while the aim of this thesis is to explore
ballistic properties of electrons in graphene. Hopefully, the overview pre-
sented in this section leaves the reader with a picture of the current state in
manufacturing and applications of graphene-based devices, while our goal
in the rest of the thesis is to present a theory behind new operational prin-
ciples that might not have been available or exhausted in the conventional
semiconductor technology.



Chapter 3

Quantum tunnelling

In this chapter we examine quantum-mechanical processes that influence
transport of electrons through a constant potential landscape. We com-
pare behaviour of the solutions to both Schrödinger and Dirac equations,
covering Fabry-Pérot interference, tunnelling through single and double
rectangular barrier structures, Klein tunnelling and bound state formation
in quantum wells.

3.1 Single barrier tunnelling

In the thesis we work with a two-dimensional system. We assume that one
of the dimensions (y) is large enough to disregard any finite-size effects and
use translational invariance along this dimension. Thus Schrödinger and
Dirac equations written down in this chapter are to be solved only in x
coordinate, making it a quasi-1D problem. For this approximation to work,
we require the wavelength of the particle to be larger than the possible
imperfections of the potential barriers involved in the picture. In this case,
the Fermi wavelength should be larger than the defect size, see Fig. 3.1.
The potential barriers are assumed to be sharp on the Fermi wavelength
scale, while they are smooth on the atomic scale, a0 � ∆D � λF . If this
holds, then we can safely assume specular reflection, conserving transverse
momentum, for the low-energy particles within the Dirac cone. Assuming
the top gate in our transistor setup to be sharp on the electron wavelength
scale, we can develop a minimal model of the electrodes connected to a
FET transistor using step potentials. We will start with a material with
quadratic dispersion relation, e.g. a two-dimensional electron gas (2DEG)

15
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Figure 3.1: The separable length scales: the Fermi wavelength λF defines an
envelope of a fast oscillating function on the Bloch scale a0, while the potential
variation scale ∆D is between them a0 � ∆D � λF .

that is commonly used in semiconducting transistors.

3.1.1 Non-relativistic tunnelling

Let us start with a textbook problem of a particle (with energy E and
transverse momentum ky) tunnelling through a rectangular barrier, shown
in Fig. 3.2 (a). The time-dependent Schrödinger equation’s,{

− ~2

2m∇
2 + U0 [θ(x)− θ(x−D)]

}
Ψ(x,y,t) = i~

∂

∂t
Ψ(x,y,t), (3.1)

solution is easily factorized into a spatial and temporal part Ψ(x,y,t) =
ψ(x)eikyye−iEt/~ since the Hamiltonian is time-independent. We introduce
an ansatz

ψ(x) =


1√
2k

[
eikx + re−ikx

]
, x < 0

1√
2q
[
beiqx + ce−iqx

]
, 0 < x < D

1√
2k te

ikx, x > D,

(3.2)

where k =
√

2mE
~2 − k2

y and q =
√

2m(E−U0)
~2 − k2

y are wave vectors in re-
gions with different potentials. Since we are dealing with a second-order
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Figure 3.2: (a) Quasi-1D square potential barrier of width D. Wave vectors inside
(q) and outside (k) dictate the scattering amplitudes r and t. (b) A corresponding
delta barrier.

differential equation and a potential step is finite, we require the wave func-
tion and its first derivative to be continuous. Thus plane wave matching
at potential interfaces dictates a set of equations

1√
k

[(
1
k

)
+ r

(
1
−k

)]
= 1√

q

[
b

(
1
q

)
+ c

(
1
−q

)]
1√
k
t

(
1
k

)
eikD = 1√

q

[
b

(
1
q

)
eiqD + c

(
1
−q

)
e−iqD

]
,

(3.3)

Here we should note that we wrote the equations above in a spinor-like form
to highlight the similarity in the equation structure with the analogous
problem for Dirac electrons, discussed in the next section. In reality the
top of these spinors corresponds to the wave function matching, while the
bottom to its derivative.

Solutions to this set of equations are given by [90]

t = 4kqei(q−k)D

(k+q)2−(k−q)2e2iqD ; r = (k2−q2) sin qD
2ikq cos qD+(k2+q2) sin qD . (3.4)

The transmission probability T = |t|2 is shown in Fig. 3.3 (a,b). In
the figures we use the angle of incidence ϕ as a variable, setting a certain
transverse momentum ky = k tanϕ. We can see that the transmission
is exponentially small in the classically forbidden region E < U0, while
for high energies it approaches the classical limit of unity. Quantum in-
terference inside the barrier for E > U0 results in a series of fringes in
the transmission probability. Throughout the thesis we will refer to the
generated pattern as Fabry-Pérot fringes due to similarity with this opti-
cal analogue. The interference pattern is the result of scattering off two
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partially reflecting surfaces, in our case boundaries between regions with
different potentials. If we examine (3.4) more closely, we can easily see that
for real wave vectors (E > U0) the interference term is dictated by e2iqD,
which is the wave function phase accumulated over one round trip inside
the barrier. In fact, the reflection amplitude vanishes for sin qD = 0, there-
fore defining maxima positions in Fig. 3.3 (b) at E = U0 +(n~π)2/(2mD2)
for integer n. Thus the interference pattern depends on the width of the
barrier and the energy of the particle. The quadratic dispersion relation of
particles manifests itself in the angular dependence of the fringes in panel
(a). More on this subject is given in Section 3.2.

After examining the tunnelling picture of a rectangular barrier, we can
look at its delta-potential approximation by taking the limit D → 0 while
keeping U0D = ~2Z0

2m constant. The width of the barrier becomes infinites-
imally small, while its height infinitely high, see Fig. 3.2(b), resulting in
the Schrödinger equation (3.1) assuming the form

~2

2m
[
−∇2 + Z0δ(x)

]
ψ(x) = Eψ(x) (3.5)

after separation of variables. One can integrate it directly to derive a
suitable boundary condition or follow a limiting procedure, both of which
lead to the same result as shown in App. B.1. The transmission amplitude
is then given by

t = 1
1 + iZ0

2k
(3.6)

With the potential width and height merged into one parameter, Z0 de-
fines the only energy scale remaining, see Fig. 3.3 (b,d). As a result, the
Fabry-Pérot fringes disappear from the picture, compared to the rectan-
gular barrier. Since the goal of the thesis is considering graphene-based
devices, we will now derive the corresponding expressions for tunnelling
of relativistic particles and compare it to the case examined in this sec-
tion. The reason to introduce the delta potential approximation is that
the Fermi wavelength of electrons in graphene is large, and a narrow top
gate region can be then effectively modelled as having vanishing width.
We should note that since the height of a square barrier is bounded from
above by being within the Dirac cone (roughly the hopping strength of 3
eV ), it sets an upper bound on the delta barrier strength Z0 � 3 eV

|E−UC | ,
but for operation close to the charge neutrality point of graphene it can be
made arbitrarily large.
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Figure 3.3: (a) Transmission through a 2D rectangular barrier in Schrödinger
equation as a function of incidence energy and angle and (b) its cross section at
ϕ = 0. Dashed line indicates the height of potential step U0. (c) and (d) display
corresponding figures for a delta barrier of strength Z0.

3.1.2 Klein tunnelling

Adding a rectangular barrier to the effective low-energy Dirac Hamiltonian
derived in Chapter 2 gives

{−i~vFσ · ∇+ U0 [θ(x)− θ(x−D)]}Ψ(x,y,t) = i~
∂

∂t
Ψ(x,y,t) (3.7)

Plane wave matching is done as in the previous section, but for solu-
tions of the Dirac equation (here in K valley of graphene) require conti-
nuity of the wave function, both of its pseudospinor components. Unlike
Schrödinger equation, it is a first-order differential equation, therefore there
is no requirement on the first derivative of the wave function. Despite this
difference, the boundary condition results in a very similar expression

1√
2v

[(
1
η

)
+ r

(
1
η̄

)]
= 1√

2w

[
b

(
1
µ

)
+ c

(
1
µ̄

)]
1√
2v t

(
1
η

)
eikD = 1√

2w

[
b

(
1
µ

)
eiqD + c

(
1
µ̄

)
e−iqD

]
.

(3.8)
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Figure 3.4: (a) Transmission through a 2D rectangular barrier for Dirac particles
as a function of incidence energy and angle, the barrier height is indicated by
the dashed line, and (b) corresponding transmission through a delta barrier of
strength Z0 = 0.4π.

The spinor components are given by

η = k + iky
E

, η̄ = −k + iky
E

,

k = sgn(E)
√
E2 − k2

y,

µ = q + iky
E

, µ̄ = −q + iky
E

q = sgn(E − U0)
√

(E − U0)2 − k2
y,

where we have put ~ = 1 and vF = 1 so that we use energy E instead of
wave vector modulus. Here we should also note that the probability flux
in graphene is given by

j = ψ†σxψ, (3.9)

and normalizing it to unity gives us

v = k

E
and w = q

E − U0
. (3.10)

By comparing (3.8) and (C.7) we notice that the difference comes in the
second line in pseudospinors: in the quadratic case it is a wave vector
component along x axis, while in the massless relativistic case for prop-
agating waves it is just a phase eiϕ dependent on the angle of incidence
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ϕ = sin−1(ky/E). Solving (3.8) for the transmission coefficient gives

t = (η − η̄)(µ− µ̄)ei(q−k)D

(η − µ̄)(µ− η̄)− (η − µ)(µ̄− η̄)2iqD . (3.11)

Although the form of the solution looks similar to that in the quadratic
dispersion case, having spinor components rather than wave vectors makes
a dramatic difference, as visualized in Fig. 3.4. For normal incidence ϕ = 0,
all pseudospinors align η = µ = 1, η̄ = µ̄ = −1. Plugging it into (3.11) it is
clear that the transmission probability becomes T = |t|2 = 1 meaning that
the barrier is completely transparent to Dirac particles at normal incidence,
irrespective of their energy, barrier height or width. This phenomenon
is known as Klein paradox, after the discovery made by Oskar Klein in
1929 [91] in connection to tunnelling of relativistic particles through a 1D
potential step. The original formulation of the paradox attracted a lot of
attention at the time and was shown to be closely linked to supercritical
positron production in heavy nuclei, particle-antiparticle pair creation at
the black hole horizon and interband tunnelling in semiconductors [92,
93]. One explanation of the ”paradox” is that the group velocity of Dirac
electrons is the same as their phase velocity due to the linear dispersion
relation. Thus waves of any shape have to travel undistorted.

Similarly to the non-relativistic case, there is a region in parameter
space (E,ϕ), where the waves are evanescent inside the barrier, namely for
angles larger than the critical value

|ϕ| > φ = sin−1
∣∣∣∣E − U0

E

∣∣∣∣ . (3.12)

Unlike the non-relativistic waves, which are evanescent for energies be-
low the barrier height, such region in graphene is concentrated around the
point close to the potential height E = U0, as is clearly seen in Fig. 3.4
(a). In both cases we can view the potential as shifting the correspond-
ing dispersion relation E(k,ky) along the energy axis. But in the usual
quadratic case E ∝ (k2 + k2

y) we have a band bottom E = 0 below which
there are no allowed states since wave vectors become imaginary, while for
graphene there is only a single point, E = U0 where there are no propa-
gating states allowed. Ambipolarity of graphene’s spectrum has been used
in e.g. frequency doublers [94].

In addition to Klein tunnelling and evanescent region, there is Fabry-
Pérot interference similar to that discussed for non-relativistic particles,
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except charge carriers in graphene show the pattern at all energies due
to ambipolarity of the Dirac cone. The asymmetry in the picture around
E = U0 is due to the barrier having a certain sign U0 > 0, the picture is
mirrored around this point if we take U0 → −U0.

Now we can look at the delta-barrier approximation of the rectangular
potential in graphene, the result of which has been used in the appended
Papers. Using the correct limiting procedure (see App. B.2) one obtains
the transmission amplitude as

t = η − η̄
(η − η̄) cosZ0 + 2i sinZ0

= cosϕ
cosϕ cosZ0 + i sinZ0

. (3.13)

If now compare the transmission probability, shown in Fig. 3.4 (b), to
that of the rectangular barrier, we notice that the energy scale disappears
from the picture completely. For an infinitely high barrier, particles tunnel
through it freely at perpendicular incidence, but also the characteristic
scale ~vf/D →∞ disappears, thus no Fabry-Pérot interference is observed.

3.1.3 Pseudospin matching

In this section we will show a complementary picture to the phase velocity
explanation given above. Since for the electronic wave function in graphene
we require its continuity at the interfaces of a finite potential barrier, the
transmitted and reflected wave amplitudes essentially depend on how well
the pseudospinors match and can nicely be represented graphically, see
Fig. 3.5. Scattering amplitudes through a single interface (a potential
step) in panel (a) are given by

t =
√
w

v

η − η̄
µ− η̄

and r = η − µ
µ− η̄

. (3.14)

Since the transverse momentum is conserved, the wave vectors of incoming
and reflected wave lie on the same circle, which is a cross section of the
Dirac cone at energy E, while the transmitted wave at E−U0 is not aligned
perfectly with the incoming wave unless k = q, which is possible only in the
absence of the potential step in this case. Addition of the second scattering
interface as in the previous section allows the transmitted wave to have
the same wave vector as the incident one, thus potentially allowing perfect
transmission (displayed by Fabry-Pérot resonances or Klein tunnelling).
Note also that for certain values of ky, only states in the bigger circle
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Figure 3.5: (a) Pseudospin mismatch at a potential step results in reduced trans-
mission. (b) Delta barrier rotates transmitted pseudospin around kx on a Bloch
sphere, also resulting in a mismatch. 1, r and t are amplitudes associated with
wave vectors of the incoming, reflected and transmitted wave, respectively.

exist, which is exactly what defines the critical angle for evanescent waves
discussed above.

Fig. 3.5 (b) represents a more complicated case of scattering through a
delta barrier. Similarly to real spins, we can represent the pseudospinors
involved on a unit Bloch sphere.The boundary condition (B.5) implies that
the delta barrier acts as a rotation operator exp(iZ0σx), meaning it rotates
a pseudospinor it acts on by an angle Z0 around x axis. That means that
it tries to move it out of the Dirac cone plane (kx,ky) of the incoming
wave. Naturally, it introduces a mismatch in pseudospin and results in
a generally non-unitary transmission. Thus solving the boundary con-
dition means finding a combination of complex coefficients r and t such
that the resulting pseudospinor lies back in the Dirac cone plane. Here
we note that understanding Z0 as a rotation angle also easily illustrates
periodicity of the transmission amplitude with respect to it. The original
Fabry-Pérot oscillations of the square barrier do not disappear completely,
but rather a single cut across the interference fringe is made for every Z0
value now. Tuning it between 0 and 2π spans all possible values of trans-
mission between maximum of unity for all angles at Z0 = 0 and minimum
at Z0 = π/2.
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3.2 Bound states

So far we have been talking about the propagating states and transmission
through the system. But there is another set of non-vanishing solutions to
it in absence of any incoming waves - the so-called bound states.

3.2.1 Non-relativistic wells

Let us revisit the time-independent Schrödinger equation in the presence
of a potential [

− ~2

2m∇
2 + U(x)

]
ψ(x) = Eψ(x). (3.15)

Returning to the general ansatz of ψ(x) = Aeikx+Be−ikx, we can note that
the absence of propagating states means lim

x→±∞
ψ(x) = 0. This immediately

tells us that the exponentials have to be real thus the wave vector k has

to be imaginary. Recalling the dispersion relation, E = ~2(k2+k2
y)

2m in two
dimensions, one realises that the condition for the bound state to exist is
that the wave is evanescent outside of the potential region U(x), E < |ky|2,
while it is propagating at least in some part inside of it, E −U(x) > |ky|2.
If one considers U0 < 0 in (3.1) we arrive at a textbook example of a finite-
depth potential well. The bound state position can obtained by solving
the non-algebraic equations derived in App. C.1. But here we will instead
take a limit of a deep well U0 → −∞, leaving us with the particle-in-a-box
standing wave condition

sin(qD) = 0, (3.16)

which is exactly the same as the requirement for the Fabry-Pérot interfer-
ence maxima in the tunnelling picture. So the same constructive interfer-
ence is responsible for both Fabry-Pérot oscillations for tunnelling above
the square barrier E > U0 > 0 and for the bound states in a potential
well 0 > E > U0. Due to the dispersion relation being quadratic, the
bound state energies are not equidistant from each other, thus diminish-
ing chances of simultaneous excitation of multiple bound states by e.g.
radiation of certain frequency.

A straightforward way to obtain the bound state condition for the
corresponding delta well is by removing the incoming wave in the boundary
condition (B.1), while setting U0 < 0 and transforming the wave vector
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k → iκ, κ ∈ <. Then one arrives at

κ = −iZ0/2 =⇒ E = −~2Z2
0

8m , (3.17)

thus it can host only a single bound state.

3.2.2 Relativistic wells

We can repeat the procedure of the previous section to find the requirement
for a bound state in a potential well in graphene. Due to the continuity
of the electron-hole spectrum, any potential in graphene can act as a well
for one type of carriers, which distinguishes it from the 2DEG setup. The
non-algebraic condition for a square well in graphene (see App. C.2) reads

κ+ ky
E

cos(qD − θ)− −κ+ ky
E

cos(qD + θ) + sin(qD) = 0, (3.18)

where θ = tan−1(ky/q). It is a non-algebraic equation with multiple non-
equidistant solutions. For a delta-potential approximation the condition
simplifies to

k = iκ = −iE tanZ0, (3.19)

again hosting only a single bound state. We should point out that in
the setup that we have been describing so far, the bound state is discon-
nected from a continuum of propagating states, since it requires waves to
be evanescent on either side of the barrier. However, it is possible to excite
the bound state if we consider ky conservation and add a more complicated
potential structure U(x), as in the double barrier tunnelling setup of the
next section. Effects of the scattering through the bound state are the
main theme of Papers included in the thesis, with Papers I and II focusing
on mechanisms of resonance formation. However, in the papers we discuss
operation under a time-dependent gate drive, so before proceeding to that,
we need to establish a few more key ideas in the static potential landscape.

3.3 Double barrier tunnelling

Let us consider a system of two barriers shown in Fig. 3.6. We can assume
they have different scattering amplitudes: t1, r1 and t2, r2, with exact de-
pendence already derived in the previous section. To obtain the total
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Figure 3.6: Scattering from an asymmetric double barrier. Scattering amplitudes
of individual barriers are shown on them.

transmission we can sum over all possible scattering events that lead to it,
resulting in an infinite series

t = t1e
iqD(1 + r2e

iqDr′1e
iqD + r2e

iqDr′1e
iqDr2e

iqDr′1e
iqD + ...)t2, (3.20)

where r′ are reflection amplitudes for waves incident from the left onto the
barriers. Let us examine this expression term by term. For the particle to
be transmitted through the whole system, it has to pass the first barrier
with amplitude t1, the free propagation region giving the phase eiqD, and
the second barrier with amplitude t2. However, this excludes any reflection
processes from the barriers, so this term is included in the brackets. The
wave either goes trough directly (1) or reflects from the second barrier (r2),
travels back (eiqD), reflects from the first one (r′1), and goes forward again
(eiqD). This can happen an infinite number of times, and we should sum
up all the contributions. For every roundtrip performed by the wave we
have to include one more factor of r2e

iqDr′1e
iqD inside the sum, produc-

ing a geometrical progression. Summing over the geometrical progression
therefore gives us

t = t1e
iqD 1

1− r′1eiqDr2eiqD
t2 (3.21)

Just like for the case of tunnelling through a single rectangular barrier,
there is an interference term e2ikD responsible for the phase accumulation
during free propagation between the scattering interfaces. Calculating the
absolute value of the transmission yields:

T = T1T2
R′1R2 − 2<[r′1r2ei2qD] + 1 . (3.22)

For a symmetric double barrier this gives

T = T 2
1

R2
1 − 2R1 cos(2qD) + 1

. (3.23)
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One should immediately notice that the transmission becomes unity at the
resonance condition sin qD = 0. The condition itself is the same as the
Fabry-Pérot requirement for the single barrier, or the bound state for a
single quantum well. Here the well is formed by the region between UL and
UR. What is remarkable about this result is that it actually joins the two
possibilities in one potential structure. Since energy E can be both above
and below the barrier height(s), both phenomena can be observed as a
function of it. The bound state resonances are much more interesting since
for E � UL for 2DEG the individual square barriers are virtually opaque
with R1 ≈ 1. Despite that, constructive interference between the barriers
allows the whole structure to be completely transparent on resonances,
highlighting the importance of coherent transport.

Assuming zero transverse momentum for simplicity, we can expand
cos(2qD) to the second order in energy around a single bound state Eb as

cos(2qD) = cos(α
√
E) = 1− 1

2
α2

4Eb
(E − Eb)2, (3.24)

and plug it into the transmission probability giving

T = Γ 2

(E − Eb)2 + Γ 2 , (3.25)

with Γ = 2
√
Eb
α

T1√
R1

. This tells us that the shape of the transmission

probability around the resonance is Lorentzian centered at the bound state
with broadening Γ depending on the transmission through an individual
barrier. For opaque barriers (T � 1), the resonances are very sharp.

Such multi-barrier systems have been extensively studied for semicon-
ducting heterostructures and found applications e.g. in resonant-tunnelling
diodes [95–97]. The pros of using such diodes are that high operational
speed is achievable for narrow heterostructures in addition to the small
size of it as an advantage by itself. An active area of research is utilizing
resonant-tunneling diodes for THz frequency applications [98, 99]. Setups
for graphene have also been considered [100, 101].

The discussion in this section so far was quite general, with the result
applicable to both 2DEGs and graphene. The first difference comes in how
the devices are operated, since in graphene a back gate can be easily used to
tune to the correct energy window. Second, the gapless dispersion relation
of graphene allows the duality between the potential well and barrier to be
explored. We have learned that there is a general problem with electron
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Figure 3.7: Schematics of a double barrier resonant tunnelling in graphene.
Evanescent modes are shown as dotted lines.

confinement in graphene due to Klein tunnelling. Indeed, potentials UL and
UR in Fig. 3.6 appear as transparent barriers for E � UL. However, using
a back gate we can effectively flip the picture upside down, see Fig. 3.7,
which is the setup discussed in Paper II. When metallic electrodes are
deposited on graphene, they introduce doping changing the position of the
Dirac point with respect to the undoped sample [102, 103]. Similarly to
gating, we can model the change in potential using step functions U(x) =
ULθ(−x−L1)+U0[θ(x)−θ(x−D)]+URθ(x−L2). In this setup, we require a
particle injected from the left to be propagating in the lead, leaving it with
a large transverse momentum ky = (E −UL) sinφ, (angle φ is now defined
in the lead) for E � UL, while it then scatters into a smaller cone cross
section in the channel between the source and the top gate, resulting in the
imaginary longitudinal momentum component, as was described before.
Presence of evanescent modes makes the tunnelling barriers on either side
of the top gate opaque, thus we can apply the resonant tunnelling logic from
above. Double barrier tunnelling was part of the discussion in Paper II,
where we examined its effects on time-dependent transport. It is interesting
to note that there are proposals of resonant tunnelling setups rather in
the direction perpendicular to the graphene sheet combining it with other
2D materials, resulting in extremely thin heterostructures and potentially
leading to fast operational times [104].



Chapter 4

AC field scattering

In this chapter we discuss how interaction with time-periodic electric field
influences transport through an otherwise static potential landscape. In
particular we show how energy sidebands emerge and discuss possible
inelastic processes arising from scattering at an oscillating barrier. We
present how such processes results in Fano and Breit-Wigner type reso-
nances after interaction with a quasibound state.

4.1 Tien-Gordon theory.

In our GFET model we have a time-dependent drive V1 cosΩt applied
to the top gate. The easiest way to analyse scattering from a time-
dependent potential is to consider solutions to the SE inside of it first.
The discussion here will follow the theory developed by Tien and Gor-
don [105] for microwave-driven superconductor-insulator-superconductor
tunnel junctions. As we know, for a spatially homogeneous potential U0,
time-independent SE provides an energy eigenvalue from solving

H0ψ(r) = Eψ(r), (4.1)

where H0 = − ~2

2m∇
2 + U0. Now, once we add an oscillating part to the

existing potential, the time-dependent SE takes the form

i~
∂

∂t
Ψ(r, t) = [H0 + U1 cos(Ωt)]Ψ(r, t) (4.2)

One can now use separation of variables into spatial and temporal com-
ponents Ψ(~r,t) = ψ(~r)Φ(t) since H0 is time-independent and the potential

29
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has no space dependence. The resulting partial differential equation for
Φ(t)

i~
dΦ(t)
dt

= [E − U1 cos(Ωt)]Φ(t) (4.3)

can be readily solved as

Φ(t) = exp[− i
~

(Et− U1
Ω

sinΩt)] (4.4)

The time dependence in the exponential is non-trivial, and to present it in
a more tractable form we will use a Fourier expansion of it

Φ(t) = e−iEt/~
∞∑

n=−∞
cn exp[−inΩt]. (4.5)

The unknown expansion coefficients cn are found from the inverse Fourier
transform as

cn = 1
2π

π∫
−π

d(Ωt) exp[i(nΩt− U1
~Ω

sinΩt)], (4.6)

but this is nothing else but an integral expression of the nth-order Bessel

functions of the first kind Jn
(
U1
~Ω

)
. In fact, this procedure for exponentials

of trigonometric functions is known as the Jacobi–Anger expansion. The
spatial distribution is of course not affected by introduction of this time-
dependent potential. Therefore, the solutions to the time-dependent SE
take the form

Ψ(r,t) = ψ(r)
∞∑

n=−∞
[Jn (ζ1) exp (−i (E + n~Ω) t/~)] , (4.7)

where ζ1 = U1
~Ω . From the physical point of view, each component of the

sum represents a solution to a time-independent SE with energy E+n~Ω,
thus creating an effective ladder of energy sidebands. One can note that
quasienergy E is not uniquely defined in this problem since we did not
impose any boundary condition. However, once we look at the scattering
problem from such a potential, it is natural to assume E to represent
the energy of the particle impinging onto the barrier. In such treatment,
n = 0 is considered as the main energy band, the one which survives in the
absence of the oscillating potential. Waves incident on the barrier can now
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absorb or emit multiples of energy quantum ~Ω scattering into different
energy states, effectively creating multiple scattering channels instead of a
single one as in the static case. Naturally, the overall transmission through
such barrier is the sum over all single channel transmissions. The advantage
of this theory is that it relies on the separation of variables, which can be
done as effectively for the Dirac Hamiltonian, giving the same result. The
only difference is that the spatial part of the wave function is represented
by pseudospinors.

4.1.1 Bessel functions

The natural questions arising at this point are what is the distribution
of amplitudes in the energy expansion and how does the strength of the
oscillation affect this distribution. To answer this first we will provide some
properties of the Bessel functions:

∞∑
n=−∞

Jn = 1, (4.8)

∞∑
n=−∞

J2
n = 1, and (4.9)

J−|n|(ζ1) = (−1)|n|J|n|(ζ1). (4.10)

The first two will ensure that the total probability is conserved during
scattering, while the last one tells us that there is a built-in symmetry
in the strength with which sidebands (symmetric around the main energy
band) contribute to the total distribution. Having this in mind, we can
plot Jn≥0(ζ1), as shown in Fig. 4.1 (a). For ζ � 1 all but the main energy
band contributions may be neglected, while with increasing the strength
of the drive we have to take more Bessel functions and thus sidebands into
account. We can represent Bessel functions in terms of a power series

Jn≥0(ζ1) =
∞∑
l=0

(−1)l
(
ζ1
2

)2l+n

l!(l + n)! . (4.11)

Fig. 4.1 (b) provides a visual cue to what happens to the Bessel functions.
For a weak drive ζ1 � 2 the powers in the sum decay quickly with increas-

ing n due to the smallness of parameter, Jn(ζ1 � 1) ≈ 1
n!

(
ζ1
2

)n
. For the

strong drive however, there is a redistribution of ”weight” from the main
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Figure 4.1: (a) Distribution of Bessel functions for different sideband index n
as function of the dimensionless oscillating potential strength ζ1 = U1/~Ω, (b)
Decay of Bessel functions at high sideband indices. Markers represent integer
index values.

energy band to higher index sidebands. In fact, at a very high driving
strength,

Jn(ζ1 � n2) ≈
√

2
πζ1

cos(ζ1 − nπ/2− π/4), (4.12)

low index sidebands contribute with approximately the same strength.
Nevertheless, for high enough sideband index n all Bessel functions de-
cay to zero due to the factorial scaling in the denominator of the sum,
which provides us with an effective cutoff that we can introduce to the
sum (4.7) while still maintaining probability conservation to a satisfactory
degree. It is interesting how perturbation strength ζ1 = U1/~Ω depends on
both parameters of the AC signal simultaneously. Put in crude words, the
driving field strength should be higher than the absorbed/emitted photon
energy for such an event to happen. Or, on the other hand, the time given
to the system (1/Ω) to react to the perturbation should be long enough or
the effect will diminish.
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4.2 Oscillating delta-barrier in Schrödinger equa-
tion

We will start with a square barrier Hamiltonian from Chapter 3 with an
addition of the time-dependent oscillation

H(x,t) = − ~2

2m∇
2 + (U0 + U1 cosΩt) [θ(x)− θ(x−D)] , (4.13)

here we will assume the system is one-dimensional for simplicity. According
to Tien-Gordon effect, sidebands are formed in the barrier. It is natural
to assume that incident waves can pick up energy quanta upon scattering
from the interfaces with it, giving the wave function outside the barrier
the form [106]

Ψ(x,t) =


∞∑

n=−∞

[
δn0e

iknx + rne
−iknx

]
e−inΩte−iEt/~, x < 0

∞∑
n=−∞

tne
iknxe−inΩte−iEt/~, x > D

(4.14)

Here δn0 is Kronecker delta function, so that the incident wave consists
only of the main energy band n = 0, while reflection rn and transmission
tn amplitudes are defined for all sidebands with energies En = E+n~Ω and
momentum kn =

√
2m(E + nΩ)/~. Inside the barrier, however, multiple

reflections may occur, producing

Ψ(x,t) =
∞∑

n=−∞

[
bne

iqnx + cne
−iqnx

]
e−inΩt

∞∑
m=−∞

Jm

(
eV

~ω

)
e−i(E+m~Ω)t/~,

(4.15)
where qn =

√
2m(E + n~Ω − U0)/~. Noting that the harmonics einΩ are

orthogonal to each other, we rewrite the last equation as

Ψ(x,t) =
∞∑

n,l=−∞

[
bne

iqnx + cne
−iqnx

]
Jn−l

(
eV

~ω

)
e−i(E+(n−l)~Ω)t/~. (4.16)

Continuity of the wave function and its derivative give us the boundary
condition

δn0

(
1
kn

)
+ rn

(
1
−kn

)
=

∞∑
l=−∞

[
bl

(
1
ql

)
+ cl

(
1
−ql

)]
Jn−l

(
U1
~Ω

)
tn

(
1
kn

)
=

∞∑
l=−∞

[
bl

(
1
ql

)
eiqlD + cl

(
1
−ql

)
e−iqlD

]
Jn−l

(
U1
~Ω

)
.

(4.17)
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Figure 4.2: Transmission through a weak oscillating delta barrier Z1 = 0.45. (a)
The static well is absent, Z0 = 0. Opening of channels causes a resonant dip in
the total transmission. (b) The static well of finite depth Z0 = −1 results in a
Fano resonance at the bound state energy.

We are interested in how the newly formed channels affect transport through
the system. A delta-potential model presents a clearer picture of the pro-
cesses involved in scattering. Similarly to what we have done in Chapter 3
for the static barrier, we can derive a boundary condition for the dynamic
case, see App. B.3. The resulting equation for transmission amplitudes can
be written in the matrix form

Ǎt = δ, (4.18)

where t is a vector of all harmonics (in the sideband space) tn = tn and
the incoming wave gives δn = δn0, while the matrix

Ǎmn = (1 + iZ0
2kn

)δ|m−n|,0 + iZ1
4kn

δ|m−n|,1 (4.19)

in the sideband space is tridiagonal. We note that we have not used nor-
malization of the probability flux to unity, thus the transmission through
the system in the nth channel is given by Tn = |tn|2 kn

k0
. The equation

set can be solved numerically where the matrix Ǎ is truncated at some
finite size N . We will use a small parameter Z1 < 1 to demonstrate the
underlying physical processes in the system. Let us first look at the trans-
mission through the system when the static part of the potential is turned
off, shown in Fig. 4.2 (a) as in Reference [107]. At low energies E < ~Ω
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Figure 4.3: The destructive interference between the elastic and the inelastic
channels results in the Fano resonance if the quasibound state Eb in the delta-
potential well is excited.

only the positive sidebands n ≥ 0, the negative channels are closed due to
imaginary wave vector. The total transmission T =

∑
n
Tn is very close to

unity since the particle is essentially propagating free, with small effects
due to spread to positive sideband channels. However, when the energy
reaches ~Ω a new channel n = −1 opens up, thus we see a resonance in the
transmission. The total transmission has a resonant dip since there is also
backscattering in the channel. Exactly at E = ~Ω the wave vector kn−1
vanishes resulting in perfect reflection in the main energy channel. After
we turn on the static potential well, see Fig. 4.2 (b), the picture changes
dramatically. As we know from Chapter 3, a delta potential well hosts a
bound state. As the particle scatters from the dynamic barrier it can now
access the bound state via emitting and then reabsorbing an energy quan-
tum. Since the bound state is located at negative energy, the resonance
happens at a lower energy than without the static well, E−1 = Eb < 0.
Now this state is of course quasibound, since the particle can escape from
it, see Fig. 4.3. The resonance profile is highly asymmetric, with a sharp
dip followed by a peak, and is generally referred to as a Fano resonance.
Ugo Fano described it in 1935 when modelling inelastic scattering of elec-
trons from helium [108, 109]. The spectral shape of a normalized Fano
resonance,

f(ε) = (ε+ q)2

(ε2 + 1)(q2 + 1) , (4.20)

is parametrized by two variables: ε = (E − ER)/Γ is the distance from
the resonance position ER adjusted by its broadening Γ and the asymme-
try factor q. The asymmetry is roughly described by the ratio between
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Figure 4.4: Fano resonances at different asymmetry ratios, Γ = 0.05, (a) q = 100
is a Lorentzian peak, (b) q = 1 is the perfect symmetry between the peak and the
dip, (c) q = 0 is a Lorentzian antiresonance.

transmission for the resonant and continuum channels [110]. Setting the
asymmetry to infinity results in the resonant channel dominating the pic-
ture, producing a symmetric Breit-Wigner resonance (Lorentzian profile),
see Fig. 4.4. In the opposite case, q = 0, we observe a symmetric dip,
an antiresonance, describing non-resonant transmission. Anything in be-
tween shares features of both, with q shifting the relative weight between
the peaks and dips contribution. Since in our case the quasibound state is
an additional feature present on top of the static potential landscape, the
resulting resonance can only approximately be described by Fano profile.
This discussion is at the phenomenological level, rather than quantitative.
Fano resonance has a classical analogy as two coupled harmonic oscilla-

tors, while one is driven by an oscillating force [111]. In this analogy, the
propagating mode is one oscillator, coupled to the external drive, while the
quasibound state is the other. Zero transmission in our case corresponds to
when the motion of the first harmonic oscillator is quenched in the classical
case. Since the phenomenon requires only a localized state interfering with
a continuum of modes, it appears in many different physical systems, e.g.
connected nanotubes [112], quantum dots [113], plasmonics [114]. Reso-
nant behaviour allows for potential applications such as spin filtering [115],
sensors [116, 117], and photonic metamaterials [118].

4.3 Floquet theory in graphene

Tien-Gordon theory is of course just a subset of a more general Floquet
theory treating time-periodic differential equations [119, 120] of the form
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f ′(t) = A(t)f(t). It states that if matrix A(t) is periodic, then the solution
vector x(t) must not be periodic, but of the form eαtg(t), where g(t) is pe-
riodic with the same period as the matrix. From the Tien-Gordon theory
one can anticipate that parameter α would be proportional to quasienergy
in our case, and the periodic function g(t) is the sideband expansion. One
can draw an analogy between Floquet states in our time-dependent prob-
lem and Bloch waves in an infinite crystal. Again, the periodicity in the
system, lattice in this case, enforces periodicity in the wave function eigen-
states. However, unlike crystal structures, which are limited and governed
by the chemical composition of materials, the periodic oscillations induced
by an external source provide an effective control parameter over a system.
Recently a whole field of the so-called Floquet engineering have emerged,
with examples like controlling spin-orbit coupling in graphene [121], in-
ducing superconductivity in semiconductors [122], or controlling matter
waves [123]. For a deeper discussion on limitations and applicability of
Floquet theory please refer to [124] and [125]. For the discussion that
follows we simply apply a procedure analogous to what we have done for
one-dimensional potential in Schrödinger equation to graphene. Knowing
from the Chapter 3 the mapping between graphene and 2DEG, one can
extrapolate and write down the boundary condition for the square barrier
directly as


δn0

(
1
ηn

)
+ rn

(
1
η̄n

)
=

∞∑
l=−∞

[
bl

(
1
µl

)
+ cl

(
1
µ̄l

)]
Jn−l

(
U1
~Ω

)
tn

(
1
ηn

)
=

∞∑
l=−∞

[
bl

(
1
µl

)
eiqlD + cl

(
1
µ̄l

)
e−iqlD

]
Jn−l

(
U1
~Ω

)
,

(4.21)

where spinor components ηn = kn+iky

En
, µn = qn+iky

(En−U0) are defined for all

sidebands, and kn = sgn(En)
√
E2
n − k2

y, qn = sgn(En−U0)
√

(En − U0)2 − k2
y.

Scattering in two dimensions is complicated by the presence of ky. Here
we require it to be conserved, thus waves in different sideband channels
scatter at different angles, see Fig. 4.5.

Again, there is a clear difference from the case of non-relativistic parti-
cles in the form of possible Klein tunnelling even for time-dependent case.
This time, different Dirac cone sections result from a time-dependent drive,
see Fig. 4.6. In Papers I-IV, however, we are using a delta-function approx-
imation of the top gate barrier, thus we will derive the boundary condition
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Figure 4.5: Scattering from an oscillating barrier in graphene. (a) Side view of the
potential landscape, the oscillating part U1 causes energy sidebands to form. (b)
Top view of the barrier, waves at different sidebands scatter at different angles.

here, starting with the Hamiltonian

H(x,t) = −i~vF∇ · σ + [Z0 + Z1 cos(Ωt)]δ(x) (4.22)

Setting constants ~ = 1 and vF = 1 and taking the Fourier transform of
the corresponding Dirac equations, as in App. B.3, leaves

EΨ(x,ky,t) = [− i∇ · σ + Z0δ(x)]Ψ(x,kyE)

+ Z1
2 δ(x)[Ψ(x,ky,E +Ω) + Ψ(x,ky,E −Ω)]. (4.23)

Using the short notation Ψ(x,ky,E + nΩ) = ψn(x), we can write

Eψn(x) = [−i(∇xσx) + kyσy +Z0δ(x)]ψn(x) + Z1
2 δ(x)[ψn+1(x) +ψn−1(x)]

(4.24)



4.3 Floquet theory in graphene 39

Figure 4.6: Oscillation-induced Dirac cone sections.

By arranging the wave function amplitudes into a vector Φ(x) in sideband
space we arrive at equations (4,5) of Paper I. The boundary condition for
graphene therefore is given by

Φ(x = 0−) = M̌Φ(x = 0+), (4.25)

where M̌nm = exp[iZ0σx](iσx)|n−m|J|n−m|(Z1) as derived in Paper III. In
the connection matrix M we note a familiar factor of exp[iZ0σx], which is
the rotation operator in pseudospinor space from the static delta barrier,
shown in Chapter 3. It acts on all sidebands. The second factor however
comes from the dynamic part of the barrier. Remarkably, Bessel function
parameters similar to that of the square well survive in this case, govern-
ing coupling between different sidebands. There is a σx rotation matrix
involved due to the fact that the oscillating potential is also a delta barrier.
Note that its power coincides with the sideband index of the Bessel func-
tion. Physically we can interpret it as a counter how many times the wave
has to scatter off the delta barrier boundaries to pick up |n −m| energy
quanta, while each passage involves a rotation by σx. The last thing before
using the boundary condition derived here is to verify that we are allowed
to integrate operators as we have done here.
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4.3.1 Magnus expansion of the boundary condition

Let us solve a linear ordinary differential equation with a matrix parameter-
dependent coefficient

Y′(t) = Â(t)Y(t) (4.26)

It is clear that if the operator Â commutes with itself at all times then we
can integrate the operator safely,

∀t1,t2 :
[
Â(t1),Â(t2)

]
= 0 =⇒ Y(t) = Y(t0) exp

 t∫
t0

Â(t1)dt1

 .
(4.27)

Note that square brackets here denote a commutator as [â,ĉ] = âĉ − ĉâ.
However, if it does not commute, we can introduce an ansatz

Y(t) = Y(t0) exp(B̂(t,t0)), (4.28)

which after plugging in to the differential equation yields(
d

dt
eB̂(t,t0)

)
e−B̂(t,t0) = Â(t) (4.29)

Expanding the coefficient in the Magnus series B̂(t,t0) =
∑
k
B̂k(t,t0), we

can solve the equation recursively, with the first two coefficients given by

B̂1(t,t0) =
t∫

t0

Â(t1)dt1 (4.30)

B̂2(t,t0) = 1
2

t∫
t0

dt1

t1∫
t0

dt2
[
Â(t1),Â(t2)

]
(4.31)

Subsequent terms contain nested commutators of an increasing complexity.
In our case we attempt to solve an equation of the form:

∇xΦ(x) = M̃(x)Φ(x), (4.32)

where M̃nm(x) = (i (En − Z0δ(x)) σ̂x − kyσ̂z) δnm−iZ1
2 δ(x)σ̂xδ|n−m|,1. Clearly

the coordinate dependence in the form of δ(x) separates from the operator
(matrix) dependence, while the latter is the source of non-commutativity
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due to Pauli matrices. All the constant terms and terms with identical
Pauli indices vanish under commutation, leaving us with:[

M̃(x1),M̃(x2)
]

= α̂ (δ(x1)− δ(x2)) , (4.33)

where α̂ is the coordinate-independent result of the matrix commutation.
The resulting difference between two delta-functions vanishes upon double
integration:

B̂2(0+,0−) = α̂

2

∫ 0+

0−
dx1

∫ x1

0−
dx2 (δ(x1)− δ(x2)) =

= α̂

2

∫ 0+

0−
dx1 (x1δ(x1)− θ(x1)) =

= 0 (4.34)

Thus the commutator prefactor in the Magnus expansion always gives zero
under integration, and all higher-order terms Bn>2 vanish, leaving us with
the standard result for commuting matrices B1. Here we should note that
the result is trivially true under the assumption that the delta barrier is
the correct limit of the square barrier with vanishingly small width and
proportionally infinite height.





Chapter 5

Transport theory

In this chapter we follow a well-established Landauer-Büttiker scattering
theory [28, 126, 127] for electronic transport. Within this formulation, we
relate the experimental observables like electron current and noise to tun-
nelling amplitudes discussed in previous chapters. We show the derivation
of the observables for the time-independent case and later generalise it to
the oscillating potential scenario.

5.1 Electron current in second quantization

5.1.1 Historical perspective

Development of nanotechnology has put challenges in front of physics com-
munity in the description of electronic transport. As the dimensions of
transistors got smaller, the laws of classical physics could no longer de-
scribe the results of measurements. There are three length scales involved
in the problem in addition to the geometry of the device (W): the mean free
path of electrons le describing the collisions between particles, the Fermi
wavelength λF derived corresponding to the kinetic energy of the charge
carriers, and the phase coherence length after which information about
initial quantum state is lost. The macroscopic conductor’s size is typically
larger than any of these scales and thus classical behaviour is observed. We
also know that on microscopic (atomic) scale, quantum effects dominate
the picture. For W on the order of 10 nm - 1 µm we fall exactly in between
these two, this area is called mesoscopic physics. The Fermi wavelength

43
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is important for conduction especially at low temperatures since most of
the excitations are close to the Fermi level, and contributions to transport
properties of those far away from it can be neglected. The mean free path
of electrons determines when the original momentum of the particle is lost.
This thesis is focused on ballistic devices, meaning that le is larger than
geometric dimensions and electrons fly through it without collisions. The
phase relaxation length is usually dominated by scattering off active im-
purities and electron-electron interaction at low temperatures. The latter
be low due to the small density of states available for excitations around
the Fermi level and the phase coherence time is on the order of momentum
relaxation time for high mobility semiconductors [128].

Research into mesoscopic physics has been boosted after development
of 2DEG which allowed to nanoscale-sized transistors with large electron
mobility. Rolf Landauer in 1957 has suggested that the conductance of a
mesoscopic system is related rather to the transmission probability through
it rather than just applied electric field [129]. The well-known relation of
a 2D metallic conductor to its length L and width W

G = σW/L, (5.1)

where σ is its conductivity and is independent of geometrical dimensions,
postulates that the conductance is simply proportional to the width of the
conducting channel. However, studies of point contacts in 2DEGs revealed
that it is no longer the case, see Fig. 5.1 when the width is sufficiently
narrow [130] with the dependence becoming discrete confirming prediction
of Landauer. The formula proposed by him has the form

G = 2e2

h
NT, (5.2)

where N is the number of transverse channels in the conductor arising due
to quantum confinement and T is the average transmission probability for
them. Together with Büttiker, Landauer refined and generalized the theory
to a multi-terminal and time-dependent case [28, 126, 127, 131]. Below we
will reproduce some of the key steps of this crucial derivation for 2DEG
and later on highlight differences to graphene.

5.1.2 Transverse modes

So how do transverse channels come about in (5.2)? Let us imagine a
toy system of a quantum point contact, shown in Fig. 5.1. It can be



5.1 Electron current in second quantization 45

Figure 5.1: Quantum point contact. (a) Constriction of a waveguide by gate
voltage leads to some channels being closed, that results in (b) quantization of
conductance of the sample, following the experiment in [130].

modelled as an adiabatic waveguide with a narrow constriction of width
W. In the original experiment of Ref. [130] the confinement is achieved
by applying a repulsive gate potential. It is adiabatic in a sense that
the left and right reservoirs are much larger and smoothly connect to the
constriction in the middle on a large scale, so that locally we can view it
as an ideal parallel waveguide. We can then solve Schrödinger equation
by separation of variables, yielding the wave function to have the form
Ψ(x,y,t) = ψx(x)ψy(y)eiEt/~. The transverse component can be obtained
from the boundary condition requiring the wave function to vanish at the
edges of the waveguide. Assuming it has the form ψy(y) = Aeikyy+Be−ikyy

one finds that B = −A and the allowed values of transverse momentum
are quantized as

kny = nπ

W
, (5.3)

where the index of transverse channels n < N has a cutoffN = int(2W/λF ).
Given that the dispersion relation, now we get a channel-dependent energy

En = ~2

2m

(
k2
x +

(
nπ
W

)2)
, we get a different number of open quantum chan-

nels in the wide section of the conductor and in the constriction. Including
normalization, each transverse mode is given by

ψny (y) =
√

2
W

sin
(
nπ

W
y

)
(5.4)

Now the transmission of each individual channel is unity here. However, if
we incorporate a tunnel barrier described in Chapter 3 into the constriction,
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we obtain a channel-dependent transmission. We know that very far to the
left and right we have propagating waves in the longitudinal direction, and
we can use boundary condition matching to determine the transmission
properties of the barrier.

5.1.3 Scattering basis

In the absence of transverse confinement we can say that the most general
solution to the Schrödinger equation is given by

Ψ(x,y,t) = 1
2π

∫∫
dkxdkya(kx,ky)eikxxeikyye−iEt/~ (5.5)

in stationary case with amplitude a(kx,ky). We note that that each integral
in momentum space brings a factor 1/

√
2π. The case is generalized trivially

to three dimensions. Since energy E and transverse momentum ky are
good quantum numbers, using the dispersion relation we can rewrite the

longitudinal momentum as kx = ±k = ±
√

2mE/~2 − k2
y and separate the

states into ”right-movers” (kx = k > 0) and ”left-movers” (kx = −k < 0)
so that

∞∫
−∞

dkx Ψ(kx,ky,t) =
∞∫
0

d(−k)Ψ(−k,ky,t) +
∞∫
0

dkΨ(k,ky,t). (5.6)

We call waves propagating with wave vector k right-movers since their
group velocity along x-axis v = 1

~
∂E
∂kx

= ~k
m is positive, thus they propagate

to the right. We can also transform the momentum integral into the energy
integral using

dk = 1√
2mE
~2 − k2

y

m

~2dE = 1
~v
dE, (5.7)

thus bringing the wave function into the form

Ψ(x,y,t) =
∫
dky
2π

∞∫
~2k2

y
2m

dE

(
a(k,ky)

~v
eikx + a(−k,ky)

~v
e−ikx

)
eikyye−iEt/~
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Introducing the amplitudes for left- and right-movers in energy represen-
tation as

a(E,ky) = 1√
~v(E,ky)

a(k,ky) (5.8)

b(E,ky) = 1√
~v(E,ky)

a(−k,ky), (5.9)

we obtain the expression for the wave function in terms of them. For
transverse confinement the same procedure can be repeated keeping in
mind that the transverse modes are now quantized, giving

Ψ(x,y,t) =
∞∫
0

dE e−iEt/~
N(E)∑
n=1

ψny (y)√
2π~vn(E)

(
an(E)eiknx + bn(E)e−iknx

)
,

(5.10)

where vn(E) = ~
mkn(E) and kn(E) = 1

~

√
2m(E − Eny ), Eny = ~2π2

2mW 2n
2.

Thus for every channel we have corresponding incoming an (right-moving)
and outgoing bn (left-moving) amplitudes. This scattering basis (transverse
wave functions are orthonormal) is basically the starting point of Büttiker
theory [28].

5.1.4 Field operators in second quantization

So far we have been treating it in a single-particle approach. In reality a
mesoscopic conductor contains a huge number of electrons, thus requiring
to solve a many-body Schrödinger equation with too many degrees of free-
dom, making the exact solution computationally unfeasible. Instead we
consider quasiparticle excitations of the ground state of the system. Since
we are dealing with fermions, Pauli exclusion principle prevents them from
occupying the same state and we end up with all individual particle states
filled up to the Fermi level. If the perturbations applied to the system,
e.g. voltage and temperature fluctuations, are small enough, all quasi-
particles are located within the vicinity of the Fermi level in the energy
range ∆E ∼ max(kBT,U). The density of states in this energy window
is smaller than that of electrons in the metal and allows to neglect in-
teractions between the excitations, for example the electric field around
quasiparticle excitations gets screened by the ground state electrons thus
reducing long-range Coulomb interaction. The quasiparticle spin, charge
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and momentum are the same as the original non-interacting particles, while
their mass gets renormalised due to interactions. This proposed by Lev
Landau model earned him the Nobel prize in 1962. To keep track of our
quasiparticle excitations we will treat them in the second quantization,
meaning that all amplitudes we discussed before become operators acting
on a Fock state basis

Ψ(x,y,t)→ Ψ̂(x,y,t) (5.11)

Ψ∗(x,y,t)→ Ψ̂ †(x,y,t) (5.12)

A field operator Ψ̂(x,y,t) annihilates a particle at spacetime coordinate
(x,y,t), and together with the creation operator Ψ̂(x,y,t) they satisfy com-
mutation relations

{Ψ̂(x,y,t),Ψ̂ †(x′,y′,t)} = δ(x− x′)δ(y − y′) (5.13)

{Ψ̂(x,y,t),Ψ̂(x′,y′,t)} = {Ψ̂ †(x,y,t),Ψ̂ †(x′,y′,t)} = 0 (5.14)

Amplitudes an(E) become annihilation operators for particles in respective
transverse channels, defined via

ân(k,t) = 1√
2π

∫∫
dx dy e−ikxψny (y)Ψ̂(x,y,t) = ân(k)e−iEn(k)t, (5.15)

where En is the energy of the nth transverse channel. One can verify, see
App. D that they satisfy the corresponding commutation relations

{ân(k),â†m(k′)} = δnmδ(k − k′) and (5.16)

{ân(E),â†m(E′)} = δnmδ(E − E′). (5.17)

The probability current operator can be derived from the continuity equa-
tion

∂

∂t
|Ψ̂(x,y,t)|2 +∇ĵ = 0, (5.18)

and Heisenberg operator time evolution i~ ∂
∂tÔ = [Ô, Ĥ], giving

ĵ(x,y,t) = i~
2m

(
Ψ̂(x,y,t)∇Ψ̂(x,y,t)† − Ψ̂(x,y,t)†∇Ψ̂(x,y,t)

)
, (5.19)

which of course has the same form as the textbook non-operator equivalent.
The total electrical current operator is the integral over it in the transverse
direction

Îα = e

W∫
0

dyjα(x,y,t), (5.20)
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Figure 5.2: Multi-terminal scattering can be described by a scattering matix S
connecting waves b outgoing from the scattering region into one terminal with
incoming a from all other reservoirs.

where is the electron charge. Here we introduce an electrode index α
where the current is measured with respect to waves incident from the left
reservoir.

5.1.5 Scattering matrix

One has to realise that the scattering amplitudes a and b can be related
via a scattering matrix

b̂nα(E) =
∑
m,β

Sαβ,nm(E)âmβ(E), (5.21)

b̂†nα(E) =
∑
m,β

[Sαβ,nm(E)]†â†mβ(E), (5.22)
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where α,β are reservoir indices and n,m are channel indices. By this defini-
tion Sαβ,nm relates an outgoing wave in reservoir α and transverse channel
n with an incoming one from reservoir β and channel m. We define it in
such a way that the operators â and b̂ are normalized to unit probability
flux. Coming back to our picture of a QPC, the reservoirs are connected
via ideal waveguides to the constriction, which we will call the scatter-
ing region from now on, see Fig. 5.2. The ingenuity of the method relies
on the fact that we view the scattering region as a black box, with some
complicated scattering going on within it, but what we care about are the
plane waves propagating in the waveguides towards the reservoirs. Thus
the scattering matrix is defined only for plane waves. Given the reflection
and transmission coefficients obtained from solving the boundary condition
problem within the scattering region, we can write the scattering matrix
as

S =
(
SLL SLR
SRL SRR

)
=
(
r t′

t r′

)
, (5.23)

and is related to the transmission and reflection coefficients that we have
been deriving in the previous chapters. For example r here represents an
NL × NL reflection matrix describing the waves incoming from the left
that get reflected back into the left reservoir, where NL is the number of
open channels on the left, while primed quantities describe scattering if the
incident wave is from the right. The scattering matrix thus provides us
with the complete information about the scattering region, while operators
â†nα create propagating particles in the specified reservoir and channel that
will impede onto the scattering region, they contain only information about
the local reservoir environment. The formula is in principle applicable to a
multi-terminal setup, while in this work we will use the simplest setup with
two reservoirs, left(L) and right (R) corresponding to the source and drain
in a transistor. The scattering matrix possesses a few key properties. Since
the particle number is conserved during scattering, it has to be unitary

S†S = SS† = Î . (5.24)

Under micro-reversibility if we change time t → −t and velocity v → −v,
the particle will move in the opposite direction. We did not introduce
any magnetic field or other process breaking the time-reversal symmetry,
thus the physics stays the same. However, from the point of view of the
scattering matrix, the incoming and outgoing states change places. This
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requires

S† = S−1 (5.25)

Sαβ,mn = Sβα,nm (5.26)

In this notation the transmission probabilities are written as T (E) =
Tr[t̂†t̂]. Also note that the unitary requirement from the scattering matrix
gives us Tr[S†S] = R(E) + T (E) = 1, an intuitive result stating the prob-
ability conservation.
Returning to our current operator, plugging in the scattering operators,
we obtain

ÎL = e~
2mi

W∫
0

dy
∑
n,m

∞∫
En

y

dE

∞∫
Em

y

dE′ ei(E−E
′)t/~ψ

n
y (y)ψmy (y)

2π~
√
v′nv
′
m

×
{ [
â†nLe

−iknx + b̂†nLe
iknx

] [
ikmâ

′
mLe

ikmx − ikmb̂′mLe−ikmx
]

−
[
iknâ

†
nLe
−iknx + iknb̂

†
nLe

iknx
] [
â′mLe

ikmx + b̂′mLe
−ikmx

] }
, (5.27)

where we have omitted explicit energy dependence v = v(E) and v′ =
v(E′). Taking the products of operators and using orthonormality of the
transverse components, we can write

ÎL = e

4π~
∑
n

∞∫
En

y

dE

∞∫
En

y

dE′
ei(E−E

′)t/~√
v′nv
′
n

×
{ [
vn + v′n

] [
â†nLâ

′
nLe
−i(kn−k′n)x − b̂†nLb̂

′
nLe

i(kn−k′n)x
]

+
[
vn − v′n

] [
â†nLb̂

′
nLe
−i(kn+k′n)x − b̂†nLâ

′
nLe

i(kn+k′n)x
] }
, (5.28)

which corresponds to expression (31) in the review article by Büttiker and
Blanter [132]. Now the original argument by them goes as following: all
observables like average current, noise, etc. are in the energy window
around the Fermi level for which energies E and E′ are close to each, while
the velocities v(E) vary slowly, typically on the scale of Fermi energy.
Then we can assume them to be identical v(E′,ky) ≈ v(E,ky), while the
exponential factors ei(kn−k′n)x reduce to unity (the oscillations are too fast
due to large momentum kn). We note that this assumption is not always
true in relation to charge carriers in graphene, for which quasimomentum k
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is small in the vicinity of Dirac point. Nevertheless, under this assumption
for 2DEG, the last formula simplifies considerably to

ÎL = e~
2π~

∑
n

∞∫
En

y

dE

∞∫
En

y

dE′ei(E−E
′)t/~

[
â†nLâ

′
nL − b̂

†
nLb̂
′
nL

]
. (5.29)

Finally, introducing the relation between the incoming and outgoing states
via the scattering matrix we obtain

ÎL = e~
2π~

∑
n

∞∫∫
En

y

dEdE′ei(E−E
′)t/~

[
â†nLâ

′
nL

−
∑
α,β

∑
m

∑
m′

[SLα,nm]†SLβ,nm′ â†mαâ′m′β
]
. (5.30)

Now we are left with the final step: to obtain the value of current we have
to calculate its statistical average.

5.1.6 Statistical averages

We assume electron relaxation to happen in reservoirs, once a particle is
scattered into it, it equilibrates with the thermal bath and never comes
back to the scattering region. The reservoirs are kept in local equilibrium
at respective chemical potential µα and temperature Ξα. Based on the
grand canonical ensemble in the occupation number representation one
can derive the operator averages in one reservoir to be

〈â†n(kx)âm(k′x)〉 = δ(kx − k′x)δnm
1

1 + exp[En(kx)− µ]/kBΞ
, (5.31)

where the last fraction is nothing else but the Fermi distribution f(E).
The formula is then readily generalized to multiple contacts in energy rep-
resentation

〈â†αn(E)âβm(E′)〉 = δαβδnmδ(E − E′)fα(E). (5.32)

Plugging it into the expectation value for current we get

〈IL〉 = e

2π~
∑
n

∞∫
En

y

dE
{
fα(E)−

∑
β

∑
m

[SLβ,nm(E)]†SLβ,nm(E)fβ(E)
}
,(5.33)
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which after using unitary of the scattering matrix can be rewritten as

〈IL〉 = e

2π~
∑
n

∞∫
En

y

dE
∑
β

∑
m

[SLβ,nm(E)]†SLβ,nm(E)[fL(E)− fβ(E)]

(5.34)
First we should note that the scattering matrices have the same indices,
which means the corresponding value is positive real. Notice the difference
between the Fermi distributions in the reservoirs. It makes physical sense
since setting α = β directly yields zero, otherwise the particles can come
from one reservoir to another only if there are unoccupied states available
due to Pauli exclusion principle.

If we apply a small external source-drain bias eVLR to the identical
leads at the same temperature, we modify the chemical potential, say in
the source, as µL = µ−eVLR. We can then write down the current relating
it to the conductance matrix Gαβ and the applied voltage as

〈Iα〉 =
∑
β

GαβVαβ. (5.35)

The Fermi functions at zero temperature are reduced to step functions
around the chemical potential, while the difference between them reduces
to a delta function in the energy space around the Fermi energy EF , which
collapses the energy integral, see App. E, giving us the expression for linear
conductance

GLR = e2

2π~Tr[t†(EF )t(EF )]. (5.36)

Here we reiterate that the scattering matrices are defined for open channels,
thus the limits in the sums and integration above have to ensure that,
specifically defining the band bottom in corresponding energy channels
EF > Eny and the total number of open channels m < Nβ(EF ). Now after
developing the whole theory, we note that the last expression is nothing
else but the suggestion of Landauer that we started our discussion in this
chapter with. For identical transverse channels the trace of transmission
matrix is just the number of channels time the transmission probability of
a single channel. But it turns out the framework described here is much
more powerful and can be applied to a broader range of systems.
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5.2 Floquet scattering matrix

In Chapter 4 we considered a time-periodic Hamiltonian and described
Floquet eigenstates of it. Here we will generalise the scattering matrix
formalism to such systems. There is a number of papers describing meso-
scopic theory in such systems [133, 134] including Büttiker’s works with
co-authors [135–137]. It turns out that we can define a so-called Floquet
scattering matrix for time-periodic potential perturbations, which takes
into account formation of sidebands around the quasienergy E. While much
of Büttikers work concentrated on describing transport under the time-
dependent source-drain bias, which in the end is related to the Tien-Gordon
effect, in our work we describe scattering from an oscillating potential, so
we will concentrate on a latter case here. We consider a very wide channel
for simplicity, thus instead of transverse modes we look at a continuum
of channels ky, and the quantization comes from the energy sidebands in-
stead. The relation between the incoming and outgoing particles is then
given by

b̂α(E,ky) =
∑
β

∑
l,El≥Ey

Sαβ(E,El; ky)âβ(El, ky), (5.37)

with corresponding hermitian conjugate creation operator, where l is the
sideband index in energy space and El ≥ Ey ensures that we consider
propagating modes only, we will omit writing this restriction explicitly
hereon. Thus the sum now has to run over sideband indices to include all
possible scattering processes described in Chapter 4, with Sαβ(E,El; ky)
describing a particle outgoing at energy E in lead α while the incoming
particle had energy E + l~Ω in lead β. For transverse confinement we get
an extra sum over transverse channel index, making the expression a bit
more cumbersome. The derivation procedure for current remains the same
in all cases. The unitary condition for the scattering matrix becomes

∑
α

∑
n

= S†αβ(En,Em)Sαγ(En,E) = δm0δβγ . (5.38)

Since cos(Ωt) = cos(−Ωt), the Hamiltonian remains invariant under time
reversal and micro-reversibility reads Sαβ(En,E) = Sβα(E,En). In a com-
pletely analogous way to the previous section we can write down the current
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operator

Îα(x,t) = e

2h

∞∫
−∞

dky
2π

∫∫ ∞
Ey

dEdE′
ei(E−E

′)t/~√
vαv′α

×
{

[vα + v′α]
[
e−i(k−k

′)xâ†αâ
′
α − ei(k−k

′)x ×

×
∑
γβ

∑
l,l′

Sαβ(E,El; ky)†Sαγ(E′,E′l; ky)â
†
β,lâ
′
γ,l′

]
+

+[vα − v′α]
[
e−i(k+k′)x∑

β

∑
l′

Sαβ(E′,E′l; ky)â†αâ′β −

−ei(k+k′)x∑
β

∑
l′

Sαβ(E,El; ky)†â†β,lâ
′
α

]
.
}

(5.39)

Here we used short notation, using the explicit energy and momentum de-
pendence v(E′,ky) = v′ and â′β,l = âβ(E′l,ky) everywhere except in scatter-
ing matrices. To compute current we need to perform statistical averages
of operators

〈â†αâ′α〉 = δ(E − E′)fα(E) (5.40)

〈â†β,lâ
′
γ,l′〉 = δγβδ(El − E′l′)fβ(El) (5.41)

〈â†αâ′β,l′〉 = δαβδ(E − E′l′)fα(E) (5.42)

〈â†β,lâ
′
α〉 = δαβδ(El − E′)fα(El) (5.43)

Plugging it into the current expectation value we get

Iα(x,t) = e

h

∞∫
−∞

dky
2π

∞∫
Ey

dE
{
fα(E)−

−
∑
β,l,m

v + vm
2√vvm

e−imΩtfβ(El)Sαβ(E,El; ky)†Sαβ(Em,El; ky)ei(k−km)x

+
∑
l

v − vl
2√vvl

e−ilΩtfα(E)Sαα(El,E; ky)e−i(k+kl)x

−
∑
l

v − vl
2√vvl

e−ilΩtfα(El)Sαα(E,El; ky)†ei(k+kl)x
}

(5.44)

Here one can verify that current is a real quantity by expanding it in
harmonics

Iα(x,t) = I0
α(x,Ω) + 2<

[∑
m

Imα (x,Ω)e−imΩt
]
, (5.45)
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where harmonic amplitudes satisfy Imα = (I−mα )∗. Again we note that
all sums and integrals are performed over propagating states. Büttiker’s
argument about fast oscillations due to Fermi level can be applied here as
well, but one has to be careful now since energy sidebands El can extend
further from the Fermi surface, so this argument is best applicable only for
slow/weak driving.

5.2.1 Scattering formalism in graphene

Since in our papers we discuss time-dependent transport in graphene, it
is worth mentioning the key difference in derivation of scattering matrix
formalism for it. First of all, since the Hamiltonian has a matrix form
in sideband space, its eigenvectors are pseudospinors and we have as-
sociate creation/annihilation operator with respective spinors. However,
the fermionic commutation relations and Fermi-Dirac distribution require-
ments in the reservoirs still have to be satisfied. Second, since technically
the electron and hole bands touch each, while holes propagate in the oppo-
site direction to electrons, one has to be careful when defining the incom-
ing/outgoing states with respect to the scattering region. The key steps of
derivation are presented in Appendix D of Paper I. By comparing (5.44)
given here for 2DEG with (D13) in the paper one notices very big similar-
ity, apart from the prefactors due to the linear dispersion of graphene and
pseudospinor structure. What is different in graphene is that Büttiker’s
argument about neglecting fast oscillating terms of the form ei(k−k

′)x is no
longer valid here, and the full expression has to be evaluated. Remarkably,
for a static delta barrier and zero contact doping, all extra terms vanish
leaving us with differential conductance per unit length given by Landauer
formula again,

G = 1
2π

e2

h

∞∫
−∞

dkyT (EF ) = e2

πh
EF

cosZ0 − sin2 Z0 tanh−1(cosZ0)
(cosZ0)3 .

(5.46)
Here we plugged in the explicit expression for transmission (3.13). It turns
out that we can expand the nested trigonometrical functions since cosZ0
is bounded between -1 and 1, leaving us with a 0.5 percent error approxi-
mation if we write the conductance as

G ≈ e2

πh
(1− | sinZ0|

3 ). (5.47)
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Now it is explicit that the periodicity of the delta barrier in terms of the
gate strength Z0 is reflected in static conductance. In the absence of barrier
the conductance reaches its maximum value, while backscattering reduces
it by a small fraction since the transport is dominated by Klein tunnelling.
One final remark here is that the derivation in this chapter did not consider
the degeneracy of our quantum channels. For 2DEG there is spin degree of
freedom, bring a factor of two to the total current, while for graphene there
is an additional factor two coming from K and K’ valley energy degeneracy.

5.2.2 Current noise

In Paper III we derive a corresponding operator representation for current
noise, which in principle is a current-current correlator at different times,
see (A9) in the paper. It describes fluctuations of current around its mean
value and its non-vanishing value is a manifestation of quantized nature
of electronic charge. The only complication in extending scattering matrix
formalism to describe it is that the statistical averages of products of four
creation/annihilation operators have to be computed. Noise usually has
two fundamental contributions, thermal component and shot noise [134].
The thermal component arises due to random excitations of the Fermi sea
due to finite temperature. Even if reservoirs in the system have the same
chemical potential, thermal noise still manifests itself. At zero tempera-
ture, however, the shot noise remains which is a result of discrete events
of particle arrival in electrodes. As a measure of device performance, one
can compute the Fano factor, which is an inverse of signal-to-noise ratio,

F = N
eG0

, (5.48)

where N represents a differential shot noise and G0 the DC differential
conductance component. In DC limit, the Fano factor can be presented in
terms of transmission probability in individual channels as

F =

∑
n
Tn(EF )[1− Tn(EF )]∑

n
Tn(EF ) (5.49)

One can notice that in a tunnel barrier Tn � 1, Fano factor approaches
unity. It means that scattering process is actually in Poissonian statistics
limit, meaning that arrivals of electrons at an electrode are completely
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separate, uncorrelated events. In the opposite limit, the Fano factor ap-
proaches zero. Thus the correlations in the system not only display quan-
tized nature of charge but also depend on the nature of particle scattering
in the system. One of the reasons to study shot noise in graphene is that
there is reduced backscattering in individual channels due to Klein tun-
nelling, thus the system has high correlation and the noise is low, which
is beneficial for device performance. As a final remark here, we refer the
reader to the work [138], where the authors show from analytical and nu-
merical simulations in tight-binding model that continuum approximation
in the transverse direction that we used in our papers works for a wide
enough strip of graphene, showing reasonable results already for W/L > 4.



Chapter 6

Paper overview

In this chapter we give a brief description of the main results in the four
appended theory papers and relate it to the concepts introduced in the
previous chapters of the thesis. I also list my personal contributions to the
papers.

6.1 Paper I

In the first paper, we describe quantum transport through a graphene-
based transistor with an AC-driven top gate. To do that we have develop
a scattering formalism for graphene akin to the existing Landauer-Büttiker
theory of mesoscopic transport in 2DEG, as introduced in Chapter 5. Due
to the energy sideband generation by the time-dependent drive, see Chap-
ter 4, we use Floquet scattering matrix to derive conductance through the
device. As we model the top gate potential as a delta barrier, see Chap-
ter 3, we find that it hosts a bound state which can be accessed both by
electron- and hole-like excitations. In the setup of Paper I, we assume
that source and drain electrodes introduce no doping, thus scattering am-
plitudes are all given by the interaction with the delta barrier. Given
that only propagating states are allowed to be injected from the source
and drain, the bound state interaction is limited to inelastic scattering.
Scattering via a quasibound state is shown to produce resonances in the
main energy band and second sideband transmission coefficients, which
follow Klein tunnelling scenario otherwise. We use second-order perturba-
tion theory in delta barrier strength to derive analytically the shapes of
the resonances, confirming that the main energy band has Fano-type reso-
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nances while the second sideband peaks have Breit-Wigner form. We also
calculate numerically the AC Stark shift of the quasibound state position
in the complex energy plane to show that the resonances move and broaden
for stronger drive, as expected. Finally we present numerical results for
the static component of conductance under a small source-drain bias with
and without the AC drive with the latter displaying structures due to the
resonances above. We also show first and second conductance harmonics,
showing that the latter experiences resonant enhancement on quasibound
state resonances, concluding that this can be used in a frequency doubler
based on a ballistic graphene device.
My contribution to this work included development of the mathematical
framework behind it together with O. Shevtsov. In particular, the descrip-
tion of the delta barrier in terms of the boundary condition and the bound
state development was introduced by me in addition to the weak driving
expansion. I contributed to the early drafts of the manuscript and the AC
Stark shift chapter.

6.2 Paper II

Here we extend the model presented in Paper I. In addition to the delta
barrier we include the effect of metallic electrodes doping graphene under-
neath by introducing a static piecewise-constant potential profile in our
model Hamiltonian. In addition to the inelastic tunnelling resonances de-
scribed in Paper I, the bound state is shown to be excited in the regime
when evanescent modes are injected into the conducting medium from the
doped regions, in the form of resonant double barrier tunnelling, see Chap-
ter 3. We analyse the energy scales associated with the doping of leads and
the channel, temperature and length of the device to establish different op-
eration regimes of the device within experimental reach. We show that the
static conductance response is strongly nonlinear with respect to the back
gate potential in the vicinity of the bound state for strongly doped leads.
Based on this we propose that such graphene-based device can be used for
radiation detection in THz frequency range, for example if the gate signal
is modulated by coupling it to an external antenna. We also extend the
theory to a strong drive regime. We show how the dynamical delta bar-
rier strength affects the coupling of the drive to individual sidebands via
Bessel functions in the boundary condition. We demonstrate how multiple
resonances appear in transmission to sidebands for low and high doping of
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leads. For the case of high doping, we explore how double barrier tunnelling
resonances form a ladder of equidistant transmission peaks with the period
of one radiation quantum. Based on the fact that such ladders overlap for
different sidebands as a function of channel doping, we demonstrate that
higher (n>2) conductance harmonics can be resonantly enhanced. Us-
ing the symmetry between individual scattering processes for absorbing
and emitting the radiation quantum, we show that only even harmonics
are enhanced. We therefore demonstrate theoretically a tunable frequency
multiplication scheme based on channel doping and AC drive strength as
control parameters, with higher harmonics available at stronger driving. It
therefore builds on the result of Paper I allowing a single device used for
higher multiplication factors in contrast to e.g. a cascaded scheme.
For this paper I expanded the model to include the doping profile of the
device, described the resonant double barrier tunnelling regime, described
coupling to sidebands in terms of Bessel functions, performed all the sim-
ulations and wrote the manuscript.

6.3 Paper III

In the third paper we describe shot noise performance of the proposed
device. We use our Landauer-Büttiker formalism for Floquet states to de-
scribe current-current correlations. We focus on how resonances arising
from different scattering mechanisms described in Papers I and II con-
tribute to it. For dc operation we obtain a differential Fano facor of 1/3 at
minimal conductance due to Klein tunnelling, as has been established in
the literature [138]. We examine how resonances in conductance and noise
coincide but have opposite nature, i.e. peaks in conductance correspond
to dips in noise as the back gate voltage is swept. We prove analytically
that the noise is strongly suppressed at injection angles close to the normal
incidence even for dynamic driving due to Klein tunnelling, which results
in the overall noise figure being low. We examine the high and low doping
regimes introduced in Paper II to analyse the noise properties of the pro-
posed radiation detector and frequency multiplier. The frequency response
of the detector is shown to have multiple peaks since the quasibound state
can be excited by multiples of radiation quantum. The Fano factor is
shown to be decreasing for higher multiples, while the peaks get narrower
thus suggesting that the device’s operation can be optimised considering
the tradeoff between the response range and noise, e.g. the secondary
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peak detection scheme might be favourable. We have also analysed the
strong driving regime for both high and low doping of contacts, with the
high doping consistently staying close to the pseudodiffusive value of 1/3.
The explanation comes from overlapping double barrier tunnelling reso-
nance ladders similar to what we have described in Paper II, but for noise.
Either all channels stay open or closed thus resulting in suppressed correla-
tions. This is not the case for the low doping regime and Fano resonances
thus resulting in stronger noise.
I performed all the simulations and wrote the manuscript of this paper.
The analytical proof of the noise suppression under normal incidence was
also done by me.

6.4 Paper IV

In the final paper of this thesis we turn to quantum pumping resulting
from operation of the device in an asymmetric setup but with no source-
drain bias applied. The asymmetry is achieved either via device geometry
(placing the top gate closer to the source or the drain), or through different
doping of the leads (e.g. different metals deposited for the source and the
drain electrodes). We apply the established scattering matrix approach to
demonstrate the effects of Fabry-Pérot interference and quasibound state
resonances on the charge current pumped through the system. We show
how Dirac cone cross sections at different energy sidebands, see Chapter
4, dictate the opening of scattering channels into the source and the drain.
We show how identified scattering processes result in imbalance between
current going in one direction or another. We show that Fabry-Pérot os-
cillations do not contribute for energies far away from the doping potential
and only interaction with the quasibound state is the determining factor.
The pump’s response can therefore be tuned by the back gate. Since the
transmission imbalance is quite antisymmetric with respect to the zero en-
ergy level, we have shown how Fermi functions of the reservoirs can result
in the total pumped current changing direction, thus allowing for switching
behaviour. Current magnitude can be controlled by tuning the back gate
potential or by changing the device’s temperature.
The simulations, data analysis and the manuscript were done by me.



Chapter 7

Summary and outlook

As a result of work presented in this thesis, we have developed a theory
describing time-dependent quantum transport in a ballistic graphene de-
vice analogous to the original Landauer-Büttiker description of 2DEG. We
have found a number of differences between our theory and the original
arising due to the relativistic nature of charge carriers in graphene and the
particular device setup that we describe.

We have applied the developed theory to describe current and noise
in graphene FET. We identified a number of parameter regimes the tran-
sistor can be operated in and described scattering processes contributing
to the charge current and noise in the device. We paid a lot of atten-
tion to inelastic scattering through a bound state leading to Fano and
Breit-Wigner resonances in the context of applications in high-frequency
electronics. Based on these resonances, we have suggested a frequency
multiplication routine, which is not limited by a factor of two per device in
contrast to the scheme used in graphene-based ambipolar mixers and am-
plifiers [139, 140]. We also put forward an idea of a radiation detector based
on the resonant response of the transistor to the applied electric field and
evaluated shot noise performance of the proposed devices. We confirmed
that due to relativistic nature of charge carriers, the noise is suppressed
also for high operational frequencies. We also proposed a single-parameter
pumping routine based on interplay between Klein tunnelling and inelas-
tic resonances present in the system. We think that ambipolar nature of
the dispersion relation of graphene together with relativistic carriers and
gate-tunable density of states provides more flexibility in design of the
prospective devices. Advances in this fascinating area of study can enable
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whole new types of devices developed for RF communication systems and
electronics in general.

As this is a theory thesis, we tried to estimate relevant parameter
regimes for experimental verification of our predictions to the best of our
ability, however every model has its restrictions. Our conclusions are based
effectively on a single-particle description of the system. As has been men-
tioned in the thesis, electron-electron interactions can play a role when
impurity and phonon scattering is negligible. Incorporating them on the
Hamiltonian level could be a step in the correct direction. Electron-electron
interactions in graphene form a topic of their own [141]. On top of that we
are considering a dynamical system in the sense that time-dependent cur-
rent is pushed through the device. Thus, in principle, one should account
for displacement currents and screening of charge by surrounding metallic
surfaces. A self-consistent numerical solver of Maxwell’s equations is likely
to be a more cumbersome but also more realistic approach than the infinite
parallel capacitor model we employed in our papers.

We saw that generally being based on quantum-mechanical resonances,
the theory is sensitive to thermal fluctuations. In fact, reservoir temper-
ature is incorporated into the developed formalism and effects of it on
pumping have been studied in Paper IV, however further simulations are
needed to describe it fully. The author envisions possibility of description
of transport through the device in the presence of thermal gradient, which
has not been done in the thesis.

Speaking of topics that the thesis did not touch upon, we can imag-
ine combining the scattering theory developed here with static impurity
scattering in graphene, where impurities can be described by Green’s func-
tions. Another possibility is to extend the formalism developed here to
other two-dimensional systems or to degrees of freedom that were treated
as degenerate here, with possible applications in spin- and valleytronics.

Let us conclude by saying that the rapidly evolving field of graphene
and other two-dimensional materials keeps opening new directions of re-
search and possibly still has many more surprises in its store.
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Appendix A

Graphene tight-binding
Hamiltonian

We can associate electrons on a simple Bravais lattice with a Hamiltonian

H = p2

2m + V (r−Ri), (A.1)

with the first part being kinetic energy and the last describing electrostatic
potential associated with atomic sites Ri. One has to be careful since the
particle cannot occupy a random position in space, but rather can only
be translated by an arbitrary lattice vector under Bloch’s theorem. Simi-
larly, momentum p is therefore restricted to the first Brillouin zone. This
assumption is valid as long as the lattice is infinite, i.e. much larger than
a single unit cell and the Fermi wavelength. Mass m is an effective band
mass of an electron. However, in graphene we don’t have a simple Braivais
lattice. Therefore, due to the presence of two inequivalent sublattices, we
have to present the electronic wave function as a superpositions of individ-
ual contributions from A and B

ψk(r) = Akψk,A(r) +Bkψk,B(r), (A.2)

where complex coefficients A and B depend on wave vector k, and sublat-
tice Bloch wave functions

ψk,α =
∑
Rl

eik·Rlχα(r + δα −Rl), α = A,B, (A.3)

have an atomic component χ, and Rl defines atomic position in the con-
structed lattice. We already defined δα in (2.1), it connects position Rl
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with atom α in the unit cell. We can set our Bravais lattice to sit on top
of sublattice A by choosing δA = 0.

Now we write down the Schrödinger equation for our system as

Hψk(r) = Ekψk(r), with ψk(r) =
(
Ak Bk

)( ψk,A(r)
ψk,B(r)

)
(A.4)

By multiplying each side of the last equation with ψ∗k(r) and integrating
over space we can arrive at the form (omitting writing the integral and
space dependence explicitly)

(
A∗k B∗k

)
Hk

(
Ak
Bk

)
= Ek

(
A∗k B∗k

)
Sk

(
Ak
Bk

)

Hk =
(
ψ∗k,AHψk,A ψ∗k,AHψk,B
ψ∗k,BHψk,A ψ∗BHψk,B

)
(A.5)

Sk =
(
ψ∗k,Aψk,A ψ∗k,Aψk,B
ψ∗k,Bψk,A ψ∗k,Bψk,B

)

At this point we will make a few assumptions in order to simplify the
problem. We note that the normalization of wave function is just the
number of particles

∫
drψ∗k,Aψk,A =

∫
drψ∗k,Bψk,B = N . We assume

the overlap of orbitals on neighbouring sublattices to be negligibly small∫
drψ∗k,Aψk,B =

∫
drψ∗k,Bψk,A = 0. Chemically, the sublattices A and B

are completely equivalent, thus we are free to set the constant energy shift
from the diagonal elements ψ∗k,AHψk,A = ψ∗k,BHk,B to zero. At this point

we are left only with the off-diagonal terms HABk =
∫

drψ∗k,AHψk,B =
NtABk , where the hopping term between sublattice A and B is given by

tABk =
∑
Rl

eik·Rl

∫
drχ∗A(r−Rk)HχB(r + δAB −Rm). (A.6)

In the simplest approximation that we will use here, one considers only
nearest-neighbour hopping. In this case (A.6) becomes

tABk = t(1 + e−ik·a1 + e−ik·a2), t =
∫

drχ∗A(r)HχB(r + δ1). (A.7)

Here we include hopping to all three neighbours of atom A, with δAB = δ1,
and we use lattice vectors to account for the phase difference with the other
two neighbouring B atoms. We note that tAB = t∗BA and the number of
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particles enters trivially, so it can be set to unity N = 1. Including all the
assumptions into (A.5) we obtain

Hk =
(

0 tABk(
tABk

)∗
0

)
(A.8)

Sk =
(

1 0
0 1

)
(A.9)

Now we can obtain energy eigenvalues from the secular equation

det |Hk − EkSk| = 0 =⇒ det
∣∣∣∣∣ −Ek tABk(

tABk

)∗
−Ek

∣∣∣∣∣ = 0. (A.10)

The solution gives two energy bands Ek = ±|tABk |.





Appendix B

Delta potential boundary
condition

In this chapter we will show how a delta potential barrier can be presented
as a limit of a short but high square barrier. We outline the procedure
for both massive particles, described by the Schrödinger equation, and
massless fermions, corresponding to the Dirac equation. It is done first for
static scattering, and then extended for a time-periodic barrier. We assume
a wavevector ky in the direction along the barrier interface entering as a
constant of motion, making this a quasi-1D problem.

B.1 Static barrier in Schrödinger equation

Taking the δ-function limit D → 0 while U0D = ~2Z0
2m = const reduces the

exponentials in (C.7) as

qD → 0
q2D → −Z0

eiqD → 1
qe±iqD → 1∓ iZ0.
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Thus the boundary condition (C.7) simplifies to


(

1
k

)
+ r

(
1
−k

)
= b

(
1
q

)
+ c

(
1
−q

)
t = b+ c
tk = b(q − iZ0)− c(q + iZ0)

=⇒
{
t = 1 + r
tk = (1− r)k − iZ0t.

(B.1)
If we start with a δ barrier directly, see Fig. 3.2(b), the first derivative
of the wave function has a finite jump. If we write down matching at the
interface we arrive immediately at the boundary condition{

t = 1 + r
ikt− ik(1− r) = Z0t,

(B.2)

which is exactly the same as the one obtained from the limiting proce-
dure applied after the boundary condition for the square barrier had been
written. It proves that this δ-barrier representation is indeed the correct
one in the limit. A completely analogous procedure is valid for derivation
of a corresponding boundary condition for particles with linear dispersion
relation. It is outlined in the next section.

B.2 Static barrier in Dirac equation

Take the delta limit D → 0 with Z = U0D = const of the boundary
condition (3.8) for the square barrier results in

q → −U0 →∞
eiqD → e−iZ0

µ→ 1
µ̄→ −1.

The boundary condition reduces to

(
1
η

)
+ r

(
1
η̄

)
= b

(
1
1

)
+ c

(
1
−1

)

t

(
1
η

)
= b

(
1
1

)
e−iZ0 + c

(
1
−1

)
eiZ0 .

(B.3)
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The second equation actually can be rewritten in terms of a rotation matrix

(
1
η

)
+ r

(
1
η̄

)
= b

(
1
1

)
+ c

(
1
−1

)

t

(
1
η

)
=
(

cosZ0 −i sinZ0
−i sinZ0 cosZ0

)
·
(
b

(
1
1

)
+ c

(
1
−1

))
,

(B.4)

that reduces the boundary condition to(
1
η

)
+ r

(
1
η̄

)
= exp(iZ0σ̂x)t

(
1
η

)
. (B.5)

The left-hand side of the equation contains the wave function to the left
of the barrier, the right-hand side the transmitted wave, and they are
just related via a rotation matrix eiZ0σx . Physically it corresponds to
the delta barrier redistributing the ”weight” between A and B sublattice
pseudospinor components of the wave passing through it.

B.3 Dynamic barrier in Schrödinger equation

We start directly with (4.17) derived in Chapter 4
δn0

(
1
kn

)
+ rn

(
1
−kn

)
=
∑
l

[
bl

(
1
ql

)
+ cl

(
1
−ql

)]
Jn−l

(
U1
~Ω

)
tn

(
1
kn

)
=
∑
l

[
bl

(
1
ql

)
eiqlD + cl

(
1
−ql

)
e−iqlD

]
Jn−l

(
U1
~Ω

)
(B.6)

When taking a delta-function approximation here, one has to be careful
with sums over sideband indices n,l since they run over infinity. In this
limit, D → 0 as U0 = ~2

2m
Z0
D and U1 = ~2

2m
Z1
D , we get

qlD → 0
q2
lD → (l~Ω − U0)D = l~ΩD − Z0

eiqlD → 1
qle

iqlD → ql − iZ0 + il~ΩD
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The boundary matching then is written as

δn0 + rn =
∑
l

(bl + cl)Jn−l
(
U1
~Ω

)
(B.7)

kn(δn0 − rn) =
∑
l

(bl − cl)qlJn−l
(
U1
~Ω

)
(B.8)

tn =
∑
l

(bl + cl)Jn−l
(
U1
~Ω

)
(B.9)

tnkn =
∑
l

[(bl − cl)ql + (bl + cl)(−iZ0 + il~ΩD)] Jn−l
(
U1
~Ω

)
(B.10)

Note that there are several terms ill-defined after we take the limit in this
set of equations: ql, lΩD and Bessel fucntions Jn−l

(
U1
~Ω

)
. The former

terms can be eliminated by subtracting (B.8) from (B.10), and combining
(B.7) and (B.9) gives



δn0 + rn = tn

tn =
∑
l

(bl + cl)Jn−l
(
U1
~Ω

)
kn(tn − δn0 + rn) = −iZ0tn +

∑
l

(bl + cl)il~ΩDJn−l
(
U1
~Ω

) (B.11)

To overcome the uncertainty in l~ΩD term we utilize a recurrence relation
between Bessel functions of neighbouring sidebands

Jn−l

(
U1
~Ω

)
= U1/~Ω

2(n− l)

[
Jn−l+1

(
U1
~Ω

)
+ Jn−l−1

(
U1
~Ω

)]
(B.12)

Combining it with the expansion term in question gives

l~ΩDJn−l
(
U1
~Ω

)
= Z1

2
l

n− l

[
Jn−l+1

(
U1
~Ω

)
+ Jn−l−1

(
U1
~Ω

)]
= Z1

2

(
n

n− l
− 1

)[
Jn−l+1

(
U1
~Ω

)
+ Jn−l−1

(
U1
~Ω

)]
= n~ΩDJn−l

(
U1
~Ω

)
− Z1

2

[
Jn−l+1

(
U1
~Ω

)
+ Jn−l−1

(
U1
~Ω

)]
(B.13)
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This may seem like a useless exercise until we plug the result back into
(B.11) giving

δn0 + rn = tn
tn =

∑
l

(bl + cl)Jn−l

kn(tn − δn0 + rn) = −iZ0tn+

+
∑
l

(bl + cl)
[
in~ΩDJn−l − i

Z1
2 (Jn−l+1 + Jn−l−1)

]

Here we omit the Bessel functions argument for a more compact notation.
Now we can get rid of the sum over sidebands in the last equation by
substituting tn instead, leaving

δn0 + rn = tn
tn =

∑
l

(bl + cl)Jn−l

kn(tn − δn0 + rn) = −iZ0tn − iZ1
2 (tn+1 + tn−1) + in~ΩDtn

Now the very last term can be safely disregarded as D → 0 for any finite
sideband index n, which leaves us with the boundary condition{

δn0 + rn = tn
−2iknδn0 = (Z0 − 2ikn)tn + Z1

2 (tn+1 + tn−1), (B.14)

which is identical to the one presented by Bagwell [107] in Equation A1 of
his paper. Also note how Bessel functions of U1 disappeared from the final
expression after we used substitution of waves inside the barrier in terms
of the amplitudes outside of it.

A much faster approach is to start with the time-dependent Schrödinger
equation after taking the delta-function limit

i~
∂

∂t
Ψ(x,ky,t) = ~2

2m
[
−∇2

x + Z0δ(x) + Z1 cos(Ωt)δ(x)
]
Ψ(x,ky,t), (B.15)

and perform Fourier transform of it in the time domain giving

EΨ(x,ky,E) = ~2

2m
[
(−∇2

x + Z0δ(x))Ψ(x,ky,E)

+ Z1
2 δ(x)(Ψ(x,ky,E +Ω) + Ψ(x,ky,E −Ω)

]
. (B.16)
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Here we used the fact that cosΩt = 1
2(eiΩt + e−iΩt). Now integrating over

x ∈ [0−,0+] gives us the boundary condition

0 = ∇x
[
Ψ(0−,ky,E)− Ψ(0+,ky,E)

]
+ Z0Ψ(0,ky,E)

+Z1
2
[
Ψ(0−,ky,E +Ω) + Ψ(0+,ky,E −Ω)

]
(B.17)

Inserting Floquet ansatz Ψ(x,ky,t) =
∑
n
ψn(x,ky)e−i(E/~+nΩ)t one obtains

∇x
[
ψn(0+,ky)− ψn(0−,ky)

]
= Z0ψn(0,ky) + Z1

2
[
ψn−1(0,ky) + ψn+1(0,ky)

]
(B.18)

Substituting scattering amplitudes from our propagating wave ansatz into
here together with continuity of the wave function yields (B.14) as ex-
pected. This establishes that instead of deriving the boundary condition
from the Schrödinger or Dirac equation for the square barrier and then tak-
ing the delta-function limit, it is more useful to apply the limit beforehand
and then derive the boundary condition for the delta barrier if that is the
goal. The latter procedure was therefore used in Chapter 4 for derivation
of the boundary condition for the time-dependent Dirac equation, used in
our papers.



Appendix C

Bound states in a square
well

Here we derive conditions for bound state formation in a finite square
well potential, first for Schrödinger equation (2DEG), and then for Dirac
equation (graphene).

C.1 2DEG

The ansatz for the bound state calculation can then be written as

ψ(x) =


aeκx x < 0
beiqx + ce−iqx, 0 < x < D
de−κx, x > D,

(C.1)

where κ = −ik ∈ < for the setup of Section 3.1.1. Wave function and first
derivative continuity dictates the boundary condition

a

(
1
κ

)
= b

(
1
iq

)
+ c

(
1
−iq

)

d

(
1
−κ

)
e−κD = b

(
1
iq

)
eiqD + c

(
1
−iq

)
e−iqD.

(C.2)

The first equation line can be used to eliminate amplitudes a and c, while
the second to eliminate d and b, leaving

− κ = iq
(iq + κ)eiqD − (iq − κ)e−iqD

(iq + κ)eiqD + (iq + κ)e−iqD (C.3)
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It can be rewritten in a quadratic form

q2 − 2κq cot(qD)− κ2 = 0, (C.4)

which leaves us with two possible ”solutions”

q = κ cot(qD/2) (C.5)

q = −κ tan(qD/2). (C.6)

Each of these equations is in general non-algebraic and defines the even
and odd bound states in the well respectively.

C.2 Graphene

We start directly with a boundary condition for graphene here,
a

(
1
η̄

)
= b

(
1
µ

)
+ c

(
1
µ̄

)

d

(
1
η

)
e−κD = b

(
1
µ

)
eiqD + c

(
1
µ̄

)
e−iqD.

(C.7)

Eliminating amplitudes a and c from the first equation, and b and d from
the second, we obtain

η =
−1+η̄µ

η̄−µ e
iqD + µ̄e−iqD

µ̄−η̄
η̄−µe

iqD + e−iqD
. (C.8)

After multiplying the terms using ηη̄ = µµ̄ = −1, we obtain

(2 + ηµ̄+ µη̄)eiqD = (2 + η̄µ̄+ µη)e−iqD, (C.9)

which can then be rewritten in the form (3.18).



Appendix D

Commutation relations

Here we use convention for the Dirac delta function

δ(k) = 1
2π

∞∫
−∞

eikxdx. (D.1)

We note that the Dirac delta function makes physical sense only when
defined under an integral sign or viewed as a limit of a distribution. Using
(5.15) and (5.14) we can write

{ân(k),â†m(k′)} = ei(En(k)−Em(k′))t/~{ân(k,t),â†m(k′,t′)} =

= 1
2π

∫∫∫∫
dx dy dx′ dy′ψny (y)ψm∗y′ (y′)e−ikx+ik′x′Ψ̂(x,y,t),Ψ̂ †(x′,y′,t)

= 1
2π

∫∫∫∫
dx dy dx′ dy′ψny (y)ψm∗y′ (y′)e−ikx+ik′x′δ(x− x′)δ(y − y′)

= 1
2π

∫∫
dx dy ψny (y)ψm∗y (y)e−ikx+ik′x = δ(k − k′)δnm.

Here we used the orthonormality condition for transverse waves and the
definition of the delta function. Now we can do the same in the energy
representation of the operators

{ân(E),â†m(E′)} = 1
~
√
vn(E)vm(E′)

{ân(k),â†m(k′)}

= 1
~
√
vn(E)vm(E′)

δnmδ


√

2m(E − Eny )
~

−

√
2m(E′ − Emy )

~


= δnmδ(E − E′).
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Here we used the property δ(g(x)) = δ(x−x0)
| dg

dx
(x0)| if x0 is the real root of

g(x)=0.



Appendix E

Fermi-Dirac distribution
limits

Let us consider Fermi distributions in leads L,R under an external bias
VLR given by

fL,R = 1
1 + e(E−EF +eVL,R)/kBΞ

(E.1)

In the limit of zero temperature they become step functions

lim
Ξ→0

fL,R = 1− θ(E − EF − eVL,R). (E.2)

Now we can assume the voltage bias to be small, and expand the expression
above to the first order in it, giving

fL,R = 1− θ(E − EF ) + eVL,Rδ(E − EF ) +O(V 2
L,R) (E.3)

The difference between them is therefore

fL − fR = eVLRδ(E − EF ) (E.4)

Applying the same procedure to the square of the difference leaves us with
the same result since

(fL − fR)2 = {1− θ(E − EF − eVL)− [1− θ(E − EF − eVR)]}2 =
= |θ(E − EF − eVR)− θ(E − EF − eVL)|. (E.5)

Here we used that the square of theta function is itself. This last formula
is applicable to the noise derivation we have in Paper III.
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