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Abstract—Mobile services, especially video streaming, has seen

a rapid usage increase in recent years. Base stations (BSs) need

to employ smarter and efficient resource allocation strategies to

maintain high quality of service (QoS) to users at all the times.

Predictive resource allocation (PRA), is one such novel scheme, in

which BSs seek to anticipate the user demands and offer service

to users in advance. As a result, the QoS can be improved,

network load can be distributed over time, while at the same

time offering efficient utilization of BS power. In location-aware

PRA, the BS exploits location information of the users to predict

the channel expected variations and adapt the BS resources

accordingly. We evaluate PRA strategies based on an empirical

study of the radio channel variation from measured location-

aided channel radio maps using a smart phone. We observed

that gains offered by the PRA scheme are highly dependent on

user mobility patterns.

I. INTRODUCTION

Technological advancements in smart phone development,
combined with ease of use and low cost, have made mobile
devices increasingly prevalent. This has resulted in a rapid
growth of mobile data traffic. Statistics of mobile data usage
indicate that engaging activities like video and photo form
the bulk of this traffic. The Cisco Visual Networking index
[1] and Ericsson Mobility Report 2016 [2] clearly show the
rising popularity of video among mobile users. This rise is
mainly due to the extensive video sharing and video content
generating platforms. To provide seamless video playback at
all times puts hard requirements on bandwidth and coverage.
In a scenario when a mobile user is streaming a video on the
go, much variation can be seen in the quality of the video. The
video may also stall at times during the stream. This is due to
two main factors affecting the Quality of Service (QoS): the
coverage and the network load.

Network load can be reduced on the network layer and
through video compression to give users a high-quality video
experience. On the lower layers, prediction of future user
demands and future channel qualities can further even out
network loads [3]–[5]. The reasoning behind doing this is the
predictability of user movement and data usage. According
to [6], there is a 93% predictability in user movement, based
on a 3-month-long record. Moreover, predictability was not
found to be lower than 80% for any given user. While there
have been many activities on these topics from different
communities, here we only mention a few. In [7], stored radio
maps were used for predicting transmission rates. A similar
approach is seen in [8], where a user pre-buffers low quality

segments before entering a bad coverage area. The above
studies mention the need for best QoS video delivery, the
existing works on utilization of channel information is very
limited. A look at the studies on power consumption are also
presented here to understand the efficiency in power usage
that can be derived. In [9], the authors consider the impact
of predictive resource allocation on base station (BS) power
consumption and the network streaming quality. Finally, [10]
presents a predictive resource allocation (PRA) that improves
rate predictions for enhanced and efficient delivery of stored
videos. However, the performance of PRA on real channel
traces was not evaluated, instead the channel conditions were
modelled by using the distance from a connected BS and
calculating the received power with the help of a path loss
model. Different settings were used which rendered different
results, however the trends and relative results coincide.

In this paper, we apply the methodology from [10] to
real channel data, collected using several physical campaigns,
in order to understand how a location and prediction-based
resource allocation algorithm would fair, compared to tradi-
tional resource allocation schemes, and if gains from synthetic
channels are maintainable in real channels. We have evaluated
three resource allocation schemes: equal share allocation and
rate-proportional allocation were implemented along with the
PRA algorithm for comparison purposes. Performance was
evaluated in terms of video degradation, power consumption
and throughput of the network.

II. SYSTEM MODEL

A network of M users (indexed by m) and K BSs is
considered. BSs serve users with video streams, which are
available at the BSs. Time is slotted in slots of duration ⌧ ,
indexed by t. In each slot, the wireless channel is shared
between multiple users, while keeping the achievable data rate
constant for each user.

A. Signal Model
The BS association for each user is known for all times,

with the set of users assigned to BS k at time t denoted by
Ut,k. The received power at time t at user m is denoted by
Pt,m, with corresponding rate

rt,m = ⌧B log
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is the noise power spectral
density. We assume that at time 1, the received powers
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. We further introduce x, of
same dimensionality as r, with xt,m 2 [0, 1] denoting the
fraction of airtime that user m is assigned from a BS in time
slot t. Hence, for an allocation x, the predicted rate of user
m at time t is given by xt,mrt,m.

B. QoS Model

All users request video content at time 1, with the same
streaming rate A (bps). Hence, the minimum video content
available in the buffer of user m, expressed in bits, at each
time slot �, required for smooth streaming is calculated to
be D�,m = A⌧�. Hence, for smooth playback, we requireP�

t=1

xt,mr

LA

t,m � D�,m. We define the video degradation
(VD) experienced by user m at time t as
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C. Goal

Our goal is to find xt to provide good QoS to each user.
To this end, we use three resource allocation methods:

1) Equal share: each user gets the same amount of time
in each time slot. This can be written as xt,m = ⌧/T .

2) Rate proportional: each user gets an amount of time in
each time slot, proportional to its rate: xt,m = ⌧/T ⇥
r

LA

t,m/(

P
k r

LA

t,k ).
3) PRA: the allocation accounts for the QoS of each user.

For one formulation [10] of this, we have
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xt,m 2 [0, 1], 8t,m (3c)
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in which � is a trade-off parameter, indicating the impor-
tance of minimizing air time over video degradation. Both
components of the objective are normalized, where D

tot

=

MA⌧T (T + 1)/2 is the total cumulative demand. We note
that (3) is a linear program, which can be solved efficiently.

III. RECEIVED POWER PREDICTABILITY FROM
MEASUREMENTS

The above PRA method relies critically on the assumption
of predictability of the received power. To test this assumption,
we have performed a measurement campaign with off-the-
shelf cell phones.

4. Results

(a) Läraregatan to Pilbågsgatan (b) Pilbågsgatan to Läraregatan

Figure 4.2: Snapshots of the colour coded logs from the app

4.1 Data Results

In order to understand the variations from the di�erent scenarios, a GUI was made
on MATLAB. This GUI gave the figures from all the runs averaged into into one.
The GUI also provided for observation of di�erent interesting entities like LTERSSI,
RSRP, RSRQ and the SNR. A drop down menu also enabled the user to choose
his/her desired resolution. The results for tram and walk scenarios presented here
show the GUI in action.

The first set of results are from the measurement campaign done on the tram. A
total of 33 runs from Korvagen to Wavrinkys plats and 31 runs the other way were
performed. Following was the average trend found for the tunnel scenario:

18

Fig. 1. Screenshot of the RSRP values along the walking route using the
GNet Track Pro application.
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Fig. 2. RSRP variation for the walking scenario data, with mean function
and variations around the mean.
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Fig. 3. Autocorrelation of the RSRP values after removal of the mean.

A. Measurement Methodology

The measurements were gathered from campaigns per-
formed in Gothenburg, Sweden, during the spring of 2016.
They were collected by using a Google Nexus 5X smartphone.
Data was logged using GNet Track Pro by Gyokov solutions.
The application allowed logging of signal strength, GPS posi-
tion and many other parameters. It is important to note that an
emphasis was made to maintain the same conditions, as much
as possible, throughout all the measurement iterations. An
empirical collection of data includes data collection at different
times of the day. Therefore, for all the cases the measurement
iterations were carried out during various times of the day to
get a more ideal averaging of the readings. This was done until
the characteristics, the mean and variance, for each position
could be assumed to be approximated from the measurements.
The phone was kept heads up on the right-hand front facing
pocket of the jacket for all the measurements taken. These
measurements were then mapped to a one-dimensional space
with the distance from a fixed point as one of the parameters.
The starting and ending points are located at known fixed
geographical positions, allowing the same track to be recorded
several times. Three LTE parameters (received signal strength
indicator (RSSI), reference signal received power (RSRP), and
reference signal received quality (RSRQ)) were collected [11].
RSSI provides information regarding the total received power
which includes thermal noise and all interferences, RSRP on
the other hand is the linear mean of the power contributions of
the resource elements (REs), in a specific bandwidth, that carry
cell-specific reference signals. A RE is defined as one 15 kHz
subcarrier by one symbol. Finally, RSRQ is the ratio between
RSRP and the RSSI and as such depends on the power of the
serving cell. For our purpose, RSRP was the parameter which
was used for modeling the available throughput.

Three measurements campaigns were conducted: one walk-
ing in a street, one in a tram going through a tunnel, and one
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Fig. 4. Histogram of the RSRP values after removal of the mean.

on a bus touring the city. Here we only report results of the
first campaign, as GPS measurements were of good quality
throughout the path.

B. Measurement Results

Fig. 1 shows a snapshot of the RSRP values along the
track. We observe large variations of the RSRP, depending
on the position. The aggregate of all measurements is shown
in Fig. 2, along the path. The figure shows that, over the span
of multiple days, the RSRP at a given position is relatively
stable, with variations due to environmental factors as well
as GPS errors. Peaks in the RSRP are due to direct line of
sight connections with BSs, while valleys are due to shadowing
by large buildings and other structures. To complement these
results, we have also analyzed the channel statistics after re-
moving the mean from Fig. 2. Fig. 3 shows the autocorrelation
function of the RSRP. We see that the RSRP values decorrelate
after around 160 meters. Fig. 4 shows a histogram of all
mean-removed RSRP values. We observe a relatively Gaussian
behavior, with a standard deviation of around 3.3 dB.

In conclusion, the assumption of predictable received power
appears to be reasonable, provided the path of the user along
the prediction window is known.

IV. EVALUATION OF RESOURCE ALLOCATION FROM
MEASURED DATA

In this section, we will evaluate the performance of the three
resource allocation methods from Section II-C using the data
described in Section III.

A. Performance Metrics

Three performance metrics are considered, based on the
solution x

⇤ of (3), throughput, degradation, and power con-
sumption. These are defined as follows:



Fig. 5. Throughput comparison as a function of the number of users for
equal share, rate proportional and predictive resource allocation. For PRA,
�1 < �2.

• Throughput, defined as

throughput =
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⇤
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in which rt,m is the actual rate supported by the channel
(which may be different from the predicted rate, due to
location errors).

• Average video degradation, defined as [10]
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• Time-averaged BS power consumption, defined as
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where we recall that Ut,k is the set of users assigned to BS
k at time t. Here, P
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is the power consumption under
no load, and P
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under maximum load. Here P
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set to zero, so that the degradation simplifies to
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We set P
max

to 1000 W. This yields a power consumption
of K ⇥ 1000 W if all K BSs are transmitting during an
entire time slot.

B. Simulation Setup

We considered a look-ahead window of 35 seconds with
a varying number of users attached to a single base station.1

1Due to limitations in the measurement setup, we were not able to obtain
RSRP traces along the path for each individual base station.

Fig. 6. Base station power consumption for different number of users for
equal share, rate proportional and predictive resource allocation. For PRA,
�1 < �2.

Each user traverses the path independently from different start-
ing points with different velocities (drawn uniformly between
1m/s and 10 m/s). So for each simulation, each user starts
at a random position along the path, with a random traveling
direction, which the user follows for 35 seconds. We arbitrarily
set B to 1 Hz, so rates should be seen with respect to this
value. We set A = 0.055, so the video rate corresponds to
0.055 bits/s/Hz (e.g., corresponding to 1.1 Mbit/s over 20 MHz
bandwidth). The background noise power is assumed to be
�80 dBm, and the predicted signal power is assumed to be
equal to the true power experienced by the user. The received
power is taken as the mean from Fig. 2. Results were collected
for 500 Monte Carlo runs. For the PRA method, we also
investigate the impact of location errors, modeled as a shift
of the initial position along the traversing path, for which we
generated a uniformly distributed error between 1 m and 10
m. We set two different values of � to determine the trade-off
between power consumption and video degradation, �

1

= 1.3

and �

2

= 2.5. This latter value gives the priority of reducing
airtime, while being tolerant to some video degradation.

C. Results and Discussion

Fig. 5 shows the throughput for the considered resource
allocation strategies. It can be observed that PRA offers higher
throughput compared to the equal share and rate proportional
schemes. In fact, the PRA throughput grows approximately
linearly with the number of users, which is the best that can
be achieved. When the number of users are few, all methods
perform equally well, since the system is under-utilized and the
throughput grows linearly with the demand. However, equal
share and rate proportional schemes see a relative drop of
throughput after more than 10 users are in the system. As
expected, the location uncertainty degrades the performance
for the PRA scheme, especially when there are more users.



Fig. 7. Video degradation comparison for varying number of users for equal
share, rate proportional and predictive resource allocation. For PRA, �1 < �2.

Fig. 6 shows the average power consumption of the BS
for the three resource allocation schemes. PRA lead to lower
power consumption than the non-predictive schemes. This
is because to satisfy the demands, PRA is able to exploit
good channel conditions in the future, requiring less power.
However, this saturates to the level of the rate proportional
schemes as the number of users increases. The equal share
approach always has the largest power consumption, and
reaches the maximum power after only 15 users. The impact
of location uncertainty to PRA seems to be negligible from
the power consumption point of view.

In Fig. 7, we show the video degradation performance of all
the schemes. In contrast to throughput and power consump-
tion, now PRA does not always offer the best performance.
The conventional schemes have similar video degradation,
offering the best performance for a low number of users,
but quickly degrading as the number of users increases.
PRA has slightly higher degradation for lower number of
users, but degrades more gracefully with increasing number
of users. When the system has a light load, PRA can obtain
a lower objective function by reducing the airtime, translating
to lower power consumption. We recall that by changing the
trade-off parameter �, we can reduce the video degradation,
though at a cost in power consumption. For the case with
maximum number of users (i.e., 40 users), we can see that
PRA has a significant gain compared to rate proportional
allocation schemes and while PRA with location error offers
a somewhat reduced gain. These observed gains in our study
are different to what has been reported in [10], which had
much larger gain on synthetic channel data. Possible reasons
include a difference in look ahead window size (4 minutes in
[10], 35 seconds in this paper) and a difference in channel
characteristics (synthetic data in [10], measured data in this
paper) and different mobility (more mobility leads to better
performance, due to increased channel diversity).

V. CONCLUSION

Predictive resource allocation relies on assumption of the
predictability of the future received power. Theoretical studies
have shown significant gains in terms of various performance
metrics, both at the user side and the infrastructure side, pro-
vided this assumption is true. In this paper, we have reported
the outcome of a measurement campaign with off-the-shelf
hardware, in order to verify this assumption, and to perform
predictive resource allocation based on real data. Our main
finding is that indeed future received power can be predicted
over relatively long time horizons, provided the future user
locations are known. Our simulations indicate that under low
mobility and low number of users, performance gains in terms
of user quality are reduced compared to synthetic data, as
fewer degrees of freedom and fewer chances to exploit high
powers are available to the resource allocation algorithms. For
all investigated scenarios, predictive resource allocation led to
significant reduction in base station power consumption, while
improving aggregate throughput.
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