
 

 

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

 

 
 

 

 

 

 

 

 

Cellulose-derived conductive nanofibrous materials 

for energy storage and tissue engineering applications 
 

 

 

 

VOLODYMYR KUZMENKO 

 

 

 

 

 

 

 

 

 

 
 

 

 
Department of Microtechnology and Nanoscience 

CHALMERS UNIVERSITY OF TECHNOLOGY 

 

 

Göteborg, Sweden 2017  



 

 

Cellulose-derived conductive nanofibrous materials for energy storage and tissue 

engineering applications 

VOLODYMYR KUZMENKO 

ISBN 978-91-7597-558-0 

 

 

© VOLODYMYR KUZMENKO, 2017 

 

 

 

Doktorsavhandlingar vid Chalmers tekniska högskola 

Ny series nr 4239 

ISSN 0346-718X 

 

 

Micro and Nanosystems group 

Electronics Material and Systems Laboratory 

Department of Microtechnology and Nanoscience 

Chalmers University of Technology 

SE-412 96 Göteborg, Sweden 

Telephone + 46 (0) 31 772 1000 

 

 

Technical report MC2-358 

ISSN 1652-0769 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cover: The Dala horse made of different cellulose-derived nanofibrous materials 

 

 

Printed by Chalmers Reproservice 

Göteborg, Sweden 2017 



iii 

 

Cellulose-derived conductive nanofibrous materials for energy storage and tissue 

engineering applications 

VOLODYMYR KUZMENKO 

Department of Microtechnology and Nanoscience 

Chalmers University of Technology 

 

ABSTRACT 

There is no doubt that nanofibrous materials are among the most opportune materials used in advanced 

applications nowadays. To supply anticipated high demand for these materials sustainable resources such as 

plant derived polymers should be explored. In this thesis, I demonstrate that the most abundant natural polymer 

cellulose is an excellent raw material for synthesis of new nanofibrous materials with valuable combination of 

properties such as electrical conductivity, porosity and topography. These materials can contribute to the solution 

of two rather different but equally important problems faced by modern society: lack of high power energy 

storage devices able to keep up with the technical progress and increased rate of neurodegenerative diseases, 

which inevitably accompanies an ageing population. 

In connection with the first problem, supercapacitors are considered to be devices of choice when high power 

energy supply is needed. However, the effectiveness of supercapacitors mostly depends on active materials 
traditionally made of porous carbons which are used for accumulation of electrostatic charges. At the moment, 

the production of carbon materials mostly relies on unsustainable fossil precursors. In the present work, I 

describe the fabrication of freestanding functional carbon nanofibrous (CNF) materials derived from cellulose 

via consecutive steps of cellulose acetate electrospinning, subsequent deacetylation to cellulose, and 

carbonization. I report innovative technologically simple and environmentally friendly method of CNF synthesis 

that significantly increases carbon yield (from 13% to 20%) and allows time reduction of the regeneration step. 

The obtained CNF materials are mechanically stable, have hydrophobic surface and consist of nitrogen-doped 

randomly oriented nanofibrous network. 

Moreover, the prospect of effective using of various modified CNF-based materials as electrodes in 

supercapacitors is demonstrated. Nitrogen-doped CNF materials have about 2.5 times higher specific capacitance 

than non-doped CNF materials due the positive effect of pseudocapacitance. Incorporation of highly conductive 

carbon nanotubes (double-walled CNTs, multi-walled CNTs and chemical vapor deposited CNTs) and reduced 

graphene oxide into the CNF frameworks further improves electrical conductivity and increases the surface area 

of the produced composite materials, which leads to high specific capacitance values (up to 241 F/g), cyclic 

stability, and power density of these materials. These results show that cellulose is a relevant precursor for the 

synthesis of sustainable and efficient carbonaceous electrodes for supercapacitors. Functionalization methods 

used in this study proved to be effective in enhancing the electrochemical performance of carbonized cellulose 

materials. 

In connection with the second problem, an emerging tissue engineering approach can help to cure 

neurodegenerative diseases of elderly population via development of healthy replacement neural tissues or in 

vitro models for drug testing. In this thesis, several cellulose-derived nanostructures, such as above-mentioned 

CNFs and fibrous electrospun cellulose incorporated with CNTs, are assessed as scaffolds for the growth of 

neural tissue. These scaffold materials are characterized with good biocompatibility, optimal nanosized 

topography and electrical conductivity to support adhesion, growth and differentiation of SH-SY5Y 

neuroblastoma cells. Possibility of using inks from nanofibrillated cellulose for 3D printing allows even more 

effective assembly of designed conductive patterns for cell guidance. The results show prolific cell attachment, 

proliferation and differentiation of neural cells along the guidelines. 

In overall, the positive implementation of the cellulose-derived nanofibrous materials in the above mentioned 

applications suggest that the synthesis of sustainable and efficient materials based on renewable resources is a 

very prospective approach. Such materials should play a major role in our future effort to satisfy the increasing 

demand on functional high-tech products. 
 

 

Keywords: cellulose, electrospinning, carbonization, carbon nanofibers, carbon composites, energy storage, 

supercapacitors, hydrogel inks, 3D printing, tissue engineering, neural cells  
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Chapter 1 

Introduction 

 

1.1. Background 

Advanced technologies have become an essential part of human progress. No doubt, one of 

the biggest challenges is the development of novel materials with unique properties for 

various applications. In the last decades a great deal of attention has been paid to 

nanomaterials that have proved to be very promising. This study is concentrated on two of the 

possible applications where valuable properties of conductive nanofibrous materials can be 

efficiently utilized: energy storage and tissue engineering. 

 

1.1.1. Energy storage 

Modern society consumes huge amounts of energy which entails unprecedented scientific 

attention towards the development of efficient methods of energy harvesting, storage and 

delivery. The boundaries of energy storage field have been tremendously expanded in order to 

satisfy various evolving applications. As a result, supercapacitors, whose working mechanism 

is based on electrostatic charge accumulations at interfaces between electrodes and electrolyte 

ions (Figure 1.1), occupied their niche as high-power energy storage devices with long cycle 

life, low maintenance cost, safe pollution-free operation and capability to function at high 

temperatures [1-3]. Distinctive advantages promote an extensive use of supercapacitors in 

wearable electronics [4,5], uninterruptible power supplies [6], wireless sensors [7], electric 

hybrid vehicles [8,9], and energy harvesters, for instance, wind turbines [10], solar cells or 

piezoelectric systems [11]. Over the last century, energy consumption in the world has been 

constantly increasing, which has brought up the need for efficient devices that can be used to 

store and deliver energy on demand. A major contribution to satisfy this need can be made 

through implementation of supercapacitors as safe and long-lasting energy storage devices 

[12-14]. 

 
Figure 1.1. Schematic illustration of the supercapacitor used in the research. 
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Carbonaceous materials, for instance, activated carbons, carbon aerogels, carbon nanotubes 

(CNTs), carbon nanofibers (CNFs) and graphene, are the most suitable materials for 

supercapacitor electrodes as they have important characteristics necessary for effective 

electrical double layer (EDL) energy storage [15-18]. First of all, carbon materials are 

electrically conductive, mechanically stable and chemically inert, which helps them to 

withstand sufficient number of charge and discharge cycles without significant deterioration. 

In addition, they can in a relatively easy and cheap way obtain a high surface area with 

controllable porous morphology accessible to an electrolyte [9,17,19,20]. 

High demand for carbon materials creates the problem of resource availability, thus 

orientation on sustainable/renewable resources is vital for the future of energy storage devices 

[21]. Deployment of resources of fossil origin for the production of carbon materials is an 

immense drawback in the large scale production of carbons, while biomass-derived 

nanocarbons are much more cost-effective and do minimal harm to the environment [22]. 

This is very important aspect as these resources are, firstly, extremely limited, and secondly, 

they cause emission of a large amount of greenhouse gases. The search of innovative carbon 

materials should be motivated not only by the outlook of consistent performance, but also by 

low cost, easy preparation, and minimal detrimental impact on the environment. From the cost 

and sustainability point of view, utilization of renewable resources should be considered as a 

future alternative to coal tar pitch and synthetic polymers which are usually used as CNF 

precursors [23,24]. For the above mentioned reason, plant cellulose is obviously an attractive 

candidate for the synthesis of carbons, being the most abundant biopolymer on Earth [25]. 

Advantages of this biomass source are especially evident in the countries with valuable forest 

industry, i.e. in Nordic countries and Canada. And no doubt, the trend of biomass utilization 

has a long-term life ahead of it. It becomes even more relevant after the adoption of the Paris 

Agreement which makes the world’s biggest economies finally unite their efforts in order to 

slow down detrimental climate changes through substantial reductions of greenhouse gas 

emissions [26]. 

1.1.2. Tissue engineering (TE) 

In modern society, recovery from spinal cord injuries (SCI) and neurodegenerative diseases 

(NDD), such as Alzheimer's disease (AD) and Parkinson's disease, accounts for one of the 

biggest global public health challenges in terms of the number of patients and the healthcare 

costs. In 2015 it was estimated that over 46 million people in the world suffer from AD, 

which lifts the global costs of care for this disease to nearly $818 billion. Unfortunately, these 

numbers are expected to grow up even further due to the absence of a permanent cure, the 

remaining poor healthcare systems in many underdeveloped regions and continuously ageing 

population in the most developed countries [27]. 

The common current treatments of neurodegenerative health problems include either 

invasive surgery or drugs that solely delay or temporarily ameliorate symptoms, and no 

permanent cure has yet been developed [28-30]. TE can serve as a novel approach for 

improving the activity of nervous systems impaired by SCI and NDD. The neural tissue 

supported by tailor-made scaffolds can be used in different ways such as a replacement for 

injured tissue (Figure 1.2), as a mechanism of therapeutics delivery or as a drug screening 

model for the study of the degenerative neural disorders in vitro [31,32]. 
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Figure 1.2. Schematic illustration of a neural TE concept. 

For in vitro studies, the support material needs to be non-cytotoxic and to have appropriate 

morphology. In addition, the mechanical characteristics of scaffolds are supposed to be 

suitable for neural tissue development and furthermore provide stability of structure 

throughout the necessary time. Cells are able to attach to non-cytotoxic scaffolds without any 

detrimental impact [33]. Additionally, cell adhesion, migration, proliferation and 

differentiation, as well as oxygen diffusion and exchange of nutritive and metabolic 

substances, are greatly affected by external topography and internal porosity of a scaffold 

which should provide required space for cell development processes [34,35]. Furthermore, 

electrical conductivity is an inherent characteristic of carbon materials, which is particularly 

important for neural TE applications. Since neurons are capable of using electrochemical 

signals for transmitting information, scaffolds with electrical conductivity have a positive 

influence on the development of neural tissue. In earlier studies, conductive carbon 

nanostructures showed a beneficial impact on the performance of neurons at both the single 

cell level and the neuronal network level [36-39]. 

So far, most scaffolds have been implemented as 2-dimensional (2D) models with cells 

layered at the flat surface of scaffolds. It is due to the practical handling of such robust 

scaffolds, which allows convenient cell monitoring, sufficient cell survival and exchange of 

nutrients. However, cell studies in 2D conditions are very dissimilar with a real brain model, 

since an actual brain tissue has a 3-dimensional (3D) structure with interconnected functional 

layers. A higher spatial freedom for cells to interact with other cells and matrix at the 3D level 

makes the developed tissues rather different compared to the ones grown on flat 2D scaffolds 

[40,41]. 

In 3D printing, the mechanical quality of an ink is usually an issue, as an ink has to be 

stable, easily printable and result in a scaffold with high shape fidelity in addition to 

compatibility with living cells after printing. Cellulose-based inks seem to be able to satisfy 

the above-mentioned requirements even better than more popular synthetic polymers. 

Although synthetic polymers can be useful for specific applications, the biopolymers such as 

cellulose more accurately mimic genuine extra cellular matrix (ECM) conditions [42]. 

Biopolymer-based scaffolds have already showed good results in TE applications [43]. 

Despite this, cellulose has been paid very little attention until now in terms of its use in 

engineering of new scaffold materials. Since cellulose is a biocompatible polymer [44,45], 

mechanically strong cellulose-based materials are inexpensive and sustainable candidates for 
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nerve regeneration. Moreover, cellulose-based materials are able to enhance the host-implant 

integration [46] and increase neural attachment and survival [47]. The possibility to 

mechanically disintegrate long cellulosic fibers from wood into so-called nanofibrillated 

cellulose (NFC) with a diameter of fibers down to 3-6 nm and a length range of few microns 

[48,49], provides even more opportunities for cellulose. At very small concentrations around 

2 wt.% NFC forms extensively entangled strong hydrogel networks that have essential 

properties for a 3D printing ink such as shear thinning, strong thickening and yield stress [50]. 

The colloidal stability of NFC-based hydrogels is very high due to the introduction of charged 

functional groups to the NFC interface [51], which keeps inks integral for a long time. 

Besides, NFC is easily miscible with conductive additives to form highly opportune 

composites [52]. In particular, charged NFC can act as excellent aqueous dispersion agents for 

CNTs [53,54], which is critical for homogeneous CNT distribution and thus sufficient 

electrical conductivity of inks. 

 

1.2. Scope and outline 

In this thesis, different cellulosic sources, i.e. electrospun cellulose and NFC, were used to 

fabricate conductive nanofibrous scaffolds for the advanced applications. 

Previous studies have shown a possibility to obtain suitable low cost carbon materials from 

cellulose [13,55,56], however low yield of carbonization prevents using cellulose as a 

precursor in large scale production. In Chapter 2 an enhanced sustainable method of high-

yield CNF synthesis from cellulose is described [Paper I]. 

Cellulose-derived CNFs fabricated with different methods were used for application in 

energy storage devices such as supercapacitors. In Chapter 3, methods generating four types 

of carbon composites based on such CNFs are demonstrated. 

Impregnation with NH4Cl was successfully used for high-yield fabrication of nitrogen 

doped CNFs from cellulose. Such N-doped carbonaceous materials are perceived as 

sustainable electrodes that show promising capacitive effects by the complementation of two 

different principles of energy storage: electrostatic from EDL capacitance and electrochemical 

from pseudocapacitance [57]. The pseudocapacitance implies transfer of charges across the 

double layer at the electrode surface and can be reached by addition of such n-type dopant as 

nitrogen [58]. This phenomenon substantially increases the total amount of accumulated 

charge and thus the energy density of the supercapacitor [59] [Paper II]. 

Besides, several different CNF/CNT composite electrodes are described in the thesis. They 

are obtained through either carbonization of the cellulosic precursors functionalized with 

double-walled carbon nanotubes (CNF/DWCNT) or multi-walled carbon nanotubes 

(CNF/MWCNT) [Paper III] or chemical vapor deposition of CNTs on top of CNFs 

(CNF/cvdCNT) [Paper IV]. Though there were earlier attempts to integrate CNTs with CNFs 

[55,56], the present research offers new fabrication approaches of CNF/CNT composites, 

which leads to improved electrochemical performance of the electrode materials. As a result, 

one obtains hierarchical electrode materials with strong fusion between two constituents: a 

continuous network made of thick CNFs in diameter range of 50-250 nm and much thinner 

CNTs with a diameter range of 1-20 nm. On the one hand, the presence of CNTs, which have 

high surface-to-volume ratio and electrical conductivity, is expected to have a positive impact 

on electrochemical results of the pristine CNF material [15,60,61]. On the other hand, 

freestanding CNF network with well-structured pore interconnectivity, high mechanical and 

electrochemical stability can maintain the efficiency of the composite without using an 

unfavorable polymeric binder [72,62]. 

Finally, a composite carbon electrode material consisting of CNFs and reduced graphene 

oxide (rGO), which is named CNF/rGO, is presented [Paper V]. It was fabricated via 

carbonization of the electrospun fibrous cellulose functionalized with graphene oxide (GO). 
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Water-soluble GO has strong affinity to hydrophilic cellulose due to abundant polar surface 

functionalities from both sides [63,64], which results in homogeneous coverage of cellulosic 

fibers with GO flakes. This structure remains integral and freestanding after simultaneous 

one-step carbonization/reduction of cellulose/GO into CNF/rGO at 800 °C. The presented 

approach solved the typical problem of graphene sheet restacking due to the following factors: 

1) solid-state high temperature reduction, which prevents agglomeration between graphene 

layers [65], and 2) the nanospacer effect of CNFs that stick in between graphene layers. Dense 

packing of interpenetrated rGO sheets and CNFs makes this structure suitable for 

supercapacitors with high volumetric demands in comparison with vast majority of the 

previously reported carbon electrodes [19]. Moreover, due to the capability of CNFs to act as 

excellent conductive bridges between rGO sheets, the composite’s electrical conductivity is 

one of the highest among the 3D graphene nanomaterials [66]. This exceptional feature leads 

to efficient electron transport crucial for high power applications [64]. 

For application in neural TE described in Chapter 4, the focus is made on the production of 

conductive nanofibrous scaffolds that can promote neural cell development. Conductive 

scaffolds are aimed to support adhesion, growth and differentiation of neural cells, which 

could be used in the development of a future disease screening model or a biomaterial for the 

regeneration of neural tissue. 2D scaffolds based on electrospun cellulose as a precursor have 

suitable properties to mimic the neural ECM environment including its structural, 

topographical and mechanical features [67-69] [Paper VI]. 3D scaffolds consist of 3D printed 

conductive guidelines on NFC-based films. To print these guidelines, a NFC/CNT composite 

conductive ink was developed [Paper VII]. Further, I describe the influence of guidelines’ 

beneficial features such as nanotopography and conductivity on the attachment, proliferation 

and differentiation of human-derived neuroblastoma cells (SH-SY5Y cell lines) [Paper VIII]. 

This work can open new prospects for cellulose-based low cost 3D printable inks in 

fabricating mass affordable reliable scaffolds desperately needed in the TE field. 
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Chapter 2 

Enhanced synthesis of carbon nanofibers (CNFs) from 

cellulose 

 

Today fibers occupy a big niche in the world market. The majority of them are still produced 

from organic sources such as cotton or wool; however the contribution of inorganic fibers 

increases continuously. Among the inorganic ones it is worth to put more emphasis on carbon 

fibers due to the opportunity of their utilization in different high-performance applications 

[70-72]. The reduction of the fiber dimensions to nano-size level leads to even better specific 

properties [70]. CNFs are monomolecular carbon fibers with diameters ranging from tens of 

nanometers to several hundred nanometers, length range is 100 nm – 1000 µm. Carbon fibers 

with “nano” dimensions are very prospective as they have high specific surface area owing to 

their small diameters [70,72]. The structure of CNFs is different from CNTs which are 

composed of one-atom-thick sheets of carbon (graphene sheets). Though CNF mechanical 

and electrical properties are not as good as those of nanotubes, they possess one substantial 

advantage – they are relatively easy to synthesize with predetermined properties such as 

orientation, diameter, and distribution [73]. 

Carbon nanofibers have very high tensile strength and Young’s modulus (can reach values 

of about 12,000 MPa and 600 GPa respectively) which are approximately 10 times that of 

steel. The superb mechanical properties of CNFs make them a good reinforcement agent for 

different synthetic materials. In comparison with macroscopic fibers, a lower quantity of 

nanofibers is required to attain the same reinforcement result and reduce brittleness; their 

large specific surface area promotes relaxation processes in the matrix as well, which 

improves the impact strength of the reinforced matrix. More than that, the small diameters of 

CNFs provide very limited refraction of light which makes them transparent in matrices [70]. 

Chemical stability with relatively big surface area of a porous nanofibrous material can be 

used in energy conversion and storage. Most of the batteries nowadays use sponge-like 

electrodes with high discharge current and capacity, and a porous separator between the 

electrodes which can prevent short circuit and allow free exchange of ions. CNFs with well 

interconnected pores, high mechanical strength and electrochemical stability can be used as 

supercapacitor electrodes that improve reversible capacity (long life-time when cycling) or as 

hydrogen-storage materials [7,72]. 

The large surface area and chemical inertness of CNFs can be applied in catalysis. For 

example, nanofibers loaded with metallic nanoparticles (Rh, Pt, Pd) are appropriate catalyst 

carriers for hydrogenation reactions. The elimination and recycling of the catalyst after the 

reaction is not a problem, nanofibers are very effective in the terms of time and conversion, 

and they can serve several times without loss of activity [70]. 

Membranes made of CNFs can be an efficient tool for filtration providing a rather 

insignificant decrease in permeability and a higher capability to trap fine particles compared 

to conventional filter fibers. The adsorption of particles is determined by the sieve effect for 

large particles and by static electrical attraction for particles smaller than the pores. It is a 

suitable method to collect airborne particles in the wide diameter range of 0.5-200 µm [72]. 

CNFs have also found their way into the medical field. The reason is that the dimensions of 

proteins, viruses, and bacteria belong to the nanoscale size range. At the moment, vivid 

examples of this phenomenon can be observed in TE. Impalefection, a method of gene 

delivery, uses CNFs to attach plasmid DNA containing the gene that is intended for entering 

the cell. Then this gene-activated matrix is pressed against cells or tissue causing the 
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subsequent gene expression [74]. The similarity in dimensions of CNFs compared to 

crystalline hydroxyapatite found in bone, as well as its high strength to weight ratio, can make 

it applicable as an orthopedic/dental implant material [75], while electrically conductivity 

allows CNF usage as supporting scaffolds for neural regeneration [38]. 

Magnificent properties of CNFs give a huge number of opportunities of their future 

applications in all spheres of life [76], which is the main reason of the growing demand on 

them. Improvements in the production process result in the gradual decrease in cost (from 

$330 per kilogram in 1970 to less than $11 at the moment) [77], however their current 

production is far from being sustainable. In this Chapter, I demonstrate the enhanced method 

of CNF synthesis from cellulose via consecutive steps of cellulose acetate electrospinning, 

mild deacetylation (regeneration to cellulose), impregnation with ammonium chloride and 

carbonization at 800 °C [Paper I]. 

2.1. Electrospinning as a fiber production method 

Electrospinning is the most flexible and easily controlled process of nanofibers production 

nowadays. It has several important advantages compared to other methods (melt-spinning, 

dry-spinning, template synthesis, self-assembly, phase separation). First of all, electrospinning 

allows obtaining continuous nanofibers with desired properties in a relatively simple and fast 

way. Secondly, a large variety of fiber assemblies (nonwoven, aligned, patterned etc.) and 

fiber diameters (from 3 nm and up to around 10 µm) is possible to get by simple changes in 

the process parameters. Thirdly, the produced fibers have an extremely high surface-to-mass 

ratio due to a developed porous structure. Finally, electrospinning gives the opportunity to 

fabricate nanofibers from completely different materials such as polymers, metals, ceramics, 

or to combine them to form composites [72,78,79]. 

2.1.1. Basic principles and parameters 

The electrospinning process is based on the uniaxial stretching of a viscoelastic solution by 

electrostatic forces. Continuous fiber formation takes place as long as the solution keeps on 

feeding the electrospinning jet. The whole set-up for electrospinning includes a high voltage 

source (up to 30 kV), a solution container with milliliter size capillary (e.g. a syringe with a 

flat tip needle), and a conducting collector. The solution is usually fed through a positively 

charged spinneret with the help of a pump. When it comes out of the needle tip a high voltage 

is required to form a jet shooting towards a collector. Once the electric field reaches a critical 

value at which the repulsive electric force overcomes the surface tension of polymer solution, 

the polymer solution is ejected from the tip to the collector. Strong electrostatic forces make 

the solution jet come out from the needle to form a so-called Taylor cone and subsequently 

stretch into thin fibers in the direction of the grounded collector. As a result, while the solvent 

evaporates solid fibers are collected to produce a nonwoven fibrous mat [72,78,80-82]. 

The most important parameters that influence the electrospinning process can be divided 

into three main categories: 1) solution properties (including viscosity of solution or 

concentration, solution charge density, surface tension, polymer molecular weight, dipole 

moment, and dielectric constant); 2) controlled variables (applied voltage, distance from 

spinneret tip to collector, flow rate, collector and needle tip design); 3) ambient factors 

(temperature, humidity, air velocity). Obviously, it is impossible to isolate the effect of many 

of the parameters because they all are interrelated. The best way to obtain uniform, smooth 

fibers is to try spinning at varied parameters until perfection is reached [80,83,84]. The effects 

of electrospinning parameters on fiber size and morphology are described below. 

Solution properties: The polymer concentration is directly proportional to the solution 

viscosity, which has the biggest influence on the size and morphology of electrospun fibers. 

Previous experience of polymer electrospinning shows that a lower concentration leads to the 
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formation of defects such as beads and droplets since the viscosity is too low to create a 

strong thin fiber. As a result, the solution is not sufficiently stretched to the collector, but 

rather sprayed onto it [85-88]. It also allows some solvent to get to collector and cause wet 

fibers to form junctions and bundles [86]. Increasing the solution viscosity significantly 

reduces these defects, producing fibers which are more uniform. However, a too viscous 

solution is impossible to electrospin due to clogging of the needle tip (solvent evaporates 

faster than jet is initiated) [88,89]. The diameter of the electrospun fiber correlates to the 

polymer concentration as well. A higher viscosity of the solution results in thicker fibers 

[72,86,90,91]. A higher solution conductivity or charge density generally helps to produce 

more uniform fibers with fewer defects [87,89,92,93]. The conductivity can be increased by 

addition of a volatile salt, alcohol [94], or a surfactant [95]. 

Controlled variables: The applied voltage has a significant impact on the fiber fine 

structure. First and most important of all, the electric field must be strong enough to overcome 

the surface tension in order to induce spinning. On the other hand, spinning at as low voltage 

as possible is desirable for the production bead-free fibers. In this case the Taylor cone is 

formed at the needle tip followed by smooth stretching of the solution. Higher voltages lead to 

a jet originating from the liquid surface within the tip (without the Taylor cone being formed) 

resulting in beading. A further increase in the electric field can even split the jet into several 

[86,88,89]. The flow rate indicates the speed at which the solution is fed to the needle tip. 

Different studies prove that lower flow rates allow obtaining uniform fibers with smaller 

diameter [89], while higher flow rates yield beaded fibers due to solvent inability to evaporate 

before reaching the collector [94,96]. The distance between the tip and the collector (distance 

between two electrodes) should be sufficient to let the fibers dry before reaching their final 

destination. The distance also affects the shape and diameter of the obtained fibers. The most 

suitable distance has to be found experimentally for each electrospinning setup [72,97]. The 

designs of the needle tip and the collector also play important roles in electrospinning. Their 

huge diversity nowadays allows getting fibers with absolutely unique structures. For example, 

coaxial spinning with a two-capillary spinneret makes it possible to produce hollow fibers 

[98], spinnerets with multiple tips can produce fibers with various weight ratios of blended 

polymers with a controlled distribution [99]. Metal collectors with conductive surfaces 

generally help to form fibers with uniform structure without any shrinking or swelling [100]. 

Non-conductive collectors cause repulsion between the fibers resulting in lower packing 

density [91]. Versatile geometries of collectors bring electrospinning to a new level. Obtained 

fibers can have different alignment, wide range of diameters and assemblies [101-103]. 

Ambient factors: Some previous investigations show that the fiber diameter is inversely 

proportional to temperature. It can be explained by a correlation between temperature and the 

viscosity of a solution [93]. Increasing the humidity results in the appearance of small circular 

pores on the surface of the fibers [104]. 

In this this research work, for electrospinning of precursors for carbon materials, 1.7 g of 

CA (Mn = 30 000, 39.8% acetyl groups) was dissolved in 10 mL of solvent mixture (volume 

ratio 2:1) of acetone and dimethylacetamide (DMAc) at room temperature. At such CA 

concentration, the viscosity of the solution was optimal for continuous electrospinning 

without spraying. CA solution was transferred to a 10 mL disposable syringe and then fed 

continuously by a syringe pump at a flow rate of 1 mL/h through a stainless steel needle with 

a flat tip. The inner diameter of needle was 0.643 mm. The steel needle was connected to a 

high voltage supply with a positively charged electrode. A grounded collector (10×10 cm2 

steel mesh covered tightly with aluminum foil) was connected to a negatively charged 

electrode (Figure 2.1). Voltage between needle and collector was 25 kV, distance – 25 cm. 

Temperature was 20-23 °C, relative humidity was artificially controlled with a humidifier and 

kept in the range from 45 to 60%. The amount of electrospun CA solution was around 2 mL 

for one sample. For electrospinning of TE scaffolds, few parameters (flow rate, voltage and 
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distance to collector) were slightly modified [Paper VI]. Moreover, in this setup the grounded 

collector of fiber mats was a rotating at 25 rpm cylinder with a diameter of 10 cm. 

 

Figure 2.1. Electrospinning setup used in this study. 

 
2.1.2. Electrospinning of cellulose and its derivatives 

Cellulose is a naturally occurring polysaccharide that consists of D-glucose monomer units 

joined by 1–4 glucosidic bonds, forming an ether linkage by the elimination of water (one 

molecule may include up to ten thousand units) (Figure 2.2). Strong stabilization of cellulose 

crystalline nanofibrils by intermolecular hydrogen bonding and stacking interactions between 

cellulose sheets  make cellulose relatively stiff and hard to dissolve [105]. It is not soluble in 

the most common solvents, which leads to extremely difficult processing of cellulose. 

Solvents that can dissolve cellulose have low volatility and high melting temperature, which 

makes it hard to remove them completely from the fibers and requires electrospinning to be 

performed at relatively high temperatures [106-110]. 

 

Figure 2.2. Chemical structure of cellulose. 

On the other hand, its derivatives are much easier to handle (using different modifications) 

with spinning processes [111]. Cellulose acetate (CA) is a common ester of cellulose. They 

are synthesized by a reaction of cellulose with acetic anhydride or acetic acid in the presence 

of sulfuric acid. The degree of substitution (DS) of hydroxyls on acetic groups in cellulose 

may vary from 0 to 3, the range of 2-2.5 is predominantly used [112]. DS affects the solubility 

of CA and hence determines the options for further processing for different applications. For 

example, CA with DS of 2–2.5 is soluble in such solvents as acetone, dioxane or methyl 

acetate, while celluloses with higher degree of acetylation are soluble in dichloromethane. 
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Generally, acetylation makes cellulose more soluble in organic solvents, so it makes more 

suitable for electrospinning processes [23,113], which was used in this study to obtain fibrous 

precursor materials from CA. In order to choose a good solvent several factors should be 

taken into consideration. First of all, the solvent must have a high enough boiling point and 

dipole moment in order to evaporate during the stretching of the fibers towards the collector 

and not before. Otherwise clogging of the needle tip is observed. Secondly, the resulting 

solution should not be too viscous, but it should have high conductivity and low surface 

tension [114-116]. That is why the presence of solvents with a high dielectric constant and 

boiling point like dimethylacetamide, methanol, dimethylformamide or water improves the 

spinnability of CA solutions. Usually they are mixed with low-boiling solvents (acetone, 

chloroform, dichloromethane) in different weight ratios to obtain the best suitable solvent for 

a particular molecular weight of CA and a target structure [84]. After getting cellulose acetate 

fibers they are regenerated to cellulose by aqueous or ethanolic hydrolysis [111]. 

2.2. CNF fabrication from spun cellulose 

Cellulose-derived fibers were developed in the 1960's for aerospace applications and became 

at that time the first carbon fibers produced commercially [77]. Figure 2.3 shows the common 

CNF synthesis from cellulosic precursors. At the first step the cellulosic precursor (usually 

CA) is spun to produce a fibrillar structure [116]. This structure remains intact during the 

cellulose regeneration process and carbonization, except for the initial diameter decrease of 

about 3-4 times due to carbonization [23]. 

  

Figure 2.3. Production procedure for cellulose-derived carbon nanofibers. 

2.2.1. Regeneration of cellulose from cellulose acetate 

On the contrary to cellulose, CA is a thermoplastic material, which starts to melt at 

temperatures about 200 °C, far below carbonization of the composition [117]. It makes CA 

fibers impossible to use as they do not keep their structure. That is why the regeneration step 

is a very pivotal one in CNF production since it converts cellulose derivatives back to 
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cellulose, thus creating a proper precursor for carbonization. The distinctive property of 

cellulose to decompose before it melts is the main reason for that [23]. 

 

Figure 2.4. Deacetylation of cellulose diacetate with KOH. 

The treatment of cellulose esters in alkaline solutions leads to the removal of the 

carboxylic groups and the regeneration of the cellulose. The hydrolysis of carboxylic esters 

catalyzed by alkali agents in liquid solution takes place via a three-step process as it is shown 

in the example of cellulose acetate in Figure 2.4. In the first step, the negative ion RO- (R is 

usually hydrogen atom if alkali bases are used) from the base regenerative agent attacks the 

ester carbon creating delocalized negative charge between oxygen atoms. This step is 

reversible and the slowest one, which means that it determines the overall rate of cellulose 

regeneration. The other two steps are fast and irreversible resulting in acetic acid and alcohol 

as the products. At the end, the acetate groups of cellulose acetate turn into cellulose-OH by 

hydrogen abstraction [113]. 

Yet there are several disadvantages that make a traditional method of deacetylation with 

alkali economically and environmentally unfavorable. Firstly, deacetylation should be 

executed at extreme pH levels in order to reach the lowest degree of acetyl substitution. 

Moreover substantial amounts of water are required to wash the product from reagents, which 

is unacceptable for application in green processes [118]. Ammonium hydroxide as a mild 

reagent could be a viable alternative to strong inorganic bases. It does not need time- and 

water-consuming washing since it is a volatile compound and is entirely removed during 

drying of the carbonization precursor. However, the limiting factor for NH4OH use is the 

extensive time required for complete CA hydrolysis (up to a few weeks) [119]. 
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2.2.2. Carbonization of cellulose 

At the last stage of CNF production, cellulosic precursors are carbonized. In this work, 
cellulosic samples were placed between two silicon wafers into a quartz tube furnace with 

inert N2 flow. Temperature was raised with rate of 5 °C/min up to 800 °C and was held there 

for 2 h. After that the furnace was turned off, the samples were left in the oven until the 

temperature inside reached room temperature in flowing nitrogen. Carbonization allows 

transformation of the organic precursor into a material that contains predominantly carbon. 

The precursor has to be heated in a reducing or inert environment. The temperatures may vary 

depending on the nature of the particular precursor, sometimes extending to 1300 °C. As the 

result, after the complex process that includes different reactions the initial organic precursor 

turns into a valuable carbon material, while volatile compounds diffuse out of the system. The 

carbon content of this residue differs depending on the nature of the precursor and the 

pyrolysis temperature, but usually stays in the range 90 to 99 wt.%. Another important aspect 

of carbonization is the carbon yield, which is the ratio between the weights of the carbon 

material after and before carbonization. The yield is influenced by the heating rate, the 

carbonization atmosphere, and the pressure. Typically, carbon yield does not exceed 60%. In 

order to avoid disruption and rupture of the carbon network the diffusion of volatile 

compounds should be slow. The duration of carbonization depends on the desired structure of 

the product, the type of precursor, and the thickness of the material. At the end of 

carbonization “amorphous carbon” is typically obtained. X-ray diffraction shows that it lacks 

long-range crystalline order and the deviation of the interatomic distances of the carbon atoms 

from the perfect graphite crystal is more than 5% in both the basal plane and between planes 

[77]. To obtain a more ordered structure of carbon (graphitizing carbon) carbonization should 

be conducted at higher pressures or with the use of a catalyst [120]. 

Cellulose is a renewable and abundant biopolymer [25] and could be an inexhaustible 

source for the synthesis of CNFs. However a cellulosic precursor (C6H10O5)n suffers from low 

carbonization yields that do not exceed 10-15%  while the initial carbon content in cellulose is 

44.4% [121-123]. During pyrolysis and carbonization the cellulosic precursor continuously 

releases some compounds. At the first stage absorbed water is lost at temperatures up to about 

120 °C, after that a dehydration process occurs up to 300 °C resulting in dehydrocellulose 

(Figure 2.5). At about 250 °C simultaneously with dehydration cellulose starts to 

depolymerize mostly forming 1,6-anhydro-b-D-glucopyranose (levoglucosan). This chain-

splitting reaction is not desirable since it lowers the yield. At the last stage highly volatile 

gases, a tarry distillate and a carbon char are formed [77]. 
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Figure 2.5. Changes in chemical structure of cellulose during the first stages of carbonization cycle. 

2.2.3. Effect of ammonium chloride impregnation on cellulosic precursor 

In order to produce economically viable carbon fibers, a precursor should be easily converted 

to carbon at as high yield as possible [124]. One of the approaches that can be used to increase 

the carbonization yield and decrease shrinkage is control of a heating rate [125,126]. For 

example, holding the temperature at the beginning of carbonization below 250 °C for few 

hours can prolong desired dehydration process and postpone excessive chain-splitting 

depolymerization [127]. Yet the approach mentioned above is time-consuming and cannot 

increase the carbon yield significantly. Impregnation of the cellulosic precursor with various 

flame retardants capable of creating covalent crosslinks has proved to be a more efficient 

method [128,129]. Unlike some highly corrosive carbonization promoters that require special 

equipment [122,129,130] or contaminate carbon with the products of their thermal destruction 

[131], ammonium chloride is seen to be very promising additive from the point of view of its 

low cost and efficiency. Generally, halogenated flame retardants act during carbonization in a 

vapor phase by preventing free-radical chain splitting reactions of cellulose [132], while 

ammonium salts stimulate oxidation of C6-atom to an aldehyde group resulting in the 

decreased evolution of low-molecular weight compounds in the temperature range of 180-230 

°C [133]. 

The positive influence of ammonium chloride as a flame retardant on the synthesis of 

CNFs from cellulose is further discussed in this Section. For cellulose regeneration, 

electrospun CA mats were deacetylated/hydrolyzed. For this purpose, they were immersed 

into different solutions of sodium hydroxide (NaOH, different concentrations) and ammonium 

hydroxide (NH4OH, 28%) in 100 mL plastic beakers as shown in Table 2.1. After this, 

samples hydrolyzed in NaOH (CNF005 and CNF01) and pure NH4OH (CNFam) were 

washed in deionized water several times until neutral pH was reached. Samples hydrolyzed in 
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NH4OH + NH4Cl (CNFam031, CNFam034) were not washed after the hydrolysis. For drying 

procedure, all samples were spread inside PS Petri dishes at a room temperature with lids 

slightly open. 

Table 2.1. Conditions of cellulose regeneration [Paper I]. 

Final sample name Regeneration agent Concentration Time (days) 

CNF005 NaOH 0.05 m 1 

CNF01* NaOH 0.1 M 1 

CNFam NH4OH 28 wt.% 4 

CNFam031 NH4OH + NH4Cl 28 wt.% + 0.3 M 1 

CNFam034 NH4OH + NH4Cl 28 wt.% + 0.3 M 4 

*The sample was denoted as “CNF” and used as a reference in the later studies. 

Morphology of samples was investigated using scanning electron microscopy (SEM). 

Flexible 50-100 μm thick mats, consisting of randomly oriented fibers with 0.5-1.5 μm in 

diameter, were fabricated by electrospinning of CA. After the regeneration process cellulose 

fibers retained very similar morphology to native electrospun CA fibers (Figure 2.6). 

 

Figure 2.6. SEM images of electrospun CA fibers (a) and cellulosic precursor for CNFam sample 

after the regeneration (b). 

The Fourier-transform infrared (FTIR) spectroscopy was used to analyze the changes in the 

chemical structure after deacetylation (Figure 2.7). The main adsorption bands of the FTIR 

spectrum of pure CA are represented by stretching vibrations of C=O from ester groups (1770 

cm-1), C–O from carboxylic group (1270, 1085 and 920 cm-1) and acetal linkage of cellulose 

backbone (1160 cm-1), O–H group (around 3500 cm-1), as well as by bending vibrations of 

CH3 deformation for groups of acetate substituent (1385 cm-1) [134,135]. Spectra of the 

cellulosic precursors for the samples CNF005, CNF01 and CNFam were characterized by the 

absence of C=O bands and the decrease of C–O and CH3 bands, and significant increase of 

the O–H peak at 3500 cm-1. These spectra are comparable with the ones of native cellulose 

[136,137], which points to almost complete deacetylation of the mentioned samples. FTIR 

spectra of NH4Cl-impregnated cellulose have bands at 1400, 1680, 3040 and 3145 cm-1 

caused by stretching vibrations of NH4+, and bands assigned to bending vibrations of the 

crystal lattice at 1760 and 2000 cm-1 [138]. The peaks designated for C–O stretching 

vibrations still have decreased considerably after the regeneration, while it is hard to judge 

about the presence of alkyl CH3 bending because of its overlapping with NH4+ vibrations at 

1400 cm-1. The similar effect is observed for C=O stretching vibrations (1770 cm-1) [135] 

overlapping with two adjacent stretching and bending modes of NH4Cl (1680 and 1760 cm-1 
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respectively) [138]. The peak at 2000 cm-1 is assigned to bending vibration of the ammonium 

chloride crystal lattice, and the broad peaks at 3100-3300 cm-1 are assigned to NH4Cl 

stretching band [139, 140]. 

Even though assignment of FTIR spectra of CA hydrolyzed in the presence of NH4Cl is 

complicated, no signs of NH4Cl influence on the cellulose regeneration were observed. 

 

Figure 2.7. FTIR spectra of the regenerated cellulosic precursors in comparison with CA. 

Figure 2.8 shows X-ray diffraction (XRD) patterns of the differently regenerated cellulose 

samples. XRD pattern of cellulosic precursor for CNF01 sample regenerated with 0.1 M 

NaOH showed presence of peaks around 12°, 20° and 22°, which were assigned to crystalline 

structure of cellulose II [141]. Crystallinity index (CrI) of regenerated cellulose was 

determined as in Eq. (1) [142]: 

 CrI =  
100(Imax−Imin )

Imax
 (1) 

 

where Imax is the scattered intensity of the main peak for the regenerated cellulose at 

maximum (2θ = 18-22°), and Imin is the scattered intensity at the minimum (2θ = 13-15°). 

XRD spectra of rest of the samples showed less defined crystalline peaks similar to the 

amorphous electrospun CA. CrI of CNF01 precursor was 63%, while for the other samples it 

was in the range of 25-40%. CrI of CA was 30%. Similarity of the XRD patterns of the 

CNF005 and CNFam precursors with the XRD pattern of CA could point to incomplete 

regeneration of cellulose from electrospun CA (on the contrary to the results of FTIR 

spectroscopy). The heterogeneous distribution of the acetyl groups and the hydroxyl groups 

along the CA chain leads to a low regularity of the segments, which makes the polymer 
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amorphous. If the acetyl groups were removed by the hydrolysis of electrospun CA, 

regenerated cellulose with more regular hydroxyl side groups and thus relatively higher 

crystallinity can be expected to form [143]. It could mean that precursors of the CNF005 and 

CNFam did not have high enough degree of deacetylation to reach regularity of their side 

groups, while precursor of the CNF01 was sufficiently deacetylated to achieve rather higher 

crystalline structure. 

Addition of NH4Cl to the solution of ammonia hydroxide did not make an influence on the 

cellulose crystallinity. The characteristic peak for this salt appeared at 33.2°. Since neither 

FTIR spectra nor XRD patterns of cellulose samples showed any changes with the NH4Cl 

addition, one can assume that NH4Cl does not participate in the regeneration process. 

 

Figure 2.8. XRD patterns of the regenerated cellulosic precursors and CA [Paper I]. 

Thermogravimetric analysis (TGA) was performed for the samples that resulted in CNF-

based materials. The carbonization yield was calculated by dividing the measured weight left 

at 800 °C on the theoretical carbon content in cellulose of 44.4%. According to TGA NH4Cl 

treatment made a significant impact on carbonization of cellulosic precursors (Figure 2.9). 

The CNF01 precursor demonstrated the main weight loss in the temperature range of 300-400 

°C when cellulose started to depolymerize simultaneously with dehydration, accompanied by 

the release of such volatile compounds as carbon dioxide, methanol, and acetic acid [144], 

which according to [145] is unfavorable for carbonization. The carbon yield of the CNF01 

was 13% at 800 °C. Overall, the weight loss behavior of the CNF01 precursor is comparable 

to those of other cellulosic materials [23]. In contrast, TGA curves of the NH4Cl-impregnated 

samples showed that the addition of the flame retardant made a considerable effect on the 

decomposition behavior of cellulose as the carbon yields increased up to 20% at 800 °C. 

These curves have two shoulders. The first one shows weight loss in the temperature range of 

180-240 °C, which occurs primarily due to the decomposition of ammonium chloride [146]; 

the second one shows weight loss at 250-400 °C, which can be assigned to the pyrolysis of the 

cellulosic precursor. In comparison to the non-treated samples, pyrolysis of the samples 

containing NH4Cl starts at lower temperature (the difference is close to 50 °C). Our 

observations are consistent with [147] where inorganic flame-retardants were reported to 
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decrease the threshold decomposition temperature of cellulose. Such a decrease of pyrolysis 

temperature can explain the successful carbonization of incompletely regenerated cellulose. 

Even though incompletely regenerated cellulose retains thermoplasticity, its melting 

temperature increases with a decrease of the degree of substitution. Chen with coworkers 

reported melting temperatures for hydrolyzed cellulose acetate to be in the range of 278-313 

°C [148]. This temperature range is higher than the temperature of pyrolysis observed in TGA 

in our work. Thus, carbonization of cellulosic precursors starts before melting and fibers 

retain their morphology. Significant carbon yield increase for ammonium chloride treated 

samples is observed because NH4Cl prevented chain splitting reactions of cellulose and 

decreased evolution of low-molecular weight compounds [132,133]. 

 

Figure 2.9. TGA of the cellulose precursors without (CNF01) and with (CNFam031) NH4Cl 

impregnation. 

 

2.2.4. Properties of cellulose-derived CNFs 

SEM images of the CNF materials obtained from carbonization of non-impregnated cellulose 

are shown in Figure 2.10. Carbonization of CNF01 precursor resulted granular nanofibers 

with the diameter of 50-250 nm (Figure 2.10a). The morphology of the produced CNFs 

essentially resembled the structure of cellulose precursor shown in Figure 10. The shrinkage 

of fibers occurred due to the weight loss. The fibrous structure of cellulose samples 

regenerated with NH4OH, as well as the samples regenerated with 0.05 M NaOH vanished 

during the carbonization. The fibers almost completely melted together; only at some areas 

fibrous patterns may be observed (Figures 2.10b,c). These results point to the thermoplasticity 

of CNF005 and CNFam precursors. It is most probably attributed to the presence of acetate 

groups caused by the incomplete hydrolysis of the CA [149]. Even though carbonization 

results are contradictory to the FTIR spectroscopy data, they are consistent with the XRD data 

showing low crystalline order for these precursors. 

 

Figure 2.10. SEM images of the CNFs synthesized from non-impregnated cellulosic precursors: (a) 

CNF01, (b) CNF005, (c) CNFam. 
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On the other hand, carbonization of the regenerated cellulose samples impregnated with 

NH4Cl led to the formation of fibrous mats with the larger diameter of fibers (70-400 nm) 

compared with the samples carbonized in absence of NH4Cl (Figure 2.11). On the contrary to 

non-impregnated CNFam sample mentioned above, no fusing of fibers was observed for the 

samples CNFam031 and CNFam034, though in both cases NH4OH was used as the main 

regeneration agent. 

There is also some difference in the morphology between the CNFs synthesized from the 

NH4OH-regenerated cellulose samples and the NaOH-regenerated ones. The latter have 

relatively smooth surface, while the NH4OH-regenerated samples (CNFam031 and 

CNFam034) have rough surface. The similar effect was observed in [150] where NH4+ might 

have acted as an activating agent increasing the total surface area. 

 

Figure 2.11. SEM images of the CNFs synthesized from the non-impregnated precursor (a. CNF01) in 

comparison with the NH4Cl-impregnated precursor (b. CNFam031 and c. CNFam034). 

Taking into account that NH4Cl did not induce changes either in the chemical or in the 

crystalline structure of deacetylated samples (according to FTIR and XRD), it is the flame 

retardant properties that are most probably responsible for the thermal stabilizing effect of 

cellulose. The results presented above could be used as an alternative and greener way of 

CNF synthesis which has not only the environmental advantages but also economic benefits 

in comparison to the already existing ones. Furthermore, the nitrogen doping achieved via this 

method improves CNF performance as an electrode material for application in energy storage 

devices, which is analyzed in the Paper II (Section 3.1.1). 
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Chapter 3 

CNF-based electrodes for energy storage 

 

3.1. Functionalized CNF materials 

CNFs are one of the most convenient materials for effective energy storage due to their 

mechanical strength, electrochemical stability and high electrical conductivity. However, their 

performance can be substantially improved with value-added functionalization. In this study, 

few different methods of CNF functionalization were used. First of all, regular electrostatic 

principle of energy accumulation on CNF material was complemented with pseudocapacitive 

effects reached by nitrogen dopant. Furthermore, addition of CNTs and rGO with high 

surface-to-volume ratio and electrical conductivity was aimed at the increase of an active 

surface area and general capacitive performance of CNF-based electrodes. For comparable 

results, all the electrode materials were fabricated from the same cellulosic precursor (CNF01 

precursor). Non-functionalized resulting material was named CNF. 

 

3.1.1. Nitrogen-doped CNFs (NCNFs) 

Pseudocapacitive effects from faradaic reactions that involve heteroatoms such as nitrogen 

can bring the performance of storage systems to a next level [57]. To incorporate nitrogen 

heteroatoms into CNFs, prior to carbonization, regenerated cellulosic samples were immersed 

into 0.3 M and 0.5 M solutions of NH4Cl with different concentration (0.3 M and 0.5 M) for 

different time (1 and 4 days) to obtain precursors for NCNFs. Afterwards these precursors 

were transferred to polystyrene Petri dishes for drying at ambient conditions in air [for details, 

see Paper II] and further carbonized. This convenient method of doping provides efficient 

incorporation of nitrogen atoms into freestanding carbon nanomaterials via carbonization of 

NH4Cl-treated electrospun cellulosic precursors. As a result, capacitive performance of such 

carbons is enhanced by doping with an intention to combine two different principles of energy 

storage: electrostatic from EDL and electrochemical from pseudocapacitance. 

In Figure 3.1 the morphology of the functionalized electrodes is shown. In general, NCNF 

material consists of smooth fibers with the diameter of fibers in the range of 70-400 nm, 

which is similar to the pure CNFs shown, but there are differences as well. The CNF fibers 

have smaller diameter (50-250 nm) and are characterized with the partial fusion of fibers that 

can possibly be attributed to residues of non-hydrolyzed acetate groups, which results in the 

remaining thermoplastic behavior [149]. In contrast, impregnation with NH4Cl before 

carbonization allows obtaining NCNFs with a much more open structure due to less 

contraction of the samples. NH4Cl thermally stabilizes incompletely regenerated cellulose 

fibers and increases the carbon yield of the CNFs, as was discussed above in Section 2.2.3. 

The NCNF materials have slightly lower surface areas than the pure CNF material (≈25 m2 

g-1 vs 45 m2 g-1). The diameter of N-doped fibers is higher compared to the non-doped CNFs 

due to the reduced loss of carbon, which explains the different values of the specific surface 

area. In Figure 3.2a nitrogen adsorption isotherms and mesopore size distribution for the N-

doped electrode materials are shown. Referring to the International Union of Pure and 

Applied Chemistry the nitrogen adsorption isotherms of this CNF-based material can be 

characterized as type III isotherms. The shape of the isotherms is typical for pure carbons 

without developed microporous structure which show small interaction potentials with an 

adsorbate gas [151]. In addition, mesopore size distribution indicates that mesopores make up 
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a substantial fraction of the total pore volume for the NCNFs with open and accessible 

structure. 

 

Figure 3.1. SEM images of the functionalized CNF-based electrode materials: (a) CNF, (b) NCNF. 

The electron spectroscopy for chemical analysis (ESCA) revealed that surfaces of all 

NCNFs samples mostly consist of carbon, oxygen and nitrogen (Figure 3.2b). According to 

ESCA, the nitrogen content is dependent on the concentration of NH4Cl and on the time of 

impregnation. Manipulations with these two parameters allow synthesis of materials with a 

gradient of nitrogen concentration. The longer time of impregnation and the higher 

concentrations of NH4Cl result in the higher nitrogen incorporation. The typical N1s ESCA 

spectrum of NCNFs is shown in Figure 3.2c. The spectrum has two major components: –N= 

(398.2 eV) and –NH– (400.7 eV) which should be correspondingly related to nitrogen-

containing heterocyclic compounds such as pyridine and pyrrole/pyridone [152,153]. 

Nitrogen atoms can replace carbon atoms in aromatic five- and six-membered rings when 

condensation process takes place during the carbonization of the cellulosic precursor at 

temperatures above 400 °C [153,154]. N-doped samples also have a slightly higher amount of 

oxygen containing groups (2.9 at.% for the pure CNFs and up to 5 at.% for NCNFs). It can be 

assumed that due to weaker C–N bonds compared to C–C bonds the NCNFs are easier to 

oxidize upon exposure to the air [153], which is reflected in the higher percentage of oxygen-

containing groups. 

According to the Raman spectra shown in Figure 3.2d, all the samples demonstrate two 

broad bands at ∼1320 cm−1 (D-band) and ∼1590 cm−1 (G-band) that can be correspondingly 

assigned to in-plane vibrations of amorphous sp2-bonded carbon in structural defects and 

crystalline sp2-bonded carbon [155]. Additionally, ID/IG ratios were used to assess the level of 

disorder in the carbonaceous materials. For all the synthesized carbons the ratios are below or 

slightly higher than 1.0, suggesting the presence of graphitic domains [156]. In comparison 

with the pure CNFs, the N-doped samples have higher ID/IG ratios which increase along with 

the increase in nitrogen content. This can be explained by the inclusion of nitrogen 

heteroatoms into the graphite-like structure of CNFs, which generates more defects and thus 

more disordered carbon lattice [157]. 

CNFs synthesized from the regenerated cellulose have amorphous structure (Figure 3.2e), 

which is typical for carbon materials synthesized by carbonization of cellulose at temperatures 

below 3000 °C [77]. Major amorphous peak can be recognized at 18-20° (002) and minor one 

at 44° (110). 

The influence of N-doping on electrical conductivity of CNF-based materials is almost 

negligible, which is due to counteractive nature of incorporated nitrogen atoms [Paper II]. As 

a result, N-doped samples with nitrogen content of 4.0 and 4.4 at.% have the highest 
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conductivity values. For conductivity calculations, thin CNF-based carbon sheets were treated 

as two-dimensional structures [158]. 

 

Figure 3.2. (a) Typical nitrogen adsorption isotherms (insets) and mesopore size distribution (main 

images) of the pure CNFs and NCNFs. (b) Typical survey scan of NCNFs. (c) N1s ESCA spectrum of 

NCNFs. (d) Raman spectra of the pure CNFs and NCNFs. (e) XRD patterns of pure CNFs and 

NCNFs. 

 

3.1.2. CNF/CNT composites 

Functionalization with DWCNTs and MWCNTs was achieved by immersion of regenerated 

cellulose samples with a size of 5x5 cm2 into dispersions of DWCNTs and MWCNTs for 96 h 

prior to a carbonization step (the resulting composite materials were named CNF/DWCNT 

and CNF/MWCNT respectively) [for details, see Paper III]. The composite CNF/cvdCNT 

electrodes were produced via chemical vapor deposition of CNTs on top of CNFs at 700 °C 

for 10 min using acetylene as a carbon source, 2 nm thick iron layer as a catalyst and 

hydrogen as a carrier gas [for details, see Paper IV]. 

For all the CNF/CNT composites, CNTs with diameter 1-20 nm are found attached to the 

surface of freestanding CNF mats (fibers are 50-250 nm in diameter). For the composite 

material containing DWCNTs this attachment is less visible and the spaces between fibers 

remain open (Figure 3.3a), whereas the surface of the MWCNTs-containing composite is 

almost completely covered with CNTs leaving much less open space between fibers (Figure 

3.3b). For these two composites the fusion of CNTs with CNF scaffold is clearly seen, which 

should provide the electrode materials with mechanical and electrochemical stability 

necessary for long-term use in sustainable energy storage devices. The morphology of the 

CNF/cvdCNT composite material is rather different (Figure 3.3c). After chemical vapor 

deposition, CNFs are much more densely covered with CNTs than in the previous two cases. 

A straight boundary line between the pristine CNF region and the region with deposited CNTs 
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validates reliable space controllable deposition of iron catalytic particles. Figure 3.3d reveals 

slightly uneven growth of CNTs on different sides of CNF, which could be due to the 

heterogeneous distribution of heat or catalytic particles within a CNF substrate during CNT 

growth. The number of tube walls typically varied between 3 and 8, with rare occurrences of 

single- and double walled tubes (Figure 3.3d, inset). 

 

Figure 3.3. SEM images of the CNF/CNT composite materials: (a) CNF/DWCNT, (b) 

CNF/MWCNT, (c) CNF/cvdCNT. TEM images of the CNF/cvdCNT. 

All the CNF/CNT composites have higher surface area than the pure CNFs, especially big 

difference is observed for the CNF/MWCNT and the CNF/cvdCNT materials (Table 3.1). 

The increase in the values of CNF/CNT composite surface areas is due to the contribution of 

attached CNTs with much higher individual surface area than 45 m2 g-1 of the CNFs. For the 

pure DWCNTs used in this study the average specific surface area is estimated to be ≈730 m2 

g-1, and for the pure MWCNTs – ≈300 m2 g-1 [159]. Nevertheless, the MWCNT-containing 

material has higher specific surface area among two composites. Such a significant variance 

in surface area contribution between DWCNTs and MWCNTs can be explained by the greater 

adsorption of MWCNTs in comparison with DWCNTs during preparation of the 

functionalized cellulosic precursor [Paper III]. Figure 3.4a shows pore size distribution for 

the CNF/CNT materials. The shape of the isotherm is characteristic for meso- and 

macroporous (pores with a size range of 2-50 and >50 nm, respectively) materials without a 

developed microporous structure [151]. Mesoporous voids between incorporated CNTs are 

very important for electrostatic energy storage as they provide sufficient access of electrolyte 

ions to surface, support charge propagation and accumulation, and, as a result, increase power 

capability of a supercapacitor [160]. Sufficient diffusion of electrolyte ions within pores of an 

electrode material makes surface more available for EDL charge accumulation, and therefore 

capacitance and power capability are not restricted [161]. Besides, aerial pore size distribution 
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points to the presence of pores with a diameter below 10 nm, which makes a substantial 

contribution to the total surface area of the synthesized composites [Paper IV]. 

XPS analysis provides further characterization of the electrode surface. The analysis 

confirmed that all the CNF/CNT materials almost completely consist of carbon (96-97%) with 

predominant C–C bonds assigned to the peak at 284.5 eV (Figure 3.4b, main image). 

Negligible amounts of polar heteroatoms makes the analyzed materials moderately 

hydrophobic, which is indicated by the measured water contact angles of all the samples being 

close to 90° (Figure 3.4b, inset). Taking into account that in this work an aqueous solution of 

KOH was used as an electrolyte, hydrophobic materials such as the CNF-based may decrease 

the distance of aqueous electrolyte ion diffusion to an electrode surface [56]. Despite this, the 

wettability of the synthesized electrodes is not critically low to prevent fast diffusion of 

relatively small OH- and K+ ions [162,163]. CNF-based materials have mesoporous structure 

suitable for an unrestricted transport of ions within the material during charge/discharge 

cycles. 

 

Figure 3.4. (a) Pore size distribution of different CNF/CNT composites. Typical C1s XPS spectrum 

(main image) and water contact angle inset) of the composites. 

Addition of highly conductive CNTs also makes an impact on the electrical conductivity of 

the synthesized composites presenting about 20 times higher values than for pristine CNFs, 

(Table 3.1). For CNF/CNT composites, the higher conductivity of the CNF/MWCNT 

composite indirectly indicates the higher amount of CNTs on its surface compared with the 

CNF/DWCNT composite, which also agrees with the preceding assumption of better 

adsorption of MWCNTs. The methods of composite electrode synthesis used in this research 

work allow the surface of CNF scaffolds to be covered with continuous layers of conductive 

CNTs. In all the composites the amounts of CNTs are big enough to reach the critical 

percolation threshold, which explains such a high values of electrical conductivity for the 

CNT-containing materials [164]. At the same time, functionalized samples retain 3D porous 

network necessary for conductivity of the electrolyte ions [165]. Carbon materials that have 

the prolific combination of high electrical conductivity and a large surface area with 

developed mesoporosity are always desired in supercapacitors [20,166]. 

 

3.1.3. CNF/rGO composite 

The beaker with cellulosic mats immersed into GO dispersion was subjected to continuous 

gentle shaking for 2 days in order to get homogenous adsorption of GO flakes onto surface of 

the cellulosic fibers. After the GO treatment, the cellulose/GO mats were dried in a fume hood 
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for 4 h. Finally, they were carbonized in order to make a CNF/rGO composite nanomaterial 

[for details, see Paper V]. 

CNF mats functionalized with GO resulted in composite precursors – cellulosic fibers 

covered with GO sheets (Figure 3.5a). This homogenous coverage is achieved due to strong 

attractive van der Waals forces and hydrogen bonding between polar oxygen-containing 

groups of cellulose and GO [2,63]. During the high temperature treatment of the precursors 

two processes are take place simultaneously: carbonization of fibrous cellulose into CNFs and 

GO reduction into rGO. The resulting flexible and freestanding CNF/rGO composite mats are 

40–60 μm thick and comprise of CNFs uniformly interconnected with few-layered graphene 

sheets with slightly wrinkled texture (Figure 3.5b). The wrinkles, or interlayer fringes, may 

indicate the connection sites of rGO nanosheets (Figure 3.5d), which is favorable for electron 

transport [13]. Semi-transparent rGO sheets with a thickness of 1–3 nm create a continuous 

conductive network between CNFs, which also leads to the increase of active surface (Figure 

3.5c). Fairly small thickness of the rGO sheets points to the efficient exfoliation of graphite 

stacks [167]. Selected area electron diffraction (SAED) of the rGO component consists of 

clear hexagonal pattern with rings, which indicates a fairly high crystalline graphitic order 

within the sheets (Figure 3.5d, inset). 

 

Figure 3.5. SEM images: (a) electrospun cellulose impregnated with GO (precursor for CNF/rGO 

composite material), (b) CNF/rGO composite material (magnified image of graphene layers as inset). 

TEM images of CNF/rGO composite material: (c) entangled CNF and rGO sheet, (d) magnified region 

of graphitic lattice fringes with SAED pattern for rGO sheet as inset. 

Thermogravimetric analysis (TGA) was used to investigate the behavior of the precursors 

during carbonization and to evaluate the content of both components in the final CNF/rGO 

composite [Paper V]. The cellulose sample demonstrates the main weight loss in the 

temperature range of 250–400 °C when depolymerization of cellulose takes place along with 

dehydration and release of volatile compounds such as carbon dioxide, methanol, and acetic 
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acid (Figure 3.6a) [144]. All these losses result in the low carbonizate weight yield of only 

5.65% at 800 °C. Though for the cellulose/GO sample the weight loss starts at 150 °C, the 

decomposition behavior is much less abrupt in comparison to the cellulosic sample. After 

oxygen-containing groups are decomposed on the GO surface, the weight yield of the 

composite is 23.53% at 800 °C. Of course, this tremendous increase of the yield for the 

composite can be attributed to the presence of rGO with the characteristic weight yield of 

around 40% after thermal reduction [168,169], however previously reported flame-retarding 

characteristics of GO in polymeric composites may play even bigger role in preservation of 

cellulose degradation [170]. 

Figure 3.6b shows XRD patterns of the precursors and the resulting carbon materials. The 

XRD pattern of the cellulose sample contains three distinctive peaks at 12.1° (101), 20.0° (10-

1) and 21.9° (002) which are typical lattice planes of regenerated cellulose [171]. GO pattern 

has a strong diffraction peak at 11.6° corresponding to turbostratic structure of GO layers. The 

calculated interlayer spacing of the GO is 7.65 Å, which is much larger than the 3.34 Å 

spacing of the (002) graphite lattice plane. Apparently, the distance is expanded due to the 

incorporation of bulky oxygen-containing groups between graphite layers during GO 

preparation [2]. The emerging broad peak at 26.1° and the disappearing peak at 11.6° for the 

rGO point out the effective thermal reduction of GO which brings back the interlayer distance 

close to the graphitic one (3.41 Å) and restores the π-conjugated system [63]. The pure CNFs 

demonstrate a broad peak at 18-20°, which is typical for the amorphous structures obtained 

after the cellulose carbonization [Paper I]. 

Due to the strong fusion between CNF network and graphene sheets in the final CNF/rGO 

composite, the rGO layers act as perfect conductive connectors between CNFs. As a result, 

the CNF/rGO composites have electrical conductivity of 49 S cm-1, which is about 10 times 

higher than conductivity of the pure CNFs (4.2 S cm-1). Having such a high electrical 

conductivity helps to avoid conventionally used fillers and volume-consuming redundant 

binders thus substantially increasing the volumetric capacitance and energy density [18]. 

Moreover, all these leads to very low internal resistance and contact resistance with collectors, 

which will be shown further in Section 3.2. 

 

Figure 3.6. (a) TGA of cellulose and cellulose/GO. (b) XRD patterns of cellulose, GO, CNF/rGO and 

CNF. 
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3.2. Electrochemical performance of CNF-based electrodes 

In this thesis, two different electrochemical systems were implemented for electrochemical 

evaluation of the CNF-based electrode materials. NCNFs and two CNF/CNT materials 

(CNF/DWCNT and CNF/MWCNT) were tested in 3-electrode system, while CNF/cvdCNT 

and CNF/rGO composites were tested in two-electrode system. 

3-electrode system: CNF-based carbon nanomaterials were used as working electrodes, an 

Ag/AgCl electrode was used as a reference electrode, a Pt net was used as a counter electrode 

and aqueous solution of KOH was used as an electrolyte. The working electrodes were 

punched out from the fibrous carbonaceous mats and had an area of 1 cm2. Prior to the 

measurements the electrodes were kept in the electrolyte solution for 24 h and degassed with 

N2 for 30 min. Electrochemical measurements were performed with a Gamry Reference600 

potentiostat. A voltage range between -0.4 V and 0.4 V was used for the cyclic voltammetry 

(CV) measurements and galvanostatic charge-discharge (GCD) tests. Electrochemical 

impedance spectroscopy (EIS) was performed at open circuit potential with an amplitude of 

10 mV over a frequency range from 100 kHz to 10 mHz. Electrochemical stability tests were 

performed by potential cycling between -0.2 V and 0.2 V for 1000 cycles with a scan rate of 

20 mV s-1. 

2-electrode system: Symmetric Swagelok supercapacitor cells consisted of CNF-based 

carbon nanomaterials as working electrodes, electrospun cellulose [Paper IV] or glass fiber 

mats (Whatman) [Paper V] as separators, and 6 M aqueous solution of KOH as an electrolyte. 

The working electrodes and separators were cut to a circular area of 0.5 cm2 [Paper IV] or 0.8 

cm2 [Paper V] to fit current collectors (d = 1.2 cm). Before starting the measurements, the 

electrodes were immersed in the electrolyte solution for at least 6 h. Electrochemical 

measurements were performed with Gamry Reference 3000 potentiostat/galvanostat/ZRA. A 

voltage range of 0–1.0 V was used for CV and GCD measurements. EIS was completed at an 

open circuit potential with an AC amplitude of 5 mV over a frequency range from 100 kHz–

10 mHz. Electrochemical stability was evaluated via by cyclic charge–discharge (CCD) 

measurements for 2000 cycles with a current density of 1 A g−1 [Paper IV] or for 4000 cycles 

with a current density of 2 A g−1 [Paper V]. 

For the 2-electrode system, the evaluation of the material specific capacitance Cs (F g-1) 

and the volumetric capacitance Cv (F cm-3) from the CV curves was made according to Eq 2 

and 3, respectively (for the 3-electrode system factor of 4 was not used). The specific energy 

density Ed (Wh kg-1) and power density Pd (W kg-1) were estimated from the GCD curves 

following Eq 4 and 5, respectively. The volumetric energy density Edv (Wh L-1) and power 

density Pdv (W L-1) were estimated from the GCD curves following Eq 6 and 7, respectively. 

 Cs = 4 
∫ I(V)dV

m∆Vs
 (2) 

 C𝜈 = 4 
∫ I(V)dV

v∆Vs
 (3) 

 Ed = 
I∆tV2

7.2m∆V
 (4) 

 Pd = 
3600Ed

∆t
 (5) 

 Edv = 
I∆tV2

7.2v∆V
 (6) 
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 Pdv = 
3600Edv

∆t
 (7) 

In the equations, ∫I(V)dV specifies the integrated area of the CV curves, i.e. current 

response to voltage (A∙V), m is the total mass of two electrodes for the 2-electrode system and 

the mass of a working electrode for the 3-electrode system (g) and v is the total volume of two 

electrodes (cm3), ∆V is the potential window (V), s is the scan rate (mV s-1), ∆t is the 

discharge time (s). 

CV curves in Figure 3.7a-e demonstrate the typical scan rate dependence for the CNF-

based electrode materials. For all the materials, CV curves at lower scan rates show more 

stable and moderately rectangular shape without apparent faradaic peaks within the potential 

range used in the measurements. This indicates a reasonably good EDL capacitive behavior 

with a fast current response on a voltage reversal and low resistance of ion transport within 

the electrode [63, 172]. For higher scan rates, up to 100 mV s-1, distortion of the rectangular 

shape takes place due to the increased resistance of electrolyte ion transport [13]. The CV 

curves of the N-doped samples demonstrate a greater deviation from a rectangular shape, 

which should be attributed to doping-induced faradaic reactions in the doped electrodes [173]. 

In Figure 3.7f the dependence of specific capacitance on the scan rate is shown. At 5 mV s-

1 specific capacitance is several times higher than at 100 mV s-1 for the all the electrode 

materials. These differences are due to a lack of time for the electrolyte ions to diffuse to and 

from the surface of the inner cavities of the electrode at the higher scan rates. The ions can 

access only to the outer surface resulting in a smaller gathering of charge, whereas at the 

lower scan rates they have time to occupy more of the available electrode surface and thus 

provide a high accumulative charge [174]. The fact that even at the highest scan rate of 100 

mV s-1 the materials retained about 70% of their initial capacitance, verifies the surface 

accessibility of the synthesized materials, and hence the enhanced diffusion ability of the 

electrolyte ions despite the hydrophobic nature of the surface [20]. 

Despite their lower values of surface area all the NCNFs show about 2.5 times higher 

values of capacitance than the non-doped CNFs (measured in the 3-electrode system), which 

could be attributed to a pseudocapacitance effect caused by doping [175,176]. For NCNFs, 

the nitrogen content of 4-4.6 at.% can be regarded as an optimal range of doping that yields 

the highest capacitances. This phenomenon correlates well with the electrical conductivity of 

the electrode materials (Table 3.1). A plausible explanation to this behavior can be obtained 

by considering two conflicting processes induced by the incorporation of nitrogen atoms into 

the graphitic domains in the CNFs. On the one hand, these nitrogen atoms promote n-type 

conductivity (via the donation of electrons into delocalized π-system of carbon atoms) and 

pseudocapacitance (via redox reactions of nitrogen-containing groups). On the other hand, the 

inclusion of nitrogen generates more defects and increases scattering in graphitic domains 

leading to a less conductive material [146]. At some optimal atomic concentration of nitrogen 

these two processes provide a material with a peak electrochemical performance. 

As expected, CNFs functionalized with MWCNTs and DWCNTs reveal superior specific 

capacitance in comparison with the pristine CNF. Regardless of the substandard surface area 

for supercapacitor electrode materials, the capacitance values of both composites are among 

the highest ones shown by the reported electrodes based on plant cellulose 

[13,55,56,177,178]. Such a high results can be explained by the steady incorporation of CNTs 

into the CNF scaffolds, which significantly improves the electrical conductivity of the 

material and allows all the surface area to be active and accessible for charge accumulation 

[60]. However, it should be mentioned that these two electrode materials were only tested in 

the 3-electrode system. It is known that 3-electode systems with a single working electrode 

have intensified sensitivity, which can result in large deviations of electrochemical values 

from a real supercapacitor cell consisting of two electrodes [179]. 
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Figure 3.7. CV curves of different electrode materials tested in 3-electrode systems ((a) NCNFs and 

(b) CNF/MWCNT) and 2-electrode systems ((c) CNFs, (d) CNF/cvdCNT and (e) CNF/rGO). (f) 

Combined capacitance dependence on scan rate. 

The CNF/cvdCNT composite electrodes show about two times higher values of 

capacitance in comparison to the pure CNF electrodes. Similar to the previous CNT-

containing composites, addition of CNTs has a big influence on the performance of the CNF-

based electrodes as CNTs significantly increase their surface area and electrical conductivity 

(Table 3.1), which are key factors in making electrostatic charge accumulation process more 

efficient [14]. 

For the composite CNF/rGO electrodes big attention is also paid to their volumetric 

capacitance values which are found to be very promising (46 F cm-3). The thickness of these 

ele (40-60 μm) is comparable to that of commercial electrodes (100-200 μm), which makes 

these values trustworthy [180]. Despite having much lower specific surface area than common 

electrodes made of activated carbons, the volumetric capacitance value of the CNF/rGO 

composite stands very high among the reported carbon electrodes and conducting polymer-

based electrodes [19,181], This outstanding performance can be explained by three possible 
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factors: 1) relatively high packing density (≈ 0.5 g cm-3) of the material due to its low porosity 

[180]; 2) really high electrical conductivity due to the absence of a binder material and 

apparently due to abundant conductive interconnections between rGO sheets and CNFs, 

which facilitates effective charge transfer throughout the material; 3) reorganization of rGO 

sheets during intercalation of electrolyte ions, which leads to a higher accessible surface area 

[182]. 

Furthermore, GCD measurements were used to investigate the electrochemical behavior of 

the electrode materials. From these measurements their ability to accumulate electrical energy 

(energy density) and release it within a certain time frame (power density) can be estimated. 

Energy density and power density are among the most essential characteristics of a 

supercapacitor. 

Figure 3.8 represents the typical GCD curves of the electrodes at different current 

densities. All the charge/discharge curves show the linear nearly symmetrical shape 

specifying pure EDL capacitive behavior. Small deviations from a triangular shape in the 

beginning of the discharge curves are attributed to the IR drop which arises due to the 

equivalent series resistance (ESR) within the system [12]. The specific capacitance decreases 

with an increasing current density, which correlates with the CV measurements where the 

specific capacitance decreases with an increasing scan rate. 

GCD curves of the NCNFs and CNF/MWCNT electrodes tested in 3-electrode system 

show their fast current-voltage response (Figure 3.8a-b), which is a vital characteristic feature 

for supercapacitors with high power density. In general, these two electrode types have 

relatively short time of response in comparison to previous studies [17,173]. Very short 

charge/discharge time for NCNFs can be explained by their rather low capacitance; while for 

the CNT-containing electrodes fast current-voltage response can be the outcome of their 

excellent electrical conductivity and developed porous structure which facilitates the 

electrolyte ion transport decreasing the time of charge/discharge cycle to just a few seconds. 

GCD curves of the CNF/cvdCNT and CNF/rGO electrodes tested in 2-electrode system show 

relatively different behavior in terms of current-voltage response, which is typical for real 

supercapacitor devices (Figure 3.8c-d). 

From the GCD test power and energy density values were found to be reasonably high for 

the composite electrode materials (Table 3.1). The specific capacitance, as well as energy 

density, is dependent on current density. For instance, at 10 A g-1 the values of specific 

capacitance of the CNF-based composite electrodes are about 40% higher than the ones at 0.5 

A g-1, which is due to their fairly large thickness and subsequent inability of the electrolyte 

ions to diffuse quickly enough to the inner cavities at the higher current density [182], which 

negatively effects accumulation of charges, i.e. decreases capacitance [174]. These GCD 

results are consistent with the dependence of specific capacitance on a scan rate shown by the 

CV measurements. The ions need to be as close as possible to the electrode surface in order 

for a supercapacitor to maintain high rate capability, and non-porous CNFs are not able to 

keep ions attached to the surface. On the contrary to them, highly conductive components 

such as rGO sheets or CNTs can retain ions within nanometer sized voids, thus creating ion-

buffering reservoirs and reducing ion diffusion length. These confined ions have instant 

access to the electrode surface even at the highest current density [183]. High rate capability 

is very important for compact supercapacitors with volumetric limitations [181]. 
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Figure 3.8. GCD curves of the functionalized electrode materials tested in 3-electrode systems ((a) 

NCNFs and (b) CNF/MWCNT) and 2-electrode systems ((c) CNF/cvdCNT and (d) CNF/rGO). 

The electrochemical behavior of the electrode materials was further analyzed with EIS 

which helps to describe important electrochemical characteristics such as charge transfer 

resistance (Rct), which arises mostly due to the electron transfer events or faradic processes 

[184], and ESR, which mostly comprises of bulk electrolyte resistance (Rs) and interfacial 

resistance between an electrolyte and an electrode material [185]. 

Figure 3.9 shows Nyquist plots of all the measured samples. In the high frequency region 

ESR is expressed as an initial intercept of the plot with the X-axis, while charge transfer 

resistance is expressed as an intercept of a semicircle with the X-axis [185,186]. 

The ESR values for the samples measured in the 3-electrode system are around 7.5 Ω 

(Figure 3.9a), which are very high values that might be attributed to very high Rs due to the 

use of KOH electrolyte with low concentration of 1M. Rct vary between the samples, 

indicating a difference in electrolyte ion interaction for the different electrode surfaces. For 

the NCNFs the Rct is in the range of 2-6 Ω depending on the doping content [Paper II]. The 

smaller semicircle on the plot of the pure CNF electrode in comparison with the CNT-

containing composites indicates a facilitated ion-surface interaction of the pristine sample 

[187]. The reason of this difference might be to some extent hindered diffusion ability of the 

electrolyte ions to travel through the layer of the entangled CNTs from the aqueous solution to 

the electrode surface. This hypothesis also suggests that Rct of the CNF/MWCNT composite 

is higher than that of the CNF/DWCNT due to the denser layer of CNTs covering the 

electrode surface of the CNF/MWCNT composite. In addition, Figure 3.9b shows Nyquist 

plots in the low and medium frequency regions. In these regions, the slope of the 45° segment 

of the curve is known as Warburg impedance which is used to analyze the resistance within a 

porous electrode material. The shorter the line is the less hindered is the ion diffusion path 

within an electrode. The short length of the Warburg lines of all the samples demonstrates 
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their enhanced pore accessibility for the electrolyte ion diffusion and nearly ideal EDL 

capacitive behavior [20,56]. 

 

Figure 3.9. Nyquist impedance plots of the electrode materials tested in 3-electrode systems 

(a-b) and 2-electrode systems (c-d) at higher frequency and at wide range frequency. 

On the contrary to the measurements in the 3-electrode system, the ESR values for the 

samples measured in the 2-electrode system are below 1 Ω (Figure 3.9c), which are 

satisfactory values for effective supercapacitor devices. Though the same electrolyte solution 

is used for the cells with different electrodes, the one containing the CNF/rGO electrode has 

lower ESR (0.16 Ω) than the one containing the pure CNF (0.38 Ω) or the CNF/cvdCNT 

composite (0.57 Ω). It is due to the fact that Rs is determined not only by the conductivity of 

the electrolyte, but also by the thickness of its layer [2]. Apparently, the electrolyte layer 

between rGO sheets is thinner, which is due to ion-buffering reservoirs mentioned previously. 

Whereas a slightly higher value for the CNF/cvdCNT material can be explained by its slightly 

worse wettability with the aqueous KOH electrolyte due to the negligible amount of 

hydrophilic oxygen-containing groups (according to the XPS analysis in Paper IV). What is 

more important, Rct is very low for both types of the composite electrodes compared to the 

pure CNF electrodes (≈ 0.5 Ω for the CNF/cvdCNT, 0.35 Ω for the CNF/rGO, and ≈ 1 Ω for 

the CNFs. Very low value of Rct can be attributed to few characteristic features of the 

composite materials: their hierarchical meso- and macroporosity, which decreases the 

interfacial resistance between the electrolyte and the electrode material (ionic resistance), and 

their high conductivity and binder-free elastic nature, which decreases intrinsic resistance and 
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resistance between the electrode material and the collectors (electronic resistance) [66]. 

Figure 3.9d shows Nyquist plots in the medium-low frequency region, where the short 

Warburg region along with good line verticality indicate the composite electrodes’ proper 

pore accessibility for the electrolyte ion diffusion and flawless EDL capacitive behavior [2]. 

In general, EIS results agree very well with the GCD tests in terms of time needed for the 

electrolyte ions to diffuse to an electrode surface during charge/discharge cycles. 

To validate the long time usage of the electrode materials, electrochemical cycle stability 

tests were performed for thousands of cycles to resemble the work of a real capacitor. Having 

a good cyclic stability is very important for supercapacitor since it has continuously to deliver 

the harvested energy in short intervals through rapid charging and discharging [188]. In 

Table 3.1 the cyclic stability of the synthesized materials is listed. In the 3-electrode system, 

the pure CNFs and the CNFs functionalized with MWCNTs and DWCNTs show good 

retention of their initial capacity (93-95%) after 1000 cycles, which indicates satisfactory 

cycle stability of this type of composites. This ability to withstand a big number of 

charge/discharge cycles without worsening performance confirms strong fusion between CNF 

scaffold and incorporated CNTs, which remains stable throughout the experiment. In contrast, 

the N-doped samples even show a continuous increase in capacitance over the 1000 cycles 

that may be due to successive diffusion of positively charged potassium ions (K+) during the 

cyclic stability test into the spaces within the structure of the electrodes through the defects 

created by N-doping. Besides that, for positively charged ions it should be energetically more 

favorable to attach closer to the N-doped sites with higher electronegativity [189]. In 

comparison to the N-doped samples, the pure CNFs and CNF/CNT composites only have 

intrinsic defects, which may be the reason why their capacitance is more stable. 

In the 2-electrode system, the CNF/cvdCNT electrodes retain 96.6% of the initial 

capacitance after 2 000 cycles. Strong adhesion of vapor-grown CNTs to CNFs is confirmed 

by such an excellent stability of the composite. The device with the CNF/rGO electrodes 

retain even higher capacitance –  97% over 4000 cycles, while for the ones with the pure CNF 

electrodes it even goes up to 106% of their initial capacitance. The latter result is most 

probably related to etching, i.e. activation, of the CNF electrodes at the initial part of the 

cycling [181]. 

Overall, in both systems electrodes demonstrate superb capacitance retention, which 

confirms great electrochemical stability of all the CNF-based materials and the huge potential 

of CNFs as a matrix for efficient composite electrodes. 

Table 3.1. Properties of the electrode materials. 

Electrode 

material 

Specific 

surface area 

(m2 g-1) 

N 

content 

(at.%) 

Electrical 

conductivity 

(S cm-1) 

Specific 

capacitance 

(F g-1) 

Energy 

density 

(W h kg-1) 

Power 

density 

(kW kg-1) 

Capacitance 

retention 

(%) 

Papera 

CNF3s 45 - 4.2 11 0.035 3.2 93 II,III 

NCNF 21-29 4.0-5.6 6.3-10.2 21-28 ≈0.6 2.1-6.8 133-145 II 

CNF/DWCNT 60 - 85.3 163 3.6 24.8 94 III 

CNF/MWCNT 168 - 98.2 241 4.1 19.6 95 III 

CNF2s 45 - 4.2 47 1.2 1.7 106 IV,V 

CNF/cvdCNT 131 - 69.4 92 2.6 2.0 97 IV 

CNF/rGO 143 - 49.0 102 1.3 2.4 97 V 

aParameters of electrochemical measurements varied for different electrode materials. See details in the referred papers. 
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This study shows that limitations such as deficient values of surface area and electrical 

conductivity of fibrous electrode materials derived from cellulosic precursors can be greatly 

reduced by the functionalization: N-doping, incorporation of CNTs via impregnation or vapor 

growth, coverage with rGO. Carbon composite materials are designed in a way to combine 

the beneficial properties of its constituents. Inclusion of nitrogen heteroatoms can improve 

capacitive performance via pseudocapacitive effect. CNTs and rGO enhance active surface 

for charge accumulation with high packing density, while their high electrical conductivity 

results in low charge transfer resistance. At the same time, freestanding and mesoporous 

nature of CNFs as the main component provides convenient handling and sufficient ionic 

transport through the electrodes. I believe that these sustainable electrodes for supercapacitors 

can be viewed as legitimate future substitutes to commonly used electrodes made of 

exhaustible resources. 
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Chapter 4 

Conductive scaffolds for neural TE 

The cell line used in this study was SH-SY5Y, originating from a bone marrow biopsy of a 

patient suffering from neuroblastoma. This cell line is commonly used as a neuronal model 

since it is characterized by a high proliferation capacity and a homogenous cell population. 

Furthermore, these cells can also be subjected to differentiation in order to acquire the 

functional phenotype of mature neurons [190,191]. Details of cell culturing, seeding, growth 

and differentiation are described in Papers VI and VIII, as well as experimental procedures of 

cell fixation for SEM, cell staining for confocal microscopy and cytotoxicity assays. 

4.1. 2D fibrous scaffolds 

In the following section, synthesized 2D scaffolds, i.e. material sheets without controllable 

3D patterns on the surface, are evaluated and compared with regard to their influence on 

neural tissue development. This development is greatly dependent on the scaffold surface 

properties, such as topography, hydrophilicity and electrical conductivity. To compare the 

responses of the neural cells to different scaffold properties, the following cell parameters are 

used in this study: cell adhesion to surface, neurite extensions from soma and intercellular 

connectivity. 

4.1.1. Scaffold properties 

Morphology and topography of the scaffold materials were evaluated using SEM and 

AFM, respectively (Figure 4.1). Figure 4.1a shows the pure cellulose scaffold. It has an open 

fibrous structure with a range of fiber diameters between 300 nm and 1500 nm. The fiber 

surface is smooth according to the AFM image. Figure 4.1b clearly demonstrates that 

functionalization of cellulose with CNTs results in a material with totally different 

topography. Electrospun cellulosic material is densely covered with CNTs in a range of 

diameters between a few nanometers to 20nm. AFM image reveals that the nanotubes provide 

the fiber surface with a fairly high roughness at the nanometer level. Figure 4.1c shows the 

CNF material obtained after carbonization of cellulosic precursor according to the 

experimental procedure described in Paper I. The morphology of this scaffold material is 

similar to the pure cellulose, except for the smaller diameter of the fibers (50-250 nm), which 

also makes the CNF scaffold denser than the cellulosic precursor. The shrinkage of the fibers 

is due to the loss of material during pyrolysis discussed in details in Paper I. 

Nanometer dimensions of the CNFs and, especially, CNTs should make these two 

cellulose-derived materials effective scaffolds for neural TE. Such scaffolds can provide 

contact guidance to cells through topological features in the nanometer range, which can be 

reflected in enhanced cellular adhesion, migration and differentiation. The mechanism of cell 

responsiveness to nanosized surface features involves the formation of focal adhesions 

between cell transmembrane proteins (integrins) and ECM providing intracellular-

extracellular connectivity. Integrins have a size range of 10-20 nm, and that is why they prefer 

to interact with scaffolds that have topological features, such as roughness or diameter, with a 

relatively similar size (usually up to few hundred nanometers) [192,193]. For the 

cellulose/CNT samples, the surface is substantially covered with the aptly sized CNTs (≈5–20 

nm), creating a rough surface with a large amount of available anchoring points In the case of 

the CNF material, a small diameter of fibers (around 100-200 nm) are supposed to have a 

positive effect on cell behavior. 
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Figure 4.1. SEM (left) and AFM (right) images of the scaffold materials: (a) pure cellulose, (b) 

cellulose/CNT, (c) CNFs. 

Figure 4.2 shows C1s spectra of the scaffold materials determined by ESCA. These 

spectra were resolved to carbon C–C/C=C peak (284.5 eV) and peaks associated with oxygen 

such as C–O (≈285.8 eV), O–C–O (≈287 eV) and minor O–C=O (≈289 eV) [155,157]. The 

C–O peak is dominant for cellulose (Figure 4.2a), whereas the C–C peak is relatively small. 

The atomic percentage of carbon in the cellulosic structure is 54.2 at.%, which is a typical 

value for cellulose (Table 4.1). On the contrary to the cellulose sample, for CNFs the C–C 

peak is clearly the dominant one in comparison with the other peaks (Figure 4.2c), which is 

expected for the carbonized material. Small peaks, which correspond to the oxygen-

containing functional groups, can be attributed to minor surface oxidation after exposure to 

the ambient conditions. After the functionalization of cellulose with CNTs, the surface was 

covered with carbonaceous material, which is indicated in the huge increase of the number of 

C–C bonds shown in Figure 4.2b and the total atomic percentage of carbon (80.0 at.%) for the 
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cellulose/CNT sample. However, the substantial presence of oxygen (incorporated into C–O 

and O–C–O bonds) indicates the traces of uncovered spots of cellulose. 

The measurements of advancing water contact angles show a good correlation with the 

chemical composition of the surface determined with ESCA for the same scaffold materials 

(Figure 4.2 (insets) and Table 4.1). Pure cellulose has a very low contact angle of 14.6° 

typical for the highly hydrophilic nature of cellulose, which is attributed to a strong influence 

of abundant polar OH groups (correspond to C–O peaks in C1s spectra) [25]. Treatment of 

cellulose with CNTs results in a sample with a higher contact angle (34.3°) due to the 

influence of hydrophobic CNTs [194]. However, the surface still remains considerably 

hydrophilic as its coverage with CNTs is not homogeneously dense or too thin, which is 

consistent with the ESCA analysis. CNF is the most hydrophobic scaffold material in this 

study as it has low amount of polar groups on the surface according to ESCA. The earlier 

studies have proven that the more hydrophilic the surface of the material is, the greater the 

enhancement of cell adhesion is [195]. 

 

Figure 4.2. C1s ESCA spectra and water contact angles (insets) of the scaffold materials: (a) cellulose, 

(b) cellulose /CNT, (c) CNFs. 

Table 4.1 provides the values of electrical conductivity for all the scaffold types. The 

untreated cellulose sample, as a typical insulator material [196], demonstrates very low value 

of electrical conductivity. In contrast, the CNT-functionalized cellulose sample has about a 

105 times higher conductivity value, which confirms that the amount of CNTs on top of 

cellulose is sufficient to reach the critical percolation threshold and enable the movement of 

an electric charge [164]. The CNF samples show much higher value of electrical conductivity, 

which is about 107 times higher than the unmodified cellulose material. Taking into account 

the electrical properties of neural cells, stimulus-responsive scaffolds with electrical activity 

are expected to promote neuron contact guidance, growth and differentiation of neurons. 

Conductive carbon nanomaterials are thought to excite the electrical activity of neurons, 

which leads to an increased functional expression of signaling receptors and nerve growth 

factor proteins. These receptors and proteins may in turn be involved in a mechanism that 

changes neuronal migratory phenotype to synaptic connectivity, i.e. differentiation of neural 

cells into mature neurons is occurring [197,198]. Ostrakhovitch et al. previously showed the 

dependence of neural differentiation on the degree of scaffold conductivity, indicating that the 

higher scaffold conductivity results in an enhanced differentiation of neurons [199]. 

According to cytotoxicity analysis, the cellulose and CNF scaffold materials show 

extremely good biocompatibility with cell viability above 90% (Table 4.1). The sample 

containing CNTs can be considered potentially cytotoxic as the cell viability rate was only 

about 40%. The viability threshold for the cytotoxicity analysis is 70%. This study confirms 

the biocompatibility of the pure cellulose sample shown previously [44,45]. In contrast, it has 

previously been shown that carbonaceous nanostructures can cause a cytotoxic response due 
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to issues such as residual metal catalysts or dispersants left from their preparation, 

functionalization with carbonyl, carboxyl or hydroxyl groups, inappropriate length for 

integration into phagocytes, and a needle-like shape [38,200]. All these factors may be valid 

in our study regarding the CNT-modified samples, which led to a decrease of the cell viability 

on this scaffold material. The successful example of the CNF material demonstrated the 

importance of a preparation technique for carbon materials, as none of the negative cytotoxic 

factors seem to concern the CNFs obtained by carbonization of electrospun cellulose. This 

synthesis method allows the formation of a continuous fiber network made essentially of pure 

carbon, which proves to be totally non cytotoxic. 

Table 4.1. Properties of the scaffold materials. 

Sample C (at.%) O (at.%) 
Water contact 

angle (°) 

Electrical 

conductivity (S cm-1) 

Cell 

viability (%) 

Cellulose 54.2 55.8 14.6 7.8·10-7 90.1 

Cellulose/CNT 80.0 19.3 34.3 1.8·10-1 38.3 

CNF 96.4 3.6 87.2 11.2 95.6 

 

4.1.2. Cell development on 2D scaffolds 

SH-SY5Y cells were differentiated for 15 days on the conductive cellulose/CNT and CNF 

scaffolds, while the pure cellulose was used as a control. In order to obtain a clear view of the 

differentiation progress and general interaction with the scaffold material, analyses were made 

at different distinct time points: 5 and 15 days of differentiation. 

SEM images of cells on the analyzed scaffolds are presented in Figure 4.3. These images 

show a representative view of cell adhesion and morphology after 5 days of differentiation. 

On the pure cellulose scaffolds cells mostly form aggregates rather than spread on the scaffold 

surface (Figure 4.3a). In contrast, on the conductive scaffolds one can observe considerable 

cell spreading and the formation of long neurites extending from soma, which is typical 

neuronal-like morphology and a good sign of cell communication (Figure 4.3b-c). More dead 

cells are detected on the cellulose/CNT scaffolds (Figure 4.3b), which agrees with the 

cytotoxicity results. 

Confocal microscopy is a necessary tool for the investigation of cell morphology 

throughout the differentiation. This type of analysis clearly indicates the neurite extensions 

from soma. These neural processes are characterized as very thin fiber-like assemblies that are 

difficult to identify with SEM due to the resembling fibrous environment. Rhodamine-

phalloidine is used to stain cell cytoplasms in red and DAPI is used to stain cell nuclei in blue. 

Figure 4.4 shows the SH-SY5Y cells on different scaffolds after 15 days of culturing. The 

cells on the cellulose scaffolds assemble in large aggregates. Cells have poorly developed 

cytoplasm and very few neurite extensions (Figure 4.4a). On the other hand, cells on the 

conductive surfaces have morphology that is similar to the one that mature neurons have, 

which is well shown in images with higher magnification (Figure 4.4b-c). Cell cytoplasm is 

much larger in comparison with the cells grown the pure cellulose scaffolds. Moreover, 

noticeable extensions connect the neighboring cells and promote cell network formation 

[Paper VI]. 
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Figure 4.3. SEM images of SH-SY5Y cells on the pure cellulose (a), cellulose/CNT (b) and CNF (c) 

scaffolds after 5 of culturing (magnifications: 1.000× (main images) and 5.000× (insets)). 

Despite good biocompatibility and hydrophilicity, cells on the untreated cellulose scaffolds 

grow in large clusters and exhibit no signs of differentiation throughout 15 days of cell study. 

These results suggest that neural cell behavior on scaffolds is more dependent on other factors 

such as surface topography and electrical conductivity of scaffold materials. The electrospun 

cellulose material lacks these advantageous features on the contrary to the cellulose/CNT and 

CNF materials. Cell differentiation towards mature neurons is distinctively better on 

electrically conductive scaffolds with nanotopographical features. Already within 5 days of 

differentiation, cells start to form a network, which is a pleasing result for SH-SY5Y 

neuroblastoma cells [191]. 

This TE research proves that conductive cellulose-derived nanofibrous materials can be 

effective scaffolds for neural tissue development, which should contribute to the treatment of 

neurodegenerative disorders and the construction of sustainable drug screening models [Paper 

VI]. 
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Figure 4.4. Confocal microscopy images of SH-SY5Y cells on the pure cellulose (a) cellulose/CNT 

(b) and CNF (c) scaffolds after 15 days of culturing. Cell nuclei stained with DAPI appear in blue; 

actin filaments of cytoplasm stained with rhodamine-phalloidin appear in red. 
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4.2. 3D printed scaffolds 

In the following section, 3D printed scaffolds, i.e. material sheets with well-regulated 3D 

patterns on the surface, are prepared, characterized and evaluated with regard to their ability 

to enhance and guide neural tissue development. Similar to the previous section, scaffold 

surface properties such as topography and electrical conductivity are taken into account as the 

most influential ones. 

Recent studies showed that 3D frameworks improve neural differentiation and cell 

survival. One reason for that can be a higher spatial freedom for cells to interact with other 

cells and matrix within such 3D constructs compared to cells grown on flat 2D scaffolds 

[41,201,202]. At the moment, 3D printing offers the biggest variety of options for 3D 

manufacturing. 3D printing is a facile method that allows production of materials with 

advanced functionality, versatile design and precise reproducing architecture. From 

sustainability point of view, the technique produces minimal resource waste and can utilize 

biocompatible biopolymer inks for the assembly of bulk structures [Paper VII-VIII,203]. 

4.2.1. Optimization of conductive inks for 3D printing 

Ink printability is mostly determined by its composition and rheological properties. In order to 

provide a homogeneous steady structure at the end, the components of a composite ink must 

be well dispersed and compatible with each other and a dispersing solvent. Besides, the flow 

of an ink is supposed to be smooth in the printer, while after deposition from a printer nozzle 

a desired shape has to be maintained [204]. 

NFC-based hydrogel inks can satisfy the above-mentioned requirements for the production 

of 3D printed structures. After chemical and mechanical pretreatment, wood fibers can be 

disintegrated into nanofibrils that form a stable aqueous dispersion at 2 wt.%. Furthermore, 

the introduction of negatively charged deprotonated carboxyl groups to the fibril surface 

provides strong electrostatic repulsion between nanofibrils and thus prevents their aggregation 

[49,51]. That is why at the concentration of 2 wt.% relatively weak gel network of entangled 

fibrils can be easily disrupted upon applied shear stress [205]. Viscosity of the NFC ink 

decreases upon increased stress or shear rate (Figure 4.5), i.e. shear thinning effect takes 

place, and the ink starts to flow inside a printer nozzle. Outside the nozzle stress is released 

and shear viscosity of the ink goes back to its initial high value due to intermolecular 

association of NFC [Paper VIII]; a 3D printed structure solidifies either in its intact shape or 

collapses in a controlled manner [Paper VII]. 

In order to make an electrically conductive ink, NFC hydrogels are mixed with CNTs. This 

is the first reported NFC/CNT composite ink for 3D printing [Paper VII]. The common 

method to achieve the dispersibility of hydrophobic CNTs in water relies on the addition of 

surfactant molecules to the mixture [206]. Unfortunately, ionic surfactants are detrimental to 

living cells [207] and, besides, they decrease the conductivity of CNT-containing composites 

[206]. Using carboxylated CNTs with negatively charged carboxylic groups can partially 

solve the problem of CNT dispersibility in water by establishing repulsive forces between 

CNTs [208]. It has been shown previously that charged NFC can also act as an aqueous 

dispersion agent for CNTs via long-range electrostatic repulsion and short-range hydrophobic 

interactions [53]. In this study, respective ζ-potentials for NFC and CNT dispersions are -33.4 

and -58.8 mV, which results in strong repulsion between nanofibrils and nanotubes. The 

composite ink has ζ-potential of -40.2 mV (pH = 6.5), however it is not printable due to its too 

low viscosity caused by higher negative charge within the ink compared to the pure NFC ink 

[Paper VIII]. The addition of NaOH moderatly decreases electrostatic repulsion between 

colloidal particles (ζ-potential = -34.5, pH = 8.5), which leads to satisfactory rheological 

properties for 3D printing (Figure 4.5). It is assumed that in the resulting composite 

NFC/CNT ink specific interactions of Na+ counterions with deprotonated carboxyl groups 
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have stronger effect on the overall charge than the increased degree of carboxylic dissociation 

at higher pH [Paper VIII,209]. 

 

Figure 4.5. Flow curves of the different inks. 

4.2.2. Scaffold properties 

A 3D printer (RegenHU 3D Discovery) was used to form 3D scaffolds through a piezoelectric 

microvalve and a 300 μm nozzle. The printing time of one batch of scaffolds was around 10 s 

(Figure 4.6a). The structures were printed on the robust NFC film substrates. The scaffolds 

were air-dried at ambient conditions for 24 h. The dry NFC-based scaffolds have few 

advantages for in vitro TE analysis in comparison with bioprintable hydrogels: 1) strong 

cross-linking is not required immediately after printing due to prevailing attractive van der 

Waals forces upon reaching certain critical concentration during drying [210], 2) possibility to 

use charge-stabilized NFC/CNT inks with presumably cytotoxic carboxylic groups which 

disappear after drying [200,207], 3) wide fabrication window on the contrary to tough 

physical and biological requirements imposed on bioinks [204]. 

Morphological and topographical features of the printed scaffolds were evaluated using 

various microscopy methods. Figure 4.6c-d show guidelines 3D printed with the pure NFC 

ink and the conductive NFC/CNT ink. The lines are 2-3 times as wide as the nozzle diameter 

of 300 μm, while their height is around 10 μm (Figure 4.6b), which is 30 times lower than the 

initially deposited one. This controllable collapse can be considered as a benefit since it 

increase the printing resolution after water evaporation without any technical modifications 

[Paper VII]. Nevertheless, the width of guidelines below 1 mm can be achieved even without 

cross-linking, and the height of guidelines around 10 μm cannot hinder free cell migration 

throughout the scaffold. AFM images show that topography of guidelines printed with two 

different inks is very similar and is characterized uniform fibrils (Figure 4.6e-f). It is 

impossible to differentiate cellulosic nanofibrils and SWCNTs from each other due to their 

almost identical diameter of, i.e. 3-6 nm  and 4-5 nm, respectively [48,49]. 
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Figure 4.6. (a) Schematic drawing of printed two layers with an offset resulting in a step (wet state). 

The lower SEM image shows the dried structure corresponding to a red square in the schematic image 

above. (b) 3D printed NFC/CNT guidelines on a pure NFC substrate film. SEM images of guidelines 

3D printed on NFC substrates using (c) the pure NFC ink and (d) the composite NFC/CNT ink (mag = 

100 ×). AFM images of the guidelines 3D printed using (e) the pure NFC ink and (f) the composite 

NFC/CNT ink. 

3D printed composite guidelines have electrical conductivity of 3.8·10-1 S cm-1, while 

reference guidelines from pure NFC ink show isolative behavior. The volume fraction of 

CNTs in the composite ink equals 21.7 vol.%, which is definitely sufficient amount to reach a 

percolation threshold after drying at ambient conditions without any pressure manipulations, 

increased velocity of injection or temperature [208]. 

Hierarchical structure of wood cellulose with nanoscale order and orientation of fibrils 

along the fiber axis are the reasons why the printed NFC structures form a densely packed 

aggregate with very high elastic modulus of around 4.3 GPa upon drying [211]. The addition 

of CNTs to an ink results in the structure with the modulus up to 5.7 GPa, which should be 

attributed to very sufficient dispersibility and directed orientation of CNTs during dispensing 

[208]. 
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4.2.3. Cell development on 3D scaffolds 

The Live/Dead staining is used to determine cell attachment, proliferation and survival after 

10 days of culturing on the scaffolds (Figure 4.7a). Cells on the composite NFC/CNT 

scaffolds have exceptional proliferation and spreading exactly along the guidelines, while it is 

hard to find any cells on the pure NFC substrates. At the reciprocal scaffold, i.e. with 3D 

printed pure NFC guidelines on the NFC/CNT substrate, such a significant difference in cell 

proliferation on two different surfaces is confirmed as cells stay committed to the NFC/CNT 

material and abandon the pure NFC material (Figure 4.7b). 

Cell behavior on the conductive NFC/CNT guidelines after 10 days of culturing is further 

evaluated using SEM and confocal microscopy. SEM images reveal good cell adhesion to the 

scaffold surface and clear signs of cell communication via extension of neurites between 

neighboring cells (Figure 4.7c). Confocal microscopy image demonstrates neuronal-like 

dendritic morphology of cells along with their elongated neurites (Figure 4.7d), which is the 

indication of cell differentiation [212].  

 

Figure 4.7. (a) Live/Dead staining of cells after 10 days of culturing on guidelines 3D printed using 

the composite NFC/CNT ink. Green fluorescent spots indicate alive cells and red fluorescent spots 

indicate dead cells. (b) Fluorescence microscopy image of cells cultured on the reciprocal scaffold 

with the NFC guidelines 3D printed on the conductive NFC/CNT substrate. (c) SEM images of cells 

attached to the surface of NFC/CNT guidelines after 10 days of culturing (mag = 2 k× (main image), 

mag = 10 k× (inlet)). (d) Confocal microscopy images of cells after 10 days of differentiation on 

guidelines 3D printed using the composite ink. Cell nuclei are stained in blue with NucBlue and 

neuronal microtubules are stained in green with primary antibody MAP2. 

The nanosized topographical features of scaffolds are supposed to help the scaffolds to 

establish multiple focal adhesion points with cell transmembrane proteins (integrins) of 10–20 
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nm size [193,213]. However, nanotopography cannot explain huge difference in neural cell 

development on two printed scaffolds. The texture of both surfaces is similar according to 

AFM, moreover, the diameters of the cellulose nanofibrils and SWCNTs used in this work (≈ 

5 nm) are too close to be distinguished by integrins. 

Elastic modulus is the other possible factor that could influence cell viability. It was shown 

previously that this factor has a slight impact on cell differentiation on scaffolds with the 

elasticity range corresponding to an actual neural tissue of around 2-35 kPa [214], but it is 

doubtful that for the scaffolds with a 105-106 times higher modulus this effect is still viable. 

Furthermore, the initial development of immature neurons does not depend on elastic modulus 

[215]. 

Finally, the influence of electrical conductivity was investigated. Electrical conductivity of 

the composite NFC/CNT guidelines is enough to promote neural tissue development 

according to previously shown studies [199], which can be explained by promoted 

spontaneous electrical activity of neurons on such scaffolds and ability of a conductive 

scaffold surface to provide direct electrotonic current transfer between separated neurons 

[216]. This positive effect of scaffold’s electrical conductivity on neural cells is the best 

explanation for such a different cell attachment and development between the composite 

NFC/CNT substrates and the pure NFC substrates. 
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Chapter 5 

Conclusions 

 

In this thesis, I focused on the application of cellulose-derived conductive nanofibrous 

materials within two fields: electrostatic energy storage in supercapacitors and neural TE. In 

the first case, the composite carbon materials were fabricated from cellulosic precursors and 

tested as electrodes; in the second case, carbon materials were utilized both as conductive TE 

scaffolds on their own and as conductive additives that made insulating cellulosic substrates 

conductive enough for enhanced tissue growth. 

In the second chapter of the thesis, I reported the new sustainable and technologically 

simple method of CNF synthesis from regenerated electrospun cellulose, which helped to 

reduce or even to avoid the time- and water-consuming stages of conventional cellulose 

regeneration. The method was based on using NH4Cl as an additive which led to the thermal 

stabilization of incompletely regenerated cellulose fibers and consequent increase of the 

carbon yield in the final product from 13% to 20%. 

Furthermore, in the third chapter of the thesis, I showed that sustainable cellulose-derived 

CNFs could be modified in order to obtain efficient freestanding electrode materials for 

supercapacitors either through nitrogen doping or through incorporation of CNTs or rGO. 

Nitrogen doped CNFs synthesized through NH4Cl impregnation of electrospun cellulose 

showed an improved electrode performance in terms of a specific capacitance (increased 2-2.5 

times depending on the nitrogen content) in comparison to the pristine CNFs. These results 

could be explained by the beneficial combination of EDL and pseudocapacitive energy 

storage principles in the doped carbons. 

CNF/CNT composite electrode materials for supercapacitors were synthesized via 

carbonization of electrospun cellulosic precursor impregnated with DWCNTs and MWCNTs 

or via chemical vapor deposition of CNTs on top of CNF mats. Obtained materials showed 

capacitance up to 241 F g-1, which is among the highest reported values for biomass-derived 

electrode materials so far. Two factors made these CNF/CNT composites show much 

improved electrochemical performance: 1) CNTs contributed to the significant increase of the 

active surface area of the electrodes, which is an essential feature that allows higher 

electrolyte uptake and thus accumulation of charges; 2) incorporation of CNTs with superb 

electrical conductivity considerably expanded electrode’s ability to transfer charges. 

CNF/rGO composites were synthesized via impregnation of electrospun cellulose with GO 

and subsequent heat treatment which led not only to cellulose carbonization but also to GO 

reduction. Intrinsic hydrophilic properties of cellulose and GO allowed excellent 

interconnection of these two components into a precursor that was further transformed into an 

efficient CNF/rGO electrode material. Formed CNFs played the role of nanospacers between 

rGO sheets, which resulted in a dense nanostructure with a great electrical conductivity. The 

synthesized materials had an impressive volumetric capacitance value of 46 F cm-3, which 

exceeds values of the majority of previously reported carbon electrodes. These features of the 

CNF/rGO electrodes can be utilized in compact supercapacitors with high volumetric 

demands. 

The fourth chapter of the thesis was dedicated to the use of cellulose-derived materials as 

effective scaffolds for the development of neural networks. At the beginning, I showed that 

2D fibrous mats with satisfactory electrical conductivity and appropriate nanotopography 

have good perspectives within the neural TE field. After 15 days of culturing, SH-SY5Y cells 

clearly showed much better proliferation and differentiation on the conductive CNFs and 
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cellulose/CNT scaffolds in comparison with the non-conductive cellulose scaffolds. Using the 

composite NFC/CNT inks to 3D print the conductive guidelines for the culturing of neural 

cells opened up even bigger possibilities in neural TE. SH-SY5Y cells exhibited prolific 

attachment and proliferation along the guidelines, which once again proved their inclination 

towards conductive scaffold surfaces with nanofibrous texture. I am sure that nanofibrous 

cellulose-derived scaffolds have a perfect ability to mimic a natural ECM for neural cells, 

which should be further developed into cost-effective disease screening models or into 

biomaterials for the regeneration of neural tissue. 
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Outlook 

 

I hope this work showed bright perspectives of using sustainable resources for the 

synthesis of new efficient materials within very advanced fields. Yet, this is just a beginning 

of an exciting era of transformation to so-called “green society” with absolutely different 

vision on manufacturing and implementation of products. 

I am sure that further tuning of composite electrode materials based on biomass-derived 

nanocarbons is the future of cost-effective large-scale production of energy storage devices. 

That is why continuation of work concentrated on sustainable wood-derived electrode 

materials in various energy storage devices (supercapacitors and Li-ion batteries) is foreseen 

by me to be the most imperative goal in the near future. Carbon nanomaterials with a high 

surface area, superb interconnectivity of pores, high mechanical strength and electrochemical 

stability can be fabricated from different cellulosic precursors, including rapidly emerging 

NFC, and also from another abundant source such as lignin. Above-mentioned positive 

features can improve the performance of devices by increasing their capacitance, energy 

density, power density and cycle life. The controllable increment of the surface area with 

activation is a promising next step in the fabrication of even more efficient electrodes. 

Furthermore, it would be very interesting to construct environmentally friendly and efficient 

supercapacitor consisting of all sustainable components, i.e. electrodes, separators and 

electrolytes. 

TE approach is far from being able to solve all medical problems, however it already 

delivers amazingly impressive results. I believe that appropriate biocompatibility, mechanical 

stability and topography of cellulose-derived fibrous nanomaterials can be further utilized for 

TE purposes. In situ electrical stimulation of cells at the conductive scaffolds should lift cell 

development even further. Muscle and neural tissues are especially interesting for us since 

their growth or regeneration can be electrically stimulated using conductive scaffolds. 

Certainly, I see big perspectives in the further improvement of 3D printed scaffolds made of 

cellulose in terms of their shape fidelity via cross-linking, which is the next step towards the 

growth of organs. Moreover, efficient bioprinting of cellulose-based inks with cells in vivo is 

another chest with treasure that needs to be opened. 
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