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This paper investigates the effects of environmental ageing on the mechanical response of adhesively
bonded double-lap shear joints made of steel and CFRP or GFRP adherents. One hundred and ninety-two
specimens, 84 joints and 108 material coupons, were aged for up to three years in various environments
including (i) immersion in distilled water at 20 °C and 45 °C, (ii) immersion in de-icing salt solution at
20 °C and 45 °C and (iii) exposure to 95% relative humidity at 45 °C. In general, immersion at 45 °C

resulted in noticeably greater strength reductions at both material and joint level. While the strength and
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stiffness of the joints made of GFRP material underwent significant reductions, the CFRP/steel joints were
affected to a considerably smaller degree. FE simulations showed the impact of the permeability of FRP
adherents and moisture distribution at the FRP/adhesive interface on the integrity and strength of the
joints. The joint-level results are compared with the most relevant durability data in the literature.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The design service life of many bridges is 80—120 years. In spite
of this, of the many bridges that were built in different parts of the
world before the middle of the last century, the majority are still in
service. In addition to ageing, severe deterioration caused by
environmental exposure and/or increased traffic loads has led to an
imminent need for the replacement, strengthening and retrofitting
of a large stock of bridges, see, for example, [1]. The traditional
methods for upgrading existing bridges involve the use of con-
ventional building materials such as concrete, steel and timber in
combination with mechanical joining techniques such as welding
and bolting. These methods are, however, time and labour intensive
and expensive. For this reason, cost-effective, durable upgrading
techniques are of great interest to bridge owners.

One solution to this problem is to use new and advanced ma-
terials such as fibre-reinforced polymer (FRP) composites. FRP
materials offer outstanding properties such as high specific
strength and stiffness, electrochemical corrosion resistance and
light weight. The advantages of FRPs in combination with adhesive
bonding, as the preferred joining technique, include easy, rapid
installation and cost efficiency. In the past four decades, the
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application of bonded carbon fibre reinforced polymer (CFRP)
materials has increasingly replaced the traditional methods of
strengthening and repair for concrete structures [2]. In recent years,
there has also been a great deal of interest in the repair of steel
structures using bonded FRP materials mainly for corrosion damage
[3]. Moreover, FRP materials have found their way into whole- and
steel-FRP hybrid structures, using glass fibre reinforced polymer
(GFRP) deck systems on steel girders, for example [4]. As a result,
there is a great deal of interest in studying the behaviour of bonded
FRP/steel joints from the short- and long-term perspective.

Even though the short-term behaviour and design of these
joints has been studied extensively (see, for example, [5,6]), one
important remaining gap is the lack of knowledge about the long-
term performance and the durability of FRP/steel bonded joints
used in bridge structures. Long-term exposure to harsh environ-
mental conditions that can be possibly combined with cyclic or
monotonic mechanical load cases are known to endanger the
effectiveness and integrity of these joints. Few contributions are
actually available in the literature about the cyclic behaviour of FRP
joints, see, for example, [7,8]. Similarly, the available research on
the subject of the durability and long-term performance is limited,
which is due to the complex nature of research in this area that can
be mainly attributed to time-consuming, complicated testing. At
the present time, the lack of knowledge regarding the long-term
performance of adhesive bonded joints is compensated for by
applying a multiple combination of large safety factors to the
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strength of FRP materials, which dramatically increases material
usage and reduces the design efficiency [9,10].

A number of environmental parameters are known to affect the
long-term characteristics of FRP/steel bonded joints, including
moisture, thermal cycles and variations and UV radiation. A review
of the literature reveals that the combination of temperature and
moisture (which can take the form of humidity, liquid water or de-
icing salt solutions) can be the most severe condition when it
comes to the durability of adhesive joints with FRP and metallic
adherends [11—13]. The moisture penetrates into adhesively
bonded joints through a diffusion process in the adhesive layer and/
or wicking along the interfaces between the adhesive and adher-
ends and/or absorption through the porous adherends. This process
is accelerated by increasing the exposure temperature [14]. Once
moisture enters the joint, it affects the mechanical properties of the
joint through two principal mechanisms; the degradation of the
adhesive and/or adherends and the degradation of the adherend/
adhesive interface(s) [15]. Recently, some research has been con-
ducted to obtain the moisture profile in bonded assemblies using
advanced methods, such as electrochemical impedance spectros-
copy (EIS) (see, for example, [16,17]). Nevertheless, one limitation of
these methods is that they are not well established for joints with
permeable adherends such as FRPs.

At bulk-material level, moisture can alter resins physically
(reversible) through plasticisation and swelling and chemically
(irreversible) through cracking and hydrolysis [11,18]. In addition,
moisture ingress into FRP composites may lead to fibre/matrix
debonding and the formation of micro-cracks [19—21]. For FRPs
used in civil engineering applications, Karbhari [11] predicts a
negligible modulus change of the order of 10% over a period of
10—15 years. However, resin-dominated properties, such as inter-
laminar shear strength, are often more severely degraded by
moisture [22,23]. It is shown in Ref. [12] that the stiffness and
strength of a wide range of epoxy adhesives can degrade by as
much as 90% and 70% respectively after ageing in humid conditions.

At joint level, the moisture-induced changes in material prop-
erties can considerably affect the behaviour of the joint up to failure
[24]. Among these effects, the stability of interfacial adhesion in the
presence of moisture is the most important factor in terms of the
long-term durability of adhesively bonded FRP/steel joints [12].
This is mainly because the absorbed moisture forms substantially
stronger bonds with the ultra-thin oxide layer covering the steel
substrate than the adhesion forces at the adhesive/steel interface.
This can lead to severe and irreversible changes caused by weak-
ening or disrupting adhesion forces, cathodic or galvanic corrosion
of the steel substrate. According to a recent state-of-the-art review
[12], the strength of joints with unstable adhesive/steel interfaces
in the presence of water might undergo degradation of as much as
60%. Moisture can additionally induce sustained or cyclic swelling
stresses at the interfaces of bonded assemblies [25]. As a result,
time and exposure history are important factors that influence joint
durability.

Recently, some researchers have investigated the combined ef-
fects of moisture and temperature on the mechanical performance
of bonded FRP/steel joints [26—29]. Dawood and Rizkalla [26]
conducted experiments using double-lap shear (DLS) specimens
exposed to cyclic wet/dry scenarios in simulated seawater for up to
six months. It was observed that the joint degradation was pri-
marily due to the debonding of the steel/adhesive interface. Silane
coupling agent was found greatly to stabilise the interface and
prevent mechanical degradation at joint level. In another study,
Nguyen et al. [27] immersed wet-layup CFRP/steel DLS joints in
seawater at 20 °C and 50 °C for up to a year. They found a direct
analogy between the degradation of adhesive material and DLS
joints. Jiang et al. [28] investigated the effect of the stress ratio on

the durability of bonded GFRP/steel assemblies using an Arcan
fixture. Tests were conducted after ageing specimens in water at
40 °C for four months. The results indicated that, while pure shear
or peeling led to an approximate 60% strength reduction, mixed-
mode loading did not cause any degradation. The effect of the
combined and separate application of wet thermal cycles and
sustained loading was recently addressed by Agarwal et al. [29].
The authors found severe degradation in steel/CFRP single-lap
shear joints subjected to the combined conditions, whereas their
separate application had a negligible impact.

Although these studies have provided valuable and insightful
information, there remain a number of aspects that require further
investigation. Firstly, the utilised exposure durations were not long
enough according to Karbhari [30], who suggests a minimum
ageing time of 18 months. Secondly, the adhesive layer thickness of
the tested joints (0.1—0.5 mm) were in orders of magnitude thinner
than those used in typical bridge applications (1—6 mm) [12]. The
adhesive layer thickness can greatly influence the long-term per-
formance of these joints by altering diffusion, galvanic corrosion
[31] and cathodic corrosion [32] rates. Furthermore, none of the
available studies has distinguished the effects of each individual
environmental factor (temperature, moisture and salt solutions) on
joint durability.

The aim of this research is to provide an insight into the un-
derlying mechanisms of the degradation of adhesively bonded FRP/
steel DLS joints exposed to harsh environmental conditions. The
emphasis is placed on characterising the individual and combined
effects of temperature, de-icing salt solutions and moisture on the
mechanical behaviour of DLS joints. The DLS configuration is
employed because of the ease of failure detection, availability in the
literature and similarity in the stress state at the outer ends of the
bond line in these specimens compared with those of strengthened
steel girders [5]. In addition, the effect of FRP material was inves-
tigated by including joints fabricated with two types of FRP mate-
rial. Last but not least, finite element simulations are conducted to
identify correlations between the experimental observations and
moisture distribution profiles in joints.

2. Experimental programme
2.1. Materials

Four materials were used to manufacture the specimens: epoxy
adhesive, pultruded CFRP laminate, pultruded GFRP laminate and
steel. The adhesive is a commercial bi-component structural epoxy
adhesive, STO®BPE Lim 567. This adhesive was chosen due to its
compatibility with steel substrate to avoid premature interfacial
debonding failure of unaged joints. As discussed earlier, interfacial
stability plays a significant role in the long-term performance of
bonded joints and requires the careful assessment and selection of
materials. The glass transition temperature of the cured adhesive
was measured as 55 °C using dynamic mechanical analysis ac-
cording to ASTM D7028-07 [33]. Unidirectional CFRP laminates
were provided by Mostostal® and had a nominal thickness of
1.25 mm and a width of 50 mm. The CFRP laminates consist of 82%
(by weight) unidirectional carbon fibres embedded in an epoxy
resin. The GFRP laminates were cut from 10 mm thick GFRP plates
with a similar lay-up as in the flange of Asset deck profiles (FBD600)
produced using a pultrusion process by Fiberline Composites®. The
lay-up consists of unidirectional rovings in the pultrusion direction,
0°+ 90° woven mat layers and surfacing veils as the outermost
layers to protect from environmental action. The section contains
67% E-glass fibres, by weight, embedded in an isophthalic polyester
resin. Table 1 lists the measured mechanical properties of the
materials used before environmental ageing.
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Table 1
Mechanical properties of the used materials.

Material E-modulus [GPa] Tensile strength [MPa] Poisson's ratio
Steel S355 200 - 0.3

CFRP 154 3030 —

GFRP 14 230 -

Adhesive® 7.1 34 0.3

¢ Data measured after 14 days' curing at room temperature.

2.2. Specimens and test procedures

A total of 192 specimens were prepared and tested to investigate
the effects of ageing on constituent materials and bonded joints.
The material-level tests comprised the tensile testing of adhesive
dog-bone specimens, as well as CFRP and GFRP coupons. The effects
of ageing on the adhesive are of interest as it is often regarded as
the weak link in adhesively bonded assemblies. At joint level, the
double-lap shear (DLS) configuration was chosen as an appropriate
configuration as discussed earlier.

The constituent material tests included a total of 40 adhesive
dog-bone specimens, 34 GFRP and 34 CFRP coupons that were
prepared according to ASTM D638-10 and D3039/D3039M-14
respectively, see Fig. 1. For the adhesive material, five specimens
were tested directly in the dry state, while all the other specimens
were tested after environmental exposure for 260 and 530 days.
The tests were conducted using a universal testing machine in the
displacement-control mode and at a speed of 0.2 mm/min. A clip-
on extensometer was used to measure the axial strain in the nar-
row section of specimens. The results for specimens with failure at

(c) CFRP coupon

Fig. 1. Configurations of material-level tests.

the location of imperfections such as trapped air bubbles were
excluded. For the FRP material, four unaged specimens of each type
were tested as control samples and all the other specimens were
tested after ageing for 210 and 840 days. The tests were performed
at a constant cross-head displacement rate of 0.5 mm/min. To
prevent the coupons being crushed in the grips of the testing ma-
chine, aluminium tabs were glued to the ends of each FRP coupon
prior to testing. The pressure of the grips was kept constant for each
configuration. In addition, each specimen was equipped with a
strain gauge to measure the axial strain during testing.

Fig. 2 depicts the schematics and photographs of the manufac-
tured joint-level specimens. A total of 44 CFRP/steel and 40 GFRP/
steel double-lap shear (DLS) specimens were manufactured. As the
free edges of GFRP plates in practice are not always a wet boundary
condition (e.g. GFRP deck panels on steel girders), the edges of GFRP
laminates were painted on six GFRP/steel specimens, see Fig. 2(b),
in order to simulate an impermeable boundary condition. To pre-
vent moisture diffusion from those faces, two layers of a water-
resistant paint (JOTUN® Jotamastic 87) were applied. For each
specimen type, three were tested before ageing and the rest after
ageing for up to 1080 days (three years). The FRP laminates were
chosen to be narrower than the steel plates to represent a typical
field application in bridges where the entire flange may not be
covered by FRP. The adhesive layer thickness was also designed to
comply with different applications of FRPs in bridges where a
thickness of 1—2 mm is often found in strengthening applications
and 4—10 mm in GFRP-deck/girder connections. In order to ensure
the uniform thickness of the adhesive layer and precise end de-
tailing, i.e. without adhesive fillets at the ends, special moulding
forms were used. Details of the fabrication process are given in
Ref. [33]. Tests were carried out using a universal testing machine
with a capacity of 250 kN at a constant displacement rate of
0.1 mm/min. The axial displacement of the specimen, as well as its
transverse displacement at the gap location, was recorded using a
series of LVDT transducers. In addition, a high-resolution digital
camera was used to monitor damage evolution during testing.

2.3. Environmental conditioning

Five environmental ageing conditions were selected, based on
the service exposure of relevance for bridges. The glass transition
temperature of the adhesive was taken as the limiting temperature
with a margin of 10 °C. These environments included:

(i) 45RH: exposure to 45 °C at 95% relative humidity,
(ii) 45DW: immersion in 45 °C distilled water,
(iii) 45SW: immersion in 45 °C salt water,
(iv) 20DW: immersion in 20 °C distilled water,
(v) 20SW: immersion in 20 °C salt water.

The salt-water solution was included to study the effects of de-
icing salt solutions that are often found in bridge environments and
was obtained by mixing 5% by weight NaCl salt with distilled water.
The specimens were put in immersion tanks with a constant
temperature of 20 °C and 45 °C and were removed after various
exposure durations for tensile testing. The ageing of the 45RH se-
ries was achieved by using an environmental chamber with
controlled relative humidity and temperature fixed at 95% and
45 °C, respectively.

3. Finite element analysis
3.1. Moisture diffusion modelling

As discussed earlier, the presence of moisture in an adhesively
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Fig. 2. (a) Schematics of double-lap shear joints, (b) photographs of manufactured specimens.

bonded join can substantially affect its mechanical performance.
For this reason, information about the moisture profile (i.e. mois-
ture distribution pattern) in a joint can greatly help understand its
behaviour during residual strength tests. However, this information
cannot be obtained using the well-established gravimetric mea-
surement approach due to its many limitations, or more advanced
EIS method due to its shortcomings regarding joints with perme-
able adherends (such as FRPs).

One solution is to utilise numerical methods, such as the finite
element (FE) analysis, in conjunction with material-level experi-
mental data, namely moisture-diffusion parameters. In this regard,
for bonded FRP joints, mass-diffusion analysis with varying solu-
bility for different materials is favoured over heat-transfer analysis
[14,34]. In this paper, the commercial FE software Abaqus® 6.13 was
used. The joints were modelled as 3D objects. Transient mass-
diffusion analyses were conducted. The moisture concentration of
all the surfaces of permeable materials that are in contact with
moisture were set to be fully saturated as the boundary conditions.
The adopted analysis method and material input data were shown
by the authors to yield accurate predictions in Ref. [ 14]. Table 2 lists
the diffusion coefficients (D) and moisture content at saturation
(My,) that are used in the FE analysis (data taken partly from
Ref. [14]).

4. Results and discussion
4.1. Effect of ageing on materials
4.1.1. CFRP

As can be seen from Table 2, the moisture ingress into the CFRP
material is considerably slower compared with other constituent

materials. The low permeability of the used CFRP material could be
attributed to its high fibre content, resin type and manufacturing
quality. Fig. 3 shows the effect of various ageing scenarios on the E-
modulus and tensile strength of CFRP. For each ageing condition,
tests were performed after exposure for 210 and 840 days (seven
and 28 months respectively). The error bars show the scatter range
of three replicas tested in each group. As is apparent from Fig. 3(a),
the modulus of elasticity is hardly affected by any of the ageing
conditions, even after 840 days of exposure. Given the fibre
dependence of the E-modulus of unidirectional composites, as well
as the stability of carbon fibres in the presence of moisture [11], this
observation can be justified.

The tensile strength, on the other hand, was significantly
degraded with increased exposure duration and the severity of the
ageing condition, see Fig. 3(b). This observation can be explained by
the change in failure mode observed during tests, see Fig. 4. With
increased exposure, the failure shifted from a rupture mode to the
interlaminar failure of CFRP at the grips. Interlaminar shear
strength is a resin-dominated property that is highly susceptible to
environmental degradation. Although the tensile coupon test is not
an appropriate configuration for the quantitative assessment of
interlaminar shear strength, it is possible to evaluate the degra-
dation trends qualitatively, as all the tested CFRP coupons were
subjected to the same pressure at the grips. In this regard, at a given
temperature, the short-term immersion in distilled water is found
to be more damaging than salt water. This is believed to be due to
the moisture-diffusion characteristics that would result in a higher
near-surface moisture concentration of the specimens immersed in
distilled water compared with salt water at the same temperature
(see Table 2). Consequently, the rate of accumulation of salt water
molecules at resin/fibre interface close to the surfaces of CFRP

Table 2
Moisture diffusion parameters of the used materials.
Condition GFRP CFRP Adhesive”
Dy* Dy D, M., [%] D(x107%) M [%] D {D>} Mg {Me 1} [%]
45DW 11.823 8.154 3.977 5.05 3.8 1.05 0.032 {4.2x107%} 1.77 {1.40}
45SW 6.958 4.659 2.225 5.05 6.8 0.80 0.037 1.34
20DW 1.019 0.996 1.820 5.22 32 0.47 0.003 1.66
20SW 5.149 2.585 0.734 5.00 43 0.38 0.003 1.36
45RH 3.552 7.759 - 0.23 10 0.58 0.052 1.10

3 All the diffusion coefficient values are in [mm?/day] unit.
b Additional values for dual-Fickian diffusion are given in brackets.
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Fig. 3. Effect of ageing on the normalized mechanical properties of CFRP: (a) E-modulus, (b) tensile strength.

coupons becomes less than that of distilled water. Hence, as the
damage evolution at resin/fibre interface depends on both expo-
sure time and solution concentration, the lower degradation of

(b) Aged at 45SW

(c) Control GFRP specimen

(d) Aged at 45DW for 840 days

Fig. 4. The change in failure mode of CFRP coupon tests after environmental ageing.

interlaminar shear strength after exposure for 210 days in saltwater
compared to distilled water is justified. However, with longer
exposure and higher solution concentrations, salt water caused
more degradation compared with distilled water. The more
damaging effects of salt water compared with distilled water or
vapour on the interlaminar strength of FRPs have previously been
reported by some researchers and are often attributed to resin/fibre
interface damage (see, for example, [11]). Moreover, as moisture
diffusion is highly dependent on its concentration and tempera-
ture, the greatest degradation is found for immersion conditions at
45 °C.

4.1.2. GFRP

The GFRP material is extremely permeable, with the fastest
diffusion rates among those listed in Table 2. In fact, all the GFRP
coupons would reach moisture saturation less than a month after
exposure [14]. The effect of ageing on the normalized E-modulus
and tensile strength of GFRP coupons is plotted in Fig. 5. It is
noticeable that, similar to CFRP coupons, ageing has significantly
affected the strength, whereas the average degradation of the E-
modulus is generally less than 10%. All the tested GFRP coupons
exhibited a similar failure mode, as shown in Fig. 4(c) and (d). As
can be seen, tensile strength is governed by a combination of fibre
and resin failure. In addition to the common susceptibility of resins
to ageing, glass fibres (unlike carbon fibres) may also degrade in the
presence of moisture with prolonged exposure. As a result, while
the initial reduction in strength is believed to be a consequence of
degrading resin and fibre/resin interface [35], its further reduction
after 840 days can also be attributed to damaged glass fibres [36].

It is also interesting to note that, despite the highest strength
reductions after immersion in salt solution or water at 45 °C,
exposure to humidity (vapour) at the same temperature has
resulted in the lowest reduction of all. This observation is due to the
large difference in the saturation moisture content of these two
series (5% vs. 0.23% respectively) and highlights the importance of
moisture concentration as a prerequisite of higher temperature to
cause greater damage.

4.1.3. Epoxy adhesive

The effects of moisture on the mechanical properties of epoxy
adhesive are plotted in Fig. 6. The results are reported based on the
moisture content of the dog-bone specimens at the time of testing,
as it is well known that there is a direct relationship between
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Fig. 6. Effect of ageing on the normalized mechanical properties of epoxy adhesive: (a) E-modulus, (b) tensile strength, (c) ultimate strain.

moisture content and mechanical properties. The moisture content
(M) of the dog-bone specimens at the time of testing was derived
by 3D mass-diffusion simulations using the input data listed in
Table 2. To double-check the accuracy of the FE results, gravimetric
measurements were also carried out for some of the specimens and
it was found that the deviation was less than 5%. The FE analysis
revealed that only the specimens aged at 45 °C reached their
moisture saturation level after 260 days. For this reason, for spec-
imens aged at 20 °C, an additional series was also tested after 530
days of exposure. Although the latter series reached higher mois-
ture contents, the saturation level was still not achieved.

Fig. 6(a) shows the changes in the E-modulus of the adhesive
with increasing moisture content. The best fit to the data was
estimated considering only the control and fully saturated speci-
mens, i.e. aged at 45 °C. The results clearly show a reduction in E-
modulus with increasing moisture content. The reduction rate is,
however, lower for the salt solution than for distilled water or
vapour. At ultimate moisture content levels, the loss of E-modulus
is around 32% and 48% for the “SW” and “RH & DW” series
respectively. In addition, it can be seen that the elastic moduli of all
specimens aged at 20 °C for 260 and 530 days can be accurately

predicted by the obtained fits. This observation confirms that, for
this adhesive, ageing at 45 °C is able safely to accelerate the
moisture diffusion without causing undesirable effects [37] on its
mechanical properties.

As can be seen in Fig. 6(b), environmental ageing has also
degraded the strength of adhesive specimens. While the trends are
similar to those observed for the modulus of elasticity, the ultimate
reduction magnitudes are smaller for strength and are around 19%
and 30% for the “SW” and “RH & DW” series respectively. Moreover,
the ultimate strain is found to increase with moisture content. The
only exception is the “RH” series that exhibited almost no change. It
can therefore be concluded that both the moisture content and the
state of diffusing medium (vapour or liquid) are important when
assessing the failure strain of adhesives. This observation explains
the inconclusive effects of moisture on failure strain that was re-
ported for a wide range of adhesives in Ref. [12].

4.2. Moisture distribution prediction in joints

The predicted moisture content summed over the volume of
adhesive layer in DLS specimens is plotted in Fig. 7. As can be seen,
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the absorbed moisture at the same temperature and time is
significantly higher in GFRP/steel specimens compared with CFRP/
steel specimens. This observation could be explained by the high
permeability of the GFRP material compared with the almost
impermeable CFRP laminates, which provides an additional
boundary condition for moisture uptake. This permeability can be
attributed to the structure of the two composite materials and the
types of fibre and matrix used to manufacture them. Shortly after
exposure (approximately two to four weeks, depending on the
exposure condition), GFRP becomes saturated and provides new
and considerably shortened moisture diffusion routes through the
thickness of the adhesive layer.

Fig. 8 shows contour plots of normalized moisture concentration
in the adhesive layer of GFRP/steel specimens conditioned in 20SW
and 45SW. The moisture concentration is normalized with respect
to the saturation moisture content of adhesive in each environ-
ment. Only a quarter of the adhesive is shown due to symmetry.
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Fig. 7. Predicted total moisture content of the adhesive layer in DLS specimens: (a)
GFRP/steel, (b) CFRP/steel.

Due to the direct moisture contact, the normalized concentration is
higher closer to the external boundaries of the adhesive layer.
Nevertheless, as discussed earlier, as a result of the additional
moisture diffusion from the GFRP adherend, the moisture con-
centration also varies in the thickness direction. For instance, as can
be seen in Fig. 8 for the 20SW condition, while the portion of the
adhesive layer close to steel is almost dry after one year of exposure,
the moisture concentration is significantly higher in the vicinity of
GFRP. A clear consequence of variable moisture content in the ad-
hesive material, given the dependence of its mechanical properties
on moisture content, would be a highly inhomogeneous adhesive
layer through the thickness and along the bond line. The conse-
quences of this phenomenon will be discussed in more detail in
Section 4.3.1. It is also noteworthy that the predicted moisture
content of the adhesive layer is not affected by painting the edges of
GFRP laminates, see Fig. 7(a). This is mainly due to the fact that the
water ingress from the GFRP into the adhesive governs the overall
moisture uptake of the adhesive layer. This observation implies that
painting the edges of GFRP had no noticeable effect on the me-
chanical response of GFRP/steel joints.

Another observation from Fig. 7(b) is that, after almost one year,
the moisture content of the adhesive layer in CFRP/steel specimens
aged in 45SW exceeds that of the ones aged in 45DW. This obser-
vation can be explained in the light of the predicted moisture
profiles in CFRP/steel joints illustrated in Fig. 9. Since the saturation
moisture content and diffusion rates of the adhesive are higher
than those of the CFRP in all environments (see Table 2), a portion
of the diffused moisture in the adhesive will be transported into the
adjacent CFRP material. This, in turn, would result in a loss of
moisture content in the adhesive layer. This process occurs to the
greatest degree in the 45DW condition due to the highest associ-
ated moisture saturation level of the CFRP material.

Fig. 10 shows a comparison of the normalized moisture con-
centration of CFRP along its interface with the adhesive at various
exposure durations in 45DW and 45SW. As can be seen, at similar
exposure durations and temperature, the normalized moisture
concentration is higher in salt water than in distilled water. This
observation can be also attributed to the interfacial moisture
transport from the adhesive to the CFRP material. In this regard, the
moisture available at the interface of CFRP and adhesive is limited
by the diffusion rate of the adhesive material, which is merely a
function of temperature [14]. Moreover, given the higher moisture
saturation content of CFRP in 45DW compared with 45SW, a larger
amount of moisture is required in 45DW for an equal increase in
normalized moisture concentration. For this reason, at the same
exposure temperature and time, the normalized moisture satura-
tion would be higher for the condition that gives a lower moisture
saturation content for CFRP, i.e. 45SW. Given the large degradation
of the interlaminar shear strength of CFRP upon ageing, its moisture
concentration at the interface with adhesive is expected strongly to
affect the strength of the bonded joints (Section 4.3.3).

4.3. Effect of ageing on joints

4.3.1. Failure modes

Fig. 11 shows images of DLS specimens directly after removal
from the conditioning tanks. It is apparent that the steel plates were
significantly corroded. Visual inspections revealed that the corro-
sion was more severe at 45 °C compared with 20 °C after similar
ageing durations. The deposition of corrosion products on the
surfaces of FRP adherends led to the slight discoloration of both
CFRP and GFRP materials. However, no signs of wear or the
debonding of FRP laminates were observed during the inspections.
It was only in the case of prolonged exposure, i.e. after one year, of
GFRP/steel specimens that cracks were visually detected in the
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Fig. 8. Contour plots of moisture distribution profiles in the adhesive layer of GFRP/steel specimens at various exposure times (t).

adhesive layer, see Fig. 12. As can be seen, these cracks were
directed longitudinally and located very close to the GFRP lami-
nates. The cracks were also accompanied by the dispersed discol-
oration of the adhesive material. The formation of these cracks in
the GFRP/steel series was limited to the specimens aged for more
than 180 days in 45DW and 540 days in 45SW. One explanation of
this phenomenon could be the non-uniform moisture distribution
in the adhesive layer in GFRP/steel specimens, as discussed in
Section 4.2. Given that moisture uptake is able to induce volumetric
expansion (i.e. swelling), the swelling of the wet portion of the
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Fig. 9. Contour plots of through-thickness moisture distribution close to the gap of
CFRP/steel specimens along the centre line of the joint.

adhesive could have led to the formation of shear stresses that
caused these cracks. The deleterious effects of swelling have also
been outlined by other researchers and they are believed to exert
additional shear stresses [38—40]. As swelling is directly propor-
tional to the volume of diffused water, these cracks were first
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path located at the mid-width of the joint.
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Fig. 11. DLS specimens after environmental ageing.

discovered for the condition with the fastest through-thickness
diffusion rate for GFRP and the highest saturation moisture con-
tent in adhesive, i.e. 45DW.

The failure of adhesively bonded FRP/steel joints can be gov-
erned by a number of different modes including (i) cohesive failure,
(ii) delamination failure of FRP and (iii) interfacial debonding fail-
ure. In addition, failure may occur due to any combination of the
aforementioned modes. Combined failure modes can be a result of
an inhomogeneous material state and/or an asymmetrical failure
mechanism. In this study, careful monitoring of the DLS specimens
during testing revealed that failure was always initiated in the
adhesive end close to the gap area where the principal stress rea-
ches its maximum, see Fig. 13. Given that the stiffness of the steel
plate relative to that of CFRP or GFRP laminates is greater than one,
the failure mechanism observed during experiments is reasonable
according to [41]. Moreover, to exclude the effects of asymmetrical
load transfer (after initial crack initiation on one side of the spec-
imen) on failure mode, the assessments of failure surface are
limited to areas close to the gap (triggering failure mode).

e i . —
Crack |n a"dhresive layer

D S

Aged at 45SW for 540 days

Fig. 12. Cracks that appeared in the adhesive layer of GFRP/steel specimens upon
prolonged ageing.

Crack propagation path

e

(a)

T —

Fig. 13. Failure mechanism of control DLS specimens during residual strength tests: (a)
CFRP/steel, (b) GFRP/steel specimen.

The failure mechanism of CFRP/steel control specimens is
depicted in Fig. 13(a). As can be seen, two dominant cracks were
initiated on the opposite sides of the gap in a diagonal pattern. Post-
fracture analysis of the failure surfaces revealed that all the control
CFRP/steel specimens exhibited cohesive failure as the triggering
failure mode, see Fig. 14(a). This observation confirms good bond
quality which ensures high joint efficiency and ductility. Cohesive
failure was also the triggering failure mode of all the specimens
aged at 20 °C, except for one which failed due to CFRP delamination.
However, the cohesive failure mode changed to a number of other
failure modes upon ageing at 45 °C, as illustrated in Fig. 14(b-e). In
particular, ageing in 45SW caused the fastest change in failure
mode to combined interfacial/interlaminar CFRP failure after only
120 days of exposure, see Fig. 14(b). After 240 days of exposure, this
failure mode changed to the interlaminar failure of CFRP at its
interface with the adhesive, see Fig. 14(e). In comparison, the failure
mode of CFRP/steel specimens aged for 540 days in 45DW
remained as interfacial/cohesive. The failure of joints in 45SW due
to the interlaminar failure of CFRP further confirms the importance
of the normalized moisture concentration of CFRP that was dis-
cussed in Section 4.2 (see also Fig. 10). It should be mentioned that,
despite the visible corrosion of exposed steel parts, no corrosion of
steel in the bonded areas was detected by visual inspection after
testing.

As is apparent from Fig. 13(b), the behaviour of control GFRP/
steel specimens was governed by a combination of failure mecha-
nisms. The primary failure was mainly composed of the delami-
nation of the GFRP at the 0° + 90° mat layer and finishing layer, see
Fig. 15(a). This was accompanied by a sharp drop in load during the
tests. After this point, the load was transferred through only one of
the laminates. This asymmetrical load transfer led to the out-of-
plane bending of the specimen (i.e. increased transverse deforma-
tion) that caused secondary failure. As a result, the reported failure
modes are only based on the primary failure location, as it is
representative of the joint in-service behaviour. In this regard,
immersion in 20 °C salt water (20SW) for up to one year did not
cause any changes in the failure mode compared with control
specimens, see Fig. 15(b). The failure mode of GFRP/steel specimens
immersed in 45 °C salt water (45SW) for up to one year was
similarly caused by the interlaminar-shear failure of the GFRP
laminate. However, increasing the exposure duration to 540 days
shifted the primary failure location to the adhesive layer close to
GFRP, i.e. cohesive failure, Fig. 15(c). Painting the edges of the GFRPs
did not cause any further change in this behaviour. Nevertheless,
ageing in 45DW accelerated this process; the interlaminar failure
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Fig. 14. Examples of fracture surfaces and failure modes of CFRP/steel specimens.

mode changed to cohesive failure after only 180 days of exposure,
Fig. 15(d) and (e).

4.3.2. Joint stiffness

The stiffness of DLS joints is evaluated by studying the rela-
tionship between axial load and axial displacement. Fig. 16 shows
this relationship for control DLS specimens. As can be seen, the load
increases almost linearly in zone I, non-linearly in zone II, at the end
of which a maximum load is reached, and remains almost constant
afterwards (zone III). It is shown by the authors in Ref. [42] that,
from a damage point of view, zone I is the state of no damage, zone
II is the damage development state and zone Il corresponds to
crack propagation. So, to evaluate the stiffness of DLS joints prior to
any damage, a stiffness factor is defined as the slope of the load-
displacement curve calculated using two points within zone I. For
the sake of consistency, these points were taken at axial displace-
ments corresponding to 0.1 and 0.3 mm for all specimens. More-
over, In order to define a consistent failure criterion for the tested
joints, the changes in joint stiffness during testing are further
evaluated by differentiating the load-displacement curves. In this
regard, the load at the point where it drops suddenly or stiffness
becomes zero for the first time (horizontal tangent line) is taken as
the ultimate failure load and is subsequently used to assess the
bond strength.

The effect of environmental ageing on the initial stiffness of DLS

Primary failure site
GFRP on both sides)

Primary failure (GFRP on both sides)

G .

(d) Cohesive failure (6 months at 45DW)
Primary failure site

(e) Cohesive failure (18 mths4

Fig. 15. Examples of fracture surfaces and failure modes of GFRP/steel specimens.

joints is plotted in Fig. 17. As can be seen, the reductions in the
initial joint stiffness in GFRP/steel specimens are noticeably larger
than that of CFRP/steel specimens. There are two main arguments
that can be put forward to explain this observation. Firstly, the data
presented in Fig. 5(a) appear to suggest that the modulus of elas-
ticity of GFRP is more susceptible to degradation compared with
CFRP, cf. Fig. 3(a). Secondly, considerably faster moisture diffusion
into the adhesive layer of GFRP/steel specimens decreases its
overall stiffness and thus leads to a further reduction in joint
stiffness. A closer look at the data indicates that, while ageing at
20SW for up to three years caused no significant variation (approx.
4%) in the initial stiffness of CFRP/steel joints, the GFRP/steel
specimens underwent an approximately 20% reduction after only
one year of ageing.

In comparison, ageing at 45 °C led to greater variations in this
parameter. In the case of CFRP/steel specimens, the stiffness ap-
pears gradually to decrease with increasing exposure, until the
reduction stabilises at 11+ 3% after ageing for eight months in
45DW and 36 months in 45SW. GFRP/steel specimens aged in
45DW and 45SW, on the other hand, exhibited notably greater
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Fig. 16. Definition of stiffness factor and failure load for DLS specimens.

degradation of around 34+ 5% and 26+ 4% respectively after one
year. The relatively greater drop in stiffness for the 45DW series
stems from the higher saturation moisture content of the adhesive
in this condition. It is also interesting to note that, up to one year of
exposure, specimens with or without painted GFRP edges perform
similarly. The stiffness of specimens aged in 45DW remained con-
stant by extending the exposure to 18 months, whereas it dropped
sharply for those aged in 45SW. The most likely cause of this
observation is that the cracks that appeared in the adhesive layer of
GFRP/steel specimens were the most severe for those aged in 45SW
for 18 months (see Fig. 12).

Given that the modulus of elasticity of CFRP is often orders of
magnitude greater than that of adhesive, the initial stiffness of
CFRP/steel DLS joints is more sensitive to stiffness changes in CFRP.
In other words, despite a large reduction in the adhesive modulus
with increasing moisture content, the relatively small variations in
initial joint stiffness can be attributed to the negligible degradation
of the CFRP modulus. Nevertheless, the adhesive plasticisation may
affect the damage onset in joints with cohesive failure. This can be
investigated by plotting joint stiffness vs. applied displacement, see
Fig. 18. As can be seen, the initial stiffness is slightly reduced, which
confirms the presence of moisture in the joint. More importantly,
the onset of damage in the adhesive is noticeably delayed with
increasing exposure, i.e. higher moisture content. This observation
clearly shows the plasticising effect of moisture on the adhesive at
joint level. In other words, as described in Ref. [14], the lower
modulus of elasticity of wet adhesive leads to a drop in peak
stresses close to the gap. In spite of this, this effect disappears with
a failure mode other than cohesive, as it is only a characteristic of
the adhesive material.

4.3.3. Bond strength

The effect of ageing on the failure load of DLS specimens is
plotted in Fig. 19. A comparison of the average failure load for the
GFRP/steel and CFRP/steel specimens suggests notably larger
degradation in the former series. To address the underlying reason,
the failure modes of these two series need to be analysed. As dis-
cussed before, many of the GFRP/steel specimens, including the
control ones, failed due to the interlaminar shear failure of GFRP.
Having noted that the bonded GFRP laminates were able to reach
moisture saturation after only a few weeks of exposure, the failure
load of the aged GFRP/steel specimens was governed by the
strength of fully saturated GFRP material. As a result, the normal-
ized strength degradation of the GFRP/steel series is proportional to
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Fig. 17. Effect of environmental ageing on the stiffness of DLS joints.

that of GFRP material. On the other hand, the control CFRP/steel
specimens failed cohesively. Moreover, an increase in the moisture
concentration of the CFRP at its interface with the adhesive is
extremely time consuming. The strength of CFRP/steel DLS joints is
therefore governed to a higher degree by adhesion quality rather
than CFRP strength.

Fig. 19(a) reveals that the strength of GFRP/steel DLS joints, in
general, declines sharply after immersion. As discussed earlier, the
residual strength of these joints should be proportional to the
strength reduction of the GFRP material. A closer look at Fig. 5(b)
indicates that immersion at 45 °C led to a greater strength reduc-
tion than that at 20 °C. This outcome is in line with the bond
strength results for GFRP/steel DLS joints, which demonstrate
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greater strength reductions upon ageing in the higher temperature
regimen. In this context, immersion in salt water at 20 °C and 45 °C
for one year led to an approximate 20+ 3% and 41+ 7% reduction
respectively in average failure load. A comparison of immersion in
salt water and distilled water at 45 °C suggests that the degradation
of both series is within the same range, provided that the failure
modes are alike. In particular, the failure load of both series drop-
ped an additional 20% (approx. 60% in total) once the failure mode
switched from GFRP delamination to cohesive. This observation is a
convincing piece of evidence that cohesive failure due to a high
normalised moisture concentration in the adhesive layer of joints
with highly permeable adherends may be more deleterious than
FRP degradation. Extra attention should therefore be paid to the
moisture dependence of the mechanical properties of adhesive
material in these joints.

The effects of environmental ageing on the strength of CFRP/
steel DLS joints is plotted in Fig. 19(b). This figure indicates that, for
both distilled water and salt water, ageing at 20 °C for one year led
to a continuous increase in failure load. In this regard, the ultimate
failure load is found to increase by a maximum of 22% and 17% after
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Fig. 19. Effect of environmental ageing and failure mode on the bond strength of DLS joints: (a) GFRP/steel, (b) CFRP/steel.
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Fig. 20. Comparison of immersion conditions at different temperatures on the strength of DLS joints: (a) 20 °C, (b) elevated service temperatures (45—50 °C).

one year of immersion in distilled water and salt water respectively.
Given the relatively slow moisture diffusion into adhesive at 20 °C,
see Fig. 7(b), and, as the failure mode of these specimens remained
cohesive, this behaviour can be associated with the full-cure of
adhesive. This beneficial effect appears to disappear with higher
diffused moisture after immersion in salt water for three years. In
spite of this, the results suggest no degradation of failure load after
such a long exposure period. It is noteworthy that the relatively
large scatter of results obtained for the 20DW series is due to a
different failure mode in one of the tested specimens, which is
presumed to be due to material or specimen manufacturing defects.

When it comes to the strength of CFRP/steel DLS joints condi-
tioned at 45 °C, it is apparent from Fig. 19(b) that, despite a slight
increase in failure load during the first few months, it declines af-
terwards. This behaviour is more noticeable for joints immersed in
salt water that exhibit a maximum reduction of 35% and 43% in
failure load after one year and three years of exposure respectively.
In comparison, the highest reduction in the failure load of the joints
immersed in distilled water was found to be only 13% after ageing
for 18 months. The underlying mechanisms of strength degradation
in a higher temperature regimen can be further investigated by
studying the triggering failure modes of CFRP/steel DLS joints, see
Fig. 19. As can be seen, the failure mode of specimens immersed in
distilled water for eight months remained cohesive. The strength
was thus slightly increased due to the plasticisation effect (Fig. 18).
However, after one year, the failure mode had partly shifted to the
adhesive/steel interface, which caused a slight strength degrada-
tion. In comparison, the strength of specimens immersed in salt
water for eight months was governed by the interlaminar shear
strength of CFRP, which led to a notably larger reduction in failure
load. As can be expected, the moisture content of CFRP at its
interface with the adhesive rises with increasing exposure dura-
tion. Given the data plotted in Fig. 3(b), this implies that the
degradation of the strength of CFRP at this critical interface would
increase with longer exposure. As was discussed in Section 4.2, the
rate of this process is slower for immersion in distilled water.
Having shown that the strength degradation of the CFRP material is
high for immersion at 45 °C in both distilled water and salt water,
the joints aged in 45DW are also expected to experience a similar
degradation trend. However, this was not witnessed in this study,
due to the limited exposure period.

5. Comparison with the available durability test data for FRP/
steel DLS joints

In the past few years, a number of research articles have dealt
with the subject of the durability of bonded FRP to steel joints. In

this context, single-lap [29,38,43,44] or double-lap shear
[26,45—49] joints are most commonly used. Other configurations
include the Arcan fixture [28] and beam specimens [50]. In these
studies, various ageing scenarios, such as constant immersion [47],
wet/dry [26,44] or freeze/thaw cycles [51—53], have been con-
ducted. In addition, residual strength tests have been performed to
assess the static or fatigue strength [8] of aged assemblies. As each
of the aforementioned factors can affect the outcome, it is impor-
tant only to compare studies with similar configurations, ageing
scenarios and test methods. In this regard, a closer look at the
literature suggests that the tests performed by Nguyen et al. [47]
can be compared with the ones presented in this study. Nguyen
et al. subjected 75 steel/CFRP DLS joints to a number of harsh en-
vironments including simulated seawater at 20 °C and 50 °C for up
to one year. The DLS joints were fabricated using the wet lay-up
manufacturing technique including three layers of carbon fibre
with an adhesive thickness of 0.5 mm. The resin type was a
commercially available two-part epoxy adhesive and its saturation
moisture content in salt water was measured as equal to 3.86% and
5.94% at 20 °C and 50 °C respectively. The observed failure mode for
both control and aged joints was the delamination of the CFRP.

Fig. 20 illustrates a comparison of strength variations for the
tested DLS joints in this study and those in Ref. [47]. The lower
bound, average and scatter range of the results are plotted using
thick solid lines, dashed lines and colour highlights respectively.
The results are compared separately according to the immersion
temperature. As can be seen in Fig. 20(a), the DLS specimens with
GFRP and wet lay-up CFRP adherends exhibit very similar behav-
iour upon immersion at room temperature. Given that both series
failed due to FRP delamination, the degradation of strength can be
attributed to fibre/matrix damage. Along similar lines, Roy et al.
[38] reported the degradation of the mat layer of GFRP as an
important damaging mechanism in the tested steel/polyester-GFRP
joints. In comparison, the low permeability of pultruded CFRPs and
the cohesive failure mode led to almost no degradation of the CFRP/
steel DLS joints.

However, as is apparent from Fig. 20(b), all the joints aged at
elevated service temperatures undergo strength degradation. The
rate of degradation is, nevertheless, initially the slowest for the
joints with pultruded CFRP laminates. This stems from the fact that,
unlike the other series that failed due to FRP delamination from the
beginning, it emerged as the failure mode of the latter series after
eight months of ageing. The slower damage progression at the
fibre/matrix interface of pultruded CFRP laminates is a conse-
quence of their higher fibre, lower void content and resin type. On
the other hand, the strength of GFRP/steel specimens drops sharply
at the beginning and declines steadily afterwards. Given that
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polyester resins are known to be more susceptible to environ-
mental degradation in hot/wet conditions than epoxy resins
[54,55], this behaviour can be attributed to the polyester resin of
the GFRP laminates. The reduced strength of GFRP/steel specimens
is comparable to that reported by Jiang et al. [28], who found a
reduction of around 60% in the strength of GFRP/steel joints under
pure shear loading after four months of immersion in water at

40

6.

°C.
Conclusions

Adhesive, CFRP and GFRP tensile coupons, as well as CFRP/steel

and GFRP/steel double-lap shear joints, were subjected to a number
of environmental conditions for up to three years. These conditions
were immersion in distilled water at 20 °C and 45 °C, immersion in
salt water at 20 °C and 45 °C and exposure to 95% RH at 45 °C. The
failure mode, residual stiffness and strength of the tested joints and
materials were analysed and compared with the most relevant data
in the literature. In addition, moisture diffusion into the joints was
modelled using the finite element method. The predicted moisture

dis

tribution profiles were used to discuss and identify plausible

damaging mechanisms. The following conclusions can be drawn.

Despite insignificant reductions of the E-moduli of the CFRP and
GFRP material, their strength underwent severe degradations,
particularly after immersion at 45 °C. Long-term immersion in
saltwater was found to be more damaging to the interlaminar
strength of the CFRP material than immersion in distilled water,
while the GFRP material degraded to the same degree in both
conditions.

Although moisture was found to dramatically reduce the stiff-
ness and strength of the adhesive material, it had a favourable
effect on the strength of CFRP/steel joints with cohesive failure.
The low permeability of the CFRP material, as well as the delay
of damage onset in the adhesive layer, are identified as the most
important factors leading to this behaviour. This effect was not
observed in joints with failure modes other than cohesive.

The strength of CFRP/steel specimens was found to be depen-
dent on the failure mode. While immersion at 20 °C did not have
any adverse effects on the strength of these specimens,
increasing the temperature changed the triggering failure mode
from initially cohesive to interfacial or interlaminar failure
modes. The specimens with interlaminar shear failure of CFRP
exhibited the highest strength reductions.

The failure mode of the majority of GFRP/steel DLS joints,
including control, aged at 20 °C and some aged at 45 °C, was
interlaminar shear failure of the GFRP material. It is shown that
the strength of wet GFRP material can be used for design pur-
poses, assuming that the joint strength is governed by the
interlaminar shear failure of GFRP. However, special consider-
ation should be given to other possible failure modes that can
emerge as a consequence of moisture diffusion into the adhesive
layer.

The accelerated moisture diffusion into the adhesive layer of
joints with highly permeable adherends can lead to an inho-
mogeneous adhesive layer. This may lead to swelling of the wet
portion of adhesive layer that is constrained by its drier portion
or interfaces that would induce residual shear stresses. This
phenomenon led to the formation of cracks that were discov-
ered in the adhesive layer of the GFRP/steel specimens after
long-term (approx. one year) immersion at 45 °C. Both the
stiffness and strength of the affected joints underwent an
additional reduction and defined the lower bound of the results.
A comparison of the joint-level results with those in other
publications confirmed the higher durability of joints fabricated

using pultruded FRPs with low permeability compared with
highly permeable variants (e.g. wet lay-up FRP) or weak in-
terfaces (0° + 90° mat layer). In addition, the use of polyester
instead of epoxy resin as the matrix of FRPs is found to result in
the higher degradation of joints exposed to hot/wet conditions,
in particular.
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