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Transmission Strategies for Remote Estimation with

an Energy Harvesting Sensor

Ayça Özçelikkale, Tomas McKelvey, Mats Viberg

Abstract—We consider the remote estimation of a time-
correlated signal using an energy harvesting (EH) sensor. The
sensor observes the unknown signal and communicates its
observations to a remote fusion center using an amplify-and-
forward strategy. We consider the design of optimal power
allocation strategies in order to minimize the mean-square error
at the fusion center. Contrary to the traditional approaches, the
degree of correlation between the signal values constitutes an
important aspect of our formulation. We provide the optimal
power allocation strategies for a number of illustrative scenarios.
We show that the most majorized power allocation strategy, i.e.
the power allocation as balanced as possible, is optimal for the
cases of circularly wide-sense stationary (c.w.s.s.) signals with a
static correlation coefficient, and sampled low-pass c.w.s.s. signals
for a static channel. We show that the optimal strategy can
be characterized as a water-filling type solution for sampled
low-pass c.w.s.s. signals for a fading channel. Motivated by the
high-complexity of the numerical solution of the optimization
problem, we propose low-complexity policies for the general
scenario. Numerical evaluations illustrate the close performance
of these low-complexity policies to that of the optimal policies,
and demonstrate the effect of the EH constraints and the degree
of freedom of the signal.

I. INTRODUCTION

Energy harvesting solutions offer a promising framework

for future wireless sensing systems. Instead of completely

relying on a fixed battery or power from the grid, nodes

with EH capabilities can collect energy from the environment,

such as solar power or power from mechanical vibrations.

In addition to enabling energy autonomous sensing systems,

EH capabilities also offer prolonged network life-times and

enhanced mobility for the nodes in the network [1], [2].

One of the key issues in the design of EH systems is

the intermittent nature of the energy supply. In a traditional

device, the energy that can be used for communications has

either a fixed known value for each transmission or there is

a total energy constraint. In contrast, for an EH node, the

energy available for information transmission depends on the

energy used in previous transmissions and the energy that may

be available in the future. In such systems, the transmission

strategies have to be re-designed in order to ensure reliable

and efficient operation in the entire time frame of interest.

For instance, at a given instant, an EH node may have to

choose between increasing the energy used in the current

transmission to increase reliability at that instant or saving
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the energy for upcoming transmissions due to forecasted poor

energy harvesting conditions in the future.

In that respect, the problem of reliable communications

with EH nodes have been studied under a broad range of

scenarios [1–9]. Capacity of point-to-point Gaussian channels

are considered in [3], [4]. Total throughput maximization and

transmission time completion problems are investigated in

[5], [6]. Multi-user scenarios have been considered, including

broadcast channels [7], [8] and multiple-access channels [9].

An overview of these recent advances in EH communication

systems is provided in [1], [2]. In contrast to the these works,

whose focus is on the reliable communication problem, here

we adopt an alternative approach and focus on the estimation

aspect of the problem, i.e. recovery of the unknown signal

measured by the sensors.

At the moment, the literature on the estimation aspect, in

particular investigations on the effect of the possible statisti-

cal correlation between the unknown signal values, is quite

limited. Previously, the degree of correlation of the unknown

signal has been shown to have a substantial impact on the opti-

mum sensor communication strategies without EH constraints

[10–13]. In the case of EH systems, only a limited number

of works address this issue. Optimal transmission strategies

for the estimation of independently identically distributed

(i.i.d.) Gaussian sources follow from the findings of [3], [14],

[15]. Majorization based arguments of [3] show that energy

allocations that are as balanced as possible are optimal for

i.i.d. sources. Estimation of i.i.d. sources is considered under

a source coding perspective, and an associated 2-D water-

filling interpretation is provided in [14]. A water-filling type

characterization of optimal solutions for uncoded transmission

are provided by [15]. The parameter estimation problems

considered in [16], [17] provide insights about the limiting

case, where the unknown value is fully spatially correlated

across sensors. In particular, a threshold based policy is shown

to be optimal under a binary energy allocation strategy [16].

Extensions of this framework, where energy sharing between

sensors are possible, is provided in [17]. Investigations in [18–

20] provide guidelines for Markov sources. A threshold based

strategy is found to be optimal for Markov sources where

the sensor transmits if the difference between the current

source value and the most recently transmitted value exceeds

the threshold [18]. Optimal power allocations for a vector

Gaussian Markov source under an unreliable channel with

packet erasures is considered in [19]. A characterization of the

optimal power allocations for temporally correlated Markov

sources is provided in terms of water-filling type solutions

under a source-coding framework in [20]. A distributed source
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coding framework for spatially correlated sources is consid-

ered in [21], [22].

Here we focus on the estimation of a time-correlated

Gaussian signal using an EH sensor. The EH sensor observes

the unknown signal and communicates its observations to the

remote fusion center under energy harvesting constraints. We

consider an amplify-and-forward strategy motivated by the

high computational cost of source and channel coding oper-

ations; and the fact that EH devices are typically low-power

devices that may not have the complex circuitry required for

these operations. We note that for estimation of a Gaussian

source, uncoded transmission (analog forwarding) is optimal

for additive white Gaussian (AWGN) channels under mean-

square error without EH constraints [23], [24]. This result has

also been extended to the energy harvesting scheme for i.i.d.

Gaussian signals in the asymptotic regime [15]. We focus on

the problem of optimal power allocation in order to minimize

the mean-square error (MSE) over a finite-length horizon at

the fusion center. Here we consider a general fading channel

scenario whereas an investigation for the static channel case

with limited proofs is provided in [25].

We adopt the off-line optimization scheme, where the sensor

knows the energy arrivals and the channel gains acausally. Off-

line optimization approaches have been investigated for vari-

ous scenarios, such as point-to-point channels [5], [6], broad-

cast channels [7], [8] and multiple-access channels [9] under

rate based performance criterion as well as for source coding

[14], [20], [21] and remote estimation scenarios [16]. From

an energy harvesting perspective, these type of approaches

are well-suited for scenarios where the energy arrivals can be

accurately predicted, such as RF energy harvesting scenarios

with dedicated power transfer scheduling as in [26], [27].

Off-line optimization approaches also provide benchmarks to

evaluate the fundamental performance limitations for energy

harvesting systems and structural guidelines which facilitate

possibly sub-optimal but efficient solutions for the general

case. Examples for this include the online near-optimal scheme

of [28] which uses the off-line directional water-filling solution

of [5] and the block transmission scheme of [29] which

is motivated by the most-majorized power allocation of [3]

optimal for the off-line scheme.

We provide the optimal power allocation strategies for a

number of illustrative scenarios. We present water-filling type

characterizations of the optimal strategies for uncorrelated

sources. These characterizations make use of a time-index

dependent threshold, which is a typical property of the EH

solutions [5]. For the parameter estimation case, i.e. fully

correlated signal scenario, the strategy that only sends the data

in the time slots with the most favorable channel conditions

is shown to be optimal. We also consider circularly wide-

sense stationary signals, which constitute a finite dimensional

analog of wide-sense stationary signals [30], [31]. We note

that, in general, the components of c.w.s.s. signals are possibly

correlated and the calculation of mean-square error requires

a matrix inversion as opposed to a direct sum of rate func-

tions as in the case of throughput based formulations [6–8].

Nevertheless, we show that water-filling type characterizations

of optimal strategies also hold for sampled low-pass c.w.s.s.

signals for fading channels. We also show that the most

majorized power allocation strategy, i.e. the power allocation

as balanced as possible, is optimal regardless of the degree

of correlation in the cases of c.w.s.s. signals with static

correlation coefficient and sampled low-pass c.w.s.s. signals

for a static channel. Although one may expect that as the signal

components become more correlated, strategies that send a

low number of signal components with higher power become

optimal instead of strategies that allocate power as uniform as

possible, the case of static correlation shows that this is not

always the case.

These results on c.w.s.s. signals complement the other

scenarios where balanced power allocations are found to be

optimal, in particular, the i.i.d. sources scenario that follows

from the findings of [3] and sensing of two correlated Gaussian

variables studied in a rate-distortion framework in [21]. We

note that, by definition, the covariance matrices associated

with c.w.s.s. signals are circulant [30], [31]. Due to the

asymptotic equivalence of sequences of circulant and Toeplitz

matrices, (which constitute the covariance matrices of wide-

sense stationary signals [31]), our investigations here can

be considered as an intermediate step towards understanding

limitations imposed by energy harvesting to sensing of wide-

sense stationary signals, which is a fundamental signal model

in the fields of communications and signal processing.

Motivated by the high complexity of the numerical solution

of the optimization problem for the general scenario, we

propose a number of low-complexity policies. These policies

are based on lower and upper bounds on the mean-square

error and provide possibly sub-optimal but nevertheless ef-

ficient approaches to the power allocation problem at hand.

Numerical evaluations illustrate the close performance of the

low-complexity policies to that of the optimal policies, and

demonstrate the effect of the energy harvesting constraints and

the degree of freedom of the signal on the system performance.

The rest of the paper is organized as follows. We present

the problem formulation in Section II. In Section III, the

optimal strategies for a number of scenarios are provided. In

Section IV, low-complexity strategies for the general case are

proposed. In Section V, we present heuristic policies for the

fading channel scenario. Numerical evaluations are provided

in Section VI. The paper is concluded in Section VII.

Notation: The complex conjugate transpose of a matrix A is

denoted by A†. The ith row, kth column element of a matrix A
is denoted by [A]ik . The positive semi-definite (p.s.d.) partial

ordering for Hermitian matrices is denoted by �. In denotes

the identity matrix with In ∈ Cn×n.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Signal Model

The aim of the remote estimation system is to estimate

the unknown complex proper zero-mean Gaussian signal x

defined over time as x = [x1, . . . , xt, . . . , xn] ∈ Cn×1,

x ∼ CN (0,Kx) with Kx = E[xx†], Px , tr[Kx]. We denote

the eigenvalue decomposition (EVD) of Kx as Kx = UΛxU
†,

where Λx ∈ Rn×n is the diagonal matrix of eigenvalues

and U ∈ Cn×n is a unitary matrix. Let s with s ≤ n be
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Fig. 1: Energy Harvesting Sensor

the number of non-zero eigenvalues of Kx, i.e. rank of Kx.

Let Ω denote the index set of non-zero eigenvalues. Hence

Kx = UΩΛx,sU
†
Ω is the reduced eigenvalue decomposition of

Kx where Λx,s ∈ Rs×s is the diagonal matrix of non-zero

eigenvalues and UΩ ∈ Cn×s is the sub-matrix formed by the

columns of U corresponding to the non-zero eigenvalues.

B. Sensing and Communications to the Fusion Center

Motivated by the high computational cost of source and

channel coding operations, and the fact that typical EH devices

are low-power devices which may not have the complex

circuity required for these operations, we consider an amplify-

and-forward strategy for the sensor similar to [15–17]. As

illustrated in Fig. 1, at time slot t, the sensor measures xt,

the unknown signal value at time t and communicates it to

the fusion center as follows:

yt = ht
√
atxt + wt, t = 1, . . . , n (1)

where ht ∈ C,
√
at ∈ R, yt ∈ C and wt ∈ C denote the

channel fading coefficient, the amplification factor adopted by

the sensor, the received signal at the fusion center, and the

channel noise respectively. Here w = [w1, . . . , wn] ∈ Cn×1

is complex proper zero-mean Gaussian with w ∈ Cn×1 ∼
CN (0,Kw), Kw = σ2

wIn, σ2
w > 0.

C. Energy Constraints at the Sensor

The average energy used by the sensor during transmission

of xt can be written as follows [15–17]

Jt=τE[||√akxt||2]=τatσ
2
xt
, (2)

where the transmit duration is taken as τ = 1 in the rest

of the paper. Communications system design under average

power constraints have been considered for a wide range of

scenarios, including amplify-forward strategy design [10], [11]

and linear encoder design [32] without the energy harvesting

constraints. Here we consider an amplify-forward scenario

under EH constraints. At each time slot t, an energy packet

of Et arrives at the battery. We consider the off-line scheme,

where Et have arbitrary, but known values, during the time

frame t = 1, . . . , n [6–9]. The sensor operates under the

following energy neutrality conditions

t
∑

l=1

Jl ≤
t
∑

l=1

El, t = 1, . . . , n. (3)

where the initial energy at the battery is zero. These conditions

ensure that the energy used at any time does not exceed the

available energy. Here we consider a device with a large

enough battery capacity so that no energy packet Et has to

be dropped.

D. Estimation at the Fusion Center

After receiving y = [y1, . . . , yn] ∈ C
n×1, the fusion center

forms the minimum MSE (MMSE) estimate of x, i.e. x̂ =
E[x|y] = KxyK

−1
y

y [33, Ch2]. We have

E[xy†] = Kxy = KxA
†H†,

E[yy†] = Ky = HAKxA
†H† +Kw,

with H = diag(ht), A = diag(
√
at) ∈ Rn×n. The resulting

MMSE can be expressed as [33, Ch2]

ε(A)=tr[Kx −KxyK
−1
y

K†
xy

]. (4)

Hence we have

ε(A) = tr
[

(Λ−1
x,s + γU †

Ω diag(|ht|2at)UΩ)
−1
]

(5)

where γ , 1/σ2
w and (5) follows from (4) and the Sherman-

Morrison-Woodbury identity [34]. Here the fusion center uses

the source and the noise statistics, including the covariance

matrices; and the amplification factors and the channel gains.

We note that the same type of later knowledge are needed at

the receivers when rate based performance metrics are used

[5–9]. We further discuss these points in Section II-E.

We note that by adopting a second-order analysis framework

and using the optimum linear MMSE filter instead of the

MMSE filter at the fusion center, the above error analysis can

be also performed under non-Gaussian statistics.

E. Problem Statement

Our goal is to design the optimal transmission strategies in

order to minimize the MMSE as follows

min
A

ε (A) (6a)

s.t.

t
∑

l=1

alσ
2
xl

≤
t
∑

l=1

El, t = 1, . . . , n− 1, (6b)

n
∑

l=1

alσ
2
xl

= Etot, (6c)

at ≥ 0, t = 1, . . . , n, (6d)

where the constraints (6b)-(6c) follow from (2), (3) with

Etot ,
∑n

l=1 El. Since for any optimum strategy all the

available energy should be used, (6c) is stated as an equality.

Here we consider a scenario where the sensor knows the

energy arrivals and the channel gains for a look-ahead window

of size n, i.e. off-line optimization as investigated for a wide-

range of scenarios, including rate-based metrics [6–9] and

source coding/estimation [14–16], [20], [21]. This type of off-

line optimization approaches are suitable for energy harvesting

scenarios with dedicated power transfer, for instance as in [26],

[27] where wireless power transfer is scheduled a priori. They

also provide benchmarks for performance limits of energy har-

vesting systems and structural guidelines for efficient solutions

in the general case. Examples for this include the online near-

optimal scheme of [28] utilizing the off-line directional water-

filling solution of [5] and the block transmission scheme of

[29] motivated by the off-line optimal most-majorized power

allocation of [3, Sec.7].
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We now discuss the convexity properties of the formulation

in (6). The objective function of (6) is a convex function

since tr[X−1] is convex for X ≻ 0 and X = Λ−1
x,s +

γU †
Ω diag(|ht|2at)UΩ is an affine function of the optimization

variables at’s. The constraints form convex constraints since

they are in the form of linear inequalities and equalities.

Hence (6) is a convex formulation and the Karush-Kuhn-

Tucker (KKT) conditions are necessary and sufficient for

optimality under the assumption of a strictly feasible point.

Optimal solutions can be found using the standard numerical

optimization tools, such as SDPT3, SeDuMi and CVX [35–

37].

III. OPTIMAL TRANSMISSION POLICIES

Here we discuss the structure of the solutions for a num-

ber of illustrative scenarios. These results motivate the low-

complexity policies proposed in Section IV.

A. Uncorrelated Sources

Here we consider the case where the components of x are

uncorrelated, hence Kx = diag(σ2
xt
), σ2

xt
> 0. The MMSE

can then be expressed as follows:

ε(A) =

n
∑

t=1

σ2
xt

1 + γ|ht|2σ2
xt
at
. (7)

The Lagrangian is given by

L =

n
∑

t=1

σ2
xt

1 + γ|ht|2σ2
xt
at

+

n−1
∑

T=1

ηTWT + νWn −
n
∑

t=1

µtat,

(8)

where

Wk =

k
∑

t=1

σ2
xt
at −

k
∑

t=1

Et, 1 ≤ k ≤ n (9)

Here ηT ∈ R, ηT ≥ 0, 1 ≤ T ≤ n − 1, ν ∈ R and µt ∈
R, µt ≥ 0, 1 ≤ t ≤ n are the Lagrange multipliers. Hence

together with the feasibility conditions, the KKT conditions

can be expressed as follows:

− γ|ht|2σ4
xt

(1 + γ|ht|2σ2
xt
at)2

+

n−1
∑

T=t

σ2
xt
ηT + σ2

xt
ν + µt = 0, ∀t

(10)

ηTWT = 0, T = 1, . . . , n− 1 (11)

µtat = 0, t = 1, . . . , n (12)

Solving the KKT conditions reveals that the optimal at can

be expressed as

at =
1

|ht|√γ

1

σ2
xt





√

σ2
xt

κt
− 1

|ht|√γ





+

(13)

where c+ is defined as c+ , max(0, c) and

κt ,

n−1
∑

T=t

ηT + ν (14)

can be interpreted as a time-index dependent threshold, which

is a typical property of the EH solutions [5], [14], [15], [20].

We note that optimum values of at have the same form and

they are tied only through a set of thresholds and the feasibility

conditions. These type of solutions are often referred to as

“water-filling” solutions. The solutions presented in [5], [14],

[15], [20] are some examples from the energy harvesting

literature. Other more standard water-filling solutions that do

not consider EH constraints include the water-filling solutions

for capacity maximization in [38, Ch. 10] and the reverse

water-filling solutions for rate-distortion function minimization

in [38, Ch. 13].

The solution structure in (13) dictates that xt is sent over

the channel with a non-zero power whenever the a priori

uncertainty in this component is relatively large, i.e. σ2
xt

>
κt/(|ht|2γ). If the a priori uncertainty in this component is

relatively small, i.e. this condition is not satisfied, at is chosen

as at = 0 and xt is not sent, hence the energy is saved

for future transmissions. We note that here 1/(|ht|2γ) can be

interpreted as the effective channel noise-to-signal ratio, hence

for a transmission to occur, the a priori signal uncertainty

should be above the effective noise-to-signal ratio scaled by

κt.

We note that optimal strategies become more generous with

energy expenditure as time passes for a static channel, i.e.

ht = 1. More precisely, we obtain the following:

Lemma 3.1: Let H = In. Let t− and t+ denote the ordering

of two time indices with 1 ≤ t− ≤ t+ ≤ n. Let σ2
xt+

≥
σ2
xt

−

> 0 . Then the following holds: i) at+σ
2
xt+

≥ at−σ
2
xt

−

;

ii) If at− > 0 , then at+ > 0.

Proof: We note that ηT ≥ 0, hence we have κt− ≥ κt+

i.e. κt is a decreasing function of t. Part (i) follows from

κt− ≥ κt+ and atσ
2
xt

= 1√
γ (

√

σ2
xt

κt
− 1√

γ )
+. Part (ii) follows

from Part (i) with at− > 0.

Part (i) states that if an energy of atσ
2
xt

has been used

before, one will not use less energy for any subsequent

component with higher variance. Part (ii) states that if a signal

component with a given variance has been sent before (i.e.

at− > 0), all the components with higher variance (i.e. higher

uncertainty) will also be sent over the channel in the future.

We now take a closer look to the solution structure in the

case where the source is white:
1) White Sources: Here Kx = σ2

xIn by definition. Under

H = In, the MMSE can be expressed as follows:

ε(A) =

n
∑

t=1

σ2
x

1 + γσ2
xat

. (15)

Such sources have been investigated in [15] using the KKT

conditions. Here we adopt an alternative approach and illus-

trate how optimal strategies can be found by adopting the

arguments of [3]. More precisely, we note the following:

Definition 3.1: [39, Ch.1] Let a = [a1, . . . , an] ∈ Rn and

b = [b1, . . . , bn] ∈ Rn. Then a is said to be majorized by b if

the following holds:

k
∑

t=1

a[t] ≤
k
∑

t=1

b[t], k = 1, . . . , n− 1 (16)
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n
∑

t=1

a[t] =
n
∑

t=1

b[t] (17)

Here a[t] denotes the components of a in decreasing order, i.e.

a[1] ≥, . . . ,≥ a[n]. This majorization relationship is denoted

by a ≺ b.

Majorization can be interpreted as a measure of how

balanced the distribution of the components of vectors are.

In particular, the following relationship holds: ∀a ∈ R:

ā ≺ a ≺ ã, where ā = (Sa/n)[1, . . . , 1] ∈ Rn and

ã = [0, . . . , 0, Sa, 0, . . . , 0] ∈ R
n has only one non-zero com-

ponent, where Sa =
∑n

t=1 at. Hence, every vector majorizes

the vector that has equal components and has the same total

sum, and every vector is majorized by the vector that has

only one non-zero component with the same total sum. The

following is of interest:

Definition 3.2: [39, Ch.3] Let S ⊆ Rn and f(·) : S → R.

Then f(·) is said to be Schur-convex on S if a ≺ b on S
implies f(a) ≤ f(b).

Lemma 3.2: [39, Ch.3] Let S ⊆ R, and g(·) : S → R be

convex. Then f(a) =
∑n

t=1 g(at) is Schur-convex.

By Lemma 3.2, (15) is Schur-convex since g(at) =
σ2
x

1+γσ2
x
at

is a convex function of at, at ≥ 0. Hence an optimal

solution is given by at that is majorized by all feasible power

allocations, i.e. the allocation which is as balanced as possible,

or alternatively as uniform as possible. Characterization of

such solutions have been studied in relation to maximization

of the rate function in [3]:

Lemma 3.3: [3, Thm.3] The power allocation that is

majorized by all feasible solutions of (6b), (6c), can be

characterized as follows:

ār =
Ēτk − Ēτk−1

τk − τk−1
, r = τk−1 + 1, . . . , τk (18)

τk = arg min
r∈{τk−1+1,...,τ̄}

Ēr − Ēτk−1

r − τk−1
, k = 2, . . . ,K (19)

where 1 ≤ r ≤ n, τ1 = 0 and τ̄ = τK+1 = n, and 1 ≤ K ≤ n
is the number of constant power sections.

Here we have adopted the notation ĒL =
∑L

t=1 Et/σ
2
x, at =

ār with r = t, ∀r, t for later notational convenience. Hence

we obtain the following:

Corollary 3.1: Let Kx = σ2
xIn, H = In. Then (18)-(19)

provide an optimal solution for (6).

Proof: The result follows from Schur-convexity of (15).

In the subsequent sections, we will utilize Lemma 3.3 to

provide optimal solutions in scenarios even when the source

is not white.

B. Parameter Estimation

We now consider the scenario where Kx is of rank 1, hence

there is effectively only one random variable to be estimated.

We refer to this case as the parameter estimation scenario. In

this case, Kx = UΩΛx,1UΩ where UΩ ∈ Cn×1, Λx,1 = Px.

Let ut ∈ C denote the tth component of UΩ. The correlation

coefficient between xt1 and xt2 is given by

ρt1t2 =
E[xt1xt2 ]

σxt1
σxt2

=
Pxut1u

†
t2

(P
1/2
x |ut1 |)(P 1/2

x |ut2 |)
=

ut1u
†
t2

|ut1 ||ut2 |
.

Hence, |ρt1t2 |= 1, ∀t1, t2. Hence, when Kx is of rank 1, the

signal can be said to be fully correlated. The error can be

expressed as

ε(A) =
1

1/Px + γ
∑n

t=1|ht|2|ut|2at
, (20)

=
1

1 + γ
∑n

t=1|ht|2σ2
xt
at
Px, (21)

where we have used |ut|2Px = σ2
xt

. Optimal solutions can be

characterized as follows:

Lemma 3.4: An optimum strategy for (6) for the parameter

estimation case is given by the following recursive procedure:

i) Initialization: Let at = 0, ∀t. Let i = 1; t∗ = 0.

ii) Let Si = [t∗ + 1, . . . , n]. Let Ec(t) =
∑t

l=t∗+1 El, t ∈ Si.

iii) Let t∗ = argmaxt∈Si
|ht|2. Then at∗ = Ec(t

∗)/σ2
xt∗

.

iv) If t∗ 6= n, update i as i = i+1 and go to Step-ii. Otherwise

stop.

The proof is given in Section VIII-A. This procedure sends

the data in the most favorable time slots, i.e. the time slots

with the highest channel gains, under the energy causality

constraints. In particular, in the first iteration, the time slot

with the highest gain is determined. Let us refer to this time

slot as ta. Hence in the first iteration, a transmission at ta with

all the energy stored in the battery up to ta is scheduled (hence

no transmission should occur up to ta). In the next iteration,

the time slot with the highest channel gain is found among the

time slots after ta. Let us refer to this time slot as tb, where

tb ≥ ta by construction. The previous procedure is repeated at

tb; all the energy stored in the battery between time slots ta
and tb is used for the transmission at tb and no transmissions

should occur in between ta and tb. This procedure is repeated

until the end of n time steps is reached.

We now focus on the static channel case, i.e. H = In: Since

we have
∑n

t=1 σ
2
xt
at = Etot by (6c), evaluating (21) for H =

In reveals that any feasible strategy is an optimum strategy

including the most uniform strategy given by (18)-(19). The

optimum error value is given by (1+γEtot)
−1Px. This result

shows that in the case of a fully correlated source and the

static channel, the correlation between the signal values can

be used to completely compensate for the unreliability of the

EH source as long as the total energy that arrives at the sensor

after n time steps stays constant.

C. A Lower Bound

We will now consider a lower bound on the performance.

In the upcoming sections, we will utilize this lower bound

to prove the optimality of some of the proposed policies. We

consider the following setting:

εLB = min
A

ε (A) (22a)
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s.t.

n
∑

l=1

alσ
2
xl

= Etot (22b)

subject to (6d). Compared to (6), here the energy causality

constraints are ignored and only the total energy constraint

is imposed. Hence (22) forms a relaxation of (6) and the

optimum value of (22) provides a lower bound for the optimum

value of (6). We also note that this scenario can be interpreted

as fixed battery scenario where a total energy of Etot is

available for usage over n time slots. Such scenarios have

been studied in distributed estimation scenarios under different

assumptions [10], [11].

Let H = In. To find an analytical expression, we focus

on the case where Λx,s is of the form Λx,s = Px

s Is, i.e. the

non-zero eigenvalues are all equal. This type of models have

been used to represent signal families with a low degree of

freedom in various signal applications, for instance as a sparse

signal model in the compressive sensing literature [13], [40].

We obtain the following result for εLB:

Lemma 3.5: Let Λx,s = (Px/s)Is, H = In. Then at =
Etot/Px, ∀t is an optimum strategy for (22). The optimal value

is given by εLB = 1
1+γEtot/s

Px.

The proof is presented in Section VIII-B. Hence, whenever

at = Etot/Px is a feasible allocation for (6), it is also

an optimal strategy. More precisely, we obtain the following

result:

Corollary 3.2: Let Λx,s = (Px/s)Is, H = In. If
1
Px

∑t
l=1 σ

2
xl

≤ 1
Etot

∑t
l=1 El, ∀t, then at = Etot/Px is an

optimum strategy for (6) with the optimal value 1
1+γEtot/s

Px.

A constant energy arrival scenario where the conditions of

Corollary 3.2 are satisfied is discussed in Section III-D.

D. Circularly Wide-Sense Stationary Signals

We now focus on the c.w.s.s signals, which constitute a finite

dimensional analog of wide-sense stationary signals [30], [31].

By definition, the covariance matrix associated with c.w.s.s.

signals is circulant, i.e. the matrix is determined by its first

row as [Kx]tk = [K1]modn(k−t), where K1 ∈ C1×n is the first

row of Kx [30], [31].

Due to the asymptotic equivalence of sequences of circulant

and Toeplitz matrices, (which constitute the covariance matri-

ces of wide-sense stationary signals [31]), our investigations

here can be considered as an intermediate step towards under-

standing limitations imposed by energy harvesting to sensing

of wide-sense stationary signals, which is a fundamental signal

model in the fields of communications and signal processing.

In particular, one method for computation of the estimation

error of a wide-sense stationary discrete time signal is to

consider finite sections of the signal with increasing length.

Covariance matrices of these finite length signals are given by

a sequence of Toeplitz matrices. Such a computation of the

estimation error requires evaluations of matrix operations on

Toeplitz matrices. Due to the fact that the unitary transform in

the eigenvalue decomposition of circulant matrices is always

given by the DFT matrix, matrix operations are relatively

simple when dealing with circulant matrices compared to

Toeplitz matrices [31]. In contrast, there is no fixed unitary

transform associated with finite sections of Toeplitz matrices.

Nevertheless, using the asymptotic equivalence of Toeplitz and

circulant matrices, one may evaluate the estimation error for

w.s.s. signals [31], as illustrated in [31] without EH constraints.

Due to stationarity, we have σ2
xt

= σ2
x = Px/n, ∀t. The

unitary matrix U in the EVD of Kx for a circularly wide-

sense stationary signal is given by the DFT matrix [30], [31].

Let Fn denote the DFT matrix of size n × n, i.e. [Fn]tk =
(1/

√
n) exp(−j 2π

n (t − 1)(k − 1)), 1 ≤ t, k ≤ n, where j =√
−1. Hence, the reduced EVD of Kx is given by Kx =

Fn
ΩΛx,sF

n
Ω
†, where Λx,s = diag(λk) ∈ Rs×s and Fn

Ω ∈ Cn×s

is the matrix that consists of s columns of Fn corresponding

to non-zero eigenvalues.

Constant energy arrival scheme with Λx,s = (Px/s)Is: To

gain some insight into the optimal power allocations in the

case of c.w.s.s. signals, we now consider the case with Λx,s =
(Px/s)Is under constant energy arrival scheme, i.e. Et = E,

∀t. We observe the following: Due to σ2
xt

= Px/n, ∀t, the

conditions of Corollary 3.2 are satisfied for this scenario.

Hence the lower bound presented in Lemma 3.5 is achieved

even under the energy causality constraints in such scenarios.

We now go back to general c.w.s.s. scenario with arbitrary

Et’s. We obtain the following, which we will utilize later:

Lemma 3.6: Let H = In. Let ei ∈ Rn, 1 ≤ i ≤ n denote

the ith unit vector. Let the EVD of Kx be given by Kx =
FnΛxF

n† with Λx = βIn + αeie
†
i with −β < α, β > 0,

α, β ∈ R. Then (18)-(19) is an optimal strategy for (6).

The proof is given in Section VIII-C. This eigenvalue

distribution model covers a number of signal families with

appealing interpretations. We now identify two such cases,

i.e. almost white sources and sources with static correlation

coefficient.

1) Almost White Sources: When xt is white, we have

Kx = σ2
xIn. Hence the EVD of Kx is given by Kx = UΛxU

†

with Λx = σ2
xIn, where U is an arbitrary unitary matrix since

UU † = In for all unitary matrices. Motivated by this, we refer

to the case where Λx ∝ In − ǫeje
†
j , 0 < ǫ < 1 as an almost

white source.

We obtain the following result as a direct corollary to

Lemma 3.6: Let H = In. Let x be almost white with

Kx = FnΛxF
n†, Λx = In − ǫeje

†
j , 0 < ǫ < 1. Then (18)-

(19) is an optimal strategy for (6). This result shows that even

when the source is not exactly white but only close to being

white as defined above, the most uniform feasible allocation

is still an optimal solution.

2) Static Correlation Coefficient: We now consider the

family of signals whose covariance matrix has the following

form

K(ρ) =
Px

n





1 ρ . . . ρ
. . . . . . . . .
ρ . . . . . . 1



 , (23)

where K(ρ) ∈ Rn×n, n ≥ 2, 0 ≤ |ρ|≤ 1, ρ ∈ R. Hence,

the correlation coefficient between xi and xj , i 6= j does not

depend on i, j. We note that for K(ρ) to be a valid covariance
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matrix, it should be positive semi-definite, i.e. K(ρ) � 0.

Hence ρ should also satisfy ρ(n − 1) + 1 ≥ 0. This result

is proven alongside with the result for optimal strategies in

Lemma 3.7.

We obtain the following result for optimal strategies:

Lemma 3.7: Let H = In and Kx = K(ρ), ρ ∈ R, 0 ≤
|ρ|≤ 1, ρ(n−1)+1 ≥ 0. Then (18)-(19) is an optimal strategy

for (6).

Proof: Let v be the first row of Kx, i.e. v =
(Px/n)[1, ρ, . . . , ρ] ∈ Cn. Let z = [z1, . . . , zn] =
[λ1, . . . , λn] ∈ R

n be the vector of eigenvalues. The relation-

ship between the eigenvalues and the first row of a circulant

matrix is given by z =
√
nFnv [31, Ch.3]. Hence we obtain

z1 = (Px/n)(ρ(n−1)+1) and zi = (Px/n)(1−ρ), 2 ≤ i ≤ n.

Thus, Lemma 3.6 applies and (18)-(19) is an optimal strategy.

We note that to have zi ≥ 0, ∀i, we should have ρ ≤ 1 and

ρ(n− 1) + 1 ≥ 0. Since a Hermitian matrix is positive semi-

definite if and only if all of its eigenvalues are non-negative,

the conditions ρ ≤ 1 and ρ(n − 1) + 1 ≥ 0 are necessary

and sufficient for Kx to be positive semi-definite and a valid

covariance matrix. �

Remark 3.1: Regardless of the value of ρ, i.e. the level of

statistical dependency of the signal components, the strategy

that allocates the power as balanced as possible is an optimal

strategy.

Although one may expect that as the signal components

become more correlated, strategies that send a low number

of signal components with higher power become optimal

instead of strategies that allocate power as uniform as possible,

Lemma 3.7 shows that this is not always the case and uniform

power allocation strategies may continue to be optimal. These

results complement the other scenarios where such allocations

are found to be optimal, in particular the i.i.d. sources sce-

nario that follows from the findings of [3] as discussed in

Section III-A1 and the sensing of two correlated Gaussian

variables studied in a distributed source coding framework in

[21, Prop.3].
3) Low-Pass Signals: Let n/s ∈ Z. Let us order the

eigenvalues of Kx so that λk denotes the eigenvalue that

corresponds to the eigenvector in the kth column of Fn, where

Fn is as defined above. Here we consider low-pass signals,

i.e. signals for which Ω = {1, . . . , s}, and λ1 =, . . . ,= λs =
Px/s, and the rest are zero. Hence we have Kx = Fn

ΩΛxF
n
Ω
†,

Λx = (Px/s)Is.

Similar to their deterministic counterparts, given σ2
w = 0,

low-pass c.w.s.s. signals can be recovered from their equidis-

tant samples with zero mean-square error when the number of

samples is larger than s, or equivalently the spacing between

the samples satisfies ∆ ≤ n/s [13]. Motivated by this, we

consider communication strategies that send one out of every

∆ = n/s samples, i.e. strategies in the form of

at =

{

≥ 0 if t = ∆r + td + 1, 0 ≤ r ≤ m− 1

0 otherwise
(24)

where m = n/∆ is the number of samples sent, and td ∈
0, . . . ,∆− 1, the initial delay before sending the first data, is

fixed.

We now consider the error associated with the scenario

where the sensor only sends these equidistant samples to the

fusion center. Let fn = exp(−j 2π
n ). Here, Fn

Ω consists of the

first s columns of Fn. Hence, equidistantly row sampled Fn
Ω

can be associated with the DFT matrix of size s × s, F s, as

follows

[Fn
Ω ](n/s)r+td+1,k+1 =

1√
n
f ((n/s)r+td)k
n , (25)

=
1√
n
f rk
s f tdk

n , (26)

=

√

s

n
[F s]r+1,k+1f

tdk
n , (27)

where 0 ≤ k ≤ s − 1, 0 ≤ r ≤ s − 1. Let D = diag(dk) ∈
Cs×s, dk = f tdk

n . Let ār , a∆r+td+1. The error can be

expressed as follows

ε(Ā) = tr[(
s

Px
Is + γ

s

n
DF s†H̄†Ā†ĀH̄F sD)−1], (28)

= tr[(
s

Px
Is + γ

s

n
H̄†Ā†ĀH̄)−1], (29)

=

s−1
∑

r=0

1
s
Px

+ s
nγār|h̄r|2

, (30)

=
s−1
∑

r=0

1

1 + γārσ2
x|h̄r|2

Px

s
, (31)

where Ā = diag(
√
ār) ∈ Rs×s and H̄ = diag(h̄r) ∈ Rs×s,

h̄r = h∆r+td+1. Here, (29) follows from the fact that F s and

D are unitary matrices. In (31), we have used the fact that

σ2
x = Px/n. Hence under the equidistant sampling strategy of

(24), (6) can be equivalently expressed as

min
ār

s−1
∑

r=0

1

1 + γārσ2
x|h̄r|2

(32)

subject to
∑t

r=0 ārσ
2
x ≤∑t

r=0
¯̄Er, t = 0, . . . , s− 2 and

∑s−1
r=0 ārσ

2
x = Etot and ār ≥ 0. Here ¯̄Er =

∑∆r+td+1
t=t0

Et

with t0 = max(0,∆(r − 1) + td + 2).

Remark 3.2: We observe that (32) and the objective

function of Section III-A, i.e. the error expression in (7), have

the same form. Hence with appropriate notational modifica-

tions, the water-filling type characterization of optimal power

allocations provided by (13) also applies to (32).

We now consider the static channel case, i.e. H = In. We

obtain the following result:

Lemma 3.8: Let H = In, ∆ = n/s, 0 ≤ td ≤ ∆ − 1.

An optimal strategy for (6) under the setting in (24), i.e. an

optimal strategy for (32), is given by (18)-(19) with ār ,

a∆r+td+1, Ēr =
∑∆r+td+1

t=1 Et/σ
2
x and τ1 = 0, τ̄ = τK+1 =

s, and 1 ≤ K ≤ s.

Proof: By (31), under ht = 1, the error can be expressed as

ε(Ā) =
∑s−1

r=0
1

1+γārσ2
x

Px

s . Due to Lemma 3.2, this is a Schur-

convex function. The result then follows from Lemma 3.3. �

This strategy allocates the power as uniformly as possible

among the s samples sent. Hence the most balanced feasible

power allocation is an optimum strategy for a sampled low-

pass c.w.s.s. signal.
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The equidistant sampling strategy can also provide optimal

solutions for the general scenario of (6) even when the

equidistant sampling constraint is not imposed to achievable

sensor strategies:

Corollary 3.3: Let H = In, ∆ = n/s, 0 ≤ td ≤ ∆ − 1.

If ār = Etot/(sσ
2
x), ār , a∆r+td+1 is feasible for (6), it is

an optimal strategy for (6) with an optimum error value of

εLB = 1
1+γEtot/s

Px.

Proof: By (31) and ār = Etot/(sσ
2
x), the error can be

expressed as = 1

1+γ
Etot

s

Px. We observe that the lower bound

in Lemma 3.5 is achieved, hence ār is an optimal strategy. �

Hence, if exactly uniform power allocation over equidistant

samples is feasible, sending equidistant samples is an optimal

solution for c.w.s.s. signals for the general scenario in (6)

under static channel.

In general, there may be more than one optimal strategy

for (6). We now provide an example for low-pass c.w.s.s.

signals. Let us consider Et = E ∀t for a static channel. In this

scenario, both of the following power allocations are optimal:

i) Sua: uniform power allocation over all the components, i.e.

at = Etot/(nσ
2
x) = E/σ2

x, ∀t; ii) Sue: uniform allocation

over the equidistant samples, i.e. ār = nE/(sσ2
x), ∆ = n/s,

td = ∆ − 1. Here optimality of Sua and Sue follow from

Corollary 3.2 and Corollary 3.3, respectively.

E. Discussions

Most majorized solutions play a central role in the above

investigations. Here complexity concerns constitute an impor-

tant motivating factor. Another motivating point is the fact that

approaches that try to mimic the most majorized solution, i.e.

approaches that allocate power as uniformly as possible, are

used quite commonly as practical heuristic approaches. Hence,

determining in which scenarios this approach is optimal is of

interest, as done above.

In the previous sections, we have presented various scenar-

ios where the objective function is Schur-convex and the most

majorized solution is an optimal solution. Nevertheless, we

note that Schur-convexity is not a necessary condition for the

optimal solution to be the most majorized one. To illustrate this

point, we note the following example where Schur-convexity

is not satisfied but the optimal allocation is the most majorized

one:

Let n = 2, |h1|= |h2|= 1, γ = 1, σ2
x1

> σ2
x2

, and E1 ≤ E2.

Let x1 and x2 be uncorrelated. By (7), the objective function

can be expressed as

ε =
σ2
x1

1 + J1
+

σ2
x2

1 + J2
, (33)

where Ji = σ2
xi
ai, i = 1, 2. The energy harvesting constraints

can be expressed as J1 ≤ E1 and J1 + J2 = E1 + E2.

Since ε is not a permutation symmetric function of Ji’s, and

permutation symmetry is a necessary condition for Schur-

convexity [39, Thm. A4], ε is not a Schur-convex function

of power allocations.

Evaluating (33) reveals that one should allocate as much

power as possible to J1. In particular, one may parametrize

the power allocations as J1 = Em−Ed, J2 = Em+Ed, where

Em , (J1 + J2)/2 = (E1 + E2)/2 and Ed , (J2 − J1)/2
with Ed ≥ (E2 − E1)/2 ≥ 0 due to E1 ≤ E2, J1 ≤ E1 and

J1 + J2 = E1 + E2. The objective function in (33) can be

written as
σ2
x1

+σ2
x2

+Em(σ2
x1

+σ2
x2

)+(σ2
x1

−σ2
x2

)Ed

1+2Em+E2
m
−E2

d

. Since σ2
x1

>

σ2
x2

, this function is minimized by the power allocation with

the smallest feasible Ed value, which is given by (E2−E1)/2.

Hence the optimal solution is in the form J1 = E1, J2 = E2.

This is exactly the most majorized solution under these energy

arrivals. Hence optimal power allocation is the most majorized

one even if the objective function is not Schur-convex.

IV. LOW-COMPLEXITY TRANSMISSION POLICIES

We now propose a number of heuristic schemes. These

schemes provide possibly sub-optimal but nevertheless low-

complexity schemes. We illustrate the performance of these

schemes in Section VI.

The objective function in the optimization formulation in

(6) includes a matrix inverse which leads to a computation-

ally challenging optimization formulation. Standard numerical

optimization tools, such as SDPT3, SeDuMi and CVX [35–

37] convert the problem into a semi-definite programming

problem, whose computational complexity is in the order of

O(n4.5) using an interior-point method [41]. Due to this high

computational complexity, it is of interest to find schemes

which avoid the matrix inverse in (5). In particular, we

consider the following upper bound

ε(A) ≤
n
∑

t=1

σ2
xt

1 + γ|ht|2σ2
xt
at
, (34)

where the inequality follows from the fact that the right

hand side of (34) is the error of the scheme where the

possible correlation between the signal values are ignored. In

particular, we observe that ε(A) =
∑n

t=1 E[|xt−E[xt|y]|2] ≤
∑n

t=1 E[|xt−E[xt|yt]|2] =
∑n

t=1

σ2
xt

1+γ|ht|2σ2
xt

at
. Here the first

equation is the standard MMSE expression [33, Ch2]. The

inequality follows from the fact that E[|xt − E[xt|y]|2] ≤
E[|xt − E[xt|yt]|2], where the right-hand side is the mean-

square error associated with estimating xt using only yt and

the left-hand side is the error of estimating xt using the larger

set y = [y1, . . . , yn].
Utilizing the fact that the bound in (34) couples the op-

timization variables only through a summation, we propose

block based minimization of this upper bound. Let 1 ≤ lw ≤
n ∈ Z with n/lw ∈ Z be the block size. Let ti = (i−1)lw+1.

At time index ti, i = 1, . . . , n/lw, the sensor looks ahead lw
time steps and designs the following strategy:

min
ati

,...,ati+1−1

ti+1−1
∑

t=ti

σ2
xt

1 + γ|ht|2σ2
xt
at

(35a)

s.t.

t
∑

l=ti

alσ
2
xl

≤
t
∑

l=ti

El, t = ti, . . . , ti+1 − 2, (35b)

ti+1−1
∑

l=ti

alσ
2
xl

=

ti+1−1
∑

l=ti

El, (35c)
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The overall strategy at, ∀t is obtained by solving (35) over

n/lw non-overlapping windows. We observe that any solution

found by this approach is a feasible solution for (6). We

note that here the main gain in computational complexity is

due to using the upper bound. Nevertheless, schemes with

lw < n are of interest, since these need less knowledge on

system conditions, for instance future energy arrivals. The

performance of (35) together with a discussion of numerical

efficiency is presented in Section VI.

We now focus on the case where the non-zero eigenvalues

are equal, i.e. Λx = (Px/s)Is. We consider the following

lower bound:

Lemma 4.1: Let Λx = Px

s Is. The following holds:

ε(A) ≥ Px

s

(

n
∑

t=1

1

1 + γ|ht|2atσ2
xt

+ s− n

)

. (36)

The proof is given in Section VIII-D. We observe that

this bound also avoids the matrix inverse in the optimization

formulation. Hence, we propose block based minimization of

right-hand side of (36) as a heuristic strategy as follows

min
ati

,...,ati+1−1

ti+1−1
∑

t=ti

1

1 + γ|ht|2atσ2
xt

(37)

subject to (35b), (35c). We observe that for the static channel

case, by Lemma 3.2, the objective function is Schur-convex

and the optimal strategies are given by the allocation that

makes atσ
2
xt

distribution as balanced as possible. Hence the

solutions follow the characterization provided by (18)-(19)

with appropriate notational modifications. In particular for

lw = n, we will have ār = arσ
2
xr

and Ēr =
∑r

t=1 Ēt. We

note that in the general fading channel case, there is no known

explicit solution and (37) should be solved numerically. This

can be done, for instance, by using the off-the-shelf numerical

optimization solvers or using a tailored numerical solution for

the KKT conditions of Section III-A.

We observe that for c.w.s.s. signals (and other signal models

with σ2
xt

= σ2
x = Px/n), the upper bound given by (34)

and the lower bound provided by (36) have the same form,

apart from some scaling factors and additive terms that do not

depend on at. Hence, the error performance is bounded as

follows:

(εB + s− n)
Px

s
≤ ε(A) ≤ εB

Px

n
, (38)

where εB is defined as εB ,
∑n

t=1
1

1+γ|ht|2at
Px

n

. For a

given εB , the gap between the upper and lower bounds

becomes smaller as the gap between s and n decreases. This

is consistent with the fact that as s gets closer to n, the signal

can be said to be more close to an uncorrelated source. In

the limiting case of s = n, the bounds are equal as expected,

since the inequalities that give rise to both the upper and lower

bounds hold with equality in the uncorrelated case.

V. HEURISTIC POLICIES UNDER ONLINE KNOWLEDGE OF

CHANNEL FADE LEVELS

We now focus on the effect of unknown channel coefficients

on the error performance. In practice, estimation of channel

coefficients are done through pilot signals, hence long term

channel coefficient estimation is not practical. We assume that

channel coefficients and energy arrivals are i.i.d. over time

and consider the following approaches for varying levels of

channel state information at the sensor:

Adaptive Policy: We assume that at time t, the channel co-

efficients up to time t, i.e. h1, . . . , ht, are known whereas only

statistical knowledge for the future coefficients ht+1, . . . , hn

are available. Let Bk =
∑k

l=1 El −
∑k

l=1 alσ
2
xl

denote the

energy at the battery at the end of time slot k. At time step

t, at is found by setting at = a
(t)
t , where a

(t)
t is found by

solving the following optimization problem:

min
a
(t)
t

,...,a(t)
n

σ2
xt

1 + γ|ht|2σ2
xt
a
(t)
t

+

n
∑

l=t+1

σ2
xl

1 + γE[|hl|2]σ2
xl
a
(t)
l

(39)

subject to a
(t)
k ≥ 0 and

∑k
l=t a

(t)
l σ2

xl
≤∑k

l=t El + Bt−1, ∀k
such that n ≥ k ≥ t. At each time step, at is found by using

the current fading coefficient and the mean of the fade level

values for the future. This procedure is repeated at each time

step. This policy utilizes (34) and it is partially motivated by

the promising numerical performance of the policies based

on (34) for the known channel coefficients case, which is

illustrated in Section VI. We note that due to usage of mean

value for the future channel coefficients, (39) is no longer an

upper bound for the mean-square error.

Balancing Policy: Here a design strategy that is completely

independent of the channel state information is considered. At

each time step t < n, at is set as

at =
1

σ2
xt

min (Bt−1 + Et,E[Et]),

where Bt−1 + Et is the energy available for usage at time

slot t. At the last step, we have an = 1
σ2
xn

(Bn−1 + En).

Hence whenever possible, the amount spent is set to the

average energy rate, except the last time step where all the

available energy is used. This policy is a heuristic approach

for balancing the energy allocated to each component.

VI. NUMERICAL RESULTS

We now present the numerical evaluations. Let n=16, s=
4, 14, Px =n, σ2

w =0.1, Λx,s = Px

tr[Λ]Λ, Λ=diag(αk), αk =

0.7k, 0 ≤ k ≤ s − 1. The unitary matrix U is drawn from

the uniform (Haar) unitary matrix distribution [42] and fixed

throughout the experiments unless otherwise stated. We denote

this unitary matrix with Ua and the DFT matrix with Uf .

The energy arrivals are generated with Et = δtE0, E0 = 1,

where δt’s are i.i.d. Bernoulli with probability of success p,

0 ≤ p ≤ 1. We generate ht as i.i.d. complex proper Gaussian

with ht ∈ C, ht ∼ CN (0, σ2
h), σ2

h ∈ {1, 10}. The average

error over Nsim = 500 realizations are reported. The error

is normalized as ε/Px. We refer to σh
2/σw

2 as the channel

signal-to-noise ratio (SNR). The solutions provided by (6),

(35) and (37) are denoted by AO , AU -lw, AL-lw, respectively.

The greedy approach where the energy is spent as soon as it

arrives is denoted by AG and the lower bound in (22) that

ignores the energy neutrality conditions is denoted by AB . The
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Fig. 2: Normalized MMSE versus energy arrival rate, s = 4
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Fig. 3: Normalized MMSE versus energy arrival rate, s = 14

adaptive and the balancing policy of Section V are denoted by

AA and AE , respectively.

The error versus energy arrival rate curves are presented

in Fig. 2 and Fig. 3, for s = 4 and s = 16, respectively.

As expected, due to the low degree of freedom of the signal

and the possible high correlation between the signal values,

we observe that it is possible to obtain lower error values in

Fig. 2 compared to Fig. 3 when the corresponding scenarios

in the sub-figures are compared. In both scenarios, the low-

complexity scheme with lw = n, AU -n, is remarkably suc-

cessful. In particular, the performance of AO and AU -n are

almost indistinguishable from each other in Fig. 3 whereas

there exists a performance gap in the case of low channel

SNR and for the signal with low degree of freedom in Fig. 2a

and Fig. 2c. This is supported by the need to leverage possible

correlation structure in the signal under possibly unfavorable

channel conditions. In the case of Fig. 3 the close-to-optimal

performance of AU -n is supported by the relative closeness

of the source to an uncorrelated source due to the relatively

high degree of freedom provided by s = 14. We note that

despite this close average performance, the performance gap

may be relatively significant for some realizations, and the

power allocations provided by AO and AU -n may be different.

We illustrate these points later in this section.

The error versus energy arrival rate curves for the c.w.s.s.

scenarios are presented in Fig. 2c and Fig. 3c, for s = 4
and s = 14, respectively. Here we have considered the

flat eigenvalue distribution scenario with Λx,s = Px

tr[Λ]Λ,

Λ=diag(αk), αk =1, 0 ≤ k ≤ s − 1 so that AL-lw applies.

The performance of the low-complexity policies AU -lw and

AL-lw are very close, hence we only present the performance

of AL-lw to avoid clutter in the figures. We observe that again

with small s, it is possible to obtain lower error values. Similar

to AU -n, the performance of AL-n is close to the performance

of optimal policies.

We now discuss the performance of the policies that do

not require the knowledge of future channel coefficients, i.e.

AG, AA and AE . Compared to the performance of the greedy

policy AG, performances of the proposed heuristic policies

AA and AE are observed to be quite close to the performance

of the offline policy AO. We further discuss the performance

of AA in terms of its gap with AO below.

We now take a closer look at the performance gap between

the optimal policies and the low-complexity policies. Let eX
denote the error associated with the strategy AX . Let us

denote the error gap as eG = eX − eO, for a given EH

realization. We present the average and the standard deviation

of eG over Nsim different simulation realizations in Fig. 4
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and Fig. 5 for X = AU -n and X = AA respectively. Here

the deviation is presented with an error bar with a length of

one standard deviation on the mean values. Here the scenario

with U = Ua, σ2
h = 1 is considered whose error values were

presented in Fig. 2a and Fig. 3a. We note that, consistent with

the presentation of error values, we report the gaps on the

normalized error values, i.e. ε/Px. We observe that for AU -n,

both the mean and the standard deviation are small, illustrating

that for most of the EH realizations low-complexity policy

AU -n provides performance relatively close to the optimal.

This performance gap is relatively larger for the online strategy

AA which is consistent with the fact that this strategy does

not use future channel state information. We note that the

performance gap of AL-n behaves similar to the gap of AU -n,

hence it is not presented here to avoid repetition in the figures.

The power allocations provided by AO and AU -n may be

different even in the scenarios where the performance is very

close. We now provide a scenario that illustrates this. Let x
be a low-pass c.w.s.s. with s = 4 with Λx,s = Px

tr[Λ]Λ, Λ =

diag(αk), αk = 1, 0 ≤ k ≤ s − 1 and |ht|2= 10, σ2
w = 0.1.

Let Et = 1, for t = 4k, 1 ≤ k ≤ s and zero otherwise. By

Corollary 3.3, the uniform allocation over equidistant samples,

i.e. at = 1 for t = 4k, 1 ≤ k ≤ s and zero otherwise is an

optimal strategy. On the other hand, AU -n provides the most

majorized strategy which is given by at = 0.25 for 4 ≤ t ≤
n−1, an = 1 and zero otherwise. These allocations result in a

normalized error of approximately 9.9×10−3 and 1.14×10−2

for AO and AU -n, respectively.

We now discuss the numerical efficiency of the sub-optimal

approaches of Section IV. The average computational time of

TABLE I:

Normalized Average Computational Time

AO AU -2 AU -n/2 AU -n

n = 16 1 2.64 0.70 0.41

n = 32 5.42 5.19 0.82 0.55

n = 64 80.50 10.32 1.11 0.85

AU together with that of AO is provided in Table I for n = s,

p = 0.3. The optimization problem solved by AL has the same

structure as the one for AU , hence it leads to similar values

and is omitted. In Table I, the values are normalized with the

value for AO with n = 16. We observe that although the com-

putational time increases for all approaches with increasing n,

this effect is most prominent for the approach that directly

solves the optimization problem in (6) i.e. AO . Comparing

the computational time for AU -lw for different values of lw,

the total time is observed to be higher with small lw compared

to lw = n. This is due to usage of smaller length windows

which requires n/lw calls to the optimization procedure. It

is observed that AU becomes the most numerically efficient

approach for all lw with increasing n. We observe that as

n increases, the gap between the computational time values

for the direct optimization approach AO and the sub-optimal

approach of AU -n increases significantly. Together with the

close performance of AU -n to AO , this supports the usage of

AU -n as a possibly sub-optimal but nevertheless a numerically

efficient approach.

VII. CONCLUSIONS

We have focused on the remote estimation of a time-

correlated signal using an EH sensor. We have considered

the problem of optimal power allocation at the sensor under

energy causality constraints in order to minimize the MSE at

the fusion center. Contrary to the traditional line of work, the

correlation between the signal values was an important aspect

of our formulation. We have provided structural results for the

optimal power allocation strategies for a number of scenarios.

In the case of circularly wide sense stationary signals, we

have showed that the optimal strategy can be characterized

as a water-filling solution for sampled low-pass signals for

a fading channel. We have showed that the most majorized

power allocation strategy, i.e. the strategy where the power

allocation is as balanced as possible, is optimal regardless of

the degree of correlation in the case of c.w.s.s. signals with a

static correlation coefficient and in the case of sampled low-

pass c.w.s.s. signals for a static channel. These results provided

important insights into remote estimation of correlated signals

under EH constraints that cannot be obtained by considering

uncorrelated signals.

We have proposed low-complexity policies for the general

case based on upper and lower bounds on the mean-square

error. Numerical evaluations have illustrated the performance

of low-complexity and optimal policies. The promising per-

formance of the low-complexity approaches and the improve-

ments offered by these approaches in terms of computational

time, support the usage of these low-complexity policies as
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promising, possibly sub-optimal but nevertheless numerically

efficient strategies.

VIII. APPENDIX

A. Proof of Lemma 3.4

We note that in the parameter estimation case, minimizing

ε(A) is equivalent to maximizing the sum
∑n

t=1|ht|2σ2
xt
at.

We first consider the case without the energy causality con-

straints, i.e.

max
Jt

n
∑

t=1

|ht|2Jt (40)

subject to
∑n

t=1 Jt = Etot, Jt ≥ 0 where Jt = σ2
xt
at. The

optimal strategy for (40) is given as follows: qt∗ = Etot, t
∗ =

argmax1≤t≤n|ht|2, and Jt = 0, if t 6= t∗. Hence the optimal

strategy is in the form of transmission with all the available

energy in the slot with the highest gain. Optimality of this

strategy can be seen, for instance, by observing that any other

strategy will achieve a smaller objective function since |ht|2≤
|ht∗ |2 for t 6= t∗. We note that if different time slots have

the same maximum channel gain, i.e |ht∗ |2= |ht1 |2= |ht2 |2,

t1 6= t2, the energy can be allocated arbitrarily between these

time slots.

We now go back to the original setting of Lemma 3.4

with the energy causality constraints. We observe that at

the first iteration, the procedure gives the optimal possible

allocation for the energy allocation up to time t∗. We also

observe that one cannot improve the objective function by

saving some of this energy for future transmissions since

|ht|2≤ |ht∗ |2 for t > t∗. Similar to the previous case, if we

have |ht∗ |2= |ht1 |2= |ht2 |2, t1 6= t2, the energy saved up

to t = max(t1, t2) can be allocated to the transmissions at

t1 and t2 in an arbitrary manner (under the condition energy

causality constraints are not violated) without any change in

the objective function. Thus, at any iteration i, Step-iii of

Lemma 3.4 provides an optimal allocation up to t∗ at that

iteration. Hence the procedure given in Lemma 3.4 provides

an optimal strategy.

B. Proof of Lemma 3.5

Let RA = Px

s U †
Ω diag(at)UΩ. We observe that

tr[RA] =
Px

s
tr[U †

Ω diag(at)UΩ], (41)

=
Px

s
tr[diag(at)UΩU

†
Ω], (42)

= tr[diag(at)Kx], (43)

=

n
∑

t=1

atσ
2
xt
, (44)

= Etot, (45)

where we have used tr[AB] = tr[BA] for matrices with

appropriate dimensions in (42), Kx = Px

s UΩU
†
Ω in (43) and

(22b) in (45). We now consider the error expression

ε(A) = tr

[

(
s

Px
Is + γU †

Ω diag(at)UΩ)
−1

]

, (46)

=
s
∑

i=1

1

1 + γλi(RA)

Px

s
, (47)

≥
s
∑

i=1

1

1 + γ tr[RA]
s

Px

s
, (48)

where λi(RA) denotes the eigenvalues of RA. Since (47)

is a Schur-convex function of λi(RA), it is lower bounded

by (48) which is the error associated with a uniform eigen-

value distribution for RA, i.e. λi(RA) = tr[RA]/s =
Etot/s, i = 1, . . . , s. This lower bound in (48) is

achievable by choosing at = Etot/Px. In particular, this

choice of at results in λi(RA) = Etot/s, since RA =
(Px/s)U

†
Ω diag(Etot/Px)UΩ = (Etot/s)Is where we have

used U †
ΩUΩ = Is.

C. Proof of Lemma 3.6

We first recall that a function of n variables whose value

does not change for any permutation of the input is called

(permutation) symmetric [39]. We rewrite ε(A) to show it is

a symmetric function of a1, . . . , an as follows

ε(A) = tr
[

(β̄In + ᾱeje
†
j + γFn† diag(at)F

n)−1
]

, (49)

= tr

[

R−1 −
R−1ᾱeje

†
jR

−1

1 + ᾱe†jR
−1ej

]

, (50)

= tr
[

R−1
]

−
ᾱe†jR

−2ej

1 + ᾱe†jR
−1ej

, (51)

where ᾱ = 1/(α+ β)− 1/β, β̄ = 1/β > 0 and

R = β̄In + γFn† diag(at)F
n = Fn† diag(β̄ + γat)F

n.

Here (50) follows from the Sherman-Morrison-Woodbury

identity with 1 + ᾱe†jR
−1ej 6= 0 [34] and (51) follows from

tr[AB] = tr[BA] for matrices with appropriate dimensions.

Let θt = 1/(β̄ + γat), hence R = Fn† diag(1/θt)Fn and

R−1 = Fn† diag(θt)Fn. We have

[R−1]ii = e†iR
−1ei =

n
∑

t=1

θt|[Fn]it|2=
1

n

n
∑

t=1

θt (52)

and similarly [R−2]ii = (1/n)
∑n

t=1 θ
2
t . Hence we obtain

ε(A) =

n
∑

t=1

θt −
ᾱ

1 + ᾱ 1
n

∑n
t=1 θt

1

n

n
∑

t=1

θ2t . (53)

Here (53) reveals that ε(A) is a symmetric function of

a1, . . . , an. Since ε(A) is also a convex function of at, (due

to, for instance, (49) and the fact that tr[X−1] is convex for

X ≻ 0) ε(A) is Schur-convex by [39, Ch.3-Prop.C2]. The

result follows from Lemma 3.3.

D. Proof of Lemma 4.1

Let dt = |ht|2at ∀t. We have

ε(A) =
Px

s

(

tr

[

(Is + γ
Px

s
U †
Ω diag(dt)UΩ)

−1

])

, (54)

=
Px

s

(

tr

[

(In + γ diag(dt)UΩ
Px

s
U †
Ω)

−1

]

+ s− n

)

,

(55)
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=
Px

s

(

tr
[

(In + γ diag(dt)Kx)
−1
]

+ s− n
)

, (56)

≥ Px

s

(

n
∑

t=1

1

1 + γ|ht|2atσ2
xt

+ s− n

)

. (57)

The equality in (55) follows from the equivalence of the

non-zero eigenvalues of the matrix products AB and BA;

see, for instance, [39, Ch9-A.1.a]. The inequality in (57)

is due to the fact that for a p.s.d. matrix R ∈ C
s×s,

tr[R−1] ≥ tr[diag([R]ii)
−1], which, for instance, follows from

applying Cauchy-Schwarz inequality |u†v|2≤ ‖u‖2‖v‖2 to

e†iR
−1/2R1/2ei = 1 with u = R−1/2ei, v = R1/2ei where

ei ∈ Rn denotes the ith unit vector.
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