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a b s t r a c t 

We discuss the dynamics of an inextensible thin Kirchhoff rod used in the modeling of surgical threads, 

and demonstrate a very efficient scheme to not only simulate the motion of the thread in real-time (up 

to 1 ms per frame) but also obtain the constraint axial forces which can be fed back to a haptic system. 

The numerical scheme is based on a family of schemes called geometric or discrete variational integra- 

tors guaranteeing that the momentum and energy are exactly conserved over long periods of time for 

conservative systems. Besides, we report on an efficient numerical procedure to handle the inextensibil- 

ity of the thread through physically based Lagrange multipliers, as well as the internal dissipation of the 

thread. We have performed simulations to verify the capabilities of our model to conserve momentum 

and energy, accurately calculate the axial constraint forces along the thread for haptic feedback, and cap- 

ture bending-torsion coupling leading to the formation of plectonemes. While many of the ideas are well 

known in the computer graphics community (especially in hair modeling), we have implemented several 

improvements for the specific purpose of speeding up the computations for developing physically based 

haptic interfaces for knot tying and suturing. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Surgical training that relies on practicing on animals, cadav-

ers or foam kits is still widely used by the medical profes-

sion ( Gallagher and Traynor, 2008 ). These traditional methods are

known to have limitations because: (i) dead tissues do not ex-

hibit the same response as healthy ones, (ii) humans and animals

have different physiologies, (iii) plastic or foam models lack real-

ism, (iv) novice trainees have a higher risk of being exposed to

contaminated blood while manipulating sharp instruments, (v) ex-

periments on animal raise ethical considerations and (vi) students

of Muslim or Jewish faith may have religious conflicts in practicing

on porcine tissues. In addition, there has been rising pressure from

animal right activists and religious groups having conflicts touch-

ing porcine tissues ( SL, 2002 ). 

To address these problems, large research institutions and

training hospitals (i.e. Massachusetts General Hospital, Stanford,

Harvard) have undertaken projects to support simulation train-

ing ( https://www.harvardmedsim.org/ ) for the last fifteen years.
∗ Corresponding author. Tel: +19798623999. 
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0020-7683/© 2017 Elsevier Ltd. All rights reserved. 
ithin these effort s, the modeling of tissues and organs (such as

rain or heart) has received more attention than the modeling of

urgical devices. While there are already commercially available

irtual surgery simulators, A large majority of them only provide

isual feedback, i.e. there is no force feedback in the simulation

evices. The ability to provide force feedback is essential to real-

stic training simulators which require not only the geometry to

e right, but also the physics of the process. In particular, espe-

ially for surgical threads, the ability to simulate entangling and

elf intersection, as well as the inextensibility and strongly dissi-

ative nature of the thread are critical to providing a realistic ef-

ect. Also, the axial force engendered by the inextensibility of the

onstraint has to be computed since this is the force felt by the

ser. 

Furthermore, not all surgical threads are inextensible. For ex-

mple the surgical thread M468 MONODOX (made by CP Medical

ortland, OR, USA) has some limited extensibility as compared to

33S Silk Black Braided Sutures (made by CP Medical Portland, OR,

SA) and so has a different “hand feel”. Thus it is necessary to

evelop a method that will deal with both extensible and inexten-

ible threads (so that the user can select the appropriate thread

ype). 

http://dx.doi.org/10.1016/j.ijsolstr.2017.02.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2017.02.017&domain=pdf
mailto:arun-r-srinivasa@tamu.edu
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. Related works 

.1. Purely geometrical simulations 

Challenges associated with the simulation in space and time of

ne dimensional objects in a three-dimensional space have been

ecognized by the computer animation industry ( Nealen et al.,

006 ). However, the limitation of the computational power of early

ears meant that physical accuracy had to be sacrificed to generate

isually plausible simulations quickly. Moreover, animating large

mounts of hair and animal fur also led to the development of

urely geometry-based simulations wherein the models focus only

n visual accuracy. 

For instance, Brown et al. (2004) develop an algorithm known

s Follow the Leader (FTL) which guarantees thread’s inextensi-

ility and enables interactive simulations of knot tying. In their

ork, the thread is discretized into N nodes. If a node is moved,

otion propagates throughout the rest of the nodes according to

he FTL algorithm. Nonetheless, Bending and torsional effects are

ot taken into account in the FTL formulation. Furthermore, hap-

ic feedback is not possible since forces are not computed. Müller

t al. (2012) propose a Dynamic Follow-the-Leader (DTFL) algo-

ithm (a revised version of the FTL algorithm), which is better

uited to simulate the dynamic behavior of hair strands. 

Umetani et al. (2014) propose another geometrically based

odel to simulate elastic rod following the Position-Based Dynam-

cs (PBD) ( Müller et al., 2007 ). In the PBD framework, the deforma-

ion of the rod is characterized by the positions of discrete points.

he orientation of the rod is measured by ghost points distributed

round the edge. 

With geometrically based approaches, the simulation systems

equire prior knowledge of the objects being manipulated and

he deformations must be explicitly specified, since no constitu-

ive relation or balance law is used to predict the motion. This

as prompted the computer CG community to begin exploring

hysically-based methods for animation. These methods relying on

hysical principles and computational power can model complex

rocesses which would be difficult or impossible for geometrical

pproaches ( Moore and Molloy, 2007 ). 

.2. Physical based simulations 

We try here to provide a brief view of the physics based ap-

roaches used to simulate the dynamics of rod-like structures by

lassifying previous work into four main categories: mass-spring,

uler beam, Cosserat theory, and Kirchhoff theory. 

Mass-spring: As noted in a recent survey ( Moore and Molloy,

007 ), the CG community has devoted a great deal of effort on

ass-spring systems to simulate deformable bodies. One of the

arliest mass-spring models for rod-like structures appears in the

ineties (see Rosenblum et al., 1991 ) to simulate large quantities of

airs. In their work, the hair is discretized into mass points which

re connected by springs. Additional hinge springs provide bend-

ng resistance. Wang et al. (2005) improved the mass-spring model

y introducing torsional springs. Kubiak et al. (2007) evaluate the

mount of torque using torsion angle – the angle difference be-

ween the material frame and the Bishop frame associated with

he thread ( Bishop, 1975 ); and the bending stiffness of each point

s measured through the bending springs connecting its two ad-

acent neighbor points. Other approaches based on a mass-spring

odel ( Nakajima et al., 1999; Bertails et al., 2003; Ward and Lin,

0 03; Choe et al., 20 05; Iben et al., 2013; Michels et al., 2015 ) have

een developed to simulate hair in the past. Mass-spring systems

ave the advantage of being easy to implement, computationally

fficient and well suited to parallel computing, which makes real-

ime animations possible. The main drawbacks are significant ap-
roximations of the physical body, the tendency to oscillate, poor

ystem stability for large spring constants, and the delay in the

ropagation of force effects ( Moore and Molloy, 2007 ). 

Euler beam: Anjyo et al. (1992) propose a model based on Euler

eam theory in hair simulation, in which each hair strand is con-

idered as a cantilever Euler beam. Following the work by Anjyo

t al. , Kurihara et al. (1993) ; Daldegan et al. (1993) , and Lee and

o (2001) improve the Euler beam based hair model; wherein the

nternal damping of hair is considered. This formulation is efficient

nd easy to implement. However, torsional stiffness is hard to be

ccounted for ( Ward et al., 2007 ). 

Cosserat theory: The origins of the Cosserat rod theory date

ack to the work of Cosserat and Cosserat (1909) . In fact, many so-

utions for loop formation have been described by Love (2013) as

arly as 1924 based on a graphical argument. A more contempo-

ary account was provided by Antman (1995) and Rubin (2013) in a

umerical context. Pai (2002) appears to have been the first to ad-

ocate and implement the Cosserat rod theory for surgical simula-

ion. However, the implicit representation of the centerline compli-

ates the handling of collisions. An improvement over Pai’s model

eports in the work of Spillmann and Teschner (20 07a, 20 08) who

xplicitly express the rod centerline and use constraints to couple

he implicit (orientation of rod cross section) and explicit schemes

rod centerline). Punak and Kurenov (2011) optimize the perfor-

ance through neglecting kinetic effects as well as internal friction

nd other dissipative effects. These simplifications result in an in-

rease of computational speed while keeping the model relatively

ccurate. The models based on Cosserat rod theory achieve a good

rade-off between accuracy and computational cost. However, most

f these models starting with Cosserat rod theory are essentially

ethods based on Kirchhoff rod theory ( Dill, 1992b ). 

Kirchhoff theory: Many endeavors have been made by the CG

ommunity to explore Kirchhoff rod theory ( Dill, 1992b ) due to its

ntrinsic properties of handling the bending and twisting of rods in

ecent years. Models for thin elastic rods based on Kirchhoff the-

ry can be categorized into two subfamilies: implicit and explicit

pproaches, according to the different methods expressing rod. 

Bertails et al. (2006) formulate an implicit approach known as

uper-helices model based on the Kirchhoff theory of elastic rods

 Dill, 1992a; Langer and Singer, 1996 ). In the super-helices model,

he rod is represented by its discrete curvatures and thus this ap-

roach naturally handles inextensibility. The model has been re-

arkably successful in simulating large numbers of strands of hair

ith frictional contact between them ( Bertails-Descoubes et al.,

011a ). The computational complexity of the super helices model

s further reduced from quadratic to linear in the number of

iscrete elements ( Bertails, 2009 ). The scheme automatically en-

orces inextensibility. Later Bertails-Descoubes (2012) develop an-

ther implicit approach named as super-clothoids, in which the rod

s modeled as piecewise clothoids; additionally, Casati and Bertails-

escoubes (2013) improve the accuracy by building the dynamics

f a G 

2 -continuous piecewise 3D clothoid model. Other implicit ap-

roaches based on the super-helices model have also been made

epending on their applications, such as the works ( Bonanni et al.,

009; Derouet-Jourdan et al., 2013 ). 

Bergou et al. (2008) develop a model for a discrete elastic rod

ith an explicit representation of rod centerline based on the

irchhoff rod theory ( Dill, 1992b; 1992a; Langer and Singer, 1996 ).

orsion is measured by the difference of angles between the ma-

erial frame and the Bishop frame of the rod ( Bishop, 1975 ) so

hat no additional degree of freedom needs to be introduced to

epresent the torsional behavior. Furthermore, torsion is assumed

o propagate instantaneously because the rod has negligible polar

oment of inertia and this reduces the computation time needed

o capture the temporal evolution of torsional waves. Bergou et al.

2010) later improve the efficiency in hair simulation by introduc-
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Fig. 1. Top: the initial loose square knot; bottom: the tight square knot 1 (Note the 

straightening thread due to apply axial forces). 

(  

w  

d  

n  

b  

b  

s  

q  

d

(  

e  

t  

f  

(  

t  

t  

i

 

c  

f  

n  

w  

m  

2  

i  

i  

r  

i  

(  

d  

S  

c  

u  

i  

I  

o  

t  

(  

1  

1

 

t  

i  

e  

1 The simulation is generated by SimInsights Inc. based on the thread model in 

this paper. Those who are interested in the animation can also check the videos 

knot tying : https://www.youtube.com/watch?v=ekBV0qhNyoo and plectoneme for- 

mation : https://www.youtube.com/watch?v=LeMP1lkoipc . 
ing time-parallel reference frame in the representation of adapted

framed curves. Other recent noteworthy articles (see for example

Spillmann and Harders, 2010; Tang et al., 2010; Sueda et al., 2011,

Huang et al., Tang et al., 2012b; Kir, 2014; Gornowicz and Borac,

2015 ) report on modeling discrete elastic rods with the Kirchhoff

theory. 

All the implicit and explicit models based on Kirchhoff rod the-

ory do a very effective job of simulating physically realistic motion .

The implicit approaches have incorporated the inextensibility con-

straint into the parameterization, and therefore are suitable to sim-

ulate the inextensible rod-like structures. However, to the author’s

knowledge they have not reported on the computation of the ax-

ial forces in any of the papers cited, perhaps because that was not

central to the problem they were considering. On the other hand

for the haptic interface problem, this is a key need. Furthermore,

the super helix model (as currently developed) incorporates the in-

extensibility directly. So it would have to be rewritten with addi-

tional degrees of freedom also to account for extensible threads.

The explicit approaches are capable of modeling both inextensible

(additional constraints are needed) and extensible rod-like struc-

tures, as well as calculating the axial forces, which can be used to

provide a realistic “feel” for force feedback systems. Consequently,

we propose a model based on the explicit approaches, considering

the requirement of force feedback and the merits of Kirchhoff rod

theory. 

There also exist many other schemes to model the dynamics

of thin rods. For example, the models based on an “articulated

body” have been reported ( Choe and Ko, 2005; Wan et al., 2012 ),

where the properties of joints influence the models’ performance.

Additionally, Grégoire and Schömer (2006) propose a novel hybrid

model that combines mass-spring system and Cosserat rod. In it,

the rod is modeled as a mass-spring system, but bending and tor-

sion follow the Cosserat theory. 

3. Our approach 

In this paper, our aim is to develop a fast robust scheme for

threads that are inextensible using a model that can be extended

to extensible threads as well and also get axial and other force in-

formation, so that we can provide true force feedback, which re-

quires haptic update rates to be approximately 10 0 0 Hz ( El Saddik,

2007 ). We are focusing on the fact that the physics is as close to

the accepted physics as possible while still maintaining an efficient

simulation. Based on the model of discretized elastic rod ( Bergou

et al., 2008 ), we propose a scheme that meets the requirements

of a real-time haptic simulator by making many subtle but needed

improvements to existing schemes aiming towards long term sta-

bility, inextensibility (axial constraint force calculation), and inter-

nal dissipation. The uniqueness of our approach stems from the

fact that we 

(1) Overcome the long time energy or momentum boost or loss

issues by adopting the discrete variational integrator technique

( Marsden and West, 2001 ) to develop an explicit time integra-

tion scheme that is fast and stable over long simulation times. The

conditional stability criterion for this explicit scheme is that the

time steps are to be smaller than 

1 
2 of the highest natural fre-

quency of the system ( Skeel et al., 1997 ). In our case, since the

torsional modes have been “condensed out” of the system the time

step determining frequency is the bending wave frequency which

is approximately given by 
√ 

mL 4 /B , where m is the mass per unit

length L is the link length, B is the bending modulus ( Ginsberg,

2001 ). For a thread which has very low bending modulus, the

time steps can be reasonably large. Once this condition is satis-

fied, the discrete variational integrator scheme will conserve en-

ergy and momentum when there is no further boundary motion
 Marsden and West, 2001 ). Of course, with damping, the energy

ill decrease with time, but this will not be due to numerical

amping artifacts. Thus, the variational integrator used here does

ot provide better numerical stability than other explicit schemes,

ut it is one of the ideal techniques that naturally prevent energy

oost caused by the discretization error for a system. Thus it is

uitable for the cases where long time simulation stability is re-

uired, particularly for the systems with low damping or energy

issipation. 

2) Develop a new technique based on a contraction mapping to

nforce inextensibility exactly at every time step and compute

he constraint forces, without constraint drift (compensated by a

eedback term) reported in the work by Spillmann and Harders

2010) and sacrificing speed. We compare this approach to a New-

on Raphson scheme and show that, because of the fewer calcula-

ions involved per time step, the approach presented here results

n a significant speedup. 

Anyone who has tightened a knot quickly recognizes that the

onstraint force due to the inextensibility of the thread is acutely

elt. Simulations in which the inextensibility constraint is elimi-

ated (as the implicit approaches by Bertails et al., 2006 ) or in

hich constraints are enforced by projection onto a constrained

anifold at each time step (such as in the work by Bergou et al.,

008 ) have not reported a means for computing these forces (and

n some cases require recomputing Newton’s laws to find them),

n part because they do not have a need for it unlike the cur-

ent case. The Lagrange multiplier approach that we utilize here,

s fast and has the advantage of providing the constraint forces

the Lagrange multiplier) as part of the solution, but requires ad-

itional computational steps during the motion computation itself.

o our effort s to implement the Lagrange multiplier approach are

entral to proper force feedback. As a different example, CFD sim-

lations of Newtonian fluids need to compute the pressure, which

s the Lagrange multiplier that enforces incompressibility correctly.

n practice, the time step we take is actually limited by the needs

f identifying self-contact where the controlling dimension is the

hread thickness and the requirements of true force feedback feel

high haptic update rates requires that time step should be around

ms). Table 1 shows that our scheme can capture the axial force at

0 0 0 Hz. The accuracy of the axial force is verified in Section 6.1 . 

(3) Develop a new way of incorporating internal string inelas-

icity as well as external air damping, which is critical for simulat-

ng realistic motions with rapid cessation of motion. Again experi-

nce with threads shows that they are susceptible not only to air

https://www.youtube.com/watch?v=ekBV0qhNyoo
https://www.youtube.com/watch?v=LeMP1lkoipc
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Table 1 

Comparison of recent Kirchhoff rod based models with force feedback and our model. We should 

note that the first row indicates, Explicit : if the model is explicit approach; Inext : if the rod is 

inextensible; F axial : if the force feedback is the axial force; Rates : the haptic update rates; N Nodes : 

number of nodes in the simulation. 

Explicit Inext F axial Rates N Nodes Platform 

Bonanni et al. (2009) No Yes No 10 0 0 Hz - - 

Huang et al. (2011) Yes No No 90 Hz - P7350 2.0 GHz 

Kir (2014) Yes Yes No 177 Hz 100 E3-1230V2 3.3 GHz 

Our Model Yes Yes Yes 10 0 0 Hz 100 i7-3520M 2.9 GHz 
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rag but to internal dissipation (resistance to bending) due to the

ntra fiber friction. We have explicitly accounted for this, and we

an show the realistic aspects of the effects only in a video (see

he hyperlink in Fig. 1 ). Here we need to point out that all the

urrent inextensible thread models based on Kirchhoff rod theory

eported here, assume that the air drag on the string is linear in

he velocity. As can be seen in any elementary textbook in fluid

ynamics, the magnitude of the drag on such bodies is quadratic

n the speed. The model that we develop accounts for this physi-

ally correct drag force on the body. 2 

. Simulation scheme 

A surgical thread can be modeled as a circular rod with a diam-

ter much smaller than its length and is termed a one-dimensional

bject. When subjected to input forces and (or) moments, the rod

akes on three-dimensional configurations. To describe the config-

rations of the rod in space and time requires the knowledge of

he position of the rod centerline and the orientation of the cross

ection. The thread may bend, twist or assume a distinct coiling

ffect but it cannot stretch (inextensibility constraint). 

.1. Mathematical model 

The mathematical model we use to describe the thread is a

irchhoff elastic rod. The core geometry of the rod follows the

ork by Bergou et al. (2008) , in which the configuration of a rod

ith the length L can be described by an adapted framed curve

= { γ(s ) ; T (s ) , M 1 (s ) , M 2 (s ) } where s ∈ [0, L ]. Here γ( s ) repre-

ents the position of the rod’s centerline, and the material frame

 T ( s ), M 1 ( s ), M 2 ( s )} describe the orientation of the cross section of

he thread. The torsion of the rod is measured by the angle differ-

nce θ ( s ) between its material frame { T ( s ), M 1 ( s ), M 2 ( s )} and the

orresponding Bishop frame { T ( s ), U ( s ), V ( s )} (see Fig. 2 ), the ori-

ntation of an untwist rod taking the same centerline γ( s ). 3 

To proceed to a numerical solution, we discretize the rod cen-

erline into N L ∈ N segments each having a mass ( m i ) concentrated

n the segment vertices. Thus, the discretized curve � consists of

 centerline comprised of (N L + 1) vertices x = (x 1 . . . x N L +1 ) and

 L straight edges e 1 . . . e N L such that e i = (x i +1 − x i ) / | x i +1 − x i | .
lso each straight edge e i has the discrete material frame M 

i =
T i , M 

i 
1 
, M 

i 
2 

}
and the discrete Bishop frame B 

i = 

{
T i , U 

i , V 

i 
}

to rep-

esent the twisted and untwisted orientation of the discrete rod

espectively ( Bergou et al., 2008 ) (see Fig. 3 ). The inextensibility

onstraints of the discrete surgical thread can then be expressed

s, 

(x ) = [ ψ 1 , ψ 2 , · · · , ψ i ] 
T = 0 (1)
2 While it may be possible to incorporate the correct drag force in the theories 

f Bertails (20 09) , and Bergou(20 08) ) they have not reported this possibility. Fur- 

hermore, for models that are based on using an implicit time integration scheme 

such as the one developed by Bergou (2008) ), changing the drag force will change 

he scheme. 
3 The details of the kinematics of the rod using the Bishop frame can be found 

n the work by Bergou et al. (2008) and so we do not repeat it here. 

s

r

o

F

t

t

s

t

here 

 i (x ) = | x i +1 − x i | 2 − l 2 i , i = 1 , 2 , · · · , N L (2)

nd l i is the rest length of the i th discrete straight segment. 

Since the cross-section of the thread has a tiny rotational iner-

ia, we may neglect the torsional inertia in such a way that the ma-

erial frame instantly evolves along the centerline of the thread at

ny time. This indicates that for the naturally straight and isotropic

od used in this paper, the elastic energy of the discrete rod con-

isting of bending and twisting energy can be expressed as, 4 

(�) = 

N L ∑ 

i =2 

k b 

l̄ i 

(
2 

1 + e i −1 · e i 
− 1 

)
+ k t 

(θN L − θ1 ) 
2 

2 ̄L 
(3) 

here θN L 
− θ1 is the total torsion angle of the rod; k b and k t mea-

ure the bending and twisting stiffness respectively; l̄ i = | x i +2 −
 i +1 | + | x i +1 − x i | and 2 ̄L = 

∑ N L 
i =2 

l̄ i . 

.2. Air drag 

Because the density of the surgical thread is very small, one

ust take into account the drag caused by the motion of thread in

ir. Here (as in Munson et al., 2012 ), we assume that the air drag is

n external force whose magnitude is proportional to the square of

he thread velocity and whose direction is opposed to the velocity

o that, 

 a (v i ) = −k air ( v i 
T v i ) ̂ v i (4)

here k air is the drag coefficient, and 

ˆ v i = 

v i 
| v i | . We note that this is

 different assumption than that in the papers in the field. In par-

icular, the quadratic dependence implies that for very slow mo-

ions, the drag is effectively zero (to the first approximation). 

.3. Internal dissipation 

Unlike purely elastic Cosserat rods, surgical threads tend to

ave high internal dissipation (presumably due to the internal slid-

ng of the fibers) and this has to be accounted for. Since the thread

s inextensible, this means that the thread has resistance to inter-

al bending. Spillmann and Teschner (2007b ) calculate the rela-

ive angular velocity of each vertex to account for the dissipation.

e introduce a simpler way to account for the internal dissipation

hat does not require additional computations of angular veloci-

ies. In this paper, since we assume the surgical thread is inexten-

ible and the evolution of the twist of the thread is instantaneous,
4 For a uniform circular rod which is naturally straight and untwisted, it can be 

hown that the angle of twist is uniformly distributed along the length (if we ignore 

otational inertia) ( Bergou et al., 2008 ). This considerably simplifies the calculations 

f the energy since the twist contribution now depends only upon the end twist. 

urthermore, it is relatively simple to deal with extensible rods by simply including 

he term �EA ∗ψ i to the total energy of the beam, where E is the modulus and A is 

he cross sectional area of the beam. It is the inextensibility constraint that needs 

pecial care and so for the remainder of the paper, we will focus attention only on 

his case. 
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Fig. 2. The configuration of an elastic thread is represented by a curve γ( s ) and a material frame { T ( s ), M 1 ( s ), M 2 ( s )}. The torsion can be measured by the angle difference 

θ ( s ) between the material frame and the Bishop frame { T ( s ), U ( s ), V ( s )}. 
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Fig. 3. Discrete framed curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

t  

i  

m  

h  

t  

b  

c  

r  

s  

(

5

 

v  

(  

w  

t  

s  

N  

a  

t  
we neglect the dissipation caused by stretch and torsion, and only

consider the dissipation due to bending. We thus assume that the

power dissipated due to bending is a function of the bending rate

and is given by 

P d (�) = 

N L ∑ 

i =2 

1 

2 

k d ˙ β2 
i (5)

where βi = cos φi measures the bending of the discrete thread (see

Fig. 3 ). Then, we compute the internal force due to bending dissi-

pation to be 

F b = 

∂P d (�) 

∂ ̇ x 

(6)

Details pertaining to the derivation of the force F b are shown in

Appendix A . 

5. Discrete variational integrator for Kirchhoff rods 

A scheme to obtain a numerical solution for the deformations in

space and time of a very thin and long circular rod (i.e. a thread)

is presented here. The simulations are expected to run for a rel-

atively long period so it is essential that the algorithm is able

to prevent energy boost due to the numerical error introduced
hrough the discretization process. The discrete variational integra-

ors derived from Lagrangian mechanics have the property of be-

ng symplectic and thus guarantee the conservation of energy and

omentum ( Marsden and West, 2001; West, 2004 ). The method

as been found to be very successful for path planning applica-

ions and has also been used to simulate the dynamics of rub-

ery materials. It is always employed to investigate the energy

hange caused by dissipation effects of a system ( West, 2004 ). The

esults have demonstrated that the discrete variational integrator

cheme is well suited for developing long time stable algorithms

 Kharevych et al., 2006 ). 

.1. Discrete time Lagrangian mechanics 

In order to apply this method to the rod theory being de-

eloped here, we note that the potential energy is given by Eq.

3) while the dissipative forces are given by Eqs. (4) and (6) . Since

e are ignoring the torsional inertia of the rod, the kinetic energy

akes the simple form T = 

1 
2 

∑ 

(m i ̇ x i ̇ x i ) . To this we add the con-

traint of inextensibility through the use of Lagrange multipliers.

ow, following the well established discrete variational integrator

pproach ( West, 2004 ), we discretize the action integral and ex-

remize it (see Appendix B for details) to obtain a discrete set of
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quations of the form 

M 

h 

(x 

k +1 − 2 x 

k + x 

k −1 ) + h 

[
−dE(x 

k ) 

dx 

k 
+ F d 

(
x 

k −1 , x 

k 
)

+ 

∂ �(x 

k ) 

∂x 

k 

λk 

h 

]
= 0 (7a) 

�(x 

k +1 ) = 0 (7b) 

here M is a 3(N L + 1) × 3(N L + 1) mass matrix associated to ver-

ices of discrete surgical thread; h is the time step; F d (x , ˙ x ) =
 a ( ̇ x ) + F b (x ) are the nonconservative forces shown in Eqs. (4) and

6) ; and the inextensibility constraint �(x k +1 ) is shown in Eq. (1) . 

Different from the manifold projection methods employed in

he work by Bergou et al. (2008) to ensure the inextensibility, Eq.

7b) is ensured through a Lagrange multiplier that has to be calcu-

ated as part of the solution and not by a projection method. While

his appears to be more cumbersome, the approach turns out be

urprisingly fast and allows for the computation of the axial force

related to the Lagrange multiplier) without further computational

teps. Also, it should be noted that the form (7) hides consider-

ble complexity in the derivation of explicit expressions for dE(x k ) 

dx k 

nd F d which must be carefully done (accounting for the neglect

f the torsional inertia). However, the structure of the equations

s such that these terms can be calculated systematically (see the

ppendix B ). For the positional variables x and Lagrange multipli-

rs λ, the superscripts denote the variables associated with time,

hile the subscripts denote the variables associated with the geo-

etric position. 

We should notice that the term − dE(x k ) 

dx k 
+ F d 

(
x k −1 , x k 

)
+

∂ �(x k ) 

∂x k 
λk 

h 
in Eq. (7) can be taken as external forces applied to the

ertices of the discrete thread. − dE(x k ) 

dx k 
is the conservative force

see the Appendix C ); F d 
(
x k −1 , x k 

)
is force caused by dissipation.

articularly we should emphasize the constraint force item 

 constraint := 

∂ �(x 

k ) 

∂x 

k 

λk 

h 

(8) 

hich can be considered as the forces ensuring the inextensibility

f the thread. 

So far, we have set up the time evolution of the discrete surgi-

al thread through the discrete Euler–Lagrange Eq. (7) . Given x k −1 

nd x k (time step k ), we can find the unknowns x k +1 and λk (time

tep k + 1 ) by solving Eq. (7) . Next, we outline a simple iterative

lgorithm that gives the subsequent configurations of the thread

n time. 

.2. Enforcing inextensibility and obtaining the corresponding 

agrange multipliers through a contraction mapping 

Starting from the discrete Euler–Lagrange Eq. (7) , we can rear-

ange it to obtain 

 

k +1 = x 

k + h v k + h 

2 M 

−1 

[
− dE 

dx 

k 
+ F a 

(
x 

k − x 

k −1 

h 

)]

+ h M 

−1 ∂ �(x 

k ) 

∂x 

k 
λk 

(9) 

ubstituting the above expressions x k +1 into the inextensibility

onstraints (1) , the following matrix equation is obtained, 

 A (x 

k , x 

k −1 ) + B ( x 

k , x 

k−1 , λk 
)] λk = R (x 

k , x 

k −1 ) (10)

ppendix D contains the detailed expressions for matrices

 (x k , x k −1 ) , B ( x k , x k−1 , λk 
) , and the residue R (x k , x k −1 ) . Eq.

10) can now be solved using a contraction mapping algorithm of
he form [ A + B ( λk 
n )] λk 

n −1 = R 

k . A key question that has to be an-

wered is whether the contraction mapping algorithm converges

nd if it does, why should it be any better than a classical Newton–

aphson method which has quadratic convergence. We will answer

his question next. 

.3. Enforcing inextensibility and obtaining the corresponding 

agrange multipliers through Newton–Raphson method 

We now compare the algorithm that was introduced in the

ines following Eq. (10) with a standard Newton–Raphson tech-

ique. The Eq. (10) , derived from the discrete Euler–Lagrange Eq.

7) , can be reformed as 

 ( λk 
) = [ A (x 

k , x 

k −1 ) + B ( x 

k , x 

k−1 , λk 
)] λk − R (x 

k , x 

k −1 ) = 0 

e neglect the upper script k and the position variable x for the

ake of clarity, and then get 

 ( λ) = [ A + B ( λ)] λ − R = 0 (11)

ollowing the Newton–Raphson method, we can obtain λ through

∂G 

∂ λ

∣∣∣∣
λ= λn 

( λn +1 − λn ) = −G ( λn ) (12)

ubstituting Eq. (11) into the above equation, we arrive at 
 

A + 2 B ( λk 
n ) 

] 
( λk 

n +1 − λk 
n ) = −

{ [ 
A + B ( λk 

n ) 
] 
λk 

n − R 

} 

(13) 

here n is iteration number. 

We might expect the Newton–Raphson scheme to outperform

he naive iterative scheme (10) . However, since the time steps are

ery small and the previous values of λ form a very good initial

uess, both methods require only 3–5 iterations to converge. How-

ver the Newton–Raphson is slightly more expensive due to the

epeated need to evaluate the right-hand side of Eq. (13) and over

he course of the simulation that involves many tens of thousands

f time steps, the cost adds up to a substantial value. 

In summary, the numerical scheme we propose has three steps 

i) Solve the Eq. (10) or (13) to obtain the value of λk using con-

traction mapping. 

ii) Substitute λk into Eq. (9) to update the position information of

vertices x k +1 at time step k + 1 . 

ii) Repeat (i) and (ii) until the final time step is reached. 

. Results 

In the previous section, we have claimed that our thread model

s not only guaranteeing the conservation of energy and momen-

um, but also able to be used to calculate the axial force, which is

iven by the Eq. (8) . So we will first try to verify these claims. 

.1. Thread model validation 

Energy Conservation An initial straight thread is pinned at the

op, and its centerline forms an angle ϕ = 0 . 45 π with respect to

he horizontal x − axis (see Fig. 4 ). In order to eliminate energy

hange caused by air drag and internal dissipation of the thread,

e set k air = 0 and k d = 0 . In the simulation, the thread swings

ack and forth, and the configurations at t = 0 . 3 s and t = 0 . 8 s

re plotted in Fig. 4 . The discretization error and the neglect of the

hread’s kinetic energy in our model cause the energy difference

etween the simulation results and the analytical solution shown

n Fig. 5 . However, there is no drift in the thread’s energy, which

s thus well preserved during the long time simulation (10 0 0 s). 
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t = 0 s

t = 0.3 s

t = 0.8 s

x

y

z

G

ϕ = 0.45π

Fig. 4. Energy conservation test. An initial straight thread of length L = 1 m and 

mass M = 0 . 01 kg is pinned at the top. The centerline forms an angle ϕ = 0 . 45 π

with respect to the horizontal x − axis . In the simulation, the dissipation are ne- 

glected ( k air = 0 and k d = 0 ), and thus the thread keeps swinging back and forth 

without energy boost or lost as shown in Fig. 5 . 
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Momentum Conservation An intuitive method to verify the

momentum conservation of our model’s intrinsic properties is ob-

serving the momentum of the discrete thread without external

forces in a simulation. Thus we run a simulation (see Fig. 6 ), in

which the gravity, air drag, and internal dissipation are all set to

zero ( g = 0 , k air = 0 , and k d = 0 ). The initial configuration of the

thread is represented by the horizontal straight solid line, with

the initial speeds of v L = [0 , 0 . 05 , 0] m/s and v R = [0 , −0 . 05 , 0] m/s

at left and right ends of thread. Although the mass point of the

thread obviously moves (see the configurations at t = 0 . 8 , 20, 80,

30 0, and 10 0 0 s in Fig. 6 ) and the magnitude of the thread’s mo-

mentum does not show visual drift during the 10 0 0 s simulation

(see Fig. 7 ). So we claim that our model is able to intrinsically con-

serve momentum. 

Axial force calculation To demonstrate that our model can ac-

curately capture the axial force along the thread, we run a simula-
Fig. 5. The total energy of the thread during the 10 0 0 s simul
ion shown in Fig. 8 . The left end of the thread is pinned to a wall,

nd the right end is subject to an external force along the posi-

ive x − axis with magnitude F = 0 . 1 N. The comparison of an an-

lytical solution of the axial force for an equivalent static problem

nd the magnitude of the axial force along the thread (obtained

t t = 100 s, when the kinetic energy greatly reduced due to the

issipation and thus the thread nearly reach a static state) in the

imulation is shown in Fig. 9 . The difference between the static an-

lytical solution and dynamic simulation results of the axial force

s mainly contributed by two parts, the discretization error and the

inetic energy of the thread. To the best of our knowledge, our

odel can be viewed as a first step towards accurately capturing

he axial force of an inextensible thread at real-time rate shown in

ig. 9 . 

.2. Simulation of plectoneme formation and tying knot 

The slenderness of the surgical thread allows for very large

ending and torsion leading to the possibility of self intersection.

his is particularly true when tying knots, where the thread often

ollides with itself and inter-penetration and pass-through must

e avoided. This is a difficult problem for one dimensional models

with zero thickness) since, within a single time step a portion of

he rod can pass through a different portion and collisions or inter-

enetration may not be detected at all. This collision of portions of

he thread with itself raises difficulties in collision detection and

esponse ( Akutsu and Wadati, 1988; Kaufman et al., 2014 ). 

Collision detection There are two aspects to the management

f collisions: (1) fast collision detection and (2) application of

orces to prevent inter-penetration and pass-through. Robust, fast

ollision detection algorithms have been developed in the CG com-

unity and here we provide only a brief introduction of the

ast collision detection algorithm. The details are in the works by

ricson (2004) and Bresenham (1965) . We first partition the three

imensional space into a uniform grid, and then calculate the cells

f the grid occupied by the discrete thread through Bresenham’s

ine algorithm ( Bresenham, 1965 ). Since the collision is determined

y the distance between portions of the thread, the grid size can

e adjusted so that possible self-collision of the thread can only

appen among the neighbor cells. Now we can check the dis-

ance between each two segments in the neighbor cells. If the dis-

ant d ( t ) between two segments of the discrete surgical thread is

maller than a constant value �d ( d ( t ) < �d ), we define that the

ollision is detected (see Fig. 10 ). 
ation (see Fig. 4 ). The energy is sampled at each second. 
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Fig. 6. Momentum conservation test. A thread of length L = 1 m and mass M = 0 . 01 kg is represented by the horizontal straight solid line, with the initial speeds of 

v L = [0 , 0 . 05 , 0] m/s and v R = [0 , −0 . 05 , 0] m/s at left and right ends respectively. In the simulation, the gravity, air drag, and internal dissipation are all neglected ( g = 0 , 

k air = 0 , and k d = 0 ), the thread keep rotating and the configurations at t = 0 . 8 , 20, 80, 300, and 1000 s are plotted. The magnitude of the thread’s momentum is shown in 

Fig. 7 . 

Fig. 7. The magnitude of the thread’s momentum with respect to time during the 

10 0 0 s simulation (see Fig. 6 ). The momentum is sampled at each second. 
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Fig. 8. The left end of a thread is pinned to a wall, and the right end is subject 

to an external force along the positive x − axis with magnitude F = 0 . 1 N. The blue 

solid dot line represents the thread configuration at t = 100 s, when the kinetic 

energy greatly reduced due to the dissipation and thus the thread nearly reach a 

static state. The magnitude of axial force along the thread centerline is shown in 

Fig. 9 . (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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Collision response The other challenge lies in a simulation of

ying knots is collision response algorithms, which can be classi-

ed into three major categories ( Tang et al., 2012a; Witkin, 1997 ):

onstraint-based formulations ( Bridson et al., 2002; Duriez et al.,

0 06; Otaduy et al., 20 09 ), penalty-based methods ( Pen, 1990 ),

nd impulse-based methods ( Mirtich, 1996 ). In general, constraint-

ased methods result in a more plausible simulation at the cost of

xtra computation ( Hüsken, 2014; Bertails-Descoubes et al., 2011b ).

mpulse-based methods are more suitable for rigid body colli-

ion response due to the requirement of precise dynamic colli-

ion detections at each time step. Traditional penalty based meth-

ds, which are the easiest to use, unfortunately suffer from various

inds of problems, such as jitter effect. Tang et al. (2012a ) improve

he penalty method and develop a novel model-continuous penalty

orce method for application to rigid body collisions. We adapt this

pproach for flexible rods here to handle the collision response. 
The continuous penalty force created by the collision during the

ime interval �t is (see Fig. 10 ), 

 c = 

I 

�t 
= 

1 

�t 

∫ t+�t 

t 

F p (t) dt (14)

here k s is a stiffness constant, F p (t) = k s (�d − | d (t) | ) d (t) 
| d (t) | rep-

esents the penalty force created at time t , and I = 

∫ t+�t 
t F p (t) dt

s the impulse produced by the penalty force F p ( t ) during time

nterval [ t , t + �t ] (see the details in Appendix E ). The key idea

sed here is that rather than directly use the penalty force (which

auses jittery behavior and bounce back), we “smoothen it out” us-

ng a windowing scheme and utilize the time averaged collision

orce. Hence the continuous penalty force can essentially be taken

s the average of the penalty force during a time interval. 

To combine the collision response and thread model, we can in-

ert the continuous penalty force (14) into the external force term

n the constrained & forced discrete Euler–Lagrange Eq. (7) keeping
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Fig. 9. The comparison between the magnitude of axial force along the thread centerline of a static analytical solution and that of our dynamic simulation (see Fig. 8 ). The 
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displacement between E 1 and E 2 at time t + �t . 
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the same simulation scheme. This allows for the collision response

to be easily handled. 

6.2.1. Plectoneme formation 

The simulation scheme we proposed was used to illustrate the

formation of the plectoneme. Noteworthy parameters utilized in

the simulations are a rod of length L = 1 m and mass M = 0 . 02 kg.

The rod is discretized into N L = 20 segments of equal length. The

bending and torsional stiffness of the rod are k b = 0 . 02 N · m 

2 
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-0.2

0

0.2

-0.8
0.5

z

Fig. 11. The left end of the thread is pinned, and the right end is moving toward the lef

L e = 0 . 075 . Then the torsion angle is input with the angular velocity of ω e = 0 . 8 rad/s unt

thread at t = 0 . 0 s; the red curve (helix) is the configuration at t = 40 . 0 s. 
nd k t = 0 . 02 N · m 

2 respectively. The time step is h = 0.001 s.

or the collision detection and response, the distance criterion is

d = 0 . 3 L 
N L 

, and the stiffness constant is k s = 100 N/m. The initial

onfiguration of the rod is represented by a straight blue line in

ig. 11 . 

In the simulation, the right end of the thread moves toward the

eft at the speed of V e = [ −0 . 5 , 0 , 0] T . When the distance between

he two ends reaches the value of L e = 0 . 075 m, the right end of

he rod is twisted with the angular velocity of ω e = 0 . 8 rad/s un-

il the angle of twist reaches θmax 
in 

= 20 rad (maximum value). The

imulation shows that the formation of two loops is accompanied

y a decrease and then an increase of torque (points A and B in

ig. 12 ). Because when a loop starts formatting, the twisting energy

egins to transfer to bending energy, resulting in the torque de-

rease; however, after the loop formats, the self-collision happens

nd prohibit this energy transfer, which causes the torque first

uddenly stop decreasing and then increases again as the more

nput torsion angle is applied. Also, we notice that because part
1

0.5
x

0

t end at the speed of V e = [ −0 . 5 , 0 , 0] T until the distance between the two ends is 

il reaching θmax 
in 

= 25 rad. The straight line represent the initial configuration of the 
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Fig. 12. The relation between the torque on the thread and the input torsion angle during the simulation. Note that every contact causes an oscillation (the contacts resulting 

in the plectoneme are shown as points A and B). 
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Fig. 13. The figure illustrates the change of torsion angle of the thread with respect to time during the simulation. Note that every contact causes an oscillation (the contact 

resulting in the plectoneme are shown as points A and B). The final torsion angle of the thread is smaller than the input torsion angle 20 rad. 
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c  
f the twisting energy has transferred to bending energy, the final

orsion angle of the thread decrease and is smaller than the input

orsion angle 20 rad (see Fig. 13 ). Moreover, the simulation shows

ome oscillations of the torque, because twisting energy and bend-

ng energy are keeping transfer to each other after the formation

f the loops due to the assumption of the elasticity of the thread

odel, and the dissipation are not large enough to stabilize the

ystem immediately. The total energy of the system with respect

o time is plotted in Fig. 14 . After the application of torsion load,

he total energy keeps to a certain level with little oscillations. 
e  

u  
.2.2. Tying knot 

We also simulated the tying of a square knot. The parameters

sed in the simulations are a rod of length L = 1 m and mass

 = 0 . 02 kg. The rod is discretized into N L = 40 segments of equal

ength. The bending and torsional stiffness of the rod are k b =
 . 002 N · m 

2 and k t = 0 . 002 N · m 

2 respectively. The time step is

 = 0 . 0 0 01 s. For the collision detection and response, the distance

riterion is �d = 

L 
N L 

, and the stiffness constant is k s = 50 N/m. The

esult is shown in Fig. 15 . In this simulation, the loose knot has no

ontact points at the beginning. The simulation is robust enough to

nsure that no inter-penetration or pass through occur in this sim-

lation. The constraint force that is to provide to haptic system can
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Fig. 14. The figure shows total energy (the sum of kinetic energy, potential energy, and elastic energy) with respect to time during the 600 s simulation. Note that total 

energy increase when the torsion load applied. After the application of torsion load, the total energy keeps to a certain level with little oscillations. 
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Fig. 15. The result of tying a square knot. The left end of the thread is pinned, and the right end is moving toward the right side. The curve with the loose knot is the initial 

condition of the thread at t = 0 . 0 s; the curve with the tight knot is the configuration at t = 10 . 0 s. 
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be obtained through the product of Lagrange multiplier and the di-

rection vector of the last segment (see Eq. (8) ). The magnitude of

constraint force and the ratio of the distance between two ends

of thread to its un-knot length with respect to time are shown in

Fig. 16 . As you tie the knot, the distance between two ends of the

thread gradually increases until it reaches a static state. The sim-

ulation clear shows the magnitude of the constraint force first in-

creases and then reaches a steady state when the knot is tightened

tight. The fluctuations of the constraint forces are very tiny and can

be smoothed by low pass filter when the haptic device is applied

in future. 
.3. Comparison of numerical schemes based on contraction mapping 

nd Newton–Raphson method 

In almost all of the simulations, we obtain the value of Lagrange

ultipliers λ from Eqs. (10) and (13) within three iterations. As

 consequence, numerical schemes based on contraction mapping

erforms at least 20% faster than that based on Newton–Raphson

ethod, because solving Lagrange multipliers is the only difference

xisting in both numerical schemes. Therefore, we select the nu-

erical scheme relying on contraction mapping (see Section 5.2 )

o run the real-time simulation in the following part. 
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Fig. 16. The solid line shows the magnitude of constraint force to maintain the inextensibility of the thread with respect to time during the process of tying the tight knot. 

The dashed line illustrates the ratio of the distance between two ends of thread to its un-knot length. 

Fig. 17. The thread is initially straight with length L = 1 m and mass M = 0 . 01 kg, 

and discretized into N = 100 equal segments. The simulations are run with different 

stiffness as shown in the figures (a), (b), and (c). During all the simulations, the time 

step is h = 0 . 001 /s, and the same load is applied (the left end of the thread moves 

toward the fixed right end until the distance between the two ends is L e = 0 . 02 m. 

Then the torsion angle increases with the angular velocity of ω e = 20 rad/s until 

reaching θmax 
in 

= 50 π ). We note that for the same torsional modulus, the thread 

with the lower bending modulus has more loops. 
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.4. Real-time simulation 

The goal of our paper is to develop a physics-based real-time

imulator, so we speed up the simulation through parallel pro-

ramming techniques. Fig. 17 shows the three phenomena of plec-

oneme with different thread properties under the same load. The

hread is initially straight with length L = 1 m and mass M =
 . 01 kg, and is discretized into N = 100 equal segments. The sim-

lations are run with different stiffness shown in the Fig. 17 (a)

 b = 0 . 001 N · m 

2 , k t = 0 . 001 N · m 

2 , (b) k b = 0 . 0005 N · m 

2 , k t =
 . 001 N · m 

2 , and (c) k b = 0 . 00025 N · m 

2 , k t = 0 . 001 N · m 

2 . Dur-

ng all the simulations, the time step is h = 0 . 001 s, and the

ame load is applied (the left end of the thread moves toward

he fixed right end until the distance between the two ends is
 e = 0 . 02 m. Then the torsion angle increases with the angular

elocity of ω e = 20 rad/s until reaching θmax 
in 

= 50 π ). We notice

hat with the same torsion stiffness, the thread with softer bend-

ng stiffness can generate more loops under the same torsional

oad. The simulation runs on a computer with Intel(R) Core(TM)

7-3520M CPU @ 2.90 GHz, 8.00GB RAM. The average frame rate of

he graphical display remains above 1.00 KHz. 

. Conclusion 

In this paper, the surgical thread, a long and thin flexible struc-

ure, is modeled as an elastic Kirchhoff rod subject to end forces

oad. The combination of Lagrangian multiplier to maintain exact

nextensibility, together with the use of the discrete variational in-

egrator technique and continuous collision force technique shows

hat our model is able to handle very high bending angles and in-

imate contact without instability. The symplectic properties of the

ariational integrator guarantee that the momentum and energy

ill not boost during long time simulation, resulting in the long

ime stable simulation of the thread. The adoption of Lagrangian

ultiplier enable us not only accurately but also efficiently (on

verage over 10 0 0 Hz for 10 0 elements) calculate the axial force

long the thread. 

The limitation of our work is that in order to capture the cur-

ature of the knot, very fine discrete thread is required, due to the

doption of equal length discretization strategy. We can improve

his by taking the adaptive discretization strategy (the fine seg-

ents are set where the curvature of the centerline is large, and

oarse segments are where the curvature of the centerline of the

hread is small) in the future. 

cknowledgments 

This publication was made possible by the NPRP Award # 5-

53-2-138 from the Qatar National Research Fund (a member of

atar Foundation). The statements made herein are solely the re-

ponsibility of the authors. We also acknowledge the support of

exas A&M University at Qatar for the visits of Dr. Arun Srinivasa

nd Mr. Zhujiang Wang to Doha, Qatar. 

http://dx.doi.org/10.13039/100008982


204 Z. Wang et al. / International Journal of Solids and Structures 113–114 (2017) 192–208 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

D

L  

w  

i  

s  

a

F

F

S

N
 

 

S

w  

c

−

 

A

 

t  

t  

v  

2

F  

w

E

a

e

T  

c

Appendix A. Derivation of the force caused by the bending 

dissipation 

To find the forces caused by internal dissipation, we first derive

the individual summands, 

S W 

i := k d ˙ βi −1 

∂ ˙ βi −1 

∂ ̇ x i 

= k d ˙ βi −1 

∂βi −1 

∂x i 

= k d ˙ βi −1 

x i −1 − x i −2 

l i −2 · l i −1 

S O i := k d ˙ βi 

∂ ˙ βi 

∂ ̇ x i 

= k d ˙ βi 

∂βi 

∂x i 

= k d ˙ βi 

x i +2 − 2 x i + x i −1 

l i −1 · l i 

S E i := k d ˙ βi +1 

∂ ˙ βi +1 

∂ ̇ x i 

= k d ˙ βi +1 

∂βi +1 

∂x i 

= k d ˙ βi +1 

x i +2 − x i +1 

l i · l i +1 

(A.1)

With the definition of the above items, the forces obtained through

Eq. (6) can be expressed as, 

F b = 

[
F b 1 , F 

b 
2 , . . . , F 

b 
N 

]T 
(A.2)

where 

F b 1 = S E 1 ; F b 2 = S O 2 + S E 2 

F b i = S W 

i + S O i + S E i , i = 3 . . . N − 2 

F b N−1 = S O N−1 + S W 

N−1 ; F b N = S W 

N 

Appendix B. Derivation of constrained & forced discrete 

Euler–Lagrange equations 

Following the theories on variational integrator( West, 2004 ), a

discrete Lagrangian L d (x k , x k +1 ) , approximating the action integral∫ t k +1 
t k 

L (x , ˙ x ) dt during time period of [ t k , t k +1 ] , can be expressed as

L d (x 

k , x 

k +1 ) = h 

[ 

1 

2 

(
x 

k +1 − x 

k 

h 

)T 

M 

(
x 

k +1 − x 

k 

h 

)
− E(�(x 

k )) 

] 

(B.1)

Taking consideration of the inextensibility constraints (1) and the

dissipation forces (4) and (6) , we can obtain the following equation

according to the integral Lagrange–d’Alembert principle, 

δ

∫ T 

0 

L (x , ˙ x ) + λ · �(x ) dt + 

∫ T 

0 

F d (x , ˙ x ) · δx dt = 0 (B.2)

The corresponding discrete form can be expressed as, 

δ
N t −1 ∑ 

k =0 

[ 
L d (x 

k , x 

k +1 ) + λk +1 · �(x 

k +1 ) 
] 

N t −1 ∑ 

k =0 

[
F −

d 
(x 

k , x 

k +1 ) · δx 

k + F + 
d 
(x 

k , x 

k +1 ) · δx 

k +1 
]

= 0 (B.3)

where N t is the number of time steps. Taking the variation of the

Eq. (B.3) , we can obtain 

N t −1 ∑ 

k =1 

(
D 1 L d (x 

k , x 

k +1 ) + D 2 L d (x 

k −1 , x 

k ) + F −
d 
(x 

k , x 

k +1 ) 

+ F + 
d 
(x 

k −1 , x 

k ) + 

∂ �

∂x 

k 
λk 

)
· δx 

k 

+ 

N t −1 ∑ 

k =0 

[ 
�(x 

k +1 ) · δλk +1 
] 

+ 

[
D 1 L d (x 

0 , x 

1 ) + F −
d 
(x 

0 , x 

1 ) 
]
· δx 

0 

+ 

[
D 2 L d (x 

N t −1 , x 

N t ) + F + 
d 
(x 

N t −1 , x 

N t ) 
]
· δx 

N t = 0 (B.4)

where 
 1 L d (x 

k , x 

k +1 ) = −M 

h 

(x 

k +1 − x 

k ) − h 

dE(x 

k ) 

dx 

k 

 2 L d (x 

k −1 , x 

k ) = 

M 

h 

(x 

k − x 

k −1 ) 

et v k = 

x k −x k −1 

h 
, ˙ βk 

i 
= 

βk −βk −1 

h 
. According to the Eqs. (4) and (6) ,

e can get the discrete form of the air drag and force caused by

nternal dissipation as F k a = F a (x k −1 , x k ) and F k 
b 

= F b (x k −1 , x k ) re-

pectively. And therefore, we can set the discrete dissipation forces

s 

 

−
d 
(x 

k , x 

k +1 ) = 0 

 

+ 
d 
(x 

k −1 , x 

k ) = F d (x 

k −1 , x 

k ) = F a (x 

k −1 , x 

k ) + F b (x 

k −1 , x 

k ) 

ubstituting the above terms into Eq. (B.4) , we can get 

 t −1 ∑ 

k =1 

(
D 1 L d (x 

k , x 

k +1 ) + D 2 L d (x 

k −1 , x 

k ) + F d (x 

k −1 , x 

k ) + 

∂ �

∂x 

k 
λk 

)
·δx 

k

+ 

N t −1 ∑ 

k =0 

[ 
�(x 

k +1 ) · δλk +1 
] 

+ 

[
D 1 L d (x 

0 , x 

1 ) + F −
d 
(x 

0 , x 

1 ) 
]
· δx 

0 

+ 

[
D 2 L d (x 

N t −1 , x 

N t ) + F + 
d 
(x 

N t −1 , x 

N t ) 
]
· δx 

N t = 0 (B.5)

ince the above equation is true for any choice of δx k and δλk 

ith δx 0 = δx N t = 0 , then we obtain the constrained & forced dis-

rete Euler–Lagrange equations , 

M 

h 

(x 

k +1 − 2 x 

k + x 

k −1 ) − h 

dE(x 

k ) 

dx 

k 

+ h F d (x 

k −1 , x 

k ) + 

∂ �(x 

k ) 

∂x 

k 
λk = 0 

�(x 

k +1 ) = 0 (B.6)

ppendix C. Derivation of conservative forces 

The elastic energy of the natural straight and isotropic discrete

hread ( Eq. (3) ) only depends on the dispositional variables due to

he quasistatic updating material frame assumption. So the conser-

ative force F e 
i 

obtained through the elastic energy is ( Bergou et al.,

008 ), 

 

e 
i = −dE (�) 

dx i 

= −∂E (�) 

∂x i 

− ∂E (�) 

∂θN L 

∂θN L 

∂x i 

(C.1)

here 

(�) = 

N L ∑ 

i =2 

k b 

l̄ i 

(
2 

1 + e i −1 · e i 
− 1 

)
+ k t 

(θN L − θ1 ) 
2 

2 ̄L 

nd 

 i = 

x i +1 − x i 

| x i +1 − x i | 
he term − ∂E (�) 

∂x i 
is contributed by the bending elastic energy and

an be expressed as, 

∂E (�) 

∂x i 

= 

k b 

l̄ i −1 

1 

(1 + e i −2 · e i −1 ) 2 
x i −1 − x i −2 

l i −2 · l i −1 

+ 

k b 

l̄ i 

1 

(1 + e i −1 · e i ) 2 
x i +1 − 2 x i + x i −1 

l i −1 · l i 

− k b 

l̄ i +1 

1 

(1 + e i · e i +1 ) 2 
x i +2 − x i +1 

l i · l i +1 
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(a) Torsion angle between segment i and segment i + 1 is zero.

(b) Torsion angle between segment i and segment i + 1 is 2π.

Fig. C.18. Top: the torsion angle between segment i and segment i + 1 is zero. Bot- 

tom: the torsion angle between segment i and segment i + 1 is 2 π . One cannot 

calculate the torsion angle between segment i and segment i + 1 purely based on 

the material frame of the discrete segments. 
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The term − ∂E (�) 
∂θN L 

∂θN L 
∂x i 

is contributed by the torsional elastic en-

rgy. Following the work by Bergou et al. (2008) , we know 

∂E (�) 

∂θN L 

∂θN L 

∂x i 

= 

k t (θN L − θ1 ) 

L̄ 

(
− ( kb ) i −1 

2 | e i −1 | − ( kb ) i 
2 | e i −1 | 

+ 

( kb ) i 
2 | e i | + 

( kb ) i +1 

2 | e i | 
)

(C.2) 

here 

( kb ) i = 

2 e i −1 × e i 
1 + e i −1 · e i 

To calculate the total torsion angle θN L 
− θ1 , we adopt a new

ccumulative technique. The angular velocity of i th segment can be

xpressed as ( Shuster, 1993 ) 

ˆ 
 i = 

˙ φi ̂  n i + sin φ ˙ ˆ n i + (1 − cos φi ) ̂  n i × ˙ ˆ n i (C.3)

here ˆ n i = 

( kb ) i 
| ( kb ) i | is the unit vector along ( kb ) i . Thus, the torsion

ngle change along each segment during each time step can be

iven by 

φi = h ( ̂  ω i · e i ) = − h 

1 + e i −1 · e i 
( e i −1 × e i ) · ( ̇ x i +1 − ˙ x i −1 ) (C.4)

hus, the total torsion angle is 

N L − θ1 = θin + h 

N L ∑ 

i =2 

( e i −1 × e i ) · ( ̇ x i +1 − ˙ x i −1 ) 

1 + e i −1 · e i 
(C.5) 

here θ in is the input torsion angle for the thread. 

To calculate the total torsion angle in the numerical simulation,

he accumulative angle technique ( Eq. (C.5) ) requires only some in-

xpensive float manipulations, and thus is very computational ef-

cient. As shown in Fig. C.18 , the top plot shows the torsion angle

etween segment i and segment i + 1 is zero, and the bottom plot

hows the torsion angle between segment i and segment i + 1 is

 π . Since these two discrete thread segment have the same ma-

erial frame, one cannot calculate the torsion angle between seg-

ent i and segment i + 1 purely based on the material frame of
he discrete segments. Thus the torsion angle between two con-

inuous discrete segments is usually limited into 2 π . However, our

ccumulative angle technique ( Eq. (C.5) ) does not have such lim-

tations. As we can see from Eq. (C.5) , the torsion angle is calcu-

ated based on the angle change between two continuous discrete

egments in each time step. This indicates that the torsion angle

etween two continuous discrete segments can be any large value,

s long as the angle change between two continuous discrete seg-

ents is smaller than 2 π during a time step h , which is impossible

o occur in our case due to the small time step we adopted. 

ppendix D. The components of the matrix in contraction 

apping 

Let x̄ = x k + h v k + h 2 M 

−1 

[
− dE 

dx k 
+ F a 

(
x k − x k −1 

h 

)]
, and then

he Eq. (9) can be reformed as 

 

k +1 = x̄ + h 

2 M 

−1 

[
1 

h 

∂ �

∂x 

k 
λk 

]
(D.1)

ubstituting the Eq. (1) into the above equation, we can get, 

 

k +1 
i 

= x̄ i + 

h 

2 

m i 

(
1 

h 

(−2 λk 
i e 

k 
i + 2 λk 

i −1 e 
k 
i −1 ) 

)
(D.2) 

et αi = − 2 hλi 
m i 

, such that 

 

k +1 
i 

= x̄ i + αk 
i e 

k 
i − αk 

i −1 e 
k 
i −1 (D.3)

et ē i = x̄ i +1 − x̄ i . Since e k +1 
i 

= x k +1 
i +1 

− x k +1 
i 

, we can get, 

 

k +1 
i 

= ē i + αk 
i +1 e 

k 
i +1 − 2 αk 

i e 
k 
i + αk 

i −1 e 
k 
i −1 (D.4)

et αi = [ αi −1 , αi , αi +1 ] 
T and e i = [ e i −1 , −2 e i , e i +1 ] . The above equa-

ion can be reformed as 

 

k +1 
i 

= ē i + e k i α
k 
i (D.5) 

ue to the inextensible constraints (1) , e k +1 
i 

satisfies 

 e k +1 
i 

] T e k +1 
i 

= l 2 i (D.6)

here l i is the original length of the i th segment of discrete surgical

hread. Since 

 e k +1 
i 

] T e k +1 
i 

= [ ̄e i ] 
T ē i + 2[ ̄e i ] 

T e k i α
k 
i + [ αk 

i ] 
T [ e k i ] 

T e k i α
k 
i 

ubstituting Eq. (D.6) into the above equation, we know, 

2[ ̄e i ] 
T e k i + [ αk 

i ] 
T [ e k i ] 

T e k i 

]
αk 

i = l 2 i − [ ̄e i ] 
T ē i (D.7) 

ssembling the above equation, we can get, 

 A + B ( α)] α = R (D.8)

here 

 i j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

[ ̄e i ] 
T e k 

i −1 
if j = i − 1 

−2[ ̄e i ] 
T e k 

i 
if j = i 

[ ̄e i ] 
T e k 

i +1 
if j = i + 1 

0 if j = others. 
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Fig. E.19. Two line segments L 1 (α) = P + αd 1 ( d 1 = Q − P , α ∈ [0, 1]) and L 2 (β) = 

R + βd 2 ( d 2 = S − R , β ∈ [0, 1]) collide with each other (| w c | < �d ), where the 

shortest displacement between them is w c with start point L 2 ( βc ) on L 2 and end 

point L 1 ( αc ) on L 1 . 
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B i j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

[
αi −1 (e k 

i −1 
) T − 2 αi (e k 

i 
) T + αi +1 (e k 

i +1 
) T 

]
e k 

i −1 
if j = i − 1 

−2 
[
αi −1 (e k 

i −1 
) T − 2 αi (e k 

i 
) T + αi +1 (e k 

i +1 
) T 

]
e k 

i 
if j = i [

αi −1 (e k 
i −1 

) T − 2 αi (e k 
i 
) T + αi +1 (e k 

i +1 
) T 

]
e k 

i +1 
if j = i + 1 

0 if j = others. 

R = 

[
l 2 1 − [ ̄e 1 ] 

T ē 1 , l 2 2 − [ ̄e 2 ] 
T ē 2 , . . . , l 2 

i 
− [ ̄e i ] 

T ē i , . . . , l 2N

Since αi = − 2 hλi 
m i 

, the equation is essentially 

[ A + B ( λk 
)] λk = R 

Appendix E. Derivation of continuous penalty forces 

Our method to handle the collision response is based on the

model of continuous penalty force is developed by Tang et al.

(2012a ); hence our notation here follows their work. Since we

are going to develop a model that is required to provide force

feedback, the time step is very small (the simulation rate is at

least 10 0 0 Hz). As shown in Fig. E.19 , we assume that two line

segments L 1 (α) = P + αd 1 ( d 1 = Q − P , α ∈ [0, 1]) and L 2 (β) =
R + βd 2 ( d 2 = S − R , β ∈ [0, 1]) collide with each other (| w c | <

�d ), where the shortest displacement between them is w c with

start point L 2 ( βc ) on L 2 and end point L 1 ( αc ) on L 1 . The motion of

the four ends points of the two line segments are given by 

P (t) = P 0 + V P t Q (t) = Q 0 + V Q t 
R (t) = R 0 + V R t S (t) = S 0 + V S t 

Let a = d 1 · d 1 , b = d 1 · d 2 , c = d 2 · d 2 , d = d 1 · w , e = d 2 · w , where

w = P − R , then we can obtain ( Tang et al., 2012a ) 

αc (t) = 

be − cd 

ac − b 2 
, βc (t) = 

ae − bd 

ac − b 2 
(E.1)

Therefore we know 

w c (t) = L 1 (αc ) − L 2 (βc ) 

= w + 

(be − ac) d 1 − (ae − bd) d 2 

ac − b 2 

= P − R + 

(be − ac)(Q − P ) − (ae − bd)(S − R ) 

ac − b 2 

= 

(
1 − be − cd 

ac − b 2 

)
P + 

(
be − cd 

ac − b 2 

)
Q −

(
1 − ae − bd 

ac − b 2 

)
R 

−ae − bd 

ac − b 2 
S 

= ω P (t) P (t) + ω Q (t) Q (t) − ω R (t) R (t) − ω S (t) S (t) (E.2)
 ̄e N L ] 
T ē N L 

]T 

here ω P (t) = 1 − be −cd 
ac−b 2 

, ω Q (t) = 

be −cd 
ac−b 2 

, ω R (t) = 1 − ae −bd 
ac−b 2 

, and

 S (t) = 

ae −bd 
ac−b 2 

. When ac − b 2 = 0 , L 1 and L 2 are parallel to each

ther. The direction of w c ( t ) can be given by, 

 

′ (t) = ( Q (t) − P (t) ) × ( R (t) − S (t) ) 

= [ (Q 0 − P 0 ) + (V Q − V P ) t ] × [ (R 0 − S 0 ) + (V R − V S ) t ] 

= (Q 0 − P 0 ) × (R 0 − S 0 ) + [ (V Q − V P ) × (R 0 − S 0 ) 

+(Q 0 − P 0 ) × (V R − V S ) ] t + (V Q − V P ) × (V R − V S ) t 
2 

= n 

′ 
0 + n 

′ 
1 t + n 

′ 
2 t 

2 (E.3)

here 

n 

′ 
0 = (Q 0 − P 0 ) × (R 0 − S 0 ) 

 

′ 
1 = (V Q − V P ) × (R 0 − S 0 ) + (Q 0 − P 0 ) × (V R − V S ) 

 

′ 
2 = (V Q − V P ) × (V R − V S ) 

he unit direction of w c ( t ) can then be expressed as 

 E (t) = 

n 

′ 
0 + n 

′ 
1 t + n 

′ 
2 t 

2 

| n 

′ 
0 

+ n 

′ 
1 
t + n 

′ 
2 
t 2 | (E.4)

e can now find the impulse during the time interval h is ( Tang

t al., 2012a ), 

 = k s 

∫ t+ h 

t 

n E (t) T [ �d n E (t) − w c (t) ] n E (t) dt (E.5)

ince the time step h is very small in our model, we can get the

pproximations for n E ( t ) and w c ( t ) as ( Tang et al., 2012a ), 

 c (t) = ω P (t) P (t) + ω Q (t) Q (t) − ω R (t) R (t) − ω S (t) S (t) 

≈ w 

app 
c (t) = ω P 0 P (t) + ω Q 0 Q (t) − ω R 0 R (t) − ω S 0 S (t) 

here ω P 0 
= 1 − b 0 e 0 −c 0 d 0 

a 0 c 0 −b 2 
0 

, ω Q 0 
= 

b 0 e 0 −c 0 d 0 
a 0 c 0 −b 2 

0 

, ω R 0 
= 1 − a 0 e 0 −b 0 d 0 

a 0 c 0 −b 2 
0 

,

nd ω S 0 
= 

a 0 e 0 −b 0 d 0 
a 0 c 0 −b 2 

0 

, and 

 E (t) = 

n 

′ 
0 + n 

′ 
1 t + n 

′ 
2 t 

2 

| n 

′ 
0 

+ n 

′ 
1 
t + n 

′ 
2 
t 2 | ≈ n 

app 
E 

(t) = 

n 

′ 
0 + n 

′ 
1 t + n 

′ 
2 t 

2 

| n 

′ 
0 
| 

= 

n 

′ 
0 

| n 

′ 
0 
| + 

n 

′ 
1 

| n 

′ 
0 
| t + 

n 

′ 
2 

| n 

′ 
0 
| t 

2 = n 0 + n 1 t + n 2 t 
2 

here n 0 = 

n ′ 
0 

| n ′ 
0 
| , n 1 = 

n ′ 
1 

| n ′ 
0 
| , and n 2 = 

n ′ 
2 

| n ′ 
0 
| . And thus we can get the

iscrete impulse during the time interval [ t 1 , t 2 ] as 

 

dis 
d = 

h 

2 

{ (
n 

app 
E 

(t 1 ) 
)T [

�d n 

app 
E 

(t 1 ) − w 

app 
c (t 1 ) 

]
n 

app 
E 

(t 1 ) 

+ 

(
n 

app 
E 

(t 2 ) 
)T [

�d n 

app 
E 

(t 2 ) − w 

app 
c (t 2 ) 

]
n 

app 
E 

(t 2 ) 
} 

(E.6)

o the continuous penalty forces created during the time interval

 t 1 , t 2 ] in numerical scheme can be expressed as 

 

dis 
c = 

I dis 
d 

h 

= 

1 

2 

{ (
n 

app 
E 

(t 1 ) 
)T [

�d n 

app 
E 

(t 1 ) − w 

app 
c (t 1 ) 

]
n 

app 
E 

(t 1 ) 

+ 

(
n 

app 
E 

(t 2 ) 
)T [

�d n 

app 
E 

(t 2 ) − w 

app 
c (t 2 ) 

]
n 

app 
E 

(t 2 ) 
} 

(E.7)
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