
One Bit is (Not) Enough: An Empirical Study of the Impact of Single and Multiple

Bit-Flip Errors

Behrooz Sangchoolie*, Karthik Pattabiraman+, Johan Karlsson*

*Department of Computer Science and Engineering, Chalmers University of Technology
+Department of Electrical and Computer Engineering, University of British Columbia

Emails: {behrooz.sangchoolie, johan}@chalmers.se, karthikp@ece.ubc.ca

Abstract—Recent studies have shown that technology and
voltage scaling are expected to increase the likelihood that
particle-induced soft errors manifest as multiple-bit errors. This
raises concerns about the validity of using single bit-flips for
assessing the impact of soft errors in fault injection experiments.
The goal of this paper is to investigate whether multiple-bit errors
could cause a higher percentage of silent data corruptions (SDCs)
compared to single-bit errors. Based on 2700 fault injection
campaigns with 15 benchmark programs, featuring a total of
27 million experiments, our results show that single-bit errors
in most cases yields a higher percentage of SDCs compared
to multiple-bit errors. However, in 8% of the campaigns we
observed a higher percentage of SDCs for multiple-bit errors.
For most of these campaigns, the highest percentage of SDCs
was obtained by flipping at most 3 bits. Moreover, we propose
three ways of pruning the error space based on the results.

Keywords—fault injection; transient hardware faults; sin-
gle/multiple bit-flip errors; error space pruning;

I. INTRODUCTION

Technology and voltage scaling is making transistors in-
creasingly susceptible to soft errors caused by ionizing par-
ticles [1], which increase the rate of transient faults. These
errors can degrade system reliability, by producing silent
data corruptions (SDCs) causing unacceptable or catastrophic
system failures. A cost-effective way of reducing the risk that
hardware faults cause such failures is to introduce software-
implemented error handling mechanisms [2], [3]. The effec-
tiveness of these mechanisms is often evaluated by means
of fault injection. Fault injection can be carried out either
at the hardware or at the software level. The former is
more accurate but is often slow and cumbersome. Software
Implemented Fault Injection (SWiFI) has been widely used
to emulate hardware errors in software. SWiFI is often faster
than hardware injection, and requires no hardware support.

An important challenge in SWiFI techniques is the selection
of the fault model, which needs to be both straightforward
to implement, and representative of real hardware faults.
The single bit-flip model has been a popular engineering
approximation to mimic particle induced soft errors both in
the combinational logic and storage elements (e.g., flip-flops).
However, earlier studies have found that many soft errors
that occur in the processor manifest as multiple-bit errors at
the application level [4], [5], [6]. This observation has led
researchers to question the validity of the single bit-flip model
for representing transient faults due to soft errors. Therefore,

the fault model should consider both single-bit and multiple-bit
errors when calculating measures such as error coverage [7],
[8] and error resilience [9], [10] (we focus on the latter).

The main question we ask is “Does the multiple bit-flip
model significantly differ from the single bit-flip model in
terms of its impact on programs’ error resilience, and if
so by how much?”. Prior work [10], [11], [12], [13] has
studied the impact of double bit-flip errors on a program, i.e.,
injecting two errors in a single word or multiple words. These
papers assume (without providing evidence) that single/double
bit-flip errors are sufficient when measuring programs’ error
resilience. However, in this paper, we inject multiple bit-flips
systematically to provide evidence regarding the number of
bit-flips needed to cause pessimistic SDC results. There exists
very little work on studying the effects of multiple bit-flip
errors beyond double bit-flips due to two challenges.

First, there is no commonly agreed model to map transient
faults, caused due to soft errors, to their software-level man-
ifestation. In fact, it may not even be possible to find such a
representative model. This is why in this paper, we propose
a systematic error space exploration that is based on error
space clustering, where each cluster is represented by two
parameters, (i) the number of bit-flip errors that could occur
in the cluster; and (ii) the distance (in terms of the number of
dynamic instructions) between consecutive injections. Using
these parameters, we form 180 clusters for each program and
conduct multiple bit-flip fault injection experiments. To the
best of our knowledge, we are the first to study the effect of
multiple bit-flip errors on programs beyond double bit-flips,
through the use of clustering techniques.

Secondly, the space of multiple bit-flip errors is extremely
large, and conventional techniques for reducing (i.e., pruning)
the error space may not be applicable. Further, almost all
the existing techniques for pruning the error space [14], [15],
[16] work with the single-bit fault model, and are not easily
extensible to multiple-bit errors. Therefore, in this paper, we
also propose three ways of pruning the error space based on
the fault injection results obtained. First, we find that it is
unnecessary to expose a program to a very high number of bit-
flip errors, as in this case, only a small fraction of the injected
errors are activated. Second, we identify programs where the
single bit-flip model causes pessimistic (i.e., conservative)
percentage of SDCs compared to when the multiple bit-flip
model is used. For these programs, the results of multiple bit-



flip injections can be replaced by single bit-flip fault injection
results. Third, we use the single bit-flip fault injection results
to prune the error space of multiple bit-flip campaigns by
targeting only a fraction of these errors, based on where the
first error should be injected. Together, the three techniques
allow us to prune the space of multiple-bit fault injections.

In summary, the paper makes the following contributions:
• Extends an LLVM (Low Level Virtual Machine)-based

fault injector that injects single bit-flips at the LLVM
compiler’s intermediate code level [17] (§IV-A), to inject
multiple-bit errors (§III-C) in a single word (§IV-B) as
well as multiple words (§IV-C).

• Performs more than 27 million experiments (§III-E) on 15
benchmark programs (§III-D) and for 182 single/multiple
bit error configurations (§III-C) using two different fault
injection techniques (§III-A).

• Quantifies the maximum (upper bound) number of multi-
ple bit-flip errors needed to cause pessimistic percentage
of SDCs (§IV-B and §IV-C2). We find that the single
bit-flip model mostly (92% of all campaigns) results in
pessimistic percentage of SDCs compared to the multiple
bit-flip model; and even when it does not, in most cases,
at most three errors are enough to result in a pessimistic
percentage of SDCs.

• Derives new insights about how the results of single bit-
flip experiments can be used to prune the multiple bit-flip
error space by targeting only a fraction of these errors,
that reveal weaknesses of the programs under test (in
terms of the number of SDCs) that are not revealed by
the single bit-flip model (§IV-C3). We find that single bit-
flip experiments that result in an SDC or program crash,
contributing to around 27-100% of the experiments, can
be pruned by the derived insights.

II. FAULT MODEL AND BACKGROUND

A. Fault Model

In this paper, we use the bit-flip model to mimic transient
faults due to soft errors that occur in the processor’s register
file, ALUs, and in different pipeline registers that eventually
manifest as a data corruption in a source/destination register.
The bit-flip model has been also used in other related work
[2], [18], [19] as a model for transient faults caused by soft
errors. Unlike these works, our model includes both single and
multiple bit-flip errors. Similar to prior work [4], [5], we do
not consider faults in memory since ECC protects the memory
against single/double bit-flips. ECC is however, incapable of
protecting the memory against multiple bit-flips in the same
word. However, in this paper we mainly focus on multiple
bit-flips in multiple words, which may be detected by ECC as
they may manifest as single/double bit-flips in the same word.

B. Error Coverage vs. Error Resilience

Fault injection techniques have been extensively used to
evaluate the effectiveness of error handling mechanisms as
well as to improve the accuracy of measures such as error cov-
erage (c) [7], [8]. Error coverage is defined as the conditional

probability that the program recovers, given the occurrence
of a fault, and consists of both recovery from crashes and
SDCs. An SDC occurs when the program terminates normally,
but the output is erroneous. In practice however, SDCs are
the more important class of failures as the erroneous outputs
are generated with no indication of failure, making them very
difficult to detect. Therefore, instead of the error coverage, we
use error resilience [9], [10] as the dependability metric. Error
resilience is defined as the conditional probability that the
program does not produce an SDC after a transient hardware
fault occurs and impacts the program state (i.e., similar to
work such as [20], [21], [22] it deals with faults passing the
hardware and seen by the software). The error resilience and
similar metrics such as error sensitivity [11], [23] are used to
evaluate the effectiveness of error handling mechanisms.

C. Related Work

Traditionally, most fault injection studies at the program
level have focused on the single bit-flip model, i.e., injecting
single bit-flips into programs. However, recently, there have
been some studies focusing on double bit-flip model [10], [11],
[12]. Lu et al. [10] compare the results of injecting single bit-
flip errors with injecting double bit-flip errors in a single word
and in different words at the LLVM compiler’s intermediate
code level using the LLFI [24] fault injector. They find that
there is not much variation between the error resilience of
the different models. The main focus of the work is on the
fault injection tool rather than a thorough study of the impact
of multiple bit-flip errors. Ayatolahi et al. [11] compare the
single bit-flip model with the double bit-flip model at the
assembly-level code. In their study, double bit-flip errors are
only injected into a single word (i.e., register or memory
location). They also find that the SDC results obtained for the
two fault models are only marginally different. Adamu-Fika
and Jhumka [12] compare the results of injecting double bit-
flip errors in a single word with those of injecting into different
words at the LLVM compiler’s intermediate code level. Similar
to the other two studies, the results of their experiments show
that, on average, the difference between the percentage of data
failures for the two models is marginal. However, they do not
consider the relative positions of the faults injected, nor do
they generalize their findings beyond double bit-flips.

Compared to the above mentioned studies, in this paper, we
go beyond the double bit-flip model by injecting up to 30 bit-
flip errors in single words as well as different words in each
program run. We also consider a wide range of parameters that
may influence the fault injection results and characterize the
space thoroughly. This way, we can analyze the sensitivity of
the results with respect to the fault injection parameters used.
Since the multiple bit-flip error space is significantly large, in
this paper, we also derive insights on how the error space could
be further pruned from our results, which also distinguishes
our study from the earlier studies.

There has also been little work targeting programs with
multiple errors [25], [26]. Jiantao Pan [25] introduces a model
called dimensionality to pin-point the number of function call



parameters that are responsible for a failure. The model is used
in a subsequent work [26] to improve software robustness.
However, compared to our fault model, the dimensionality
model has two main limitations; (i) multiple errors are only
introduced to the parameters of each interface, which may
not be representative of multiple errors that occur in variables
used within the function; (ii) the number of errors that are
introduced in each interface is limited by the number of
parameters used by the interface.

There are also studies addressing intermittent faults, which
could model multiple-bit errors. Intermittent faults are those
that show up intermittently at the program level. For example,
Rashid et al. [27] build an intermittent fault model at the
microarchitectural level using stuck-at-last-value and stuck-at-
zero/one models. However, they assume that (i) a microarchi-
tectural unit may be affected by at most a single intermittent
fault and (ii) at most one microarchitectural unit may be
affected by an intermittent fault. These assumptions may not
hold for transient faults due to soft errors, which is our focus.

D. Error Clustering and Error Sampling

The error space under the single bit-flip model is dependant
on the number of register bits available in a target system.
Unfortunately, the high number of bits in a typical program
makes the error space prohibitively large. For example, assume
that each instruction reads or writes only one register; let d be
the number of dynamic instructions in a program and b be the
number of bits in a register, then d ∗ b would be the size of
the single-bit error space. This makes it infeasible to conduct
exhaustive fault injection campaigns for workloads with a
high number of dynamic instructions. This is why prior work
has either randomly sampled the error space, or used error
clustering to find classes of equivalent errors which could then
be pruned to facilitate exhaustive fault injection campaigns
[14], [15], [16]. However, all of these papers have focused on
single-bit errors, and hence their heuristics for sampling and
clustering are specific to the single bit-flip scenario.

Conducting multiple-bit injections adds another dimension
to the (already large) error space, making it even more
necessary to use error space pruning techniques. For example,
let m be the number of multiple-bit errors in one run of a
program where the maximum number of errors is bounded by
d ∗ b, then the error space could be as big as

∑d∗b
m=2(d ∗ b)m.

This makes it infeasible to conduct exhaustive fault injection
campaigns even for workloads with a fairly low number
of dynamic instructions; this is why in this paper, we use
clustering in the context of multiple-bit errors to explore the
error space in a more systematic way (by placing errors with
similar characteristics in the same error class). Moreover, the
error clusters as well as various heuristics that are specific to
multiple-bit errors are used to prune the error space by finding
a class of errors that leads to pessimistic percentage of SDCs.

III. EXPERIMENTAL SETUP

In this section we first present the different fault injection
techniques used in §III-A. Then in §III-B, we present the fault

injection tool used in the paper and in §III-C we present
our extensions to it. In §III-D, we present the benchmark
programs used in our experiments. In §III-E, we present the
design of experiments, and how we classify the outcome of
each experiment. Finally, in §III-F, we present the research
questions related to error space understanding and pruning.

A. Fault Injection Techniques

In this paper, we conduct our fault injection experiments
using two techniques, namely inject-on-read and inject-on-
write. Using these techniques, faults are only injected in
live registers, which eliminate faults with no possibility of
activation. The motivation for injecting faults in live registers
is that 80-90% of randomly injected faults are often not
even activated [28], [29]. Examples of these are faults placed
in a register just before the register is written into (and is
overwritten), and faults that are injected into unused registers.

1) Inject-on-read: This technique only injects a fault into
a register just before it is read by an instruction [16], [23],
[30]. Using this technique, Barbosa et al. [16] managed to
reduce the error space of workloads by two to five orders
of magnitude. The inject-on-read is well suited for emulating
errors that propagate into a register, for example due to a direct
hit by an ionizing particle. In this technique, all faults targeting
a specific bit of a given register, from the time the register is
written into until it is read, are considered equivalent.

Note that to obtain an accurate estimation of different
dependability measures, it would be necessary to apply a
weight factor corresponding to the number of faults in each
equivalence class [16], [23], [31]. However, the aim of this
paper is to compare the single and multiple bit-flip models,
rather than to find an absolute dependability measure for
programs. Therefore, we do not apply such a weight factor.

2) Inject-on-write: This is a technique that is used to reduce
the error space size by only injecting an error into a register
right after it is written into by an instruction [23], [24], [32].
It aims to mimic faults in computation, such as the ones that
occur in the arithmetic logic units (ALUs) and in different
pipeline registers that eventually manifest as an error in a
destination register.

B. LLFI Fault Injection Tool

In this paper, we use LLFI [24], an open source fault
injector, that injects faults into the LLVM [17] framework’s
intermediate code of a program. LLVM is a collection of
reusable compiler tools and components, and allows analysis
and optimization of code written in multiple programming
languages. The key component of LLVM is its intermediate
representation (IR), an assembly-like language that abstracts
out the hardware and ISA-specific information. LLFI has been
used in several other work [9], [10], [12], for injecting single
and double bit-flip errors using inject-on-read and inject-on-
write techniques. In this work, we have extended LLFI to
facilitate the injection of multiple bit-flip errors as explained
in the next section1.

1LLFI is available at http://github.com/DependableSystemsLab/LLFI



C. Extending LLFI for Multiple Bit-Flip Injections
LLFI [24] defines single bit-flip errors as time-location pairs

according to a fault-free execution of a program. The location
is selected from IR registers, and the time corresponds to
a dynamic IR instruction. To model multiple bit-flip errors,
we extend the time-location parameters by two additional
parameters, namely max-MBF and win-size, which allow us
to cluster the error space into different classes of errors to
be able to explore the error space in a more systematic way.
The max-MBF parameter controls the number of bit-flip errors
that could occur in one run of a program. Selecting a certain
value, say 5, as the max-MBF does not necessarily mean
that five errors will be injected into the program. This is
because the program may crash prematurely (after the first
injection, say), causing the remaining faults to not be injected.
Therefore, max-MBF is in fact, the maximum number of bit-
flip errors that occur in the program. The win-size, on the other
hand, controls the number of dynamic instructions that should
be executed between consecutive injections. For example, if
the win-size is equal to 2, the dynamic instruction distance
between each injection is equal to two.

As there are no commonly agreed values for the new
parameters in the literature, we consider a wide variety of
values for the parameters when studying the impact of multiple
bit-flip errors on programs. These value ranges cover various
multiple bit-flip scenarios temporally, enabling us to perform
sensitivity analysis. In this paper, we use 10 different values
for the max-MBF (see Table I) ranging from 2 to 30. We
motivate the use of 30 as a max-MBF value in §IV-C1.

For the window size parameter, we select nine win-size
values covering dynamic window sizes from zero to 1000
(see Table I). A window size of zero implies that the in-
jections, following the first one, will be performed into the
same instruction (i.e., register). The rationale behind limiting
the maximum value of this parameter to 1000 is that we
predominantly consider multiple bit-flip errors in software that
are caused by a single transient fault in the processor. Such
faults are likely to affect instructions that are “in-flight” in the
processor’s instruction window2. Typical instruction windows
in modern processors are a few hundred of instructions in size,
and hence 1000 is a reasonable upper bound. Six of the values
selected are constants (0, 1, 4, 10, 100, 1000). The remaining
three values are randomly selected from a range of 2-10, 11-
100, or 101-1000, to achieve better representativeness.

The chosen win-size values could also represent multiple
unconnected transient faults that cause errors in instructions
that are apart from each other by less than 1000 dynamic
instructions. However, it is very unlikely that multiple transient
faults (due to multiple soft errors) occur in a single run of a
program, that too within a short time of each other.

D. Benchmark Programs
We target 15 programs in our set of fault injection ex-

periments. We select a diverse set of programs with respect

2The instruction window is the set of all instructions that have been decoded
but not yet committed in a superscalar processor.

Table I
VALUES SELECTED FOR THE MAXIMUM NUMBER OF MULTIPLE BIT-FLIP

ERRORS (MAX-MBF) AND THE DYNAMIC WINDOW SIZE (WIN-SIZE)
BETWEEN CONSECUTIVE INJECTIONS.

max-MBF max-MBF win-size win-size
index value index value

m1 2 w1 0
m2 3 w2 1
m3 4 w3 4
m4 5 w4 random between 2-10
m5 6 w5 10
m6 7 w6 random between 11-100
m7 8 w7 100
m8 9 w8 random between 101-1000
m9 10 w9 1000
m10 30

to source code implementation, code size, input type/size,
functionality, etc. from two distinct benchmark suites, namely
MiBench [33] and Parboil [34] (see Table II).

1) MiBench Benchmark Suite: This benchmark suite con-
tains a set of commercially representative embedded programs.
The programs are placed into six different packages of auto-
motive, consumer, network, office, security, and telecomm. In
this paper, we select 11 programs from these packages (see
Table II). MiBench provides two inputs for every program,
namely small and large. We use the small inputs in our set of
experiments as we need to perform thousands of fault injection
experiments and hence need inputs that do not lead to long
running times.

2) Parboil Benchmark Suite: This benchmark suite contains
a set of programs selected from scientific and commercial
fields. We select four programs from this benchmark suite (see
Table II). Two of them (bfs and histo) are taken from the base
implementation package. The remaining two programs (sad
and spmv) are from the CPU implementation package.

Table II also shows the total number of candidate in-
structions for inject-on-read and inject-on-write fault injection
techniques. From the table, we can see that the number of
instructions that are available for inject-on-read is higher than
the inject-on-write. This is because instructions, such as the
store instruction, do not have destination register in the
LLVM IR; thus they are not selected as candidates for fault
injection in inject-on-write.

E. Experimental Design and Outcome Classification

We conduct 182 fault injection campaigns for each of the
benchmark programs presented in §III-D. A fault injection
campaign refers to a set of fault injection experiments using
the same fault model on a given workload; a workload is a
program running with a given input. Half of the campaigns
use the inject-on-read technique presented in §III-A1, whereas
the other half use the inject-on-write technique presented in
§III-A2. In addition to two single bit-flip campaigns, each
using a fault injection technique, we perform multiple bit-flip
errors using the parameters (max-MBF, win-size) in Table I.



Table II
SELECTED BENCHMARK PROGRAMS

B
en

ch
m

ar
k

Package Program (LoC)

Total number of candidate

Description & Input
instructions for fault injection

inject-on-read inject-on-write

M
iB

en
ch

automotive

basicmath (178) 3,683,881 2,964,600 Performs mathematical calculations such as cubic equation calcu-
lation and square root calculation on a set of constants.

qsort (35) 2,615,557 2,214,245 Implements the Quick Sort algorithm on a list of words.
susan corners(1700) 2,449,209 2,088,322 Finds corners of a black & white image of a rectangle.
susan edges(1700) 5,188,476 4,413,577 Finds edges of a black & white image of a rectangle.

susan smoothing(1700) 62,752,639 49,105,460 Smooths a black & white image of a rectangle.

telecomm
FFT (215) 5,313,377 4,526,716 Performs Fast Fourier Transformation on an array of data.
IFFT (215) 5,423,988 4,620,938 Performs reverse FFT on an array of data.

CRC32 (107) 28,746,216 23,270,737 Implements the 32-bit Cyclic Redundancy Check on a sound file.

network dijkstra (133) 67,617,629 54,495,536 Uses Dijkstra’s algorithm to find the shortest path between pairs of
nodes constructed from an adjacency matrix representation graph.

security sha (188) 30,609,559 25,726,389 Implements the well known SHA (secure hash algorithm), generat-
ing a 160-bit digest from an ASCII text file.

office stringsearch (340) 161,533 114,835 Searches for words in phrases using case insensitive comparison.

Pa
rb

oi
l base

bfs (592) 113,582,521 94,021,100
Uses the breadth-first search algorithm to compute the shortest-path
cost from a single node to every reachable node in an irregular graph
of uniform edge weights derived from the map of New York.

histo (610) 678,224,521 566,829,877 Computes a 2-D saturating histogram with a maximum bin count
of 255 of the default input set.

cpu
sad (944) 648,604,565 510,295,230 Calculates the sum of absolute differences in the default input set.

spmv (619) 11,003,882 8,965,172 Computes the product of a sparse matrix with a dense vector. We
select the small input, which is a sparse matrix in coordinate format.

Each campaign consists of 10,000 fault injection experi-
ments to obtain tight error bounds. Thus, we perform a total
of 10, 000 ∗ 182 ∗ 15 = 27, 300, 000 experiments. We also
compute error bars at the 95% confidence intervals.

The outcome of each experiment is classified into one of
the following categories:

• Benign. The program terminates normally and the in-
jected error does not affect the program’s output. This
category could be the result of internal robustness of the
program and it contributes to overall error resilience.

• Detected by Hardware Exceptions. The injected error
raises a hardware exception. Almost all these exceptions
cause the program to crash, however there are very
few cases where a hardware exception is raised without
causing a crash. Errors detected by hardware exception
mechanisms contribute to the overall error resilience, as
the program could potentially call a recovery routine
and prevent the program from producing an erroneous
result. These exceptions include segmentation faults (ac-
cessing memory words outside the legal memory segment
boundary), aborts (programs aborted by themselves or the
OS), misaligned memory accesses (memory accesses are
not aligned at four bytes), and arithmetic errors such as
division by zero.

• Hang. The program fails to terminate within a predefined
time, which is set by LLFI to be one or two orders of
magnitude greater than the execution time of the fault-

free run of the program. Errors that result in this category
also contribute to the overall error resilience as watchdog
timers could be used to detect them.

• NoOutput. The program terminates, without generating an
output. Errors that result in this category also contribute
to the overall error resilience as there is an indication that
the program needs to be executed again.

• Silent Data Corruption (SDC). The program terminates
normally, but the output is incorrect (based on a bit-wise
comparison), and there is no indication of the failure.

As mentioned above, the first four outcome categories
(Benign, Detected by hardware exceptions, Hang, and NoOut-
put) contribute to the error resilience. Recall that the error
resilience is defined as the probability that the program does
not cause an SDC, which is why we focus on the SDC
outcome category. Among the four error resilience categories,
the Benign category is the result of internal robustness of the
program, while the other three categories correspond to when
an error is detected - we refer to them as Detection.

F. Research Questions

In this section, we present the research questions that are
investigated in this paper. The research questions are motivated
by the three error pruning techniques we investigate.

The first error space pruning layer deals with the selection of
an upper bound for the max-MBF parameter, since there is no
commonly agreed mapping model that could be used to reason



about the number of software-level errors due to a hardware
transient fault. Though we choose 30 as an upper bound for
the max-MBF, the actual number of activated errors may be far
fewer allowing us to prune the multiple error injection space.
So the first research question deals with the number of errors
that are actually activated when multiple errors are injected
and do not result in program crashes.

• RQ1. When multiple errors are injected, how many errors
are activated before the program crashes (if it crashes)?

In the second layer of error space pruning, we classify
fault injection results with respect to parameters such as
the fault injection technique used (inject-on-read and inject-
on-write), the maximum number of bit-flips injected (max-
MBF), and the dynamic window size between consecutive
injections (win-size), to investigate whether we could further
prune the error space by finding parameter values that result
in pessimistic percentage of SDCs (i.e., conservative upper-
bounds). Therefore, we ask the following research questions:

• RQ2. Does the single bit-flip error model result in pes-
simistic percentage of SDCs when compared with the
multiple bit-flip error model?

• RQ3. Is there an upper bound to the maximum number of
multiple bit-flips needed to cause pessimistic percentage
of SDCs?

• RQ4. Is there a maximum dynamic window size that
causes pessimistic percentage of SDCs?

Using the results obtained from the second layer of error
space pruning, the multiple bit-flip error space could be
significantly pruned allowing us to only focus on a certain
subset of the max-MBF and win-size parameters. However,
depending on the size of the program, conducting fault injec-
tion experiments even on the pruned error space may still be
very time-consuming. This is why in the third layer of error
space pruning, we ask the following question:

• RQ5. Is it possible to find fault injection locations that
are insensitive to multiple bit-flip errors compared to
single bit-flip errors, and exclude them from the multiple-
injection error space?

IV. EXPERIMENTAL RESULTS

In this section, we present detailed classifications of fault
injection results with respect to the parameters, max-MBF and
win-size as well as the type of fault injection technique used.
These classifications help us quantify the differences between
candidate values that can be chosen for each parameter, which
allows us to answer the research questions presented in §III-F.
We start by understanding the outcomes of the single-bit fault
injection experiments (§IV-A), followed by multiple injections
into the same register (§IV-B), and then finally multiple fault
injections in different registers (§IV-C).

A. Results for the Single Bit-Flip Model

In this section, we present the results of fault injections
using the single bit-flip model to serve as a baseline for com-
parison with the multiple bit-flip injections. Fig. 1 shows the

outcome classification results with the single bit-flip model.
Fig. 1a and Fig. 1b show the results for when inject-on-
read and inject-on-write fault injection techniques are used,
respectively. Recall that the Detection category is the sum of
the results for Hang, NoOutput and Detected by Hardware
Exception categories. The percentage of experiments classified
as Hang and NoOutput is insignificant (less than 0.3%), and
hence most of the experiments in the Detection category were
detected by hardware exceptions.

Fig. 1 shows that overall, the SDC percentage when using
the inject-on-write technique is higher than that when using
the inject-on-read technique. A similar trend was also observed
by Sangchoolie et al. [23]. The reasons for this difference
are (i) the type of data-items stored in source/destination
registers as well as (ii) the number of times that these
registers are accessed throughout the execution of the program.
Registers could hold data-items of different types such as
memory addresses, data variables, and control information.
Errors injected in memory addresses are mostly detected by
hardware exception mechanisms, causing a higher percentage
of crashes and hence lower percentage of SDCs [9], [23].
Both source registers and destination registers could hold a
memory address, however, an address may be read multiple
times after it is written into. This increases the probability of
an error being injected into an address when using the inject-
on-read technique, which would eventually result in a lower
percentage of SDCs for the results obtained using the inject-
on-read technique compared to the inject-on-write technique.

B. Results When Targeting Multiple Bits of the Same Register

Fig. 2 shows the classification of fault injection results when
the multiple injections are performed into the same instruction
(i.e., register). In other words, for each program, the dynamic
window size (win-size) value is zero, and only the max-
MBF parameter is varied from 1 (the leftmost bar) to 30 (the
rightmost bar). The goal of this experiment is to understand
how much the max-MBF parameter alone contributes to the
percentage of SDCs.

Fig. 2a and Fig. 2b show the results for when inject-on-
read and inject-on-write fault injection techniques are used,
respectively. The leftmost result bar for each benchmark pro-
gram represents the percentage of SDCs when only a single-bit
error is injected, while the other result bars correspond to the
percentages of SDCs caused by different numbers of multiple
bit-flip errors ranging from 2 to 30.

Fig. 2 shows that for the majority of the programs, the SDC
results obtained for the single bit-flip model is either pes-
simistic, or very close to the ones obtained for the multiple bit-
flip model. However, for basicmath and CRC32 programs, the
SDC results due to the single bit-flip model are significantly
lower (especially when using the inject-on-write) than the
results obtained for the multiple bit-flip model, and hence the
single bit-flip model does not yield pessimistic SDC results for
these programs. This behaviour can be explained by looking
at Fig. 1, where we see that single bit-flip errors injected into
these programs result in the lowest percentage of Detections



(a) inject-on-read (b) inject-on-write

Figure 1. Fault injection outcome classification for campaigns using single bit-flip model. The Detection category refers to the sum of Detected by Hardware
Exception, Hang and NoOutput categories. The error bars indicate 95% confidence intervals.

(a) inject-on-read (b) inject-on-write

Figure 2. Percentage of SDCs for injecting different number of errors into the same instruction/register (i.e., win-size = 0). The leftmost and rightmost bars,
for each program, represents the percentage of SDCs when injecting 1 and 30 errors, respectively. The error bars indicate 95% confidence intervals.

when compared with the other programs. This implies that
there are fewer possibilities of hardware exceptions to be
raised due to the injection of errors in these programs. There-
fore, many of the errors injected remain undetected, thereby
resulting in a higher percentage of SDCs.

For qsort and susan-corner programs, the single bit-flip
model results in pessimistic percentage of SDCs compared to
the multiple bit-flip model, except for the case when max-MBF
= 30. However, it is unlikely that these number of bits are
affected by a single fault; this configuration (max-MBF = 30)
is mainly selected for answering RQ1. Therefore, for the qsort
and susan-corner programs also, the single bit-flip fault model
provides us with a pessimistic estimate of the percentage of
SDCs caused due to multiple bit-flip error injections.

RQ2-Answer: For the majority of the benchmark programs, the
results obtained for the single bit-flip model is either pessimistic
or very close to the ones obtained for the multiple bit-flip model
for bit-flips in the same register (i.e., win− size = 0).

C. Results When Targeting Bits of Multiple Registers

In this section, we consider multiple bit-flips in multiple
registers accessed by different instructions. To control the
distance between consecutive injections, we choose the dy-
namic window sizes (win-size) that are greater than zero (win-
size>0) from Table I. We first attempt to bound max-MBF
by studying how many errors are activated when the max-
MBF=30 (§IV-C1). We find that only a small fraction of these
errors are activated, making it unnecessary to select higher
values for max-MBF. However, as the error space is still
large, we search for max-MBF/win-size pairs in the space
that cause pessimistic percentage of SDCs (§IV-C2). Finally,
we investigate whether the single bit-flip fault injection results
can help prune the multiple bit-flip error space (§IV-C3).

1) Number of Activated Errors: Fig. 3 shows the distribu-
tion of the number of activated errors before causing a program
to crash, given that we intend to inject 30 bit-flip errors. The
reason for selecting such a high value (max-MBF=30) is to
find the portion of errors that could remain undetected and can



hence be pruned. Note that the results presented here include
all win-size values shown in Table I.

Fig. 3 shows that at most five activated errors are enough
to cause a program to crash in more than 96% (78%) of the
experiments using inject-on-read (inject-on-write) techniques.
Furthermore, 3% and 14% of the inject-on-read and inject-
on-write experiments, respectively, managed to activate six to
ten errors. And finally, only around 1% of the inject-on-read
experiments and 8% of the inject-on-write experiments had
more than 10 activated errors. Thus, we see that an upper
bound of 10 errors for max-MBF is sufficient to capture the
majority of fault injection outcomes, and hence can be used to
bound the value of max-MBF. As one could expect, the errors
that remain undetected would most likely result in SDCs.

RQ1-Answer: Around 99% of inject-on-read and 92% of inject-
on-write experiments had fewer than 10 activated errors.

2) Max-MBF/win-size Pairs that Cause Pessimistic Percent-
age of SDCs: In the previous section, we studied the effects
of the max-MBF on the number of activated errors in the
program. We now examine the effects of the max-MBF on
the SDC percentages. Fig. 4 and Fig. 5 show the SDC results
for the experiments targeting bits of multiple registers using
the inject-on-read, and inject-on-write techniques, respectively.
Both of these figures show that when increasing the number
of bit-flip errors, the general trend for the SDC results is
declining, regardless of the value of win-size selected. We
further study each technique in detail below.

a) Results for the inject-on-read Technique: Fig. 4 shows
the SDC results for the experiments targeting bits of mul-
tiple registers using the inject-on-read technique. The 95%
confidence intervals for these results are between ±0.19 for
dijkstra and ±0.97 for sha. According to this figure, in 13
programs, the percentage of SDCs caused due to the single bit-
flip model is higher than or almost the same as (i.e., difference
less than one percentage point) the ones caused due to the
multiple bit-flip model. However, for 2 programs (CRC32 and
stringsearch), there are multiple bit-flip campaigns that result
in a higher percentage of SDCs. Even for the 2 programs, the
percentage of SDCs caused due to the single bit-flip model is
only around two percentage points lower than the multiple bit-
flip configuration that causes the highest percentage of SDCs.
Thus, the single bit-flip model provides a pessimistic upper-
bound on SDCs for most of the programs.

It is interesting to note that even when the single bit-flip
model does not result in pessimistic SDC results, two errors
are enough to result in the highest (pessimistic) percentage of
SDCs, regardless of the value of win-size selected (see Table
III). The value of this observation is that in the case of the
inject-on-read technique, there is no need to perform more than
two injections to estimate the error resilience of a system.

Fig. 4 also shows that except for a couple of programs such
as CRC32 and susan-smoothing, there is not much variation
between the percentage of SDCs obtained for different win-

Table III
CONFIGURATIONS THAT RESULTED IN THE HIGHEST PERCENTAGES OF

SDCS, AMONG ALL MULTIPLE BIT-FLIP ERROR CAMPAIGNS.

Program
inject-on-read inject-on-write

max- win-size max- win-size
MBF MBF

basicmath 2 100 3 1
qsort 2 100 3 1

susan corner 2 1000 4 1
susan edge 2 1000 3 1

susan smoothing 2 1000 3 1
FFT 2 1 2 1
IFFT 2 1 2 1

CRC32 2 100 2 100
dijkstra 2 4 3 4

sha 2 10 2 1
stringsearch 2 RND(2-10) 2 4

bfs 2 1000 2 1000
histo 2 RND(2-10) 6 1
sad 2 1000 2 4

spmv 2 1000 2 RND(11-100)

size configurations. In other words, when studying the impact
of multiple bit-flip errors on programs, the win-size parameter
does not matter much for the SDC percentages. However,
Table III shows the win-size configurations that caused the
highest percentage of SDCs, among all multiple-bit error
campaigns. We can see that when using the inject-on-read
technique, higher window sizes are more likely to result in the
highest percentage of SDCs. This is because a high percentage
of data-items targeted by errors when using the inject-on-read
technique are memory addresses. Injecting errors into memory
addresses are mostly detected by the exception mechanisms
(see Fig. 1a). Thus, multiple injections into registers that are
within a small window are more likely to result in an address
corruption that raises an exception, thereby resulting in a
higher percentage of Detections than when consecutive errors
are injected into registers that are within a larger window.

Result summary (inject-on-read technique):
RQ2-Answer: The single bit-flip model provides a pessimistic
upper-bound on SDCs for most of the programs.
RQ3-Answer: Two errors are enough to cause the highest
percentage of SDCs.
RQ4-Answer: Window size does not have much effect on the
percentage of SDCs.

b) Results for the inject-on-write Technique: Fig. 5
shows the SDC results for the experiments targeting bits of
multiple registers using the inject-on-write technique. The 95%
confidence intervals for the results presented here are between
±0.26 for dijkstra and ±0.97 for sha. From the figure, we
can see that the single bit-flip model results in a pessimistic
estimate of the percentage of SDCs for only around half of
the programs. In the other half, single bit-flip errors result in



(a) inject-on-read (b) inject-on-write

Figure 3. Distribution of the number of activated errors before causing a program to crash, given that max-MBF is equal to 30.

Figure 4. SDC results for experiments targeting bits (from 1 to 30) of multiple registers using the inject-on-read technique. Here the RND (α, β) refers to a
randomly selected value between α and β.

Figure 5. SDC results for experiments targeting bits (from 1 to 30) of multiple registers using the inject-on-write technique. Here the RND (α, β) refers to
a randomly selected value between α and β.



2 (for dijkstra) to 17 (for basicmath) percentage points of lower
SDCs compared to the multiple bit-flip configurations that
cause the highest percentage of SDCs. The high percentage of
difference for basicmath could yet again be explained using the
results presented in Fig. 1, where injecting single bit-flip errors
in basicmath result in the lowest percentage of Detections.
This implies that there are fewer hardware exceptions raised
in these programs, which means fewer errors are detected and
hence results in higher percentage of SDCs.

The results of our multiple bit-flip campaigns show that,
in the case of using the multiple bit-flips, three errors are
sufficient to cause the highest percentage of SDCs for 114
out of 120 program/win-size pairs (corresponding to 95%
of the pairs). Out of these 114 pairs, 93 and 21 of them
correspond to when the max-MBF is equal to two and three,
respectively. Out of the 120 program/win-size pairs, there are
also five cases where four errors are needed to cause the
highest percentage of SDCs; however, compared to when three
errors are injected, these cases only result in at most one
percentage point of higher percentage of SDCs, which is not a
significant difference. The only exception is the histo program
using the window size of one, where six errors are needed to
cause the highest percentage of SDCs.

Comparing Fig. 4 and Fig. 5 suggests that depending on
the fault injection technique used, different numbers of errors
need to be injected into the system to produce a pessimistic
estimate of the percentage of SDCs. However, aggregating the
results from both techniques, injecting three errors is sufficient
to result in the highest percentage of SDCs.

Fig. 5 also shows that for many of the programs, the win-
size parameter has a significant effect on the percentage of
SDCs when using the inject-on-write technique (unlike the
inject-on-read technique). Further, according to Table III, when
using the inject-on-write technique, lower window sizes are
more likely to result in the highest percentage of SDCs, which
is different from what we observed for the inject-on-read
technique. This is because a higher percentage of data-items
targeted by errors are data variables, in contrast to the inject-
on-read technique where they were address variables. Injecting
errors into data variables mostly result in Benign or SDC
outcome categories. Thus, by injecting multiple errors within a
small window size, the likelihood of causing an SDC increases
as there is less opportunity for the effect of an error to be
masked before the next injection; thus, we can choose smaller
window sizes for pruning.

Result summary (inject-on-write technique):
RQ2-Answer: The single bit-flip model does not result in
pessimistic percentage of SDCs for half of the programs.
RQ3-Answer: Three errors are enough to cause the highest
percentage of SDCs in 95% of the program/win-size pairs.
RQ4-Answer: Lower window size values are more likely to
result in the highest percentage of SDCs.

3) Sensitivity of Fault Injection Locations to Multiple Bit-
Flip Errors: In this section, we study whether the results

Figure 6. State diagram showing transitions between different outcome
categories due to the injection of multiple-bit errors.

obtained for single bit-flip campaigns can be used to prune
the multiple bit-flip error space with respect to the program
location into which the first error should be injected. Our goal
is to inject the first error of each multiple bit-flip experiment
in locations that would eventually cause an SDC and are not
covered by the single bit-flip model. We explain this using Fig.
6, which shows how injecting multiple bit-flip errors would
affect the results of a single bit-flip experiment.

In Fig. 6, ts, tb and td correspond to when a single bit-
flip error is injected into a specific location in the program,
resulting in SDC, Benign or Detection, respectively. All other
transitions correspond to when multiple bit-flip errors are
injected starting from the same program location, and change
the result of the single bit-flip outcome. For example, tb−s

refers to a change in the fault injection result from Benign
to SDC due to the injection of multiple bit-flip errors. Fig. 6
illustrates two transitions where injecting additional bit-flip
errors into the program changes its result from Benign or
Detection to an SDC, thereby decreasing its resilience:

• Transition I (td−s). Injecting single bit-flip error into a
location results in the Detection category, but injecting
multiple bit-flip errors changes the result to an SDC.

• Transition II (tb−s). Injecting single bit-flip error into
a location results in the Benign category, but injecting
multiple bit-flip errors changes the results to an SDC.

To find the likelihood of the above transitions, we conduct
two fault injection campaigns for each program, one for each
fault injection technique. To get the worst-case estimates,
we use the max-MBF/win-size pairs that caused the highest
percentage of SDCs when conducting multiple bit-flip fault
injection campaigns (see Table III). We choose the location of
the first error of each multiple bit-flip experiment from those
chosen for the single bit-flip model. We do not consider the
ts−s transition as we only consider cases that would add to
the number of SDCs (i.e., pessimistic percentage of SDCs).

Table IV shows the results. From the table, we can see
that Transition I is very unlikely (in most cases below 1%),



Table IV
LIKELIHOOD OF TRANSITION I AND TRANSITION II.

Program
inject-on-read inject-on-write

Tran. I Tran. II Tran. I Tran. II
basicmath 1.1% 31.9% 0.6% 58.3%

qsort 0.7% 13.4% 0.4% 29.5%
susan corner 0.1% 1.2% 0.1% 4.1%
susan edge 1.2% 0.6% 0.9% 0.8%

susan smoothing 0.3% 14.6% 0.8% 34.6%
FFT 0.4% 25.6% 4.1% 23.4%
IFFT 0.5% 23.6% 3.6% 26.0%

CRC32 0.8% 48.1% 0.6% 81.8%
dijkstra 0.0% 3.1% 0.2% 2.9%

sha 1.0% 0.0% 2.2% 0.0%
stringsearch 0.1% 7.7% 0.2% 15.7%

bfs 0.2% 10.7% 0.8% 19.2%
histo 0.1% 5.2% 0.2% 19.6%
sad 12.9% 2.9% 14.9% 2.1%

spmv 0.1% 1.1% 0.1% 1.5%

especially with the inject-on-read technique. Therefore, we
can prune the multiple bit-flip error space by excluding those
locations that would result in the Detection category or an
SDC under the single bit-flip model. In fact according to the
results presented in Fig. 1, these locations include around 50-
100% of the inject-on-read and 27-100% of the inject-on-write
single bit-flip experiments, which is a significant reduction in
the error space. However, there is much more variation when
it comes to the likelihood of Transition II, and its value ranges
from 0% to 81%, and hence these locations cannot be ignored.

RQ5-Answer: We can prune the multiple bit-flip error space by
injecting the first error of each experiment only into locations
that if targeted by a single bit-flip error they would result in
Benign outcomes, as these are the locations that would add to
the number of SDCs under multiple bit-flips.

V. SUMMARY AND IMPLICATIONS

Our goal was to study the impact of multiple-bit errors in
programs and to find ways to reduce the multiple-bit fault
injection space (error space). This is important as previous
studies [4], [5], [6] have shown that soft errors often manifest
as multiple-bit errors at the software level, and hence we need
efficient methods to inject multiple-bit errors in software and
evaluate their effects. Prior work had considered at most two
bit-flips, and did not cover the entire space of multiple-bit er-
rors. We performed a comprehensive analysis of the parameter
space of multiple bit-flips to identify which parameters affect
the SDCs for a program. Our findings are:

• The SDC results of the single bit-flip model are close
to the results for the multiple bit-flip model (except for
2% of multiple bit-flip campaigns which result in more
than 5 percentage points of higher percentage of SDCs)
across the majority of programs and parameter values,

with a few exceptions. This holds regardless of whether
the multiple-bit injections are in the same register or in
different registers.

• With that said, the single bit-flip model is not sufficient to
establish conservative upper bounds on the SDC results
(i.e., pessimistic percentages of SDCs) under multiple-
bit errors. However, for most programs, the pessimistic
percentage of SDCs for the multiple-bit error model is
achieved under relatively few multiple-bit errors (2 errors
with the inject-on-read technique, and 3 errors with the
inject-on-write technique).

• The dynamic window size parameter value does not
matter much when the inject-on-read technique is used,
but it matters when the inject-on-write technique is used.
In the latter case, the highest percentage of SDCs is
achieved when the window size is low, i.e., less than 5
dynamic instructions in most cases.

• Only a very small fraction of single bit-flip errors that
result in Detection lead to SDCs under multiple bit-flips
in which the starting location is the same as the single
bit-flip error. Therefore, to maximize the SDCs uncovered
by multiple bit-flip injections, one needs to inject only
into the program locations in which single bit-flip error
injections led to benign outcomes.

Taken together, these results suggest that the multiple bit-
flip error space can be considerably pruned if one is interested
in obtaining conservative upper-bounds on SDCs. In fact, in
many cases, the single bit-flip fault injection results already
give reasonably close SDC results to the multiple bit-flip
injection results. If more accuracy is needed, then injecting a
small number of multiple bit-flip errors (at most 3) is sufficient.
Furthermore, the multiple fault injections need to be only a few
(dynamic) instructions apart, to get conservative upper bounds
on the percentage of SDCs. This further helps to prune the
error space. Finally, we can leverage the results from the single
bit-flip fault injections to choose the locations for multiple bit-
flip injections to get conservative SDC results.

In summary, we can conclude that multiple bit-flip errors do
not cause as much difference in the SDC results of experiments
conducted using single bit-flip errors as some researchers have
speculated [4]. Therefore, the single bit-flip fault model may
be sufficient for evaluating the coverage of error resilience
techniques in most cases. If more accuracy is desired, we need
to only consider a limited range of multiple bit-flip errors,
which lead to only a modest increase in the error space.

Take-away: The single bit-flip model continues to be a valid
approximation for resilience studies, albeit with the above
caveats, and hence one bit is often enough.

As future work, we plan to extend this study to multiple-bit
faults in memory (that are not detected by ECC), as well as
consider larger applications. Another potential direction is to
consider specific fault tolerance techniques, and measure their
coverage with the single and multiple-bit fault models.



ACKNOWLEDGMENT

This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC), the
Canada Foundation for Innovation (CFI), the EU funded
HiPEAC (High Performance and Embedded Architectures and
Compilers) Network of Excellence and the Ericsson Research
Foundation. We thank Risat Mahmud Pathan, the members
of the Dependable Systems Lab at UBC, and the anonymous
reviewers of the DSN 2017 conference for their comments,
which have helped us to improve this paper.

REFERENCES

[1] S. Borkar, “Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10–16, 2005.

[2] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“SWIFT: Software implemented fault tolerance,” in Proceedings of the
3rd International Symposium on Code Generation and Optimization, ser.
CGO ’05. IEEE Computer Society, 2005, pp. 243–254.

[3] M. Rebaudengo, M. S. Reorda, and M. Violante, “A new approach to
software-implemented fault tolerance,” Journal of Electronic Testing,
vol. 20, no. 4, pp. 433–437, 2004.

[4] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra,
“Quantitative evaluation of soft error injection techniques for robust
system design,” in Proceedings of the 50th ACM/EDAC/IEEE Design
Automation Conference, ser. DAC ’13. ACM, 2013, pp. 1–10.

[5] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “EMAX: An
automatic extractor of high-level error models,” in Proceedings of the
9th AIAA Computing in Aerospace Conference, 1993, pp. 1297–1306.

[6] J. F. Ziegler et al., “IBM experiments in soft fails in computer electronics
(1978-1994),” IBM Journal of Research and Development, vol. 40, no. 1,
pp. 3–18, 1996.

[7] W. G. Bouricius, W. C. Carter, and P. R. Schneider, “Reliability modeling
techniques for self-repairing computer systems,” in Proceedings of the
24th National Conference, ser. ACM ’69. ACM, 1969, pp. 295–309.

[8] T. F. Arnold, “The concept of coverage and its effect on the reliability
model of a repairable system,” IEEE Transactions on Computers, vol.
C-22, no. 3, pp. 251–254, 1973.

[9] B. Fang, Q. Lu, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi,
“ePVF: An enhanced program vulnerability factor methodology for
cross-layer resilience analysis,” in 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2016, pp.
168–179.

[10] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman, “LLFI:
An intermediate code-level fault injection tool for hardware faults,” in
2015 IEEE International Conference on Software Quality, Reliability
and Security, 2015, pp. 11–16.

[11] F. Ayatolahi, B. Sangchoolie, R. Johansson, and J. Karlsson, “A study
of the impact of single bit-flip and double bit-flip errors on program
execution,” in Proceedings of the 32nd International Conference on
Computer Safety, Reliability, and Security, ser. SAFECOMP 2013.
Springer-Verlag New York, Inc., 2013, pp. 265–276.

[12] F. Adamu-Fika and A. Jhumka, “An investigation of the impact of double
bit-flip error variants on program execution,” in Proceedings of the 15th
International Conference on Algorithms and Architectures for Parallel
Processing. Springer International Publishing, 2015, pp. 799–813.

[13] E. Touloupis, J. A. F. Member, V. A. Chouliaras, and D. D. Ward,
“Study of the effects of SEU-induced faults on a pipeline protected
microprocessor,” IEEE Transactions on Computers, vol. 56, no. 12, pp.
1585–1596, 2007.

[14] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer:
Exploiting application-level fault equivalence to analyze application
resiliency to transient faults,” in Proceedings of the 17th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS XVII. ACM, 2012, pp. 123–134.

[15] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve, “Approxi-
lyzer: Towards a systematic framework for instruction-level approximate
computing and its application to hardware resiliency,” in 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2016, pp. 1–14.

[16] R. Barbosa, J. Vinter, P. Folkesson, and J. Karlsson, “Assembly-level pre-
injection analysis for improving fault injection efficiency,” in Proceed-
ings of the 5th European Dependable Computing Conference. Springer
Berlin Heidelberg, 2005, pp. 246–262.

[17] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization, ser. CGO ’04. IEEE
Computer Society, 2004, pp. 75–86.

[18] W. Gu, Z. Kalbarczyk, and R. K. Iyer, “Error sensitivity of the linux
kernel executing on PowerPC G4 and Pentium 4 processors,” in 2004
IEEE/IFIP International Conference on Dependable Systems and Net-
works, 2004, pp. 887–896.

[19] D. Skarin, R. Barbosa, and J. Karlsson, “GOOFI-2: A tool for ex-
perimental dependability assessment,” in 2010 IEEE/IFIP International
Conference on Dependable Systems Networks, 2010, pp. 557–562.

[20] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An ar-
chitectural framework for software recovery of hardware faults,” in
Proceedings of the 37th Annual International Symposium on Computer
Architecture, ser. ISCA ’10. ACM, 2010, pp. 497–508.

[21] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: Probabilistic
soft error reliability on the cheap,” in Proceedings of the 15th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS XV. ACM, 2010, pp. 385–396.

[22] D. S. Khudia and S. Mahlke, “Harnessing soft computations for low-
budget fault tolerance,” in Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-47. IEEE
Computer Society, 2014, pp. 319–330.

[23] B. Sangchoolie, F. Ayatolahi, R. Johansson, and J. Karlsson, “A compar-
ison of inject-on-read and inject-on-write in ISA-level fault injection,” in
11th European Dependable Computing Conference, 2015, pp. 178–189.

[24] A. Thomas and K. Pattabiraman, “LLFI: An intermediate code level
fault injector for soft computing applications,” in Workshop on Silicon
Errors in Logic System Effects (SELSE), 2013.

[25] J. Pan, “The dimensionality of failures - a fault model for characterizing
software robustness,” in Proceedings of the International Symposium on
Fault-Tolerant Computing, 1999.

[26] J. Pan, P. Koopman, and D. Siewiorek, “A dimensionality model
approach to testing and improving software robustness,” in Proceedings
of the 1999 IEEE AUTOTESTCON, 1999, pp. 493–501.

[27] L. Rashid, K. Pattabiraman, and S. Gopalakrishnan, “Characterizing the
impact of intermittent hardware faults on programs,” IEEE Transactions
on Reliability, vol. 64, no. 1, pp. 297–310, 2015.

[28] H. Madeira and J. G. Silva, “Experimental evaluation of the fail-silent
behavior in computers without error masking,” in Proceedings of the
24th IEEE International Symposium on Fault-Tolerant Computing, 1994,
pp. 350–359.

[29] P. Yuste, J. C. Ruiz, L. Lemus, and P. Gil, “Non-intrusive software-
implemented fault injection in embedded systems,” in Proceedings of the
1st Latin-American Symposium on Dependable Computing. Springer
Berlin Heidelberg, 2003, pp. 23–38.

[30] H. Schirmeier, M. Hoffmann, R. Kapitza, D. Lohmann, and O. Spinczyk,
“Fail*: Towards a versatile fault-injection experiment framework,” in
ARCS Workshops, 2012, pp. 1–5.

[31] H. Schirmeier, C. Borchert, and O. Spinczyk, “Avoiding pitfalls in fault-
injection based comparison of program susceptibility to soft errors,”
in 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2015, pp. 319–330.

[32] P. Racunas, K. Constantinides, S. Manne, and S. S. Mukherjee,
“Perturbation-based fault screening,” in Proceedings of the 13th IEEE
International Symposium on High Performance Computer Architecture,
ser. HPCA ’07. IEEE Computer Society, 2007, pp. 169–180.

[33] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proceedings of the 4th Annual IEEE International
Workshop on Workload Characterization, ser. WWC-4, 2001, pp. 3–14.

[34] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
Center for Reliable and High-Performance Computing, vol. 127, 2012.


