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Topics in discrete random structures

Anders Martinsson

Department of Mathematical Sciences,
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Abstract

This thesis presents four papers on problems in discrete probability. A common
theme of the articles is to take some class of discrete structures, impose some
randomness, and then consider what happens asymptotically as the size of the
structure tends to infinity.

Paper I concerns first–passage percolation on Cartesian graph powers Gd of
some fixed base graph G as d → ∞. We propose a natural asymptotic lower
bound on the first–passage time between (v, v, . . . ) and (w,w, . . . ), which we
call the critical time. Our main result characterizes when this lower bound is
sharp. As a consequence we are able to determine the so–called diagonal time
constant of Zd as d → ∞ for a large class of passage time distributions.

In Paper II we investigate a phenomenon of non–standard couplings of
Markov chains, where two copies of a chain can be coupled to meet almost
surely while their total variation distance stays bounded away from 0. We show
that the supremum total variation distance that can be maintained in this con-
text is 1

2
.

Paper III resolves affirmatively a recent conjecture by Lavrov and Loh that a
uniformly chosen random edge–ordering ofKn contains a monotone Hamiltonian
path with probability tending to 1 as n → ∞. We further prove a partial result
regarding the limiting behavior of the number of such paths, suggesting that
this number, when appropriately rescaled, has log–normal distribution in the
large n limit.

The topic of Paper IV is a model for a random n×n jigsaw puzzle, recently
proposed by Mossel and Ross, where the shape of each edge of a piece is chosen
uniformly out of q possibilities. The main question is whether this puzzle has
a unique solution. We say that two solutions are similar if they only differ by
permutations of duplicate pieces and rotations of pieces with rotational sym-
metries. We show that, with probability tending to 1 as n → ∞, this puzzle
has multiple non–similar solutions when 2 ≤ q ≤ 2√

e
n, all solutions are similar

when q ≥ (2 + ε)n for any ε > 0, and the solution is unique when q = ω(n).

Key words and phrases: First–passage percolation, high dimension, Carte-
sian power graph, non-Markovian coupling, coupling inequality, monotone paths,
third moment argument, shotgun assembly, jigsaw puzzle.
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Preface

The following four papers are appended to the thesis:

I Anders Martinsson,
“First-passage percolation on Cartesian power graphs”,
submitted to Annals of Probability with current status “Minor revi-
sions”.

II Timo Hirscher and Anders Martinsson,
“Segregating Markov Chains”,
to appear in Journal of Theoretical Probability.

III Anders Martinsson,
“Most edge-orderings of Kn have maximal altitude”,
submitted to Random Structures & Algorithms.

IV Anders Martinsson,
“A linear threshold for uniqueness of solutions to random jigsaw
puzzles”,
submitted to Combinatorics, Probability & Computing.

The three papers below appeared in my licentiate thesis, but are not
appended here:

A Peter Hegarty and Anders Martinsson,
“On the existence of accessible paths in various models of fitness
landscapes”,
Annals of Applied Probability 24 (2014), no. 4, 1375–1395.

B Anders Martinsson,
“Unoriented first-passage percolation on the n-cube”,
Annals of Applied Probability 26 (2016), no. 5, 2597–2625.

C Anders Martinsson,
“Accessibility percolation and first-passage site percolation on the
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unoriented binary hypercube”,
unpublished, available at arXiv:1501.02206

These three papers were left out of this thesis as they consider topics other
than “discrete random structures”:

D Peter Hegarty and Anders Martinsson,
“Permutations Destroying Arithmetic Progressions in Finite Cyclic
Groups”,
Electronic Journal of Combinatorics 22 (2015), no. 4, Paper #P4.39,
14pp.

E Anders Martinsson,
“An improved energy argument for the Hegselmann–Krause model”,
Journal of Difference Equations and Applications 22 (2016), no. 4,
630–635.

F Peter Hegarty, Anders Martinsson, and Edvin Wedin,
“The Hegselmann-Krause dynamics on the circle converge”,
Journal of Difference Equations and Applications 22 (2016), no. 11,
1720–1731.
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Chapter 1

Introduction

This thesis consists of four papers on various topics in discrete probability.
The common theme of the articles is to take a discrete structure, do
something random to it, and then consider what happens as the size of
the structure tends to infinity. In Papers I, III, and IV the main results
concern questions of this form. As for Paper II, a central part of the main
result, the existence of Markov chains with certain properties, is given as
an asymptotic result in this sense.

Each of the following four chapters introduces the topic of one of the
papers of the thesis and concludes with a summary of the corresponding
paper. The chapters may be read independently of each other.

In Chapter 2 we consider the behavior of random distances in high–
dimensional graphs. Random distances in graphs have a long history of
being studied in mathematics under the name of first–passage percolation.
The high–dimensional limit was proposed as a way to obtain quantitative
results for the model. In Paper I, we consider this for a generalized class
of high–dimensional graphs.

Chapter 3 concerns couplings of Markov chains, and, in particular, a
counter–intuitive behavior of certain couplings where copies of a Markov
chain can meet without mixing. In Paper II, we investigate this phe-
nomenon in more detail. In Chapter 4 we describe a long–standing open
problem regarding edge–orderings of graphs, and a more recently proposed
randomized version which is the topic of Paper III. Lastly, Chapter 5 con-
siders a natural model for random jigsaw puzzles. The central question
is whether large jigsaw puzzles obtained in this way have a unique solu-
tion, or multiple solutions. Paper IV significantly improves earlier partial
results to this end.

As an aside, for a reader who wishes to get an impression of what I
have done for the last five years without bothering with too many technical
details, this last chapter is probably the least technical one by far.
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Chapter 2

First-passage percolation
and power graphs

In Paper I, we consider a problem in first passage percolation in high
dimension. First-passage percolation is a stochastic growth model on a
graph, introduced by Hammersley and Welsh in 1965 [31]. A closely
related growth model was introduced by Eden [26] four years earlier.

First-passage percolation is often described as a model of a porous rock
submerged in water. The rock is modeled as a graph (most often Z

d with
nearest neighbor graph structure), where the vertices are the pores of the
rock, and the edges are channels between pairs of pores through which
water can flow. For each edge, we assign a random weight representing
how much time it takes for water to pass through the channel. The central
question is then how fast water will spread throughout the rock.

During the over 50 years since its introduction in the literature, this
model has attracted much attention from mathematicians and physicists
alike, and has given birth to some classical tools in mathematics, the main
example being sub–additive ergodic theory. In spite of this, many natural
questions about first-passage percolation remain open today.

In light of these difficulties, a number of variations of the model have
been proposed. A noteworthy example is so–called last–passage perco-
lation, for which some very interesting quantitative results are known.
Another approach has been to consider underlying graphs other than lat-
tices – for instance trees and strips. Here, we will focus on the limiting
behavior of first-passage percolation in high dimension.

The aim of this chapter is to give sufficient background if first–passage
percolation to put the results of Paper I into context. Considering the vast
amount of research on the topic, I will not attempt to give an overview
of the field as a whole. The reader is instead referred to the surveys by
Howard [32] and more recently Auffinger, Damron and Hanson [6].
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First-passage percolation and power graphs

2.1 Basic definitions

Given a graph G and a non-negative random distribution F , first–passage
percolation on G is defined as follows. For each edge e ∈ E(G) we inde-
pendently assign a weight τe with distribution F , called its passage time.
The idea of first–passage percolation is to consider the shortest distances
in G with respect to these weights. Formally, for a (self-avoiding) path γ
in G we define its passage time by

TG(γ) =
∑
e∈γ

τe, (2.1)

and for any two vertices u, v ∈ V (G), we define the first–passage time
from u to v by

TG(u, v) = inf
γ from u to v

TG(γ). (2.2)

As any paths from u to v and from v to w can be combined into a path
from u to w (one might have to remove some edges in order for it to be
self–avoiding), TG(·, ·) satisfies the triangle inequality

TG(u,w) ≤ TG(u, v) + TG(v, w), (2.3)

for all u, v, w ∈ V (G). This is referred to as the sub–additive property of
first–passage percolation.

Commonly, first-passage percolation is viewed as a growth model by
defining the wet region {Bt}t≥0 where

Bt = {v ∈ V (G) : TG(v0, v) ≤ t}, (2.4)

and v0 is some fixed vertex. We can interpret this as that, at time t = 0,
v0 is connected to a water source, and the water then spreads along G
according to the passage times. For integer lattices, we always assume
that v0 is the origin.

One interesting special case for the wet region is when F = Exp(1). In
this case, the memory–less property of the exponential distribution implies
that {Bt}t≥0 is a Markov process. This is usually described in term of the
spread of an infection though G, where Bt is the set of infected vertices
at time t. Initially, at t = 0, v0 is the lone bearer of an infection. A
healthy vertex becomes infected at rate equal to its number of infected
neighbors, and once a vertex gets infected it stays infected permanently.
This Markov process is known as the Richardson growth model [45]. If
one considers the sequence of discrete updates Bt0=0, Bt1 , Bt2 , . . . , then
the model becomes equivalent to a version of Eden’s growth model.

2.2 Time constant and the shape theorem

While first–passage percolation can be defined with any underlying graph,
the classical setting is to consider Zd with nearest neighbor graph structure
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First-passage percolation and power graphs

for some fixed d ≥ 2. Some immediate questions in this setting are: “How
does the quantity TZd(x, y) behave in the limit as x, y ∈ Z

d are far apart?
How does the wet region typically look for large t? Do we have some
scaling limits of these?”

The first of these questions was partially answered already by Ham-
mersley and Welsh. Let e1 = (1, 0, . . . , 0) ∈ Z

d. Under the assumption
that Eτ < ∞, Hammersley and Welsh observed that the limit

μ = lim
n→∞

ETZd(0, n e1)

n
(2.5)

exists. Using the sub-additivity of TZd(·, ·) they managed to prove that

TZd(0, n e1)

n
→ μ, in probability as n → ∞. (2.6)

The constant μ = μ(F, d) is commonly referred to as the time-constant.
Assuming μ > 0, this provides a simple description of TZd(0, n e1) – it

grows linearly in the distance between the specific points. In other words,
the wet region will spread along the coordinate axes at an asymptotic
speed of 1/μ. It was shown by Kesten ([34]; Thm. 6.1) that μ > 0 if and
only if P(τe = 0) < pc(d) where pc(d) denotes the critical probability in
Bernoulli percolation on Z

d. In particular, μ > 0 if P(τe = 0) = 0.
An important advancement in the study of such time constants came

with Kingman’s sub–additive ergodic theorem [35,38]. Let us assume that

Emin{τ1, τ2, . . . , τ2d} < ∞, (2.7)

where τi, 1 ≤ i ≤ 2d, denote independent variables of distribution F . We
note that this is a natural condition as ETZd(u, v) < ∞ for all u, v ∈ Z

d

if and only if this holds (see e.g. the proof of Theorem 2.1 in [6]). Under
this assumption, the sub–additive ergodic theorem implies that the limit
in (2.6) holds almost surely and in L1. Moreover, this result holds in an
arbitrary direction. For any x ∈ R

d, there is a constant μ(x) such that

TZd(0,�nx	)
n

→ μ(x) a.s. and in L1 as n → ∞, (2.8)

where �nx	 = (�nx1	, �nx2	, . . . ). Again assuming P(τe = 0) < pc(d),
the function μ(x) defines a norm on R

d, and inherits the obvious symme-
tries of Zd.

Probably the most iconic result of first-passage percolation is the so-
called shape theorem. This is usually attributed to Cox and Durrett [19],
see also Richardson [45] and Kesten [34]. From (2.8), it follows that the
wet region grows linearly in t in all directions. It is therefore natural to
ask whether the rescaled wet region Bt/t has a limit in some sense as
t → ∞. Indeed, we can heuristically think of the above result as that
TZd(0, x) behaves roughly as μ(x) for x far from the origin. Hence the

6



First-passage percolation and power graphs

rescaled version of the wet region should approximately be the unit ball
with respect to the norm μ(x).

To state this formally, we introduce a smoothed version of Bt where
each vertex x ∈ Bt is replaced by the unit square (or more generally
d-cube) x+ [− 1

2 ,
1
2 ]

d. We let

B̄t = {x+ y : x ∈ Bt and y ∈ [−1

2
,
1

2
]d}. (2.9)

Theorem 2.1. (Cox-Durrett) Assume

Emin{τd1 , τd2 , . . . , τd2d} < ∞, (2.10)

where τi, 1 ≤ i ≤ 2d, denote independent random variables of distribution
F . If μ > 0, there exists a convex and compact set B ⊆ R

d, defined by

B = {x ∈ R
d : μ(x) ≤ 1} (2.11)

with non-empty interior such that, for any ε > 0,

P

(
(1− ε)B ⊆ B̄t

t
⊆ (1 + ε)B for t sufficiently large

)
= 1. (2.12)

On the other hand, if μ = 0, then for any compact set K ⊆ R
d

P

(
K ⊆ B̄t

t
for t sufficiently large

)
= 1. (2.13)

Given these results, it is natural to ask, for a given non–trivial distri-
bution F , what can be said of the time constant μ(e1) and limit shape B.
For more or less trivial reasons, B is always convex and symmetric with
respect to permutation and changing sign of coordinates, but determining
properties of these objects beyond this is considered a hard and mostly
open problem.

It is believed that for continuous distributions, B should be strictly
convex with a differentiable boundary, but this is completely open. Early
simulations for the exponential distribution [26, 45] indicated that the
limit shape might be a Euclidean ball in this case. Kesten [34] showed
that this is not true for a large class of distributions, including exponential
distributions, if the dimension of the lattice is sufficiently high. A recent
and much larger–scale simulation study by Alm and Deijfen [3] on Z

2

with various distributions shows definitively that the limit shape for the
exponential distribution is very close to but not exactly a Euclidean ball.
Indeed the radii of B along the coordinate axes and along the diagonals
differ only by approximately 1%.
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First-passage percolation and power graphs

2.3 Asymptotics in high dimension

One drawback of the sub–additive ergodic theorem is that while it shows
the existence of certain limits, it gives essentially no information about
what these limits should be, and hence quantitative results in first–passage
percolation are rare. One avenue to obtain quantitative results is to study
the limiting behavior on Z

d as d → ∞. Heuristically, high dimension puts
less emphasis on the geometry of the graph, and thus turns first–passage
percolation into a largely combinatorial problem, which can be approached
through combinatorial means.

The first high-dimensional results for the integer lattice were given by
Kesten (Chapter 8 of [34]). Here we assume that the the edge weights
have continuous distribution with density f(t), where

f(t) = a+ o

(
1

|log t|
)
, (2.14)

for some interval t ∈ [0, ε), and that Eτe < ∞. For instance, the Exp(1)
and U([0, 1]) distributions satisfy this with a = 1. Under these assump-
tions, Kesten shows that there is a constant c > 0 such that, for d suffi-
ciently large, the time constant μ = μ(e1) satisfies

c
log d

ad
≤ μ(e1) ≤ 11

log d

ad
. (2.15)

Moreover, if we let 1̄ = (1, 1, . . . 1) ∈ Z
d, then

1

6ea
≤ lim inf

d→∞
μ(1̄) ≤ lim sup

d→∞
μ(1̄) ≤ 1

2a
. (2.16)

Relating μ(e1) and μ(1̄) to the limit shape, we can observe that if
B is a Euclidean ball, i.e. μ(x) is proportional to the Euclidean norm,
then we would get μ(e1) = μ(1̄)/

√
d. Hence, from (2.15) and (2.16),

Kesten could conclude that, for any non-negative distribution with finite
expectation satisfying (2.14), there is a d0 such that the limit shape of that
distribution is not a Euclidean ball for d ≥ d0. Kesten remarks that the
convergence of his estimates is rather slow. For instance, for exponential
distributions you need d ≥ 1000000.

In the case of the standard exponential distribution, more precise es-
timates were obtained by Dhar in [22, 23], where it was shown that, as
d → ∞,

μ(e1) ∼ ln d

2d
. (2.17)

Dhar further derived a lower bound for the diagonal time constant for this
distribution. This was recently rediscovered by Couronné, Enriquez and
Gerin [18]. We will use their formulation here. Let α∗ denote the unique
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First-passage percolation and power graphs

positive solution to cothα = α. Then for any d ≥ 1,

μ(1̄) ≥ 1

2

√
α2∗ − 1 ≈ 0.3133 . . . (2.18)

In 2016, Auffinger and Tang [7] generalized this result beyond the
exponential distribution. We assume that a = limt↓0 F (t)/t ∈ (0,∞)
exists, and again Eτe < ∞. Under these assumptions, we have

μ(e1) ∼ ln d

2ad
, (2.19)

and

lim inf
d→∞

μ(1̄) ≥ 1

2a

√
α2∗ − 1. (2.20)

We remark that Auffinger and Tang state these estimates with the techni-
cal condition that F (x) = a+O(1/ |log x|) for x near zero, but this can be
overcome by stochastically sandwiching F between distributions F1 and
F2 with constant density a+ ε and a− ε respectively near zero.

2.4 The d-dimensional hypercube

During the development of first–passage percolation on high–dimensional
integer lattices, an alternative high–dimensional graph was proposed by
Aldous [1], and Fill and Pemantle [27] – the d–dimensional hypercube Qd.
This is the graph whose vertices are the binary strings of length d, and
where two vertices are connected by an edge if their binary strings differ
by precisely one bit. We will here let 0̄ and 1̄ denote the all zeroes and
all ones vertices respectively. In this section, we always assume Exp(1)
passage times.

The d-dimensional hypercube is in many ways similar to Z
d. They

are both in a sense d-dimensional structures, with similar geometries. We
have the obvious embeddings of Qd into Z

d. They also have similar group
structures – Zd is a Cayley graph under coordinate–wise addition, whereas
Qd is a Cayley graph under coordinate–wise addition modulo 2. On the
other hand, the hypercube is combinatorially a simpler structure. Fill
and Pemantle thus argued that understanding first-passage percolation
on Qd may lead to a better understanding of the high-dimensional integer
lattice.

As Qd is a finite graph it does not make sense to ask for the limiting
behavior of TQd

(x, y) for x and y far apart, but we can instead consider
the limiting behavior as d → ∞ directly. A natural question in this setting
is: “How does the first-passage time between two points depend on their
Hamming distance? In particular, how does the first-passage time between
two opposite corners of the cube behave, say for instance 0̄ and 1̄?”

In considering first–passage percolation on the hypercube, a simplifi-
cation that appears in the literature is to introduce an orientation of its

9



First-passage percolation and power graphs

edges. We define the oriented d–dimensional hypercube QO
d as the ori-

ented version of Qd where each edge is directed towards the vertex with
the extra ’1’.

As it turns out, for both QO
d and Qd, there are simple explicit lower

bounds on the first–passage times. Let us restrict attention to the first–
passage times between 0̄ and 1̄. In this case, we have

P(TQO
d
(0̄, 1̄) ≤ t) ≤ td, (2.21)

and

P(TQd
(0̄, 1̄) ≤ t) ≤ (sinh t)d, (2.22)

for all t ≥ 0. As a consequence of this, the first–passage time from 0̄ to 1̄
is, with probability tending to one as d → ∞, at least 1−ε in the oriented
case, and at least sinh−1(1)− ε = ln(1 +

√
2)− ε in the unoriented case,

for any ε > 0.
The lower bound for QO

d was first observed by Aldous in 1989 (see
Example G7 of [1]). It was derived by considering the expected number
of paths from 0̄ to 1̄ with passage time at most t. Aldous conjectured that
this bound tells the truth in the sense that

TQO
d
(0̄, 1̄)

p−→ 1 as d → ∞. (2.23)

This was proven correct four years later by Fill and Pemantle using es-
sentially a complementary second moment analysis, but with a twist to
reduce the variance.

The bound in the unoriented case, (2.22), was first shown by Fill and
Pemantle using an argument due to Durrett. Despite its similarity to
(2.21), it is derived using a very different approach. The central idea is to
consider what they call the branching translation process on Qd: Initially
the process consists of one particle placed at 0̄. Each existing particle
generates offspring at rate d. Whenever some new offspring is born, it is
placed at a uniformly chosen neighbor to its parent’s location. Comparing
this process to Richardson’s model, one can show that the probability that
x ∈ Bt, i.e. TQd

(0̄, x) ≤ t, is at most the expected number of particles at
x at time t, which can be computed exactly.

Due to the result for the oriented hypercube, Fill and Pemantle con-
clude that

ln(1 +
√
2)− o(1) ≤ TQd

(0̄, 1̄) ≤ 1 + o(1) (2.24)

with probability tending to 1 as d → ∞. The problem of determining
TQd

(0̄, 1̄) further remained open until a recent paper by me [39] not in-
cluded in this thesis, where it was shown that

TQd
(0̄, 1̄) → ln(1 +

√
2) (2.25)

10



First-passage percolation and power graphs

in probability and Lp for any p ≥ 1. In particular, I show that TQd(0̄, 1̄)

has mean ln(1 +
√
2) + O( 1d ) and standard deviation Θ( 1d ) and that the

minimizing path from 0̄ to 1̄ can be characterized by a certain random
walk between these points.

Another quantity related to first–passage percolation on Qd proposed
by Fill and Pemantle is the so–called covering time. This is the smallest
time at which the wet region covers the entire graph, or, equivalently,
the maximum value of TQd

(0̄, x) over all x ∈ V (Qd). Fill and Pemantle
showed that, with probability tending to 1 as d → ∞, the covering time
is at least 1

2 ln
(
2 +

√
5
)
+ ln 2− o(1) ≈ 1.415. The currently best known

upper bound on the covering time is ln(1 +
√
2) + ln 2 + o(1) ≈ 1.574,

which follows by combining results by Bollobás and Kohayakawa [10] and
me [39].

2.5 Summary of Paper I

The aim of Paper I is to investigate first-passage percolation on a large
class of “high-dimensional” graphs, including the hypercube and the inte-
ger lattice, to which many ideas from the hypercube extend. This analysis
allows us to derive many new quantitative results. As the approach is quite
general, I believe it may lead to a more unified approach to first–passage
percolation in high dimension.

For any pair of graphs H1 = (V1, E1) and H2 = (V2, E2), their Carte-
sian graph product, denoted by H1�H2, is a graph whose vertices are the
pairs (v1, v2) of vertices v1 ∈ V1 and v2 ∈ V2. We define the edges of the
product graph such that taking a step in this graph corresponds to choos-
ing one coordinate, and taking one step in the corresponding factor. For-
mally, the edge set of the product is the disjoint union (E1×V2)∪(V1×E2),
where an edge of the form (e, v) or (v, e) is interpreted as an edge between
(w1, v) and (w2, v) or between (v, w1) and (v, w2) respectively, where w1

and w2 denote the end-points of e. Given any base graph G and any
integer d ≥ 1 we define the d:th Cartesian power graph Gd as the d-
fold Cartesian graph product G� . . .�G. For any vertex v ∈ G, we let
v̄ = (v, v, . . . , v) ∈ Gd.

It is natural to think of Gd as a d-dimensional graph. Indeed, its ver-
tices can be represented by d-dimensional vectors with coordinates in G.
Moreover, this generalizes the d-dimensional graphs mentioned in earlier
sections:

• Z
d is the d:th Cartesian power of Z with edges {i, i+ 1} for i ∈ Z.

• QO
d is the d:th Cartesian power of the graph consisting of vertices 0

and 1 with a directed graph from 0 to 1.

• Qd is the d:th Cartesian power of K2. To match earlier notation,
we denote the vertices of K2 by 0 and 1.

11



First-passage percolation and power graphs

It turns out that, for any graph of the form Gd, there is a natural lower
bound on the first-passage time between two vertices, which generalizes
the lower bounds (2.21) and (2.22) for the hypercube. For any graph H
and any pair of vertices v, w ∈ H, let ΓH(v, w) denote the set of trails
from v to w in H. In the case where v = w, this should include the trivial
trail of length 0. We define the exponential generating function

mH(v, w, t) =
∑

γ∈Γ(v,w)

t|γ|

|γ|! (2.26)

where |γ| denote the length of γ, that is, the number of edges counted with

multiplicity. For t = 0, we interpret any term of the form 00

0! as 1. It is not
too hard (see Proposition 1.1 in Paper I and the subsequent discussion)
to show that, for any such graph, first-passage percolation with Exp(1)
passage times has the lower bound

P(TH(v, w) < t) ≤ mH(v, w, t), (2.27)

for all t ≥ 0.
A valuable observation (Proposition 1.2 in Paper I) is that the ex-

ponential generating function is multiplicative with respect to Cartesian
products in the sense that

mH1�H2
((v1, v2), (w1, w2), t) = mH1

(v1, w1, t)mH2
(v2, w2, t). (2.28)

In the case of H = Gd, we can rewrite (2.27) as

P(TGd((v1, . . . , vd), (w1, . . . , wd)) ≤ t) ≤
d∏

i=1

mG(vi, wi, t). (2.29)

In particular, if we focus on the first-passage time between diagonal ver-
tices v̄ and w̄, we obtain the simple bound

P(TGd(v̄, w̄) < t) ≤ (mG(v, w, t))
d
. (2.30)

As a consequence of this, the critical value of t, t∗ = tG(v, w), given by
the solution to mG(v, w, t) = 1 is an asymptotic lower bound on TGd(v̄, w̄)
in the sense that

P (TGd(v̄, w̄) < t∗ − ε) → 0 as d → ∞, (2.31)

for any ε > 0.
Given this lower bound on high-dimensional first-passage percolation,

it is natural to ask when the bound is sharp. That is, for which choices of
G, v, and w is it true that TGd(v̄, w̄) → t∗G(v, w) in some sense as d → ∞?
The main result of Paper I is a necessary and sufficient condition for this
to hold.

12



First-passage percolation and power graphs

Let G, v and w be given. Assume there is a path from v to w in G.
For any s, t ≥ 0 such that s+ t ≤ t∗, we define

fvw
G (s, t) =

∑
x,y∈V (G)

mG(v, x, s)mG(x, y, t)·

· ln (mG(x, y, t))mG(y, w, t
∗ − s− t).

(2.32)

As it turns out, sharpness of t∗ is completely determined by the maximum
value of this function.

Theorem 2.2. Assume G has bounded degree, and let F be a non-negative
distribution such that a = limt↓0 F (t)/t ∈ (0,∞) exists. Consider first-
passage percolation on Gd with passage times of distribution F . If fvw

G ≤ 0
for all s, t ≥ 0 such that s+ t ≤ t∗, then

TGd(v̄, w̄) → t∗

a
in probability as d → ∞. (2.33)

Moreover, if F has finite expectation, then convergence also holds in L1.
On the other hand, if fvw

G > 0 for some such s, t, then there exists some
constant c = c(G, v, w) > 0 such that

P

(
TGd(v̄, w̄) >

t∗ + c

a

)
→ 1 as d → ∞. (2.34)

Given an explicit graph G and vertices v and w, we can at least in
principle compute fvw

G to check its maximum. Unfortunately, these cal-
culations can be quite complicated. To remedy this, the following result
gives a simple combinatorial condition to ensure convergence as in (2.33).

Corollary 2.3. Let F and a be as above, and let G be a connected graph
with bounded degree. Each of the following conditions are sufficient for
TGd(v̄, w̄) → t∗/a in probability (and L1 assuming F has finite expecta-
tion) as d → ∞ for all v, w ∈ G:

1. G is a Cayley graph of a group G generated by a finite normal set S,
that is |S| and gSg−1 = S ∀g ∈ G. In particular, this always holds
for Cayley graphs of finitely generated abelian groups.

2. For all pairs of vertices x, y ∈ G there is a graph automorphism
φ = φxy such that φ(x) = y and φ(y) = x.

We further give two applications of this result. First, we consider the
diagonal time constant μ(1̄) in Z

d in the limit as d → ∞. In particular,
concerning the first-passage time from 0̄ to k̄ for some integer k ≥ 1, we
have

mZ(0, k, t) =

∞∑
i=0

tk+2i

i!(k + i)!
. (2.35)
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First-passage percolation and power graphs

Furthermore, one can show that t∗
Z
(0, k)/k → 1

2

√
α2∗ − 1 when k → ∞,

where α is defined as before in (2.18). As a consequence of our main
result, we show that

μd(1̄) → 1

2a

√
α2∗ − 1 as d → ∞, (2.36)

for any distribution F as above with finite expectation. Hence, the lower
bounds (2.18) and (2.20) observed in [7, 18, 22] are asymptotically sharp
in high dimension.

As a second application we consider the first-passage time between
two general points in Qd. Let F be as above, and let S(d, k) denote the
first-passage time between two points at Hamming distance k in the d-
dimensional hypercube. By symmetry of the cube, it does not matter
which pair of such points one chooses. For any x ∈ [0, 1], let ϑ(x) be the
non-negative solution to

(sinhϑ)
x
(coshϑ)

1−x
= 1. (2.37)

We show that this function characterizes the limiting behavior of S(d, k)
in the sense that ∣∣∣∣S(d, k)− 1

a
ϑ(

k

d
)

∣∣∣∣→ 0 (2.38)

in probability (and L1–norm assuming finite expectation) uniformly over
0 ≤ k ≤ d as d → ∞.
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Chapter 3

Markov chains,
segregation and
separation

Coupling is one of the main tools in comparing random distributions. The
idea is to define a pair of random variables (X,Y ) on a joint probability
space such that they, viewed individually, have certain distributions of
interest, and jointly depend on each other in some way that allows one to
relate their distributions.

In particular, a common approach to investigate the long–term behav-
ior of Markov chains is to consider a coupling of two copies of the chain
with different initial states. Formally, this is a joint process {(Xn, Yn)}∞n=0,
where {Xn}∞n=0 and {Yn}∞n=0 individually evolve according to the tran-
sition probabilities of the Markov chain. The idea is to make the copies
depend on each other in some clever way such that they meet as fast as
possible and then stick together. This relates to the so–called mixing time
of the chain. Probably the most well–known example of mixing times of
Markov chains is the mathematical investigation of how long it takes to
shuffle a deck of cards, but questions of this type span a wide range of
areas of probability theory.

The topic of Paper II is a phenomenon of certain non–standard cou-
plings of Markov chains, first observed by Häggström [30], in which two
copies of a Markov chain can be coupled to meet a.s. without mixing.

3.1 The coupling argument for Markov chains

Given two random distributions μ and ν on a finite or countable set S, in-
terpreted as probability measures, we define their total variation distance
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by
‖μ− ν‖TV = sup

A⊆S
|μ(A)− ν(A)| . (3.1)

In estimating this distance, it is often useful to interpret it in terms of
couplings of the distributions. We have that

‖μ− ν‖TV = inf{P(X �= Y ) : (X,Y ) is a coupling of μ and ν}, (3.2)

see for instance Proposition 4.7 in [37]. In particular, for any such cou-
pling, P(X �= Y ) gives an upper bound on the total variation distance
between their distributions.

Let {Xn}∞n=0 denote a Markov chain on a finite state space S with
transition probabilities

P(Xn+1 = y|Xn = x) = P (x, y) (3.3)

for all x, y ∈ S. We let Pn(x, y) denote the probability of Xn = y, and
Pn(x, ·) the distribution of Xn respectively, conditioned on X0 = x. It
is a well–known fact that, under some mild assumptions, a Markov chain
“mixes” in the sense that it converges to a distribution as n → ∞, not
depending on its starting position. We say that the Markov chain is
irreducible if for all x, y ∈ S there exists an n ≥ 0 such that Pn(x, y) > 0.
Moreover, the chain is aperiodic if for any x ∈ S, Pn(x, x) > 0 for all
sufficiently large n.

With these definitions, the standard convergence result for finite Markov
chains can be stated as follows, see for instance Theorem 4.9 in [37].

Theorem 3.1. Suppose {Xn}∞n=0 is an irreducible and aperiodic Markov
chain on a finite state space S. Then there exists a unique distribution π
on S, called the stationary distribution of the chain, and constants α ∈
(0, 1) and C > 0 such that

‖Pn(x, ·)− π‖TV ≤ Cαn, (3.4)

for all x ∈ S and n ≥ 0.

We remark that convergence in this sense does not hold for all Markov
chains. In particular, the chains of interest in Paper II do not mix in this
way. Nevertheless, mixing Markov chains are central to introduce some
important concepts to the paper.

Given a Markov chain that converges to a unique stationary distribu-
tion π, a central question is how fast this mixing occurs. For irreducible
aperiodic chains, Theorem 3.1 technically gives us a lower bound on this
rate, but this tends to be extremely far from its true value. In order to
quantify this convergence, one can define

d(n) = sup
x∈S

‖Pn(x, ·)− π‖TV . (3.5)
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Sometimes, in particular when dealing with coupling arguments, it is more
convenient to use the related function

d̄(n) = sup
x,y∈S

‖Pn(x, ·)− Pn(y, ·)‖TV . (3.6)

One can show that d(n) ≤ d̄(n) ≤ 2d(n), so these are indeed closely
related. Moreover, both functions are non–increasing, and 2d and d̄ are
sub–multiplicative in the sense that 2d(m+n) ≤ 2d(m) ·2d(n) and d̄(m+
n) ≤ d̄(m) · d̄(n). See Lemma 2.20 in [2] for a proof of this.

The standard coupling approach for estimating these quantities can
be described as follows. Suppose that we have a coupling {(Xn, Yn)}∞n=0

of two copies of the Markov chain started at states x and y respectively,
where the chains depend on each other in a clever way such that they
eventually meet up and then stick together, that is, there exists a random
time τ such that Xn = Yn for all n ≥ τ . Then by (3.2), we have

‖Pn(x, ·)− Pn(y, ·)‖TV ≤ P(Xn �= Yn) ≤ 1− P(τ ≤ n). (3.7)

Hence, in order to obtain good upper bounds on d̄(n), it suffices to find
good ways to couple the chains such that τ is as small as possible for all
x, y ∈ S.

Often, how this type of argument is done in practice is that one defines
some rule for how the chains should be coupled until they meet for the
first time, one takes τ to be this first meeting time, and then modifies
the coupling such that Xn = Yn for all n ≥ τ . We can think of this
modification as “gluing” the chains together. If this can be done, then
(3.7) holds with τ as the first meeting time. For most couplings of this
type in the literature, the act of gluing is completely undramatic and
trivially valid. Indeed, this issue has required so little attention that an
earlier version of the standard reference [37] erroneously claimed that any
coupling of two copies of a Markov chain can be glued together in this
way.

The question of when couplings can be glued was addressed by Rosen-
thal [48]. His paper gives an example of a coupling of two copies of a
Markov chain that meet but where gluing cannot be done. More specifi-
cally, attempting to glue the chains will change the marginal distributions
of the coupling, hence it is no longer a coupling of the same processes.
Rosenthal further proposes a natural sufficient condition on a coupling
{(Xn, Yn)}∞n=0 in order for gluing to be possible. For all n ≥ 0 and all
x0, . . . xn, y0, . . . yn, z ∈ S, we require

P(Xn+1 = z|Xk = xk, Yk = yk ∀ 0 ≤ k ≤ n) = P (xn, z) (3.8)

and

P(Yn+1 = z|Xk = xk, Yk = yk ∀ 0 ≤ k ≤ n) = P (yn, z). (3.9)
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A coupling satisfying this is said to be faithful. This is sometimes also
called Markovian in the literature, but this term may be misleading as it
might be interpreted as that the joint process {(Xn, Yn)}∞n=0 should have
the Markov property, which is a strictly weaker condition. For readers
familiar with more formal treatment of stochastic processes, it can be
noted that faithfulness is equivalent to saying that {Xn}∞n=0 and {Yn}∞n=0

should have the Markov property with respect to a common filtration.

3.2 Meeting without mixing

The general philosophy of coupling arguments for Markov chains is that
meeting implies mixing. In particular, we can note that, by (3.7), if there
exists a faithful coupling {(Xn, Yn)}∞n=0 with the property that the chains
will almost surely meet at some point, then, in the limit as n → ∞,
Xn has the same distribution as Yn. Indeed, this makes sense as the
ability to couple the chains to meet almost surely means that they in
some sense have to live on the same set of states, and as they have the
same transition probabilities on these states, one would expect them to
have similar distributions.

In light of this intuition, it might be surprising that there are cases
where two copies of a Markov chain, started in distinct states x and y, can
be coupled to meet almost surely while their total variation distance stays
bounded away from 0. In Paper II, we call this phenomenon segregation
of x and y.

The first observation of a segregating Markov chain was made by Häg-
gström in [30]. His example is illustrated in Figure 3.1. The Markov chain
consists of six states, and a chain with initial state either x or y will end
up in one of the absorbing states a or b after exactly two steps. A direct
calculation shows that

lim
n→∞ ‖Pn(x, ·)−Pn(y, ·)‖TV =

∣∣P 2(x, a)− P 2(y, a)
∣∣ = (1− 2p)2, (3.10)

which is non-zero unless p = 1
2 .

Häggström notes that it is possible to explicitly construct a coupling
of two copies of this chain, started in x and y respectively, such that the
copies meet a.s. whenever p ∈ [1− 1

2

√
2, 1

2

√
2]. Let us consider p = 1− 1

2

√
2

so that (3.10) is maximized. In this case, it is straight–forward to check
that

P

( )
= P

( )
=

3− 2
√
2

2
, (3.11)

P

( )
= P

( )
= P

( )
= P

( )
=

√
2− 1

2
, (3.12)
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1 1

Figure 3.1: An example of segregating Markov chain proposed by Häg-
gström.

defines a coupling of copies of the Markov chain started in x and y re-
spectively in which the chains meet a.s. On the other hand, ‖Pn(x, ·) −
Pn(y, ·)‖TV → (

√
2− 1)2 = 3− 2

√
2 ≈ 0.17153 as n → ∞.

As the example above illustrates, general couplings of copies of Markov
chains can behave both quantitatively and qualitatively very different from
faithful couplings, and perhaps also from what one would intuitively ex-
pect. This naturally leads us to ask two related questions. First, what is
the relation between meeting probabilities and distributional distance for
general couplings of two copies of a Markov chain? Second, how can we
understand the phenomenon of segregation?

3.3 Summary of Paper II

Paper II, which is joint work with Timo Hirscher, studies the connection
between meeting times and total variation distance for general couplings
of Markov chains and specifically segregating Markov chains in further
detail. We in particular ask for the constant κ given by

κ = sup lim
n→∞ ‖Pn(x, ·)− Pn(y, ·)‖TV , (3.13)

where the supremum is taken over all finite Markov chains and states x
and y, such that two copies of the chain, one started in x and the other

19



Markov chains, segregation and separation

in y, can be coupled to meet a.s.
The first result of our paper is a non–trivial upper bound on the total

variation distance between two copies of a Markov chain in terms of their
meeting probability with respect to a not necessarily faithful coupling.

Proposition 3.2. Let {(Xn, Yn)}∞n=0 be a coupling of two copies of a
countable state Markov chain with initial states x and y, where τ = inf{n :
Xn = Yn}. Then

‖Pn(x, ·)− Pn(y, ·)‖TV ≤ 1− 1

2
P(τ ≤ n). (3.14)

We note that this bound is very similar to the usual coupling inequality
(3.7). In particular, assuming τ < ∞ a.s., it follows that

lim
n→∞ ‖Pn(x, ·)− Pn(y, ·)‖TV ≤ 1

2
, (3.15)

which implies the upper bound κ ≤ 1
2 . In fact, a slightly more intricate

argument, see Proposition 6.9 of Paper II, shows that the inequality in
(3.15) is always strict even for countable state Markov chains. It can
further be remarked that the bound in Proposition 3.2 holds in much
greater generality, see the discussion in Section 4 of Paper II.

In Section 5 of Paper II, we describe a class of finite state Markov
chains indexed by a real parameter p ∈ (0, 1), see Figure 3.2, that segre-
gates two states x and y, while

lim
n→∞ ‖Pn(x, ·)− Pn(y, ·)‖TV = p

1
1−p . (3.16)

In particular, letting p → 1, this tends to e−1, which proves that κ ≥ e−1.
In this case, the segregating coupling is described by the simple rule that,
whenever {Yn}∞n=0 moves to the side for the first time, {Xn}∞n=0 should
move to the side in the next time step.

Lastly, in Section 6 of Paper II we prove that for any ε > 0 there exists
a finite state Markov chain that segregates two states x and y while

lim
n→∞ ‖Pn(x, ·)− Pn(y, ·)‖TV ≥ 1

2
− ε. (3.17)

As a consequence, we can conclude that κ = 1
2 . More precisely, we show

that for any ε > 0 there exist a finite state Markov chain, states x and y,
and a positive integer T such that copies of the chain started in x and y
respectively can be coupled such that their first meeting time is at most
T a.s., while

‖PT (x, ·)− PT (y, ·)‖TV ≥ 1

2
− ε. (3.18)

Given such a chain, it is straight–forward to construct a chain that satisfies
(3.17).
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Figure 3.2: The “two drunkards on a cliff” Markov chain described in
Section 5 of Paper II to obtain segregation with total variation distance
e−1 − ε for any ε > 0. This chain can be described as follows. Two
drunkards, X and Y with initial positions x and y, walk along a cliffside,
represented by the absorbing states on the right. For each step, they
stumble to the side with probability 1−p, and fall down the cliff after one
and two stumbles respectively.
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The Markov chains considered in this result are so–called finite birth–
death chains with almost absorbing end points x and y. For these chains,
it is relatively easy to estimate the total variation distance as in (3.18).
The hard part is to prove the existence of the corresponding couplings.
In order to do this, the key idea is to consider two related optimization
problems.

For a given Markov chain, two initial states x and y, and a positive
time T , we define the optimal meeting probability as

CT (x, y) = maxP(Xn = Yn for some 0 ≤ n ≤ T ), (3.19)

where the maximum is taken over all couplings with initial states x and y.
We can interpret optimal coupling in this sense as a linear optimization
problem, which means that it has a corresponding dual problem. This
dual turns out to have a natural interpretation, which we call separation.

A sequence A = {An}Tn=0 of subsets of the state space of a Markov
chain is called a separating sequence. The separation of A is given by

SA
T (x, y) = P(Xn ∈ An for all 0 ≤ n ≤ T |X0 = x)

+ P(Xn ∈ An for all 0 ≤ n ≤ T |X0 = y).
(3.20)

We say that the separating sequence is non–trivial if both terms in the
right–hand side are non–zero. Moreover, the optimal separation ST (x, y)
is the maximum separation over all separating sequences. Note that the
trivial separating sequences obtained by taking An constantly equal to S
or to ∅ have a separation of 1, hence the optimal separation is always at
least 1.

We show that optimal meeting probability and optimal separation are
strongly dual to each other in the sense that

CT (x, y) = 2− ST (x, y), (3.21)

see Theorem 6.3 of Paper II. In particular, in order to show that the
optimal meeting probability is 1, it suffices to show that no non-trivial
separating sequence yields a separation of more than 1.

In applying this to our finite birth–and–death chains, the idea is that,
at least roughly, the best non–trivial way to separate the end–points is to
cut the chain in the middle. By tweaking parameters of the chain and T ,
we can make this less than 1 while maintaining a total variation distance
of approximately 1

2 .
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Chapter 4

Altitudes of random
edge–orders of the
complete graph

The topic of Paper III is a problem concerning random orderings of the
edges of the complete graph. While the precise formulation of this prob-
lem is quite new, it is motivated by a long–standing open problem in
combinatorics posed by Chvátal and Komlós [15].

Speaking very broadly, we can describe a large class of problems within
extremal combinatorics by the following philosophy. We are given a dis-
crete structure, on which an ordering is imposed. Then, regardless of the
choice of ordering, what is the maximum size of a“monotone substructure”
that we are guaranteed to find?

One well–known example of this type of problem is the so–called Erdős-
Szekeres theorem. Let a1, a2, . . . , an be a sequence of n distinct elements
from a totally ordered set, say for instance R, or {1, 2, . . . , n}. The Erdős-
Szekeres theorem states that any such sequence has a subsequence of
length �√n� which is monotone. Moreover, this is sharp in the sense that
for any n ≥ 1, there are such length n sequences where no subsequence of
length at least �√n�+ 1 is monotone.

In 1971, Chvátal and Komlós proposed another problem of this type,
this time concerning monotone (self-avoiding) paths in edge–ordered graphs.
For a graph G = (V,E), an edge-ordering on G is a bijective map φ : E →
{1, 2, . . . , |E|}, where φ(e1) < φ(e2) is interpreted as that e1 comes before
e2 in the ordering. A pair (G,φ) as above is called an edge–ordered graph.
A trail v0, v1, . . . , vl in an edge–ordered graph is said to be monotone if
either

φ({v0, v1}) < φ({v1, v2}) < · · · < φ({vl−1, vl}) (4.1)

23



Altitudes of random edge–orders of the complete graph

or
φ({v0, v1}) > φ({v1, v2}) > · · · > φ({vl−1, vl}). (4.2)

The altitude of an edge–ordering φ on a graph G, denoted by f(G,φ), is
the maximal length of a φ–monotone (self-avoiding) path in G. The alti-
tude of a graph G is defined as the minimum altitude f(G) = minφ f(G,φ)
over all edge–orderings of G. We similarly define f∗(G,φ) as the length
of the longest φ–monotone trail in G, and f∗(G) = minφ f

∗(G,φ).

4.1 The altitude of the complete graph

Slightly rephrased to fit better together with the notation of later results,
the question proposed by Chvátal and Komlós was to determine the values
of f∗(Kn) and f(Kn) for all n. The former quantity was completely
determined by Graham and Kleitman in a paper [29] published in 1973:
f∗(Kn) = n− 1 unless n = 3 or 5, f∗(K3) = 3 and f∗(K5) = 5. Winkler
[49] described an elegant argument for the lower bound, due to Ehud
Friedgut, which is known as the pedestrian argument: We initially place
one “pedestrian” at each vertex of Kn. We then go though the edges in
increasing order, and for each edge we swap the two pedestrians at its
end–points. It follows that the movement of each pedestrian corresponds
to an increasing trail, and on average a pedestrian moves 2

(
n
2

)
/n = n− 1

steps.
In comparison to f∗(Kn), the value of f(Kn) has proven to be much

more difficult to determine, and is still largely an open problem. Graham
and Kleitman showed that

√
n− 3/4− 1/2 ≤ f(Kn) ≤ 3

4
n+O(1). (4.3)

The lower bound is obtained by modifying their argument for f∗(Kn). To
obtain the upper bound, they partition the vertices of Kn into four sets
S1, S2, S3, S4 of roughly the same size, and consider an edge-ordering that
first orders the edges in each part, then edges between S1 and S2 or S3

and S4, then edges between S1 and S3 or S2 and S4, then finally between
S1 and S4 or S2 and S3.

In his Master’s thesis, also from 1973, Rödl [47] gave an elegant argu-
ment that f(G) ≥ (1− o(1))

√
d where d is the average degree of G. More

precisely, for any integer k ≥ 0 it holds that if d ≥ 2(1 + 2 + · · · + k) =
k(k + 1), then f(G) ≥ k. Let G be an edge-ordered graph with average
degree at least 2(1 + 2 + · · · + k). We construct the subgraph G′ of G
obtained by removing the k largest edges connected to each vertex. As
the average degree of G′ is at least d − 2k ≥ 2(1 + 2 + · · · + (k − 1)), it
follows by induction that it contains a monotone path of length k− 1. By
adjoining a suitable edge from G\G′, this can be extended to a monotone
path of length k in G.
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It is claimed that Alspach, Heinrich and Graham proved that f(Kn) ≤
7
12n (unpublished, see [14]), though as noted in [13] this false for small n.
Currently, the best known upper bound is f(Kn) ≤ ( 12 + o(1))n, which
was shown in a paper by Calderbank, Chung and Sturtevant in 1984 [14].
When n = 2k for some k ≥ 1, their construction can be described as
follows. Enumerate the vertices of Kn from 0 to 2k−1. We think of these
as k-bit binary strings. We then label each edge of Kn according to

l({v, w}) = v XOR w, (4.4)

where XOR denotes bitwise exclusive or, and finally order the edges ac-
cording to their labels, with ties broken arbitrarily. Using an elaborate
argument, the authors show that any monotone path in this ordering has
length at most ( 12 +o(1))n. Essentially the same construction can be used
for any n.

Until recently, the above results comprised everything known about
f(Kn). However, in early 2015, De Silva, Molla, Pfender, Retter and Tait
uploaded a preprint to arxiv.org [21] (published 2016), where it was shown
that, for any positive sequence {ωn}∞n=1 tending to infinity as n → ∞, we
have

f(G(n, p)) ≥ (1 + o(1))min(
√
n,

np

ωn lnn
), (4.5)

with probability tending to 1 uniformly in p, where G(n, p) denotes the
usual Erdős–Rényi graph. In particular, with probability tending to 1,
G(n, n−1/2+ε) has altitude at least (1 − o(1))

√
n. As altitude is non-

decreasing when adding edges, this strongly indicates that the altitude of
Kn should be much larger.

Later the same year, Milans uploaded a preprint to arxiv.org [40],
showing that for any graph G on n vertices with average degree d =

Ω
(
n2/3 (lnn)

4/3
)
, we have

f(G) = Ω

(
d

n1/3 (lnn)
2/3

)
. (4.6)

In particular,

f(Kn) ≥
(

1

20
− o(1)

)( n

lnn

)2/3
, (4.7)

finally making a significant improvement upon Graham and Kleitman’s
lower bound after over four decades.

Beyond these results, the value of f(Kn) remains an open question.
It is conjectured, first by Graham and Kleitman, and then repeated by
Milans, that f(Kn) should lie closer to the upper than to the lower bounds.
Burger, Cockayne and Mynhardt [13] compute the values of f(Kn) for
3 ≤ n ≤ 8. It can be noted that these all satisfy f(Kn) ≥ 1

2n, though
n ≤ 8 is probably too small to infer a pattern.
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4.2 Related results

While any progress on the altitude of the complete graph has been scarce
for the last three decades, a number of studies have appeared during this
time which consider the altitude of other classes of graphs.

It is clear from the definition of altitude that only empty graphs have
altitude zero, and the only graphs with altitude one are non-empty graphs
where each component contains at most two vertices. In 1987, Bialostocki
and Roddity [8] further characterized all graphs of altitude two by proving
that f(G) ≥ 3 if and only if G contains, as a subgraph, either one of six
fixed graphs, or an odd cycle of length at least 5.

In computing upper bounds for the altitude of a graph, multiple au-
thors have observed that f is sub-additive in the sense that

f

(
k⋃

i=1

Gi

)
≤

k∑
i=1

f(Gi), (4.8)

where G1, G2, . . . , Gk denote graphs on the same vertex set. Let Δ =
Δ(G) denote the maximal degree of any vertex in G. By Vizing’s theorem
(see e.g. Theorem 1.13 in [9]), any graph G can be partitioned into at
most Δ(G) + 1 matchings. Combining this with the sub-additivity of f ,
it follows that

f(G) ≤ Δ(G) + 1. (4.9)

Given this bound, it is natural to ask how large one can make f(G)
for a fixed value of Δ(G). To this end, in 2001 Yuster [50] proved that
there exists a sequence {Gk}∞k=2 of graphs such that Δ(Gk) = k and
f(Gk) ≥ k−o(k). Later the same year, Alon [4] improved this result using
the following observation: It is a well-known fact that for any k ≥ 2 there
are k-regular graphs with girth more than k. By the pedestrian argument
above, any edge–ordering of any such graph contains a monotone trail of
length k. As the girth of the graph is larger than k, this trail must be
a path. Hence for any Δ ≥ 2 there exist graphs G with Δ(G) = Δ and
f(G) ≥ Δ.

An in-depth study of the altitude of 3-regular graphs by Mynhardt,
Burger, Clark, Falvai and Henderson [43] showed that there are 3-regular
graphs with altitude 4, e.g. the so–called flower snarks. Hence the upper
bound in (4.9) can be obtained exactly for Δ = 3, but for Δ ≥ 4 it remains
an open problem whether the maximally obtainable altitude is Δ or Δ+1.

Roditty, Shoham, and Yuster [46] asked for the maximal altitude of
any planar graph. They showed that the planar graph obtained by taking
a long cycle and adding two vertices which are connected to everything
in the cycle has altitude at least 5. On the other hand, by considering
partitions of planar graphs into forests and using (4.8), they showed that
any planar graph has altitude at most 9. Combining their argument with
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a later result for the so–called caterpillar arboricity of planar graphs by
Gonçalves [28], this upper bound can be improved to 8.

A recent article by De Silva, Molla, Pfender, Retter and Tait [21]
considered the altitude of the d-dimensional hypercube Qd. It is not too
hard to partition Qd into d matchings, hence by (4.8), f(Qd) ≤ d. This
bound is believed to be sharp for all d ≥ 1, but already d = 4 is hard
to check by computer. De Silva et al. showed as a partial result in this
direction that f(Qd) ≥ d/ ln d for all d ≥ 2.

Concerning computational aspects of altitude, Katrenič and Semanǐsin
[33] showed that computing the altitude of an edge–ordered graph is NP–
hard. In fact, even the simpler problems of (i) determining whether a
certain edge–ordered graph admits a monotone Hamiltonian path or (ii)
estimating the altitude of an edge–ordered graph within a constant factor
are known to have no efficient solutions unless P = NP . Although it
seems likely to be true, it remains an open question whether the problem
of computing the altitude of a non edge–ordered graph is also NP–hard.

The study of altitudes of graphs has further led to the related concept
of the depression of a graph. Given a graph G, its depression ε(G) is
defined as the smallest non-negative integer k such that any edge–ordering
of G contains a maximal monotone path of length at most k, where a
monotone path is said to be maximal if it is not contained in a longer
such path. This has been characterized for various graphs, see for instance
[16,17,42].

4.3 Random edge–orderings

In a recent paper, Lavrov and Loh [36] proposed a randomized version
of Chvátal and Komlós’ original question. Suppose we choose an edge–
ordering of Kn uniformly at random. Then, what can we say about the
altitude of this ordering? That is, what is the maximum length of a
monotone path in a random edge–ordering?

It is natural to begin by considering the performance of the “obvious”
greedy algorithm to explicitly construct long monotone paths – start in an
arbitrary vertex and then successively traverse the minimally labeled edge
which maintains the increasing property and does not lead to a previously
visited vertex. Lavrov and Loh show that the monotone path obtained in
this way has length concentrated around (1− 1

e )n ≈ 0.632n.

The behavior of the greedy path can intuitively be understood as fol-
lows. Let us assume the edge–ordering is obtained by assigning inde-
pendent U(0, 1) edge weights to Kn. The first edge in the path is the
minimum out of n − 1 edges, and so the weight of this edge is approxi-
mately Exp(n− 1)-distributed. After the first step, there are n− 2 edges
that lead to new vertices, and so the weight of the second edge is approx-
imately an Exp(n−2) random variable higher than the weight of the first

27



Altitudes of random edge–orders of the complete graph

edge. By continuing in this way, the k:th edge in this path (if it exists)
will have a weight about

1

n− 1
+

1

n− 2
+ · · ·+ 1

n− k
≈ lnn− ln(n− k). (4.10)

This continues until weights become close to 1, which occurs at k ≈ (1−
1
e )n.

Clearly, this greedy approach is not optimal as it only makes use of
a very limited amount of information each time it chooses a new edge.
To improve upon this, Lavrov and Loh propose a more clever way to
successively choose the next edge, which they call the k-greedy algorithm.
The precise formulation is a bit technical. They show that for each k,
the path obtained in this way has length concentrated around some value
(1−e−αk)n. The value of αk can be estimated numerically. In particular,
letting k → ∞ we get that 1− e−αk converges to a value ≈ 0.853, and so,
with probability tending to 1 as n → ∞, a random edge-ordering of Kn

contains a monotone path of length at least, say, 0.85n.
It should probably be noted that already the first greedy algorithm

shows that typical random edge–orderings contain monotone paths longer
than 1

2n. Hence, these will not help us to improve the upper bound on
f(Kn). This should not be very surprising – the central idea of the upper
bounds in [14,29] is to order the edges according to some global structure
on Kn, which is more or less the opposite of what a random ordering does.

Besides providing explicit algorithms for finding long monotone paths,
Lavrov and Loh further gave a very interesting partial result regarding the
length of the longest monotone path in a random edge ordering. First, we
have the trivial upper bound of n− 1: the length of a Hamiltonian path.
It is natural to ask whether typically any of these are monotone.

To investigate this, let Xn be the number of increasing Hamiltonian
paths in a random edge–ordering of Kn. For n ≥ 3 the number of mono-
tone such paths is then twice this value. There are n! Hamiltonian paths
inKn, and the probability that each of these is increasing is 1

(n−1)! . Hence,

by linearity of expectation,

EXn =
n!

(n− 1)!
= n. (4.11)

Heuristically, the fact that the expectation of Xn tends to infinity would
seem to indicate that Xn is typically non–zero. Using an elegant combi-
natorial argument, Lavrov and Loh showed that

EX2
n = (1 + o(1))en2. (4.12)

This shows that the standard deviation of X is ∼ √
e− 1 ·n, which is too

large to show concentration around its mean using Chebyshev’s inequality.
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Instead, by applying the Paley–Zygmund inequality, they obtained the
weaker estimate

P(Xn > 0) ≥ E[Xn]
2

E[X2
n]

→ 1

e
as n → ∞, (4.13)

and so, with probability at least 1
e − o(1), a random edge–ordering of Kn

contains a monotone Hamiltonian path.
In conclusion of these results, the authors state that empirical simula-

tions seem to indicate that a stronger result is true, and give the following
conjecture.

Conjecture 4.1. If an edge–ordering of Kn is chosen uniformly at ran-
dom, then it admits to a monotone Hamiltonian path with probability
tending to 1 as n → ∞.

Indeed, given (4.13), the negation of this conjecture would mean that
there are arbitrarily large values of n where a random edge–ordering is
sometimes organized to block all Hamiltonian paths, and sometimes allows
many to be monotone. As each individual Hamiltonian path contains
relatively few of the edges of Kn, this would at least be very peculiar.

4.4 Summary of Paper III

In Paper III, we consider the problem of random edge–orderings of Kn

as described in the previous section. In particular, we investigate the
behavior of the random variable Xn in greater detail. Our approach is
reminiscent of Stein’s method in the sense that it relates Xn to its size-
biased version X∗

n, but as far as I know, the precise approach is novel to
the paper.

The main result resolves the conjecture by Lavrov and Loh affirma-
tively – a uniformly chosen random edge–ordering of Kn admits a mono-
tone Hamiltonian path with probability 1−o(1). This is a consequence of
a more technical result below. Before delving into that, let us note some
more properties of Xn that follows from this. First, for any x > 0 and
any positive integer k ≥ 0 we have the lower tail estimate

lim sup
n→∞

P(Xn ≤ x · n) ≤ ek(k+1)xk. (4.14)

As a consequence, with probability 1 − o(1), the number of monotone
Hamiltonian paths is of order n. Second, for a suitable truncation X̂n of
Xn such that X̂n ≤ Xn and P(Xn = X̂n) → 1 as n → ∞, it holds that

lim
n→∞

1

nk
EX̂k

n = ek(k−1)/2, (4.15)

for any k = 1, 2, . . . . Third, for any large constant M > 0, the probabili-
ties that Xn/n ≥ M and Xn/n ≤ 1

M respectively are both bounded away
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from 0 as n → ∞, so the sequence Xn/n does not have bounded support
in the large n limit.

It seems very reasonable to expect that the sequence {Xn/n}∞n=1 should
converge in distribution, but it is not clear how to prove this. We note
however that Xn/n ≥ 0 and EXn/n = 1 for all n ≥ 1, and hence the
sequence is tight, meaning that no probability mass “escapes to infinity”
as n → ∞. This implies that any subsequence of these random variables
contains a subsubsequence which converges in distribution. We note that
if all such converging sequences have the same limit, then Xn/n converges
to this distribution as n → ∞.

The three properties of Xn listed above are all direct consequences of
the following characterization of limit points of Xn/n.

Proposition 4.2. Let F (x) denote the cumulative distribution function
of the limit of any weakly converging subsequence {Xni

/ni}∞i=1. We then
have ∫ ∞

0

xk dF (x) = ek(k−1)/2 (4.16)

for any k ∈ Z. In particular, F has the same moments as a log-normal
random variable with μ = − 1

2 and σ = 1. Moreover, if we let G(t) =
F (et), equivalently G(t) is the CDF of the limit of ln(Xni/ni), then

G(t) =

∫ t

−∞
e−(s+ 1

2 )
2/2 dν(s) (4.17)

for some 1-periodic positive measure ν(s) on R.

Recall that the log–normal distribution with parameters μ and σ is
the distribution of Y = eZ , where Z has normal distribution with mean
μ and standard deviation σ.

An important caveat concerning this result is that the log–normal
distribution is M–indeterminate, meaning that there exist other random
variables that have the same moment sequence. Hence, even though we
uniquely determine the moment sequence of limit points of Xn/n, this
does not uniquely determine the limit distribution. In fact, any distribu-
tion that satisfies (4.17) for some 1-periodic measure has this property.
Nevertheless, it seems fairly clear that the only natural distribution that
can be obtained in this way is the log–normal one.

Conjecture 4.3. As n → ∞, Xn/n converges in distribution to a
logN (− 1

2 , 1) random variable.

Let us briefly mention some of the proof ideas of this paper. Given a
non-negative random variable ξ with finite positive expectation μ, we say
that ξ∗ has ξ–size biased distribution if

E[ξf(ξ)] = μEf(ξ∗), (4.18)
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for all functions f for which these expectations exist. In the case of Xn,
its size–biased version X∗

n then satisfies

P(X∗
n = k) =

k

n
P(Xn = k), (4.19)

for k = 0, 1, . . . .
As it turns out, there is a natural coupling of Xn and X∗

n defined as
follows. Uniformly choose an edge–ordering of Kn and define Xn accord-
ing to this. Thereafter, fix some Hamiltonian path P and rearrange the
indices of edges along P such that it becomes increasing. We can now
let X∗

n be the number of increasing Hamiltonian paths in the modified
edge–ordering.

The key observation in this analysis is the following simple relation
between Xn and X∗

n.

Proposition 4.4. In the coupling above, we have

E

[
(X∗

n − eXn)
2
]
= o(n2). (4.20)

It can be mentioned, that despite the simplicity of this statement, its
proof consists of some fairly technical third–moment estimates for Xn,
which take up the majority of the paper.

Intuitively, this proposition states that in the large n limit, size–biasing
scales up Xn by a factor of e but does not otherwise affect its distribution.
In particular, the proposition implies that any limit point of Xn/n has
this property exactly. Random variables where size–biasing scales up the
distribution by a constant factor are known in the literature [5], and in
particular when the constant is e, these have the properties described in
Proposition 4.2.
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Chapter 5

Jigsaw puzzles and
shotgun assembly

Suppose a random jigsaw puzzle is constructed by cutting out an n×n grid
of jigsaw pieces from a large board where the borders between adjacent
pieces are chosen uniformly out of q possible shapes. Then, what is the
probability that this puzzle has a unique solution? This is the topic of
Paper IV. Despite its natural formulation, this problem seems to have
been first considered very recently in a paper by Mossel and Ross [41].

In the aforementioned paper, Mossel and Ross proposed a class of
problems going under the following philosophy. There exists some, pos-
sibly random, graph G which is assigned either a random edge or vertex
labeling. For each vertex v ∈ G, its labeled r–neighborhood Nr(v) is the
induced labeled subgraph of all vertices at distance at most r from v. You
are told the collection of all such r–neighborhoods for some r. Given this
information, is it possible to reconstruct G?

Probably the most well–known problem of this type is to reconstruct a
random string given a collection of overlapping substrings, see for instance
[25]. In particular, this is an important problem in genetic sequencing,
where it goes under the name of shotgun assembly. Mossel and Ross hence
called their class of problems shotgun assembly of labeled graphs.

As a more recreational version of shotgun assembly, the authors pro-
posed the random jigsaw puzzle problem. They in particular asked: “How
large should q be in order for the puzzle to have a unique solution? More-
over, how can this solution be found efficiently?”

5.1 Edge–matching and jigsaw puzzles

A jigsaw puzzle is a collection of square pieces where each of the four
edges of the piece is assigned a label, called its shape, out of q options.
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q jig shapes: , , , , ,. . .

n

n

Uniformly assign shapes

Figure 5.1: Illustration of the random jigsaw puzzle model proposed by
Mossel and Ross.

For each possible shape i we assume that there exists a unique inverted
shape j (this may be i itself) such that two edges with respective shapes
i and j “fit together”. An edge–matching puzzle is a collection of square
pieces where each side is instead given one of q possible color. Here, two
edges fit together if they have the same color.

A solution to the respective puzzles is an arrangement of the pieces
into a certain form, here it will always be an n × n square, such that
neighboring pieces fit together. It is sometimes assumed that the pieces
have a fixed orientation, in which case a solution must orient all pieces
the same way. Otherwise, we assume that the pieces are allowed to be
rotated any multiple of 90◦ but not flipped upside down.

We shall here be concerned with the following models for random edge–
matching and jigsaw puzzles, as defined in [11, 41]. Arrange n2 identical
squares into an n × n pattern. For each edge of each square, we choose
its shape/color uniformly from q options under the restriction that any
pairs of touching edges should have inverted shapes/the same color. This
is illustrated in Figure 5.1. Note that this means that, unlike most real
jigsaw puzzles, also edges along the boundary are assigned shapes/colors.
This assumption should not affect the behavior of the model very much,
but simplifies the analysis. An assignment of shapes to a puzzle is called
a carving, and an assignment of colors a coloring.

A natural question regarding these models is how likely it is for such
puzzles to have a unique solution. Equivalently, how likely is it that
the original solution of the puzzle can be uniquely recovered from the
collection of shuffled pieces. One would intuitively expect this probability
to be increasing in q – more shapes/colors gives us more information
about the puzzle and generally decreases the probability that the pieces
fit together in some other arrangement.

In order to treat these questions, a few caveats need to be mentioned.

33



Jigsaw puzzles and shotgun assembly

First, if we allow the pieces to be rotated, then any global rotation of
a solution also solves the puzzle. To simplify terminology, we will con-
sider two solutions as identical if they only differ by a global rotation.
Second, if the puzzle contains duplicate pieces, or, in the case where ro-
tation is allowed, pieces with rotational symmetry, then any appropriate
rearrangement of such pieces in a solution yields a new solution. We say
that two solutions are similar if they only differ by global rotation and
rearrangement of duplicate and rotationally symmetric pieces.

Mossel and Ross showed that for 2 ≤ q ≤ o(n2/3), with probability
tending to 1 as n → ∞, a random edge–matching puzzle contains a pair of
disjoint 2×1 blocks with identical colors around their borders but different
in their centers. Hence by exchanging these in the original solution, we
see that the puzzle has at least two non–similar solutions. Conversely, if
q = ω(n2) then the solution is unique with probability tending to one. It
should be mentioned that it is not entirely clear from their presentation
whether they allow pieces to be rotated, but the fact is their argument
goes through either way.

This result was later improved in two independent works by Bordenave,
Feige and Mossel [11] and Nenadov, Pfister, and Steger [44]. Incidentally,
both were published on arxiv.org on May 11:th 2016, and both prove
essentially the same result: When q ≥ n1+ε, a random edge–matching
puzzle has a unique solution with probability tending to 1, for any fixed
ε > 0. On the other hand, when q = o(n), with probability tending to
1, the puzzle contains duplicate pieces and hence multiple, but possibly
all similar, solutions. It should be mentioned that Nenadov et al. assume
that rotations are allowed. Bordenave et al. on the other hand state that
they, for simplicity, assume that the pieces are not allowed to be rotated,
but argue in the last section how this assumption can be removed and
also how the same result can be extended to the model of random jigsaw
puzzles above.

As part of their proof in the case of q ≥ n1+ε, Bordenave et al. present
an algorithm that reconstructs the original solution with probability tend-
ing to 1 in time nO(1/ε). Slightly paraphrased, their idea is that in order
to check whether two pieces with matching edges were adjacent in the
original solution, it suffices to check whether it is possible to construct a
k × k local solution centered around them for some fixed k = k(ε).

By comparison, the general algorithmic problems of finding a solution
to a given edge–matching or jigsaw puzzle are known to be NP -complete
[20], with a related hardness of approximation result given in [12]. The
problem also seems to be hard in practice. In the summer of 2007, Christo-
pher Monckton announced a $2 million prize for the first complete solution
to the (slightly oxymoronically named) Eternity II puzzle [51]. This is an
edge–matching puzzle consisting of 256 square pieces with 22 distinct col-
ors that should be assembled into a 16× 16 grid. The competition ended
on December 31:st 2010 with no complete solution being found, and at
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the time of writing the puzzle is claimed to remain unsolved.

5.2 Summary of Paper IV

In Paper IV we consider the transition between multiple and unique so-
lutions to random edge–matching and jigsaw puzzles in further detail.
We here assume that the pieces are allowed to be rotated. The result is
summarized in the following theorem.

Theorem 5.1. As n → ∞, the following holds with probability tending
to 1 for a random jigsaw puzzle with q shapes or random edge–matching
puzzle with q colors.

1. For 2 ≤ q ≤ 2√
e
n, there are at least two non–similar solutions.

2. For q ≥ (2 + ε)n, for any fixed ε > 0, all solutions are similar.

3. For q = ω(n), the solution is unique (up to global rotation).

I further conjecture that the event that all solutions are similar has
a sharp threshold at q = 2√

e
n in the sense that, in addition to point 1

above, all solutions should be similar with probability tending to 1 for
q ≥ ( 2√

e
+ ε)n, for all ε > 0.

The first part of the theorem is a consequence of the following observa-
tion. The statement “all solutions are similar” is equivalent to saying that
the unordered collection of jigsaw pieces uniquely determines the carving
of the original solution, up to global rotation. Hence there are at most
four times as many carvings where all solutions are similar as there are
unordered collections of n2 jigsaw pieces. When 2 ≤ q ≤ 2√

e
n, the number

of the latter is much smaller than the total number of carvings.
One can further note that the event that the solution is unique is

the intersection of the event that all solutions are similar and the event
that the puzzle contains no duplicate or rotationally symmetric pieces. In
particular, the expected numbers of both rotationally symmetric pieces
and pairs of duplicate pieces are o(1) if and only if q = ω(n). Hence, part
2 of the theorem implies part 3.

The majority of Paper IV is dedicated to proving part 2 of the the-
orem. The general approach is similar to those of Bordenave et al. and
Nenadov et al. – if there exist some alternative solution to the puzzle,
then there exists local solutions where a relatively large number of pieces
have neighbors different from what they have in the original configuration.
In order to prove that this cannot happen, one wants to bound the ex-
pected number of such local solutions. One main obstacle to this approach
is that, for a given arrangement of pieces, the events that pairs of new
neighboring pieces fit together are not generally independent. A novelty
of this paper is to circumvent this by controlling these dependencies in
terms of the number of shapes that appear locally more than once.
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