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ABSTRACT

This thesis contains two papers dealing with counting problems for curves of genus

one. We obtain uniform upper bounds for the number of rational points of bounded

height on such curves. The main tools to study these problems are descent and various

refined versions of Heath-Brown’s p-adic determinant method. In the first paper, we

count rational points on smooth plane cubic curves. In the second paper, we count

rational points on non-singular complete intersections of two quadrics. The methods

are different for curves of small height and large height and descent is only used for

curves of small height.
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INTRODUCTION

Diophantine equations is one of the oldest areas in mathematics and one of the classical

problems in this area is to study the density of solutions of such equations, i.e., the

integral solutions of the equations of the form F (x0, x1, ..., xn) = 0, where F is a

polynomial in Z[x0, x1, ..., xn]. One of the most famous examples is the equation related

to Fermat’s Last Theorem:

xn + yn = zn, (1)

where n is a positive integer. Fermat conjectured in 1637 that if n ≥ 3, (1) has no

non-zero solution and this was proved by Andrew Wiles in 1995.

This problem can be viewed more geometrically since the equation F = 0 defines a

hypersurface in the affine space An+1. It means that integral solutions to Diophantine

equations can be viewed as integral points on algebraic varieties. Moreover, if F is

homogeneous, it defines a hypersurface in the projective space Pn and the non-zero

primitive integer solutions of F = 0 correspond (up to sign) to rational points on this

hypersurface. We are thus then interested in rational points on projective varieties.

Let us start with some basic examples in which F is a homogeneous polynomial in

Z[x0, x1, x2] defining a plane curve C in P2. The theory of plane curves has been studied

for a long time by many mathematicians such as Fermat, Euler and Mordell and there

are still many interesting open questions. In case deg F = 1, i.e., F = a0x0+a1x1+a2x2

for some integers a0, a1, a2, then C is just a line in the plane. If say a2 6= 0, then its

rational points can be represented by pairs of rational numbers (x0, x1) 6= (0, 0) as

x2 = −(a0x0 + a1x1)/a2. In case deg F = 2, then C is also rational and the solutions

to F = 0 can be described by one parameter. For example, if F = x20 + x21 − x22, then

the rational solutions are of the form

(x0, x1, x2) =

(
1− t2
1 + t2

,
2t

1 + t2
, 1

)
,

where t is an arbitrary integer.

The first non-trivial case is thus when deg F = 3. Then C is of genus 1 if it is non-

singular. The solutions to F = 0 can thus not be parametrized in the same way as

before as C is no longer rational. In general, it is hard to know whether there are

finitely or infinitely many rational points on C. It depends on the particular nature of

the equation. But we will in this thesis focus on results which hold for general classes
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of curves. We shall therefore count the number of points inside large boxes and give

upper bounds for the number

N(C,B) = ]{P ∈ C(Q) : H(P ) ≤ B}

of rational points of height at most B on C. Here H is the naive height func-

tion H(P ) := max{|x0|, |x1|, |x2|} for P = (x0, x1, x2) with coprime integer values of

x0, x1, x2. The aim is to establish uniform estimates for N(C,B) which do not depend

on the polynomial F defining C.

The first important uniform upper bound for irreducible plane cubic curves was ob-

tained by Heath-Brown [5] in 2002 as a special case of a more general result. He showed

that

N(C,B)�ε B
2/3+ε. (2)

Here our notation f � g means f = O(g), i.e., there exists a positive constant M such

that |f | ≤Mg. The implicit constant in (2) depends solely on ε.

The proof of (2) was based on his p-adic determinant method which is one of the few

tools available for counting problems on varieties of low dimensions. We now give a

description of the basic idea of this method by providing a sketch of the proof of (2).

1. The p-adic determinant method

We first divide all rational points of height at most B on C into congruence classes

modulo some prime number p and then count points in each class. By the Hasse-Weil

bound there are p+Od(
√
p) Fp-points on an irreducible plane curve of degree d. Since

an irreducible cubic curve can have at most one singular point, we will only count

non-singular points on C(Q). Moreover, by a version of Siegel’s lemma (see Theorem

4 of [5]), we can always assume that ||F || � B30 and then any non-singular point on

C(Q) will be non-singular modulo p except for a small number of primes p. Here ||F ||
is the maximum modulus of the coefficients of F (x0, x1, x2) ∈ Z[x0, x1, x2].

For a given degree d, we first fix 3d monomials {Fj}, 1 ≤ j ≤ 3d of degree d, which

are linearly independent on C. Our goal is now to prove that det(M) = 0 for any

3d × 3d-matrix M = (Fj(Pi))i,j, where {Pi}, 1 ≤ i ≤ 3d are rational points on C of

height at most B, which reduce to the same non-singular Fp-point for a prime p. The
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vanishing of det(M) for all such sets {Pi} will guarantee the existence of a homogeneous

polynomial G of degree d which does not vanish everywhere on C, but which vanishes

at all P ∈ C(Q) of height H(P ) ≤ B, which reduce to the given non-singular Fp-point

on the curve defined by F (x0, x1, x2) = 0 (mod p). By the theorem of Bézout, there

are then at most 3d such points in C(Q).

To show that det(M) = 0, we first give an upper bound and then a factor of the integer

det(M) which exceeds the bound. Since all the points are of height at most B, we get

the following upper bound by using Hadamard’s inequality:

| det(M)| ≤ (3d)
3d
2 B3d2 . (3)

But we can also prove that det(M) is divisible by p3d(3d−1)/2 by using the p-adic implicit

function theorem and the fact that all {Pi} reduce to the same non-singular Fp-point.

Hence as long as we only consider integral points which are non-singular (mod p) for a

prime p with p3d(3d−1)/2 > (3d)
3d
2 B3d2 , then we get at most 3d points in each congruence

class. We then obtain (2) by summing over all O(p) congruence classes for such p.

In this direction, Salberger [8] proved a slightly better estimate

N(C,B)� B2/3 logB, (4)

by using his global version of Heath-Brown’s p-adic determinant method. He then

considered congruences modulo all primes p where C is irreducible over Fp.

The best known uniform bound for irreducible plane cubic curves was given by

Walsh [10] using the global determinant method in [8]

N(C,B)� B2/3. (5)

We also observe that if F (x0, x1, x2) = x30−x21x2, then the solutions (m2n,m3, n3) show

that N(C,B) � B2/3. But as this curve is singular, it may still be possible to find a

sharper bound than (5) for non-singular plane cubic curves.

Remark : All the bounds (2), (4) and (5) are special cases of more general results for

irreducible curves of arbitrary degree d in a fixed projective space. In that case the

main term B2/3 will then be replaced by B2/d.
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2. Elliptic curves

In this thesis we are interested in the case when the cubic curve C is non-singular. It

is then a curve of genus 1. If we fix a rational point O on C, then we get a bijection

between C(Q) and E(Q) for the Jacobian E of C, where P is sent to P − O in the

group E(Q). As E is an elliptic curve over Q, we get by the Mordell-Weil theorem

that E(Q) is a finitely generated abelian group. More precisely,

E(Q) ∼= E(Q)tors ⊕ Zr, (6)

where E(Q)tors is the group of all elements of finite order of E(Q) and r is called the

rank of E. The group structure is such that (P −O) + (Q−O) + (R−O) = 0 in E(Q)

if and only if P,Q,R ∈ C(Q) are collinear.

The theory of elliptic curves has been studied for centuries. It is an area where many

different branches of mathematics come together such as number theory, algebraic

geometry and complex analysis. We will make essential use of the fact that the Jacobian

E =Jac(C) of a genus 1 curve C is an elliptic curve. This makes it possible to use

descent with unramified covers to study rational points on cubic curves. Since any

rational point on the original cubic curve maybe lifted to a rational point on one

of these new cubic curves, we can apply the determinant method to the new curves

instead. This leads to sharper estimates which are not possible to obtain if we only

use the determinant method. This is why we only consider non-singular cubic curves.

The main tools in this thesis are the determinant method and descent. We have already

discussed the determinant method. It thus remains to discuss descent theory which

plays an important role in the thesis. This theory was first developed to prove the

Mordell-Weil theorem. We will therefore now provide a sketch of the proof of (6).

3. Mordell-Weil theorem and descent method

The theorem holds for general abelian varieties over number fields. But in this section

we will only discuss the special case of elliptic curves over the rationals. The proof

has two parts. The first part is the so called weak Mordell-Weil theorem which says

that if E is an elliptic curve, then E(Q)/mE(Q) is a finite abelian group for any

positive integer m. To show this one uses Galois cohomology to find an injection of
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E(Q)/mE(Q) into a Selmer group which is known to be finite. This corresponds to a

partition

E(Q) =
⋃

α

pα(Cα(Q)) (7)

for a finite set of unramified covers pα : Cα → E of degree m2.

The second part of the descent is to use the height function defined at the beginning.

It can be seen that if a finite set A of elements of E(Q) can be found, such that they

generate the group E(Q)/mE(Q), then the finite set A∪B will generate E(Q), where

B ⊂ E(Q) is the finite set of elements of a given bounded height. Hence, E(Q) is

finitely generated. The method is called descent since it can be viewed as a modern

more general version of Fermat’s method of infinite descent.

A basic feature of the descent process is that for any rational point P and positive

integer m, we have that H(mP ) ≈ m2H(P ). From (7), we thus get that the study of

N(E,B) essentially reduces to the study of
∑

αN(Cα, B/m) for a finite set of unram-

ified covers pα : Cα → E of degree m2. This leads to better estimates since we are now

working with points of smaller height. This was first used by Ellenberg and Venkatesh

[4] and by Heath-Brown and Testa [6] and it will play an important role in this thesis.

4. A survey of results

Ellenberg and Venkatesh [4] proved the following bound for smooth plane cubic curves

N(C,B)�ε B
2/3−1/450+ε (8)

by combining the p-adic determinant method with descent theory. Their method was

then refined by Heath-Brown and Testa [6] by a clever use of the p-adic determinant

method for biprojective curves. They got in this way the sharper estimate

N(C,B)�ε B
2/3−1/110+ε. (9)

The proof of (9) is divided into three steps. The first step is to partition C(Q) into

equivalence classes by means of descent where each class is of the form pα(Cα(Q)) for

some unramified cover pα : Cα → C. The second step is to embed each Cα in P2 × P2

and reduce to the counting problem for a biprojective curve in P2×P2 in order to avoid

the comparisons with canonical heights on Jac(C) used in [4]. The last step is to apply
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the p-adic determinant method for this biprojective curve. This is more complicated

than for the projective plane curves in Section 1. But the fundamental idea is the

same.

The best known result is the following proved by Salberger in his unpublished work

N(C,B)�ε B
2/3−1/84+ε. (10)

A striking feature of [6] is that Heath-Brown and Testa also proved the following bound

for any positive integer m

N(C,B)� mr+2
(
B

2
3m2 + logB

)
logB, (11)

with an implied constant independent of m, where r is the rank of Jac(C). Taking

m = 1 + [
√

logB] they obtain that

N(C,B)� (logB)3+r/2. (12)

5. Paper I: Counting rational points on smooth cubic curves

In Paper I, we follow the approach of [6] closely except that we replace the p-adic

determinant method by the global determinant method of Salberger. This gives the

following improvements of (11) and (12):

N(C,B)� mr
(
B

2
3m2 +m2

)
logB, (13)

and

N(C,B)� (logB)2+r/2. (14)

The bounds are uniform in the sense that the implicit constants only depend on the

rank r of the corresponding Jacobian.

In the appendix of Paper I we also include an even better estimate (see Theorem 9),

which is obtained by a re-examination of the argument in [6]. This is based on a deep

result of David [3] about successive minima for the quadratic form corresponding to

the canonical height on Jac(C). These estimates should be compared with the classical
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result of Néron:

N(C,B) ∼ cF (logB)r/2, (15)

where cF is a constant depending on F . But the proof of that result gives very little

information about the error terms and no uniform bounds for N(C,B).

6. Counting rational points on curves of genus g

Although the thesis is only devoted to curves of genus one, it is illuminating to give an

overview of the density of rational points on an arbitrary non-singular curve C of genus

g in Pn. We will here use the notation N(C,B) for the number of points P ∈ C(Q) with

H(P ) ≤ B, where the height function H is then defined by H(P ) := max{x0, ..., xn}
for P = (x0, ..., xn) with coprime integer values of x0, ..., xn. There are three cases:

+) If g(C) = 0: either C has no rational point or C ∼= P1. In the latter case, C is

called a rational curve and that N(C,B) ∼C B2/d, where d is the degree of C. Thus

the best possible result is N(C,B)�d B
2/d shown by Walsh [10].

+) If g(C) = 1: either C has no rational point or C is an elliptic curve and its rational

points form a finitely generated abelian group by Mordell-Weil theorem. Then by

Néron, N(C,B) ∼C (logB)r/2, where r is the rank of the Jacobian Jac(C).

+) if g(C) ≥ 2: according to Mordell’s conjecture, now Faltings’s Theorem, C has only

a finite number of rational points, i.e., N(C,B) = OC(1). The best known uniform

bound is due to Ellenberg-Venkatesh [4]. They showed that N(C,B)�d B
2/d−δ, where

δ is a small constant depending only on d, which they do not specify.

The asymptotic behaviour is similar over any number field if we normalize the heights

correctly. Here the genus 0 case is very easy. So the first non-trivial case is when

g(C) = 1. Apart from smooth plane cubic curves, there is also an important class of

genus one curves given by non-singular complete intersections of two quadrics in P3.

The counting problem for that class is discussed in the second paper.

7. Paper II: Uniform bounds for rational points on complete intersections

of two quadric surfaces

In Paper II, we study the density of rational points on quartic curves in P3. In [5],

Heath-Brown proved that

N(C,B)�ε B
2/d+ε (16)
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for arbitrary irreducible space curves over Q of degree d by means of his p-adic de-

terminant method. Salberger [8] showed a slightly better uniform bound by using his

global determinant method

N(C,B)� B2/d logB, (17)

which was then improved by Walsh [10] to

N(C,B)� B2/d. (18)

So in the case where d = 4, it is known that N(C,B)� B1/2.

In Paper II, we consider non-singular quartic curves C in P3 given by complete inter-

sections of two quadrics. As C is of genus 1, the Jacobian Jac(C) is again an elliptic

curve and we can apply descent theory. We will therefore use the same basic dichotomy

as in two articles [4] of Ellenberg and Venkatesh and [6] of Heath-Brown and Testa:

+) For curves of small height we use descent (see (7)) and the determinant method

for unramified covers of C. To sum over the descent classes we will also need upper

estimates for the rank of Jac(C) in terms of its discriminant.

+) For curves of large height we use a refinement of the determinant method where we

find extra factors in the determinant which come from the coefficients of the quadratic

forms defining C.

One difficulty is that we first need to define a height function on a parameter variety

of such quartic curves. This is much easier for cubic curves where the height function

can be defined by the maximum modulus of coefficients of the polynomial F defining

C. Unfortunately the author has not been able to prove the main estimate (25) for

general non-singular complete intersections of two quadrics in P3. So we will only

consider the case where C is given by a complete intersection of two simultaneously

diagonal quadratic forms.

We first use descent and the global determinant method to prove the following bound

for any positive integer m:

N(C,B)� mr
(
B

1
2m2 +m2

)
logB. (19)
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Taking m = 1 + [
√

logB] we obtain

N(C,B)� (logB)2+r/2, (20)

where r is the rank of Jac(C). These results should be compared with (13) and (14)

for cubic curves.

We now suppose that C is given by a complete intersection of two simultaneously

diagonal quadratic forms q = a0x
2
0 + a1x

2
1 + a2x

2
2 + a3x

2
3 and r = b0x

2
0 + b1x

2
1 +

b2x
2
2 + b3x

2
3 with integral coefficients. Then C is smooth if and only if all six minors

dij = aibj − ajbi 6= 0, 0 ≤ i < j ≤ 3. These six minors will satisfy a quadratic Plücker

relation. So C is parametrized by a rational point P on a quadric in P5 with coordi-

nates given by those six minors. We now define the height H(C) of C to be the height

of P in P5. We have thus

H(C) := max
0≤i<j≤3

(|dij|)/ gcd
0≤i<j≤3

(dij).

Then we use a refinement of Heath-Brown’s p-adic determinant method to prove that

N(C,B)�ε B
1/2+ε/H(C)1/8 +Bε. (21)

This bound is an analog of the bound

N(C,B)�ε B
2/3+ε/H(C)1/9 +Bε

in [4] for plane cubic curves.

We now use a standard 2-descent argument as in Brumer - Kramer [2] to bound the rank

r of Jac(C) in terms of its discriminant D. One can prove that for any c > 1/(2 log 2)

we have

r < c log|D|+ Oε(1).

This is discussed by Ellenberg and Venkatesh [4, p. 2177]. In (19), if we take m = 2

then

N(C,B)� 2rB1/8 logB �ε |D|1/2+εB1/8 logB. (22)

The discriminant D of Jac(C) can be computed by means of the formulas in [1, Sections
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3.1 and 3.3]. This gives

D = 2−8
∏

0≤i 6=j≤3
(aibj − ajbi).

We can here reduce to the case where (q, r) is a primitive pair with

gcd0≤i<j≤3(aibj − ajbi) = 1, in which case we prove that

|D| ≤ H(C)12. (23)

From (22) and (23) we obtain that

N(C,B)�ε H(C)6+εB1/8 logB. (24)

Comparing (21) with (24) we see that the worst case is that in which

H(C) = B3/49. We then obtain the main result of this paper: Let C be a non-singular

complete intersection of two simultaneously diagonal quadrics in P3. Then

N(C,B)�ε B
1/2−3/392+ε. (25)
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