
PHYSICAL REVIEW C 95, 034002 (2017)

Quantifying statistical uncertainties in ab initio nuclear physics using Lagrange multipliers
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Theoretical predictions need quantified uncertainties for a meaningful comparison to experimental results.
This is an idea which presently permeates the field of theoretical nuclear physics. In light of the recent progress in
estimating theoretical uncertainties in ab initio nuclear physics, I here present and compare methods for evaluating
the statistical part of the uncertainties. A special focus is put on the (for the field) novel method of Lagrange
multipliers (LM). Uncertainties from the fit of the nuclear interaction to experimental data are propagated to
a few observables in light-mass nuclei to highlight any differences between the presented methods. The main
conclusion is that the LM method is more robust, while covariance-based methods are less demanding in their
evaluation.
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I. INTRODUCTION

Although it is crucial for experimental results to have
estimated uncertainties, the same has not always been ac-
knowledged for theoretical calculations and predictions. This
is, however, beginning to change. A recent editorial for
the journal Physical Review A highlights the importance of
estimated uncertainties for theoretical calculations [1] and
urges authors to include such estimates. Practitioners are
starting to pay more attention to this important aspect [2–4].
It is being acknowledged that it is important to understand all
sources of uncertainties in the theory, model, and numerical
calculations. Not only is this important for a meaningful
comparison to experimental data, it also has the potential
benefit of increasing the understanding and awareness of
missing physics in the model. Therefore, the quantification
of theoretical uncertainties in low-energy nuclear physics, and
chiral effective-field theory (χEFT) in particular, has recently
received much attention. Various methods and strategies are
being introduced to the field, such as statistical sensitivity anal-
yses [5,6], strategies for estimating model uncertainties [6,7],
including Bayesian methods [8–10], and advanced statistical
tools [11]. Statistical error propagation was performed using
various methods [6,12,13] and is being expanded to more and
more nuclear observables [6,14,15].

Because of the increasing demand for nuclear interaction
models with quantified uncertainties, it is of interest to
compare different methods for extracting uncertainties. Such
a comparison serves several purposes:

Investigate if, and if so why, different methods produce
different results.
Justify or reject various approximations involved in these
methods.
To serve as a reference and guide for future works intending
to use these methods.

The process of going from a χEFT interaction to a predicted
value for an observable involves many sources of uncertainties.
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There is an inherent model error in χEFT because of
the exclusion of higher-order terms in the interaction. In
the solution of the many-nucleon Schrödinger equation, there
can be a sizable method error from, e.g., truncation of the
number of particle-hole excitations and limited model spaces,
and sometimes also a numerical error from round-off errors.
Finally, there is a statistical uncertainty from, e.g., the fitting
of the low-energy constants (LECs) to experimental data.
The LECs determine the strength of contact interactions
in the chiral Lagrangian, which are not fixed by chiral
symmetry. The numerical values of the LECs are determined
by choosing the LECs that best describe a set of experimentally
measured observables. Because experimental data comes with
uncertainties, this fitting results in statistical uncertainties in
the LECs, or rather a multivariate probability distribution
for the values of the LECs. This probability density is then
propagated to observables to yield a statistical uncertainty. To
compensate for a lack of data and avoid overfitting, priors
for the LECs can be applied [8–10]. The priors incorporate
a priori knowledge of the model from, e.g., the underlying
theory to constrain the LECs to feasible values. However, such
an approach will not be investigated here.

This article will focus on the statistical uncertainties and
how they are quantified. It was shown that these uncertainties
are generally small, compared to the model uncertainties of
χEFT [6,7]. Nevertheless, statistical covariances carry useful
information; they can be used to study correlations between
observables and for doing sensitivity analyses to determine
what experimental data could be used to constrain other
observables further [16–18].

The purpose of this article is to see how some common
methods used to propagate statistical uncertainties relate and
how they compare, both with regard to actual values for the
statistical uncertainties but also in their ease of application and
computational requirements. Special attention will be given to
the method of Lagrange multipliers [19] (LM), as this method
has, to the author’s knowledge, not been used in χEFT studies
before.

In Sec. II the different methods for extracting statis-
tical uncertainties are presented. In Sec. III the obtained
uncertainties are compared for some observables. Finally,
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in Sec. IV, there are some concluding remarks about the
methods.

II. METHOD

As mentioned in Sec. I, the statistical uncertainties originate
from the experimental uncertainties through a fit of the LECs
to data. The standard method to find the optimal LECs α0 in
χEFT is to perform a nonlinear least-squares minimization
[5], of the general form,

χ2(α) =
N∑

n=1

(
O

(exp)
n − O(theo)

n (α)

σ
(tot)
n

)2

≡
N∑

n=1

r2
n(α). (1)

Here, O
(exp)
n is the experimental value for observable n,

O(theo)
n is the corresponding theoretical prediction, σ (tot)

n is
the combined uncertainty of the experimental and theoretical
value, and rn are known as residuals. This minimization yields
the value χ2

0 ≡ χ2(α0). One benefit of using Eq. (1) is that it
has well-known statistical properties, under certain conditions,
allowing for the propagation of the experimental uncertainties
to the LECs [5].

The basis for the statistical analysis is that χ2(α) follows a
chi-squared distribution with Ndof = N − Nα degrees of free-
dom, where Nα is the number of LECs. This is the case if and
only if all residuals rn are independent and normally distributed
with mean 0 and variance 1. The range of variation allowed
for the LECs, within one standard deviation, is then given by
all LECs α that satisfy �χ2(α) ≡ χ2(α) − χ2

0 < L = 1 [5].
In practice, the above conditions on the residuals are

rarely completely fulfilled. In particular, the presence of
non-negligible systematic uncertainties can cause the residuals
to deviate from the normal distribution. Underestimated or
omitted systematic uncertainties can result in χ2

0 > Ndof . In
this case, a global rescaling of the uncertainties with a so-called
Birge factor [20] can be applied, resulting in L = χ2

0 /Ndof .
This will make the variance of the residuals equal to unity.

Although these deviations in the distribution of the residuals
could compromise the statistical uncertainties [11], it was
shown that they are stable despite small deviations from
normality [6]. This indicates that obtained uncertainties, corre-
lations, and sensitivity analyses still yield useful information.
However, further checks on the correctness of obtained statis-
tical uncertainties are motivated to make sure this is the case.

I will here present six methods, using different approxima-
tions and compare the results. These methods can, in essence,
be separated into two different strategies: (i) Use the covariance
matrix of the LECs to propagate uncertainties and (ii) use LM
to obtain propagated uncertainties.

A. Covariance matrix methods

At the minimum defined by the LECs α0, the Taylor
expansion of χ2(α) is given by

χ2(α0 + �α) ≈ χ2
0 + 1

2 (�α)T H0�α. (2)

By construction, the Jacobian J0 is zero in the minimum.
Furthermore, the elements of the Hessian matrix, H0,ij , are

given by

H0,ij =
N∑

n=1

(
2
∂rn

∂αi

∂rn

∂αj

+ 2rn

∂2rn

∂αi∂αj

)∣∣∣∣
α=α0

. (3)

In a computer implementation, the derivatives in (3) are
typically obtained using either finite differences or automatic
differentiation. In the former case, to avoid the numerically
difficult task of computing second derivatives, an accurate
approximation of H0 is often used [21],

H̃0,ij =
N∑

n=1

2
∂rn

∂αi

∂rn

∂αj

∣∣∣∣
α=α0

. (4)

Because
∑N

n=1 rn ≈ 0, large cancellations can be expected to
occur in the omitted second-derivative term which justifies this
approximation.

From the Hessian, or the curvature of the χ2 surface, the
covariance matrix for the LECs is given by

C = 2LH−1
0 , (5)

C̃ = 2LH̃−1
0 , (6)

with L usually given by

L = χ2
0

Ndof
. (7)

The probability distribution for the LECs are then given by
the multivariate normal distribution with central value α0 and
covariances C or C̃.

There are various methods to propagate the statistical
uncertainties to a general observable O(α). The most exact
of the methods presented here, is to perform a Monte Carlo
sampling using M samples, resulting in the mean μ and
variance σ 2 given by

μsample = 1

M

M∑
m=1

O(αm), (8)

σ 2
sample = 1

M − 1

M∑
m=1

(O(αm) − μsample)2, (9)

where αm are sampled from the distribution of the LECs. For
an accurate result, a large number of samples is needed, often
in the range M � 104 − 105, although much smaller sample
sizes have been used also [13,14]. In the results presented here,
M = 105 was used.

Instead of performing a costly Monte Carlo sampling, it
is possible to use a Taylor expansion of the observable value
around its central value,

O(α0 + �α) ≈ O0 + jT
0 �α + 1

2 (�α)T h0�α, (10)

where O0 is the value, j0 is the gradient, and h0 the Hessian of
O at the point α0. From Eq. (10), a linear and a quadratic
approximation to the propagated statistical uncertainty are
obtained,

μlinear = O0, (11)

σ 2
linear = jT

0 Cj0, (12)
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μquad. = μlinear + 1
2 tr (Ch0), (13)

σ 2
quad. = σ 2

linear + 1
2 tr((Ch0)2). (14)

The main benefit of the linear approximation is that no
second derivatives are needed. However, the calculation of
the covariance matrix C still involves second derivatives.
Therefore, I will also compare the results obtained using C̃,

μapprox. = μlinear, (15)

σ 2
approx. = jT

0 C̃j0. (16)

The four methods based on the covariance matrix strat-
egy described here—denoted sample, quadratic, linear, and
approx—gradually employ more and more approximations,
making it possible to track the source of possible deviations.

B. Lagrange Multiplier methods

An alternative to using a covariance matrix is the LM
method [19,22,23] where the statistical uncertainty of an
observable O is found through the use of constrained mini-
mizations. The main advantages of the LM method is that it
makes no assumption on the form of the chi-squared surface
around the minimum nor on the functional dependence of the
observable on the LECs. In the case of a quadratic chi-squared
surface and a linear dependence of the observable O on the
LECs, the LM method is equivalent to the linear method
defined in the previous sections. The statistical variability of O
is given by all values O that are attainable under the constraint
that χ2 � χ2

0 + L, with L given in Eq. (7). The method is
illustrated in Fig. 1.

FIG. 1. Illustration of the LM method. A two-parameter chi-
squared surface is shown as a filled surface, with the edge correspond-
ing to �χ 2 = L. The solid lines are contour levels of an observable
O with central value 0. The statistical uncertainty of the LM method
is given by all contour lines that crosses the filled surface. In this case
this results in an uncertainty of ±2. The dashed line represents the
parameter values obtained for various fixed values of the observable
O. The dotted line is a contour line for the chi-squared surface. As
expected, the dashed line crosses the contour lines of O at the point
where the chi-squared value is lowest.

To find the statistical uncertainty, minimizations are per-
formed of the function,

f (α,O,λ) = χ2(α) + λO(α), (17)

for various values of λ, known as the Lagrange multiplier.
Each such minimization results in a set of LECs, αλ. The
obtained chi-squared value, χ2(αλ) ≡ χ2

λ , is the minimum
possible value, under the constraint that O = O(αλ) ≡ Oλ. In
this way all values of O that are attainable under the constraint
that �χ2 � L are found by varying λ, and so also the statistical
uncertainty. Note that the observable O may or may not be part
of the chi-squared function used to fit the LECs.

One potential complication with the minimization of f is
that it is not known before the minimization what values of λ
that will produce a reasonable �χ2, i.e., a change close to L.
To find reasonable λ values, I approximate f using a Taylor
expansion,

f (α0 + �α,O,λ) ≈ (
χ2

0 + O0
) + λjT

0 �α

+ 1
2 (�α)T (H0 + λh0)�α. (18)

The LECs that minimize this approximate, quadratic expres-
sion, are given by

�αapprox. = −λ(H0 + λh0)−1j0. (19)

Inserting this into Eq. (2), I get

�χ2
approx. = 1

2
(�αapprox.)

T H0�αapprox.

≈ 1

2
λ2jT

0 H−1
0 j0 = λ2

4L
σ 2

linear, (20)

where the approximation assumes H0 + λh0 ≈ H0 and the
last equality used Eq. (12). Thus, to obtain an approximate
deviation in χ2 equal to λ̃2L, I use

λ = λ̃
2L

σlinear
. (21)

This approximation may be inaccurate when the linear covari-
ance approximation is insufficient.

It is possible to construct an approximate LM method, using
Eqs. (2), (10), and (19). This approximate LM method needs
no minimizations of f , instead the first- and second-order
derivatives of χ2 and O with respect to the LECs are needed.
On the other hand, the exact LM method requires no derivative
information but instead minimizations of f .

III. RESULTS

The six methods presented here, divided into covariance
matrix methods and LM methods, are described in Sec. II.
To compare these methods, I have employed the so-called
NNLOsim potential with � = 500 MeV and T max

lab = 290 MeV
from Ref. [6].

I focus on four different observables: The helium-4 binding
energy E(4He) and point-proton radius rpt-p(4He) in Figs. 2
and 3, the deuteron binding energy E(2H) in Fig. 4, and
finally the neutron-proton analyzing power An at laboratory
scattering energy 175.26 MeV, shown for center-of-mass angle
θc.m. = 97.63 degrees in Fig. 5. E(2H) and An are part of
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FIG. 2. (Upper) Propagated statistical uncertainties for the
helium-4 binding energy, in keV. The methods, from left to right,
are (i) Monte Carlo sampling using the covariance matrix, (ii)
the same as (i), using a quadratic approximation of the LEC
dependence of the observable, (iii) the same as (ii), using instead
a linear approximation, (iv) the same as (iii), except using an
approximate covariance matrix, (v) the LM method, and (vi) a
quadratic approximation to (v). See text for details. (Lower) The
variation in χ 2 as a function of the observable value, as obtained using
the LM method. The solid line shows the quadratic approximation of
the LM calculations.

the chi-squared function that was used in the construction of
NNLOsim, while E(4He) and rpt-p(4He) are predictions. The
upper panel of each figure contains a comparison between
the obtained statistical uncertainties of the methods. Note that
all derivatives have been calculated using automatic differen-
tiation, except in the calculations involving the approximate
covariance matrix C̃, where finite differences are used. In the
lower part of the figures, the function �χ2(�O) is shown.
For E(4He) and rpt-p(4He), all six methods result in the same
statistical uncertainty while for E(2H) and An there are some
discrepancies.

Just as for E(4He) and rpt-p(4He), the statistical uncertainties
produced by the various methods agree for the vast majority
of observables that I have looked at. This includes πN
and NN scattering data and ground-state properties of A =

FIG. 3. The same as in Fig. 2, for the helium-4 point-proton
radius, in fm.

FIG. 4. The same as in Fig. 2, for the deuteron binding energy, in
keV.

2 − 4 nuclei. There are, however, some exceptions where
nonlinearities in the observables with respect to the LECs
cause discrepancies.

To explain the discrepancies in Fig. 4 for E(2H), one can
look at the eigendirections in the LEC space, given by the
covariance matrix. It turns out that the linear uncertainty
in E(2H) is almost entirely determined from one particular
eigendirection. In this case, this is also the direction picked up
by the LM method. Because there are almost no nonlinearities
in this particular direction, the LM method results in the same
uncertainty as the linear approximation. In other directions,
not picked up by the LM method, E(2H) has an almost
purely quadratic dependence on the LECs. These quadratic
variations are picked up by the MC sampling and the quadratic
approximation, as they consider variations in all directions in
the LEC space. This is a case where the MC sampling and
the quadratic approximation produces more accurate statistical
uncertainties than the LM method.

For the analyzing power in Fig. 5, the situation is a
bit different. An(θc.m.) is sensitive mainly to one particular
eigendirection in the LEC space. However, as θc.m. varies
the derivative in that direction crosses zero, causing the

FIG. 5. The same as in Fig. 2, for the neutron-proton analyzing
power at laboratory scattering energy 175.26 MeV and center-of-mass
scattering angle 97.63 degrees.
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linear uncertainty to almost vanish. These obtained statistical
uncertainties for this particular angle are shown in Fig. 5.
Therefore, it is the mainly quadratic variations in the other
directions that contribute to the larger uncertainties obtained
using the other methods. In these cases, it is important to
include the quadratic dependence of the observable on the
LECs to correctly capture the uncertainty.

IV. DISCUSSION

For the vast majority of observables, including E(4He)
and rpt-p(4He), all methods agree in their determination of
statistical uncertainties, as stated in Sec. III. This suggests
that, within the uncertainty limits, the chi-squared surface is
purely quadratic in the LECs and the observables in question
are linear in the LECs. A deviation from a purely quadratic
expression of the chi-squared function would not be detected
by any of the covariance-based methods, as all of these
rely on a quadratic approximation and ignore higher-order
terms. The LM method, on the other hand, does not assume
a quadratic form of the chi-squared function. Therefore,
an agreement between all methods would suggest that the
quadratic approximation is valid. Furthermore, an agreement
between the results using the exact and the approximate
covariance matrix would suggest that it is safe to ignore the
second-derivative term in Eq. (3). The only difference between
the quadratic and linear methods is the amount of terms used in
the Taylor expansion of the observable of interest. Thus, their
identical statistical uncertainties indicate that the quadratic
term for the observable is negligible in these cases.

To check whether the chi-squared surface is quadratic
around the minimum for the NNLOsim interaction, I evaluated
the chi-squared function in the eigendirections up to �χ2 = L.
I found that in one direction there is a slight contribution
from higher-order terms. I do not expect this to have a
big influence on the analysis, which is also suggested by
the observed general agreement between the linear and LM
methods. An observed disagreement between the methods
occurred primarily when an observable O was nonlinear in
the LECs around the minimum.

From these examples, a few conclusions can be drawn
regarding the feasibility of these methods in this particular
case.

The covariance matrix for the LECs is enough to capture
the statistical variations of the LECs.
In some cases, a linear relationship between observable and
LECs is not sufficient to correctly capture the propagated
statistical uncertainties.
Only the MC sampling and the quadratic approximation are
able to take into account variations in all directions in the
LEC space.

Note that, if the statistical uncertainties had been larger,
more discrepancies between the methods would be expected,
as the various approximations used would no longer be
valid. To test this hypothesis, I simulated larger statistical
uncertainties by scaling all uncertainties σ (tot)

n by a factor
γ = 10. This is equivalent to changing the limit of the
allowed change in the chi-squared function, L, to γ 2L. In this

FIG. 6. The same as in Fig. 2, for the deuteron point-proton
radius in fm, when using artificially enlarged uncertainties in the
observables, γ σ (tot)

n with γ = 10. This results in larger statistical
uncertainties and a nonquadratic chi-squared surface around the
minimum. The error bar with a square is a modified quadratic
propagation to account for higher-order terms in the chi-squared
surface; see the text for details.

extended range, the chi-squared surface is no longer quadratic,
containing significant contributions from higher-order terms.

Using the original errors, σ (tot)
n , all methods produce equal

uncertainties for rpt-p(2H). When instead using the errors
γ σ (tot)

n , with γ = 10, the situation is different, as shown in
Fig. 6. The MC sampling and the quadratic approximation
results in almost equal uncertainties. This suggests that
rpt-p(2H) is still approximately quadratic in the LECs within
this larger range. The discrepancy between the exact and the
approximate LM method is then from the higher-order terms
in the chi-squared surface. Because only the LM method is
capable of accounting for a nonquadratic chi-squared surface,
it has in this case a distinct advantage over the other methods
presented here.

The higher-order terms in the chi-squared surface can be
approximately quantified by calculating the uncertainties in the
eigendirections through direct evaluations of the chi-squared
function in these directions. One standard deviation, σcalc,i,
for the direct calculations in eigendirection i is defined by all
�a such that �χ2(�axi) � γ 2L where xi is eigendirection i.
The deviations from higher-order terms are then defined by the
ratios σcalc,i/σquad.,i where σquad.,i are the uncertainties given by
the quadratic approximation of the covariance matrix.

For the 26 directions, nine directions have a deviation
of more than 5% and the ratios for these directions are in
the range 0.3–0.9. This indicates that the chi-squared surface
tends to increase faster than what is estimated by the second
derivatives alone and the MC sample will tend to overestimate
the uncertainty. The error bar with a square in Fig. 6 is the
same as the quadratic approximation except that eigenvalues
of the covariance matrix are taken from the explicit evaluations
of the chi-squared function mentioned above. This is a crude
way to account for higher-order terms but shows explicitly
the influence of these terms. A more sophisticated way to
incorporate higher-order terms in the covariance matrix could
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be to calculate the variances and covariances of the LECs using
the LM method.

Apart from the estimated uncertainties, the covariance
matrix method has the advantage over the LM method that
it does not require one to minimize the objective function.
This is most important in cases where the objective function
is expensive to calculate or not readily available. Another
issue with the LM method is that it is computationally
challenging to calculate covariances between observables, as
two Lagrange multipliers must be used. Using the covariance
matrix the propagated covariances are straightforward to
obtain. However, when using the covariance-based methods it
is important to make sure the chi-squared surface is quadratic
around the minimum.

Therefore, the main conclusion of these investigations
is that to propagate statistical uncertainties using a chiral
interaction the quadratic approximation using the covariance
matrix is sufficient. For this, only the interaction itself and an
accompanying covariance matrix for the LECs are needed.
This is true as long as the LECs are well constrained by

data, i.e., the statistical uncertainties are small enough that
the covariance matrix is enough to capture the variations in the
LECs. If this is not the case, the LM method is more accurate.
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[4] H. Lü, D. Boilley, Y. Abe, and C. Shen, Phys. Rev. C 94, 034616

(2016).
[5] J. Dobaczewski, W. Nazarewicz, and P.-G. Reinhard, J. Phys. G

41, 074001 (2014).
[6] B. D. Carlsson, A. Ekström, C. Forssén, D. F. Strömberg, G. R.
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N. Schunck, M. V. Stoitsov, and S. Wild, Phys. Rev. C 82,
024313 (2010).

[18] J. Piekarewicz, W.-C. Chen, and F. J. Fattoyev, J. Phys. G 42,
034018 (2015).

[19] D. Stump, J. Pumplin, R. Brock, D. Casey, J. Huston, J. Kalk,
H. L. Lai, and W. K. Tung, Phys. Rev. D 65, 014012 (2001).

[20] R. T. Birge, Phys. Rev. 40, 207 (1932).
[21] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical Recipes in C: The Art of Scientific Computing, 2nd
ed. (Cambridge University Press, New York, 1992).

[22] R. Brock, D. Casey, J. Huston, J. Kalk, J. Pumplin, D. Stump,
and W. K. Tung, in Workshop on B Physics at the Tevatron:
Run II and Beyond Batavia, Illinois, September 23–25, 1999
(Fermilabs, Batavia, Illinois, 2000), pp. 159–161, arXiv:hep-
ph/0006148.

[23] J. Pumplin, D. R. Stump, and W. K. Tung, Phys. Rev. D 65,
014011 (2001).

034002-6

https://doi.org/10.1103/PhysRevA.83.040001
https://doi.org/10.1103/PhysRevA.83.040001
https://doi.org/10.1103/PhysRevA.83.040001
https://doi.org/10.1103/PhysRevA.83.040001
https://doi.org/10.1088/0031-8949/2013/T154/014002
https://doi.org/10.1088/0031-8949/2013/T154/014002
https://doi.org/10.1088/0031-8949/2013/T154/014002
https://doi.org/10.1088/0031-8949/2013/T154/014002
https://doi.org/10.1103/PhysRevC.90.044305
https://doi.org/10.1103/PhysRevC.90.044305
https://doi.org/10.1103/PhysRevC.90.044305
https://doi.org/10.1103/PhysRevC.90.044305
https://doi.org/10.1103/PhysRevC.94.034616
https://doi.org/10.1103/PhysRevC.94.034616
https://doi.org/10.1103/PhysRevC.94.034616
https://doi.org/10.1103/PhysRevC.94.034616
https://doi.org/10.1088/0954-3899/41/7/074001
https://doi.org/10.1088/0954-3899/41/7/074001
https://doi.org/10.1088/0954-3899/41/7/074001
https://doi.org/10.1088/0954-3899/41/7/074001
https://doi.org/10.1103/PhysRevX.6.011019
https://doi.org/10.1103/PhysRevX.6.011019
https://doi.org/10.1103/PhysRevX.6.011019
https://doi.org/10.1103/PhysRevX.6.011019
https://doi.org/10.1140/epja/i2015-15053-8
https://doi.org/10.1140/epja/i2015-15053-8
https://doi.org/10.1140/epja/i2015-15053-8
https://doi.org/10.1140/epja/i2015-15053-8
https://doi.org/10.1088/0954-3899/42/3/034028
https://doi.org/10.1088/0954-3899/42/3/034028
https://doi.org/10.1088/0954-3899/42/3/034028
https://doi.org/10.1088/0954-3899/42/3/034028
https://doi.org/10.1103/PhysRevC.92.024005
https://doi.org/10.1103/PhysRevC.92.024005
https://doi.org/10.1103/PhysRevC.92.024005
https://doi.org/10.1103/PhysRevC.92.024005
https://doi.org/10.1088/0954-3899/43/7/074001
https://doi.org/10.1088/0954-3899/43/7/074001
https://doi.org/10.1088/0954-3899/43/7/074001
https://doi.org/10.1088/0954-3899/43/7/074001
https://doi.org/10.1103/PhysRevC.89.064006
https://doi.org/10.1103/PhysRevC.89.064006
https://doi.org/10.1103/PhysRevC.89.064006
https://doi.org/10.1103/PhysRevC.89.064006
https://doi.org/10.1088/0954-3899/42/3/034003
https://doi.org/10.1088/0954-3899/42/3/034003
https://doi.org/10.1088/0954-3899/42/3/034003
https://doi.org/10.1088/0954-3899/42/3/034003
https://doi.org/10.1103/PhysRevC.91.054002
https://doi.org/10.1103/PhysRevC.91.054002
https://doi.org/10.1103/PhysRevC.91.054002
https://doi.org/10.1103/PhysRevC.91.054002
https://doi.org/10.1103/PhysRevC.92.064003
https://doi.org/10.1103/PhysRevC.92.064003
https://doi.org/10.1103/PhysRevC.92.064003
https://doi.org/10.1103/PhysRevC.92.064003
https://doi.org/10.1016/j.physletb.2016.07.032
https://doi.org/10.1016/j.physletb.2016.07.032
https://doi.org/10.1016/j.physletb.2016.07.032
https://doi.org/10.1016/j.physletb.2016.07.032
https://doi.org/10.1103/PhysRevC.81.051303
https://doi.org/10.1103/PhysRevC.81.051303
https://doi.org/10.1103/PhysRevC.81.051303
https://doi.org/10.1103/PhysRevC.81.051303
https://doi.org/10.1103/PhysRevC.82.024313
https://doi.org/10.1103/PhysRevC.82.024313
https://doi.org/10.1103/PhysRevC.82.024313
https://doi.org/10.1103/PhysRevC.82.024313
https://doi.org/10.1088/0954-3899/42/3/034018
https://doi.org/10.1088/0954-3899/42/3/034018
https://doi.org/10.1088/0954-3899/42/3/034018
https://doi.org/10.1088/0954-3899/42/3/034018
https://doi.org/10.1103/PhysRevD.65.014012
https://doi.org/10.1103/PhysRevD.65.014012
https://doi.org/10.1103/PhysRevD.65.014012
https://doi.org/10.1103/PhysRevD.65.014012
https://doi.org/10.1103/PhysRev.40.207
https://doi.org/10.1103/PhysRev.40.207
https://doi.org/10.1103/PhysRev.40.207
https://doi.org/10.1103/PhysRev.40.207
http://arxiv.org/abs/arXiv:hep-ph/0006148
https://doi.org/10.1103/PhysRevD.65.014011
https://doi.org/10.1103/PhysRevD.65.014011
https://doi.org/10.1103/PhysRevD.65.014011
https://doi.org/10.1103/PhysRevD.65.014011



