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Abstract
The automotive industry is moving towards shorter development cycles for new car
generations. This means that less expensive prototypes can be built and tested, and
that, increasingly, computer models must be used for decision making. Further, the
automotive industry is producing thousands of nominally identical cars which are known
to exhibit noticeable spread in their vibration characteristics. A car’s noise and vibration
behaviour is therefore not the same between nominally identical cars. This implies a
need for structural dynamic models considering uncertainties for robust decision making.
Due to the final products complexity a substructuring approach is considered in this
thesis, including experimental and computational methods, where predictive models of
components are created, to be assembled for a predictive system response.

The first part of this thesis considers the reduction of uncertainties introduced from
vibration experiments. A method for sensor placement in vibration experiments is devel-
oped, based on the method of effective independence, so that symmetric sensor positions
are rejected using system gramians. Further, a measurement system is developed in
MATLAB for fast and efficient stepped sine excitation.

The second part considers the spread between nominally identical components and
the calibration, and an associated parameter uncertainty quantification, of industrial
finite element models of said components. Results are reported here for three front and
one rear subframe. For model calibration, a model updating procedure is employed that
uses a frequency response function based deviation metric and equalised damping. A
bootstrapping procedure is subsequently used to quantify parameter uncertainties with
respect to the measurement noise. Calibrations are performed for an ensemble of front
subframe components. Particular care is taken in the modelling of coupling elements and
for the rear subframe the elastic modulus in rubber bushings is estimated using a mass
loaded bushing boundary configuration.

In the automotive industry high fidelity models are common, with many interface
degrees of freedom decreasing the efficiency of component mode synthesis methods.
Therefore, a component mode synthesis interface reduction method is developed to speed
up the process, using coarse meshes.

Keywords: Uncertainty quantification, structural dynamics, model updating, substructur-
ing, experimental design, sensor localisation, noise and vibrations, automotive industry
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1 Introduction

This chapter serves the purpose of creating a research context and further providing more
details about the topic of study. It ends with a short description of this thesis aims within
the topic. A more detailed description of many concepts will be given in subsequent
chapters.

1.1 Research context

Some of the most important areas for customers purchasing a car are safety, fuel con-
sumption and comfort. Safety is still a subject in which good insight in mechanics is
important and with renewed interest now when composite structures are utilised to a
greater extent [19, 22, 66]. Safety issues are increasingly being handled by autonomous
systems with the goal to create crash free autonomous cars [15, 21]. Fuel consumption
is another area in a state of change, which is the main motivator for the shift from steel
and aluminium structures to composite structures in the design of lighter cars [19]. A
slow shift is also made from combustion engines to electric engines and drivelines [18].
Comfort is commonly related to the area of noise, vibration and harshness (NVH). In
NVH a car’s sound and vibration characteristics are studied and designed. This is an area
of great importance in the premium segment where customers have high expectations on
the perceived sound and vibration characteristics. Harshness deals with human subjective
perception involving the judgement of quality with respect to sound and vibration. This
makes it a difficult quantity to measure. Furthermore, NVH is strongly influenced by the
use of composite materials and electric drivelines. Both bring in new challenges in the
form of computational predictability [72, 58] in general and in high frequency vibration
and sound predictability in particular.

In designing a car the vibration and noise sources are many, e.g. forces propagating
through the structure in form of vibrations from road contact, engine vibrations and
forces acting on the car from wind. These sources create structural vibrations that are
transformed into sound from the vibrating structure. Figure 1.1 illustrates some common
vibration sources and their perceived output in form of vibrations and sound. Forces
from road contact are propagated through the rear and front subframes, into the body of
the car causing noise. The vibrations are also propagated into the seats possibly causing
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Figure 1.1: Vibration sources and their perceived outputs as noise and vibrations in a car.

discomfort. Engine forces are propagated through the front subframe and into the body,
too. Furthermore, wind turbulence at high speeds cause the body to vibrate resulting in
audible noise. All of these factors play an important role in the perceived premiumness
and comfort of the car. It has also been observed that high noise and vibration levels can
cause fatigue and health risks [88].

All of these mentioned issues need to be considered in the development of a new
car model, which relies heavily on computational models, in the use of computer aided
engineering (CAE). In this thesis CAE will mostly refer to finite element (FE) models,
but could, for example, also encompass computer aided design (CAD). In developing
a new car model the previous generation is often used as a reference. A simplified
schematic overview of the development of a new generation, from an NVH perspective,
is shown in Figure 1.2. Provided that a model already exists, improvements are proposed
after problems have been identified, e.g. when it has been found that road noise or
idle powertrain vibration and noise levels might be to high. Customer satisfaction and
benchmarking play an important role in the decision on which areas need to be improved.
When improvements are needed the interest turn to the redesign of components, e.g.
body, front and rear subframes. These areas are also influencing other attributes, e.g
safety and durability. In other words, the modified parameters must not only fulfil the
requirements on NVH, but also on levels of safety, durability and other attributes. Newly
introduced features also often affect NVH, e.g. a new safety system might produce sound.
This sound needs to fit into the overall sound design of the car. The next phase of the
project is related to CAE. In here the computational models are created and analysed for
various conditions, and decision are taken based on the results. If results from CAE are not
satisfactory further redesign is needed. When CAE results are considered acceptable the
project phase moves to the creation of a prototype, or prototypes, so that the simulation
results can be verified. If the prototype is considered adequate with respect to the sought
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Figure 1.2: Simplified project flow, utilising knowledge from previous generations.

improvements, the new generation can be built. If it is decided that the requirements are
not satisfied further work is needed in finding problems and correcting them, which often
leads back to the CAE step. This loop is iterated until satisfactory results are reached.
The shaded area of the project chart indicates where this thesis content fit in, which will
be further explained below.

1.2 Predictive models

With the trend in decreased development time for each new car generation, meaning a
decrease in expensive and time consuming prototypes, a CAE model’s predictive accuracy
is crucial to the automotive design’s success. Today’s computer models are generally
very good in their predictive performance on component level. However, for complex
structures, built up of many components the computational predictions are often much
poorer. The joining parts between components are generally very hard to model and can
influence the results considerably. Furthermore, in the automotive industry thousands
of nominally identical but in reality slightly different products are produced. This will
undoubtedly introduce variations in NVH behaviour. The product variations are caused
by material variations, geometric variations and assembly tolerances. There have been
many studies, on fully assembled cars, showing the level of spread in the measured output
quantities such as frequency response functions, e.g [56, 57, 13, 73]. One single prototype
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built for validation of CAE models will generally not provide knowledge about the spread
in dynamical properties. This is problematic as there exist requirements and regulations
on the noise and vibration levels. Since the levels can vary between nominally identical
products it is many times not known if the requirements have been fulfilled before the start
of production. Furthermore, CAE is of no help here due to its tendency to be simulated
for a single, nominal, model producing a deterministic output. One option to solve this
problem from a computational perspective is to perform stochastic simulations, later also
termed uncertainty propagation, where the input parameters, e.g. material constants and
geometry, have probability distributions associated with them, and in turn, the model
outputs of interest will also be distributed. Information about such distributions can be
used for more informed decision making. For this approach to work the input parameter
uncertainties must be quantified, and at least the most important parameters must be
identified and varied. Figure 1.2 indicates that the previous generation can be used as a
reference in a new car project. Therefore, the existing experimental data gathered from
the previous generation car models can be used, under the assumption that the previous
generation and the new generation are not too different in design. This gives a statistical
support in the quantification of model parameter variability.

Hence, for predictive simulation models the simulation results must be validated,
commonly with respect to experiments. Uncertainties must be considered here, which
can be, e.g. uncertainties associated with modelling or measurement errors. Variability
between components should also be included, and due to scarce experimental data for
new generation car models, measurements from previous generation car models can be
used as a source for quantifying model parameter variability.

1.3 Uncertainty quantification and model validation

Uncertainty, or uncertainty quantification (UQ), has been used rather vaguely so far,
and no formal definition has been given. One definition is given in [92] where it is
described as a “quantitative characterisation and management of uncertainties ... in
... both computational models and observational data”. Further, it mentions that UQ
“encompasses many different tasks, including uncertainty propagation, sensitivity analysis,
statistical inference and model calibration, decision making under uncertainty, experimental
design, and model validation”. Lastly, it is stated that “UQ has become an essential aspect
of the development and use of predictive computational simulation tools”. From this it
can be realised that uncertainties are not only related to variability in model parameters
between nominally identical components, but can be any type of uncertainty, e.g. mod-
elling uncertainty and uncertainties associated with measurement noise. This is further
exemplified in [11] where the concepts of verification and validation are defined. Two
domains can be considered, a simulation and an experimental domain. On the simula-
tion side, verification is the process of verifying that solutions from the implemented
computer model from a mathematical description are substantiated, e.g. no errors exist
in the software code and that FE mesh discretisation is sufficiently fine for the models
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Figure 1.3: Simplified thesis workflow with paper contributions.

intended use. Sensitivity analysis can be used to investigate the model output sensitivities
to changes in the model input parameters. Uncertainty propagation can be employed, as
mentioned previously, to simulate a more realistic scenario where the input parameters
can be considered stochastic so that variations in the resulting quantities are obtained.
On the experimental side, UQ is the process of quantifying measurement noise and
variability between components. For example, in experimental design, computer models
are used in designing informative experiments such that experimental uncertainties can
be minimised. Lastly, validation is the process of substantiating that the simulated model
agrees with experimental results. If it does not, calibration (or model updating) can be
used to update the computational model parameters so that the results agree to a higher
degree. Most of these topics will be explained in subsequent chapters.

1.4 Aim and scope of research

This thesis is part of a project attempting to improve the predictability of complex in-
dustrial computational models built up of many components. The assumption that it is
not possible to fully validate and understand the dynamics of an overly complex system
(such as a car when fully assembled) is adopted here. Instead, a component approach is
considered where the uncertainties and variability in the components are quantified, the
models validated, and physical insight gained. The component models are then to be used
in an assembly. It is the aim of this project to develop methods to improve the predictions
of such assemblies, and in this thesis the first steps towards that goal are taken. This in-
cludes dealing with variability found between nominally identical components, and how
uncertainties in general can be incorporated in a simulation environment for informative
decision making, but also in quantifying and reducing experimental uncertainties.

The thesis content was outlined in Figure 1.2 and is shown in greater detail in Figure
1.3. The first aim of this thesis is to understand the cause of uncertainties and variations
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(a) Parts of a Volvo XC90 (2015). (b) Front and rear subframe.

Figure 1.4: The front and rear subframes of a Volvo XC90 (2015) considered in this thesis.

found between nominally identical components. Therefore, much effort is initially put
into obtaining good experimental data, so that uncertainties from experiments are re-
duced. A vibration measurement software, Software A, is developed enabling a stepped
sine procedure with multiple simultaneous frequencies to be used so that experimental
data can be acquired fast, and with low noise levels. Furthermore, a pretest planning
methodology dealing with sensor placement, Paper A, is also developed. It is based on
the widely used method of effective independence [45, 46], but extended so that sensor
positions containing similar information are not selected. This is also related to the goal
of obtaining good experimental data for use in validation and model updating.

The second goal of this thesis is to develop tools to handle the variations between
components in a simulation environment, including identifying uncertain parameters.
Therefore, two subcomponents of a Volvo XC90 (2015) are considered, seen in Figure
1.4. Three front subframe individuals and four rear subframe individuals have been
tested. Models of the considered components are manually updated from basic CAD
data to resemble to structures at hand, which Paper B and Paper C deals with. The FE
models are then updated using a stochastic model updating method [95, 52, 98] towards
experimental data in order to acquire better parameter estimates, quantify parameter
uncertainties relative measurement noise, understand the parameter variability between
components and identify sensitive and uncertain model parameters.

In future work the propagation of uncertainties in assembled components will be con-
sidered. Therefore, in Paper D an approach to an interface reduction for the component
mode synthesis method is given so that efficient coupling of high fidelity FE models, as
dealt with in this thesis, is possible.
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2 Preliminary theory

In this chapter the theory that will serve as a basis throughout this thesis is presented.
The notations used in this chapter might be changed in subsequent chapters, but changes
should be obvious from the text.

2.1 Time domain models
In structural dynamics the linear dynamical behaviour of structures is commonly mod-
elled as a discrete linear system through the use of second order ordinary differential
equations (ODEs). For complex systems, with complex geometry, the FE method is nor-
mally used [7], which yields such a system. Models of this type are refereed to as white
box or first principle models as the models are built up based on laws of physics, such as
Newton’s laws of motions and Hooke’s law [75, 27]. The equations of motion (EOMs) of
an 𝑚 degrees of freedom (DOFs) system, such as those acquired from the FE method, can
be written as

𝐌 ̈𝐪(𝑡) + 𝐕 ̇𝐪(𝑡) + 𝐊𝐪(𝑡) = 𝐟(𝑡) (2.1)

where the dot notation is used for time differentiation and 𝐌, 𝐕 and 𝐊 ∈ ℝ𝑚×𝑚 represent
the mass, damping and stiffness matrices, respectively. The general displacement vector
is denoted by 𝐪(𝑡) ∈ ℝ𝑚×1 and the external force vector by 𝐟(𝑡) ∈ ℝ𝑚×1. Displacement
outputs can be obtained as 𝐲(𝑡) = 𝐈𝐪(𝑡), with 𝐈 of appropriate dimension.

Systems on second order form, such as in Equation (2.1), can be cast into first order
form by forming a state vector [64]

𝐱(𝑡) = [𝐪(𝑡)
̇𝐪(𝑡)] (2.2)

which gives the state-space system

̇𝐱(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐮(𝑡) (2.3a)
𝐲(𝑡) = 𝐂𝐱(𝑡) + 𝐃𝐮(𝑡) (2.3b)

with 𝐀 ∈ ℝ𝑛×𝑛, 𝐁 ∈ ℝ𝑛×𝑛𝑢, 𝐂 ∈ ℝ𝑛𝑦×𝑛 and 𝐃 ∈ ℝ𝑛𝑦×𝑛𝑢 representing the system, input,
output and direct throughput matrices, respectively. The load vector 𝐟(𝑡) in Equation
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(2.1) can be obtained from the input vector 𝐮(𝑡) ∈ ℝ𝑛𝑢 with the transformation matrix 𝐔
as 𝐟(𝑡) = 𝐔𝐮(𝑡). The relationship between the state dimension 𝑛 and degrees of freedom
𝑚 is 𝑛 = 2𝑚. The system matrices can be formed as

𝐀 = [ 𝟎 𝐈
−𝐌−1𝐊 −𝐌−1𝐕] and 𝐁 = [ 𝟎

𝐌−1𝐔] (2.4)

where 𝐂 and 𝐃 are formed appropriately so that linear combinations of the system states
𝐱(𝑡) and inputs 𝐮(𝑡) form the system outputs 𝐲(𝑡). The state-space system matrices are
commonly refereed to as the state-space matrix quadruple {𝐀, 𝐁, 𝐂, 𝐃}.

2.2 Frequency domain models

The Laplace transform of the displacement vector 𝐐(𝑗𝜔) = ℒ(𝐪(𝑡)), with 𝑗2 = −1, and
force vector 𝐅(𝑗𝜔) = ℒ(𝐟(𝑡)) yields the frequency domain formulation of the system in
Equation (2.1) [64]

𝐙(𝜔)𝐐(𝜔) = (−𝜔2𝐌 + 𝑗𝜔𝐕 + 𝐊) 𝐐(𝜔) = 𝐅(𝜔) (2.5)

in which 𝜔 is the angular frequency. Here 𝐙(𝜔) ∈ ℂ𝑚×𝑚 is identified as the dynamic stiff-
ness matrix, from which the frequency response function (FRF) matrix can be computed
as 𝐇(𝜔) = 𝐙(𝜔)−1.

Similarly, the Laplace transformation can be applied to the state-space system in
Equation (2.3) to yield the FRF matrix 𝐇(𝜔) as

𝐇(𝜔) = 𝐂(𝑗𝜔𝐈 − 𝐀)−1𝐁 + 𝐃. (2.6)

It is noted that the frequency domain formulation is easily computed from first principle
models. The reverse, however, is not true, which will be discussed in a following chapter.

2.3 Eigenvalue problem

Let 𝐪(𝑡) = 𝑒𝑗𝜔𝑡𝝓 be the solution to the homogeneous undamped EOMs from Equation
(2.1). Inserting the solution, and eliminating the common time factor 𝑒𝑗𝜔𝑡 yields the
algebraic eigenvalue problem.

(𝐊 − 𝜔2
𝑖 𝐌) 𝝓𝑖 = 𝟎, 𝑖 = 1, … , 𝑚 (2.7)

Here 𝜔𝑖 denote the i:th eigenfrequency and 𝝓𝑖 ∈ ℝ𝑚×1 the i:th eigenvector. The eigen-
values and eigenvectors can be put in matrix form 𝛀 = diag(𝜔1, … , 𝜔𝑚) and 𝚽 =
[𝝓1, … , 𝝓𝑚], respectively. Note that

diag(𝜔1, … , 𝜔𝑚) =
⎡⎢⎢
⎣

𝜔1 𝟎 𝟎
𝟎 ⋱ 𝟎
𝟎 𝟎 𝜔𝑚

⎤⎥⎥
⎦

. (2.8)
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If the solution 𝐱(𝑡) = 𝑒𝜆𝑡𝝆 is used in the first order state-space system in Equation (2.3),
the following eigenvalue problem is obtained.

𝐀𝝆𝑖 = 𝝆𝑖𝜆𝑖, 𝑖 = 1, … , 𝑛 (2.9)

Now the eigenvalues 𝜆𝑖 and eigenvectors 𝝆𝑖 ∈ ℂ𝑛×1 are in general complex. In matrix
form the eigenvalues are 𝚲 = diag(𝜆1, … , 𝜆𝑛) and the eigenvectors P = [𝝆1, … , 𝝆𝑛].

2.4 Controllability and observability
State controllability for a linear system on first order form, as in Equation (2.3), can answer
whether all the system states can be controlled to be forced from one to another arbitrary
state by a stimuli 𝐮(𝑡). State observability, on the other hand, answers the question
whether all system states are observable from a known output 𝐲(𝑡) time history [2]. These
concepts are important in pretest planning of experimental work, which is the focus of
Paper A and will be further discussed in Chapter 3.

The controllability matrix 𝓒 ∈ ℝ𝑛×𝑛𝑛𝑏 can be formed from a system’s state and input
matrices as [2]

𝓒 = [𝐁, 𝐀𝐁, 𝐀2𝐁, … , 𝐀𝑛−1𝐁] (2.10)

and the system is controllable if rank(𝓒) = 𝑛. The observability matrix 𝓞 ∈ ℝ𝑛𝑦𝑛×𝑛 can
be formed from a system’s state and output matrices as [2]

𝓞𝑇 = [𝐂𝑇, (𝐂𝐀)𝑇, (𝐂𝐀2)𝑇, … , (𝐂𝐀𝑛−1)𝑇]𝑇 (2.11)

and is observable if rank(𝓞) = 𝑛. Here superscript 𝑇 denote the matrix transpose.

2.5 Black box models
In comparison to first principle models, it is possible to form models solely from the
system’s input and output relation, e.g. from measured FRFs. These models are commonly
denoted black box models where nothing is known beforehand about the model’s internal
structure. In structural dynamics this modelling technique is denoted experimental
modal analysis (EMA) in which the eigenstructure of the system under consideration is
determined from experiments. EMA is based on system identification in which many
methods exist, many of which are iterative in nature, see [60]. The most useful methods in
structural dynamics are non-iterative such as the eigensystem realisation algorithm (ERA)
[44] and numerical algorithms for subspace state space system identification (N4SID) [96,
63]. Other methods exist, and one very commonly used in industry is the polyreference
least squares complex frequency domain method (PolyMAX) [37]. In this thesis the N4SID
method, as implemented in MATLAB’s System Identification Toolbox, is used in Paper B
and Paper C.
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2.6 Reduced order models
High fidelity FE model solutions can take a very long time to solve. Therefore, it is
common to reduce the full FE model to a reduced order system. This is the basis of
most substructuring techniques, which is used in Paper D, and is further explained in
Chapter 4. In optimisation or uncertainty propagation procedures a parametric reduction
is necessary so that model parameters can be varied in the reduced model and results
obtained in reasonable time. In Paper B and Paper C a parametric model reduction is
used in the model updating procedure which is based on first order Taylor expansion,
see [24, 1]. The parametric model reduction is explained in Paper B and Paper C. For a
thorough review of model reduction see [4].

In structural dynamics the most commonly found methods for model reduction are
based on projection methods, such as modal truncation. From the EOMs in Equation (2.1)
the eigenvalue problem is solved as in Equation (2.7) so that the system’s modal matrix
𝚽 can be obtained. A subset of all modes can be selected in forming a reduction basis
𝐓 = [𝝓1, … , 𝝓𝑛𝑟

] with 𝑛𝑟 < 𝑚. The EOMs can now be reduced by defining 𝐪(𝑡) ≜ 𝐓𝜼(𝑡)
and premultiplying with 𝐓𝑇, yielding

𝐌𝑟 ̈𝜼(𝑡) + 𝐕𝑟 ̇𝜼(𝑡) + 𝐊𝑟𝜼(𝑡) = 𝐓𝑇𝐟(𝑡) (2.12)

with system matrices

𝐌𝑟 = 𝐓𝑇𝐌𝐓, 𝐕𝑟 = 𝐓𝑇𝐕𝐓 and 𝐊𝑟 = 𝐓𝑇𝐊𝐓. (2.13)

A similar reduction can be performed for the state-space system in Equation (2.3), or the
state-space quadruple can directly be formed from the reduced matrices in Equation
(2.13).

2.7 Cramér-Rao lower bound

For an unbiased estimator ̂𝜽 ∈ ℝ𝑝×1 of the parameters of a model deduced from noisy
experimental data the Cramér-Rao lower bound (CRLB) defines a lower bound on the
estimator variance. Assuming that the probability density function (PDF) of the random
variable 𝐳 ∈ ℝ𝑛𝑧×1 conditioned on the parameters 𝜽 ∈ ℝ𝑝×1 is 𝑝(𝐳; 𝜽) and that it satisfies
the regularity conditions

E𝐳 [
𝜕 ln 𝑝(𝐳; 𝜽)

𝜕𝜽 ] = 𝟎 ∀𝜽 (2.14)

the covariance matrix 𝚺 ̂𝜽 ∈ ℝ𝑝×𝑝, defined as

𝚺 ̂𝜽 = E𝐳 [(𝜽 − ̂𝜽) (𝜽 − ̂𝜽)𝑇] (2.15)

for any unbiased estimator ̂𝜽, satisfies

𝚺 ̂𝜽 − 𝓕−1(𝜽) ⪰ 𝟎 (2.16)
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where ⪰ 𝟎 denotes a positive semidefinite matrix. Here E𝐳 is the expected value over
𝑝(𝐳; 𝜽). The Fisher information matrix (FIM) 𝓕 ∈ ℝ𝑝×𝑝 is defined as follows.

𝓕−1
𝑖,𝑗 = − E𝐳 ⎡⎢

⎣
𝜕2 ln 𝑝(𝐳; 𝜽)

𝜕𝜽𝑖𝜕𝜽𝑗
⎤⎥
⎦

(2.17)

The FIM can be interpreted as the average curvature sharpness of the PDF. The PDF with
higher curvature is said to be more informative, and at the same time less uncertain in that
it has a lower variance. An unbiased estimator ̂𝜽 that attains the CRLB, i.e. 𝚺 ̂𝜽 = 𝓕−1(𝜽),
is said to be efficient, and hence is the minimum variance unbiased (MVU) estimator [50].

The concept of Fisher information is used in Paper B and Paper C in the parameter
selection, which was proposed in [1]. The CRLB also forms the basis of the widely used
method of effective independence (EfI) [45] which Paper A is based on. The CRLB will
further be discussed in Chapters 3 and 5.

2.8 Linear models
Linear models are an important class of models in estimation theory. The MVU estimator
can easily be found if the problem at hand can be structured as a linear in the parameters
problem such as

𝐳 = 𝐇𝜽 + 𝐰 (2.18)

with white Gaussian noise (WGN) model 𝐰 ∼ 𝒩(0, 𝜎2𝐈). Here 𝐇 ∈ ℝ𝑛𝑧×𝑝 is the observa-
tion matrix with 𝑛𝑧 > 𝑝 and rank(𝐇) = 𝑝, 𝜽 ∈ ℝ𝑝×1 is the parameter vector and 𝐳 ∈ ℝ𝑛𝑧×1

the experimentally obtained observations. The MVU estimator, which is efficient, is then
simply [50]

̂𝜽 = (𝐇𝑇𝐇)−1 𝐇𝑇𝐳. (2.19)

Linear models form the basis of the EfI method [45] for sensor placement in vibration
measurements, which is used in Paper A. Linear models will also briefly be mentioned
in Chapter 5.

2.9 Least squares
The least squares estimator does not assume any probabilistic assumption about the data,
and therefore in general have no parameter variance optimality properties. The squares
objective can be written, for a parameter vector 𝜽 ∈ ℝ𝑝×1, as

𝐽(𝜽) = (𝐳 − 𝐬(𝜽))𝑇 (𝐳 − 𝐬(𝜽)) (2.20)

where 𝐽(𝜽) is the error criterion whos value depend on the parameters. Here again
𝐳 ∈ ℝ𝑛𝑧×1 is the observed data vector and 𝐬(𝜽) ∈ ℝ𝑛𝑧×1 is the model output from

13



simulation of the same data. For a linear model, 𝐬(𝜽) = 𝐇𝜽, the solution is given by
Equation (2.19) [50]. In the case when 𝐬(𝜽) is a nonlinear function of 𝜽 iterative based
nonlinear regression methods have to be used, as in general no closed form solution can
be found [50]. Nonlinear regression will be considered further in Chapter 5 and is used
throughout Paper B and Paper C in the model updating procedure.
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3 Experiments

Vibration experiments have been an integral part of this thesis, and has resulted in the
MATLAB toolbox AbraDAQ, Software A, for vibration measurements. For a theoretical
review of vibration measurements see Ewins [20]. In this section a short overview of
the important subject of pretest planning is given, with focus on the method of effective
independence (EfI) [45]. Paper A develops a method, based on the EfI method, where
sensors giving redundant information are rejected. This redundancy was also noted and
investigated by Stephan [90]. The developed method is later used in Paper B and Paper C.
There exist many other methods for sensor positioning, e.g. gramian based methods [26],
and methods that account for uncertainties in sensor placement [70]. Further, it should be
noted that sensor placement is important in many fields which deal with control systems,
and there exist a vast literature related to it. This thesis is concerned with structural
dynamics, and in particular using experimental data with parametric models, to which
the discussion is limited. Also, no actuator placement method has been studied in this
thesis.

3.1 Sensor localisation

If there exist some discrepancy in system dynamics between FE models and experiments,
e.g. missing modes, it calls for further investigation which possibly will add new physical
insight. There might be a modelling error present in the FE model, or the experimental
data might lack some information. For FE model errors, model updating can be used to
update model parameters so that they represent the experimental data better, which is
further discussed in Chapter 5. If the experimental data lack some important dynamical
behaviour model updating cannot be used. Then more information rich experimental
data is necessary. Because experiments are time consuming and expensive, compared to
FE model analyses, it is of great importance to obtain good experimental data from the
beginning. Hence, pretest planning is an important step in the experimental work. In
particular, it is important to place the limited number of sensors and actuators correctly
so that the dynamical behaviour, in a frequency region of interest, can be observed and
controlled, in some optimal sense. This is especially important for complex structures, as
those found in the automotive industry, in which it can be hard to predict the dynamic
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behaviour from experience or simplified models.
One of the earliest records of sensor placement for structural parametric identification

is the paper by Shah and Udwadia [79]. In [93] Udwadia and Garba developed a method-
ology for best identification of parameters, in the sense of minimising the covariance
matrix of the parameter estimate. This was further extended by Kammer [45] in which
the widely used method of EfI was developed. The method is derived from a linear
model, as proposed in [93], which is based on an FE model of the structure to be tested.
Therefore, the method assumes that a sufficiently good model already exists. The method
also assumes that a candidate set of nodes for sensor placement have been preselected
by the user, from which it will find an sub-optimal set for well selected sensor locations.
In [49] Kammer and Tinker extended the method for triaxial accelerometers. Further, in
[46] Kammer improved the method’s efficiency, and ease of use, by letting the user select
the initial set and build up the final set from a candidate set. This method will briefly
be described below, and how it has been used in this thesis. Only the case of a linearly
independent initial set will be treated. The case when the initial set is linearly dependent
is more complicated, and described in [46].

It is assumed that a good FE model is available, governed by the EOMs in Equation
(2.1). Solving the associated undamped eigenvalue problem yields the modal matrix
𝚽. In industrial FE models it is infeasible to select all DOFs as candidates for ranking,
and many times most DOFs are not available for sensor placement in reality. That might
be due to sharp curvature in geometry, or positions not being reachable. Therefore, a
candidate set of positions are selected manually, such that 𝑛𝑒 DOFs are selected. Thus
only a subset of the full modal matrix 𝚽 is used, 𝚽𝑐 ∈ ℝ𝑛𝑒×𝑛𝑠. Here 𝑛𝑠 stands for the
number of modes selected, i.e. how many modes are of interest to observe as good as
possible in the EfI sense. It should be noted that it is important that the initial candidate
set, i.e. the modal matrix 𝚽𝑐, be linearly independent and thus is full rank. It is now
possible to state the sensor output equation

𝐪𝑠 = 𝚽𝑐𝜼 + 𝐰 (3.1)

where 𝐪𝑠 are the outputs and 𝜼 the generalised DOFs. For simplicity the noise is assumed
to be uncorrelated white Gaussian noise (WGN) 𝐰 ∼ 𝒩(0, 𝜎2𝐈). The linear model in
Equation (3.1) has an efficient estimator

̂𝜼 = (𝚽𝑇
𝑐 𝚽𝑐)−1𝚽𝑐

𝑠𝐪𝑠. (3.2)

The covariance matrix of the estimator ̂𝜼 is

𝚺 = E [(𝜼 − ̂𝜼) (𝜼 − ̂𝜼)𝑇] = 𝜎2 [𝚽𝑇
𝑐 𝚽𝑐]

−1 = 𝓕−1. (3.3)

The last inequality comes from that ̂𝜼 is efficient. Therefore the Fisher information matrix
(FIM) 𝓕 is

𝓕 =
1

𝜎2 𝚽𝑇
𝑐 𝚽𝑐 =

1
𝜎2 𝐐𝑐. (3.4)
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(a) Model.
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(b) First flexible mode.
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(c) Second flexible mode.

Figure 3.1: Initial sensor position denoted with filled squares , candidate set denoted with circles (all
positions), and final set denoted with filled markings, i.e and .

The method of EfI seeks to maximising the FIM 𝐐𝑐, so that the covariance matrix is
minimised. This is achieved with increasing the matrix determinant as candidates are
added to the final set. It will be assumed that 𝑛𝑑 uni-axial sensors are to be placed.
Therefore, the candidate modal matrix 𝚽𝑐 is partitioned accordingly, from which 𝐐𝑐 is
formed. The initial sensor set’s modal matrix is denoted 𝚽0 ∈ ℝ𝑛0×𝑛𝑠, where 𝑛0 is the
number of initial sensors, with corresponding FIM

𝐐0 = 𝚽𝑇
0 𝚽0 (3.5)

The candidate set now consist of 𝑛𝑠 − 𝑛0 positions, and the EfI method seeks to select the
best positions from that set for the remaining 𝑛𝑑 − 𝑛0 positions. The EfI measure can then
be formed as

𝐸𝑓 𝐼 =
|𝐐+| − |𝐐0|

|𝐐0| (3.6)

where

𝐐+ = 𝐐0 + 𝚽𝑇
𝑐𝑖𝚽𝑐𝑖. (3.7)

Here | ⋅ | denote the matrix determinant and 𝚽𝑐𝑖 denote the i:th row of the candidate
sensor set. The EfI ranking represent the fractional increase of the FIM determinant if
the i:th sensor is added. The procedure is iterative where a ranking of all the positions
available in the candidate set are performed, and the position providing the maximum
information increase is selected.

As an illustrating example in Figure 3.1 a simple model and its first two eigenmodes
are shown. Three uni-axial sensors are available for positioning of which two are placed
initially and the method of EfI used for the placement of the third. Every DOF in the two
dimensional model is available in the candidate set. It is noted first that sensor 1 is placed
such that mode 2 is not observable. This is the reason for a pretest planning procedure.
In this case sensor 2 can observe both modes and no such problem exist. However, it
is noted that the placement of sensor 3 by the EfI method is symmetric with respect to
position 2. This behaviour was noted and addressed by Stephan [90]. In Paper A another
approach to the rejection of such redundant positions is proposed. The example was
illustrated for a linearly independent initial set, but equal results are obtained for linearly
dependent initial sets.
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4 Substructuring

Dividing a problem into smaller portions is a frequently used strategy in many fields.
Within structural dynamics it is denoted substructuring and is a common technique used
in analysis of complex systems. It works by splitting a system into smaller systems, called
substructures, which are individually analysed and the solutions coupled into the global
solution. This approach brings very many benefits, such as easy parallelisation as each
substructure can be individually analysed, analysis of complex systems otherwise not
solvable in reasonable time and identification of local dynamic behaviour [97]. The last
argument is very important in the automotive industry where the full system is very
complex, consisting of thousands of components. A full system level analysis will seldom
bring much physical insight into local dynamical behaviour, which can be the cause of
too high vibration or noise levels resulting in ride discomfort. Using substructuring,
local systems can be analysed individually and even updated towards experimental data,
providing physical insight, and later assembled into the global solution. The flexibility
offered with this methodolgy allows for experimental substructures, i.e. models identified
from experimental data [55]. This is especially useful for hard-to-model components and
has recently gathered much research focus, e.g. see [62], and resulted in a large body of
literature, e.g. [82, 81, 76, 34, 59].

One of the most well-known and most used substructuring methods is the component
mode synthesis (CMS) method, which will be outlined in this chapter. It was first proposed
by Hurty [43, 42] and Gladwell [36]. This quickly resulted in the well-known Guyan
reduction method [38], and later in the Craig-Bampton method [6]. A common problem
encountered with high fidelity models, e.g. most models used within the automotive
industry, is associated with interfaces between subtructures consisting of many DOFs.
For such cases the CMS method will decrease in efficiency. Methods have been proposed
for reducing the interfaces which was initiated by Craig and Chang [16], and later further
developed by Balmés [5]. In Paper D an approach for efficient interface reduction is
proposed.

In deriving the CMS method the EOMs from Equation (2.1) of some component (𝑠) can
be generalised for the external excitation vector which is split into an external excitation
vector 𝐟(𝑡) and an interface vector 𝐠(𝑡) containing counteracting forces from neighbouring
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(a) Free interface mode. (b) Fixed interface mode. (c) Static constraint mode.

Figure 4.1: Three common mode types. Here denote interface boundary nodes and denote internal
nodes.

structures as follows.

𝐌(𝑠) ̈𝐪(𝑠)(𝑡) + 𝐕(𝑠) ̇𝐪(𝑠)(𝑡) + 𝐊(𝑠)𝐪(𝑠)(𝑡) = 𝐟(𝑠)(𝑡) + 𝐠(𝑠)(𝑡) (4.1)

Explicit time dependence (𝑡), and substructure (𝑠) notation is here on dropped for brevity.
It is now possible to partition the vector of DOFs in Equation (4.1) into a boundary (or
interface) set 𝑏 and an internal set 𝑖, with 𝑛𝑏 and 𝑛𝑖 DOFs each. The substructures can
then be split into boundary and internal representations.

[𝐌𝑏𝑏 𝐌𝑏𝑖
𝐌𝑖𝑏 𝐌𝑖𝑖

] [ ̈𝐪𝑏
̈𝐪𝑖
] + [𝐕𝑏𝑏 𝐕𝑏𝑖

𝐕𝑖𝑏 𝐕𝑖𝑖
] [ ̇𝐪𝑏

̇𝐪𝑖
] + [𝐊𝑏𝑏 𝐊𝑏𝑖

𝐊𝑖𝑏 𝐊𝑖𝑖
] [𝐪𝑏

𝐪𝑖
] = [𝐠𝑏

𝐠𝑖
] + [𝐟𝑏

𝐟𝑖
] (4.2)

What follows in this chapter are some commonly used modes for model reduction and
the formulation of the CMS reduction basis, followed by coupling in the physical domain
and the CMS assembly procedure.

4.1 Component modes
From the undamped eigenvalue problem of the EOMs for a substructure (𝑠) in Equation
(4.1) the system modes can be obtained. These modes can be categorised according
to their behaviour, and system boundary conditions. A very common type of mode
is the free interface mode 𝝓𝑓 𝑟𝑒𝑒

𝑖 in which the model interfaces are free, and in fact the
whole boundary is free. It can be seen in Figure 4.1a. This type of mode is also commonly
obtained from vibration measurements, and is therefore often used in correlation analyses
to FE data, such as in the modal assurance criterion (MAC) [3]. The free interface mode is
included here only because of its commonness.

The fixed interface modes are similarly obtained from the undamped EOMs, but here
the interfaces DOFs 𝐪𝑏 are fixed, and assuming that 𝐠 = 𝟎 and 𝐟𝑖 = 0 in Equation (4.2),
the EOMs reduces to the internal DOFs

𝐌𝑖𝑖𝐪𝑖 + 𝐊𝑖𝑖𝐪𝑖 = 𝟎. (4.3)

Solving the associated eigenvalue problem gives the fixed interface modes 𝝓𝑓 𝑖𝑥𝑒𝑑
𝑖 , in matrix

form 𝚽𝑓 𝑖𝑥𝑒𝑑 ∈ ℝ𝑛𝑖×𝑛𝑖. A fixed interface mode can be seen in Figure 4.1b. The free and fixed
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1 𝐪(1)
𝑏

𝐟(1)
𝑏

𝐠(1)
𝑏

2

𝐟(2)
𝑏

𝐠(2)
𝑏

𝐪(2)
𝑏

(a)

𝐟𝑏

1 2𝐪𝑏

(b)

Figure 4.2: In (a) two substructures to be assembled are shown and in (b) their assembly. Here denote
internal nodes associated with 𝐪(𝑠)

𝑖 and denote boundary nodes associated with 𝐪(𝑠)
𝑏 . The black arrows

denote external forces 𝐟(𝑠)
𝑏 acting on the boundary while the grey arrows denote boundary forces

𝐠(𝑠)
𝑏 felt from neighbouring structures.

interface modes are vibration modes, i.e. the systems dynamical behaviour is accounted
for.

The last mode type discussed here is the static constraint modes, which describe the
interaction with neighbouring substructures. It is derived by decomposing the internal
DOFs vector into a static and dynamic contribution 𝐪𝑖 = 𝐪𝑠𝑡𝑎𝑡𝑖𝑐

𝑖 + 𝐪𝑑𝑦𝑛𝑎𝑚𝑖𝑐
𝑖 . Further, for the

undamped EOMs in Equation (4.2) the accelerations are set to zero and assuming that
𝐠 = 𝟎 and 𝐟𝑖 = 𝟎 the EOMs are reduced to the boundary DOFs

𝐪𝑠𝑡𝑎𝑡𝑖𝑐
𝑖 = 𝐊−1

𝑖𝑖 𝐊𝑖𝑏𝐪𝑏 = 𝚿𝐪𝑏. (4.4)

This is in fact a Guyan reduction [38] and 𝚿 ∈ ℝ𝑛𝑖×𝑛𝑏 is the Guyan reduction basis. The
static constraint modes describe the static deformation for the DOFs in 𝐪𝑖 as a result of
displacement at one boundary DOF at a time. A static constraint mode can be seen in
Figure 4.1c.

Now the reduction basis for the CMS method can be formed from the static constraint
and fixed interface modes, as introduced by Craig and Bampton [6]. Let the internal
DOFs be defined as

𝐪𝑖 ≜ 𝚿𝐪𝑏 + 𝚽𝑓 𝑖𝑥𝑒𝑑
𝑛𝑟 𝜼𝑖 (4.5)

where 𝚽𝑓 𝑖𝑥𝑒𝑑
𝑛𝑟 ∈ ℝ𝑛𝑖×𝑛𝑟 consist of the 𝑛𝑟 lowest fixed interface modes selected from 𝚽𝑓 𝑖𝑥𝑒𝑑.

Here 𝜼𝑖 are the generalised internal DOFs. The CMS reduction basis for substructure (𝑠),
𝐑(𝑠) ∈ ℝ𝑚×𝑛𝑏+𝑛𝑟, can then be formed as

𝐪(𝑠) ≜ 𝐑(𝑠)𝜼(𝑠) = [
𝐈 𝟎
𝚿 𝚽𝑓 𝑖𝑥𝑒𝑑

𝑛𝑟

] [𝐪𝑏
𝜼𝑖

] (4.6)

where 𝜼 are the generalised DOFs.

4.2 Physical system synthesis
An assembly consisting of two equal, unreduced, substructures with EOMs as in Equation
(4.2) can be seen in Figure 4.2. For these two substructures the compatibility condition
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states that 𝐪(1)
𝑏 = 𝐪(2)

𝑏 and the equilibrium condition states that 𝐟(1)
𝑏 + 𝐟(2)

𝑏 + 𝐠(1)
𝑏 + 𝐠(2)

𝑏 =
𝐟(1)
𝑏 + 𝐟(2)

𝑏 = 𝐟𝑏 where 𝐠(1)
𝑏 + 𝐠(2)

𝑏 = 𝟎. Moreover, 𝐠(𝑠)
𝑖 = 𝟎, as neighbouring substructures

do not affect the internal nodes directly. Generalising the coupling procedure to any
number of substructures the primal physical assembly technique presented in [55, 97] is
adopted here. Hence, the EOMs of the 𝑠 = 1, … , 𝑛𝑚 substructure systems from Equation
(4.1) to be coupled can be written on block diagonal form

𝐌 ̈𝐪 + 𝐕 ̇𝐪 + 𝐊𝐪 = 𝐟 + 𝐠 (4.7)

with

𝐊 = diag (𝐊(1), … , 𝐊(𝑛𝑚)) =
⎡⎢⎢
⎣

𝐊(1) ⋅ ⋅
⋅ ⋱ ⋅
⋅ ⋅ 𝐊(𝑛𝑚)

⎤⎥⎥
⎦

,

𝐕 = diag (𝐕(1), … , 𝐕(𝑛𝑚)) , 𝐌 = diag (𝐌(1), … , 𝐌(𝑛𝑚)) ,

𝐪 =
⎡⎢⎢
⎣

𝐪(1)

⋮
𝐪(𝑛𝑚)

⎤⎥⎥
⎦

, 𝐠 =
⎡⎢⎢
⎣

𝐠(1)

⋮
𝐠(𝑛𝑚)

⎤⎥⎥
⎦

and 𝐟 =
⎡⎢⎢
⎣

𝐟(1)

⋮
𝐟(𝑛𝑚)

⎤⎥⎥
⎦

.

(4.8)

The compatibility and equilibrium conditions can be generalised for the (𝑠) substructures
in matrix form as

𝐄𝐪 = 𝟎 and 𝐋𝑇𝐠 = 𝟎 (4.9)

where 𝐄 ∈ {−1, 0, 1}𝑛𝑏×𝑚𝑛𝑚 is a signed Boolean matrix and 𝐋 ∈ {0, 1}𝑚𝑛𝑚×𝑛𝑢 is a Boolean
matrix, with 𝑛𝑢 unique DOFs for the coupled substructures. Here Boolean matrix means
a matrix possibly consisting of only ones and zeros, and signed Boolean matrix is an
extension containing negative ones, too. The matrix 𝐋 can be viewed as a localisation
matrix transforming the coupled substructures unique DOFs 𝐪𝑢 ∈ ℝ𝑛𝑢×1 to the coupled
substructures total DOFs 𝐪 as

𝐪 = 𝐋𝐪𝑢. (4.10)

The compatibility condition can now be express in terms of the unique set of DOFs 𝐪𝑢 as

𝐄𝐪 = 𝐄𝐋𝐪𝑢 = 𝟎 (4.11)

where 𝐋 = 𝑛𝑢𝑙𝑙(𝐄) as 𝐪𝑢 is in general not zero. Now the systems in Equation (4.7) can be
coupled by using 𝐪 = 𝐋𝐪𝑢 and premultiplying with 𝐋𝑇 giving

𝐌̃ ̈𝐪𝑢 + 𝐕̃ ̇𝐪𝑢 + 𝐊̃𝐪𝑢 = ̃𝐟 (4.12)

with

𝐌̃ = 𝐋𝑇𝐌𝐋, 𝐕̃ = 𝐋𝑇𝐕𝐋, 𝐊̃ = 𝐋𝑇𝐊𝐋 and ̃𝐟 = 𝐋𝑇𝐟 (4.13)

where 𝐋𝑇𝐠 = 𝟎 has been utilised.
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4.3 Component mode synthesis
In the CMS method reduced systems are being coupled. The reduction basis for a sub-
structure (𝑠) defined in Equation (4.6) can be substituted into the EOMs for substructure
(𝑠) as

𝐌(𝑠)𝐑(𝑠) ̈𝜼(𝑠) + 𝐕(𝑠)𝐑(𝑠) ̇𝜼(𝑠) + 𝐊(𝑠)𝐑(𝑠)𝜼(𝑠) = 𝐟(𝑠) + 𝐠(𝑠). (4.14)

The reduction basis can be cast in block diagonal form as

𝐪 ≜ 𝐑𝜼, with 𝐑 = diag (𝐑(1), … , 𝐑(𝑛𝑚)) . (4.15)

The EOMs for all uncoupled substructures in Equation (4.7) can be reduced with the
introduced reduction basis and a premultiplication of 𝐑𝑇 so that

𝐌𝑚 ̈𝜼 + 𝐕𝑚 ̇𝜼 + 𝐊𝑚𝜼 = 𝐟𝑚 + 𝐠𝑚 (4.16)

with

𝐌𝑚 = 𝐑𝑇𝐌𝐑, 𝐑𝑚 = 𝐑𝑇𝐕𝐑, 𝐊𝑚 = 𝐑𝑇𝐊𝐑,
𝐟𝑚 = 𝐑𝑇𝐟 and 𝐠𝑚 = 𝐑𝑇𝐠.

(4.17)

Coupling of the reduced systems requires the compatibility and equilibrium conditions to
be enforced in the generalised DOFs. The compatibility condition can then be expressed
as

𝐄𝑚𝜼 = 𝟎, with 𝐄𝑚 ≜ 𝐄𝐑. (4.18)

The generalised DOFs 𝜼 can be expressed in terms of a set of unique generalised DOFs 𝝃
for the assembled systems through a localisation matrix 𝐋𝑚 as

𝜼 = 𝐋𝑚𝝃 . (4.19)

Substituting Equation (4.19) into Equation (4.18) yields

𝐄𝑚𝐋𝑚𝝃 = 𝟎 (4.20)

with 𝐋𝑚 = 𝑛𝑢𝑙𝑙(𝐄𝑚). The coupling is now performed as in the physical domain by
substituting 𝜼 = 𝐋𝑚𝝃 into the EOMs in Equation (4.16) and premultiplying with 𝐋𝑇 so
that the coupled system is obtained as

𝐌̃𝑚 ̈𝝃 + 𝐕̃𝑚 ̇𝝃 + 𝐊̃𝑚𝝃 = ̃𝐟𝑚 (4.21)

with

𝐌̃𝑚 = 𝐋𝑇
𝑚𝐌𝑚𝐋𝑚, 𝐕̃𝑚 = 𝐋𝑇

𝑚𝐕𝑚𝐋𝑚, 𝐊̃𝑚 = 𝐋𝑇
𝑚𝐊𝑚𝐋𝑚 and

̃𝐟𝑚 = 𝐋𝑇
𝑚𝐟𝑚

(4.22)

where the fact that 𝐋𝑇
𝑚𝐠𝑚 = 𝟎 has been used.
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5 Uncertainty quantification

Uncertainty quantification is an essential tool in the process of developing predictive
models in CAE driven fields, such as the automotive industry. It is a vast area with
active research that spans most scientific fields. Therefore, it is not the intent of this
chapter to provide an overview of the whole field, but rather point towards some recent
developments within the field of structural dynamics. First a short summary is made of
the different types of possible-to-encounter uncertainties. Thereafter, a brief overview
of model updating is presented with focus on the particular method used in this thesis,
followed by a short summary of inverse uncertainty quantification, which can be seen
as a generalisation of model updating. Then a section is devoted to a short summary
of some possible techniques related to uncertainty propagation for forward predictions.
The last two sections are included mainly as a short review of the subject area.

5.1 Types of uncertainties

Many types of uncertainties can be encountered in simulation and experimental results.
It is commonly said that two categories of model uncertainties exist. One is reducible
uncertainty, also called lack-of-knowledge or epistemic uncertainty. The other being
irreducible uncertainty, also called random or aleatory uncertainty [53]. Essentially the
division into the two categories is left to the user for the problem at hand, if at all needed.
Take the example of measurement noise. If no other measurement method is available
the uncertainty can probably not be reduced and should be categorised as irreducible.
If other means of measurement exists the uncertainty can be categorised as reducible.
Another example is variability between components. If no control of the tolerances in
production exist the uncertainty should be treated as irreducible, and reducible if there
is. As can be noted the problem of categorising the uncertainty is not an easy task, and
not something this thesis will consider in great detail. What follows are definitions of
some types of model uncertainties, as defined by Kennedy and O’Hagan [51].

Parametric uncertainty describes the statistical knowledge associated with model
parameters when considering test data from a single individual from a population. In
an experiment the results obtained contain noise, and multiple experiments will never
produce exactly the same results. The estimated parameters from a model updating
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procedure will therefore be uncertain to some extent.
Model adequacy refers to how well the model at hand is capturing reality. Many

times simplifications are introduced, which might be overly crude and make the model
inadequate. For example, modelling a car’s body in white with beam elements might
be adequate in some situations where simple analyses are of interest. It is not adequate
in most situations, such as when the vibration predictability is of interest. In situations
of model inadequacy it is important not to update model parameters to account for
modelling simplifications. The obtained model parameters would act as surrogates for
other errors, and the obtained model would in most cases not be usable for predicting
other results.

Residual variability means that for a real process with specified inputs the outputs are
not necessarily always equal. Therefore, a model will not in general be able to predict the
output of a real process for some specified input condition. This is a consequence of either
a form of model inadequacy, i.e. some conditions are not modelled, or the process might
be inherently random. For example, between equal experiments the input conditions will
always vary to some degree, which are not captured by the model.

Observation errors are caused due to measurement noise, e.g. electronic noise in the
equipment or fluctuations in temperature. This type of uncertainty might be very hard to
separate from residual variability.

Parametric variability represent the actual variability of the physical properties. For a
mass produced component manufacturing tolerances will cause the nominally identical
components produced to always show some property variation. Such variation can be
captured as parameter variation after an update of model parameters that represent such
physical properties, e.g by updated geometry properties or the elastic modulus deviates
from nominal values.

Code uncertainty is related to the uncertainty associated with complex computer codes.
For most problems of interest complex models are used where no analytical solution exist.
Therefore, computer codes are used to obtain a numerical solution. The computer code
implementation is usually not free from errors, which can cause erroneous results related
to uncertainties.

5.2 Model updating

The forward problem, or forward propagation, was presented in Chapter 2 as a second and
first order system of ODEs. This problem deals with obtaining outputs from a model given
some inputs, and has in most cases a unique solution and is therefore well-posed. The
inverse problem however, which is that of obtaining model inputs from the model outputs,
is in general ill-posed, i.e. there may exist multiple solutions or no solution at all [25]. In
Figure 5.1 the two problem types are shown. Model inputs are commonly parameters 𝜽
and system inputs 𝐮, while outputs 𝐲 can be any quantity of interest, but will here most
often be FRFs. In both cases it has been assumed that the model is known. FE model
updating is an inverse problem and strives to update an FE model, or the input parameters
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Output
𝐲

Forward problem

Inverse problem

Figure 5.1: Forward and inverse problems.

𝜽, so that the model outputs represent experimental data better. Early attempts to FE
model updating were made by direct updating where the elements of mass and stiffness
matrices were altered. While these methods could represent the measurement data
very precisely, the physical meaning of the obtained models was lost. Later approaches
considered updating of physically meaningful parameters where deviation functions
are minimised, e.g. deviations in modal data between FE and experimental models.
However, using modal data introduces the problem of identifying modal parameters
from experimental data. Using a deviation based on FRFs alleviates this problem, but
introduces problems associated with mode pairing. For a thorough background on FE
model updating see [68, 25]. In this thesis an FRF based model updating procedure with
equalised damping is used [1], to circumvent the mode pairing problem, and will be the
basis for this section presentation. Note that explicit frequency dependency is dropped
from the FRF matrices below, and the used frequencies are assumed to take discrete
values.

The discrepancy between the a model 𝐇𝑅 and the experimentally measured model
𝐇𝑋 can be denoted by 𝐍𝑜 [51, 80, 52, 98]. Further, the true model 𝐇𝑅 can be thought to
be composed of an FE model 𝐇𝐹𝐸(𝜽) and the model prediction error 𝐍𝑚.

𝐇𝑋 = 𝐇𝑅 + 𝐍𝑜 = (𝐇𝐹𝐸(𝜽) + 𝐍𝑚) + 𝐍𝑜 = 𝐇𝐹𝐸(𝜽) + 𝐍𝐺 (5.1)

Under the assumption that the bias introduced by the FE model is small, 𝐍𝐺 can be
modelled as an independent, zero mean, multivariate normally distributed random
variable with a known covariance matrix 𝚺.

The goal of the calibration is to estimate a calibration parameter setting ̂𝜽 that minimises
the deviation between the experimentally obtained FRFs 𝐇𝑋 and the FE model FRFs
𝐇𝐹𝐸(𝜽) under some norm. In the method used in this thesis [1] the discrepancy between a
finite element model 𝐇𝐹𝐸 and an experimentally identified model 𝐇Σ is minimised instead.
The experimental model can be obtained by various system identification algorithms, e.g.
N4SID [63] or PolyMAX [37]. The damping can therefore be equalised in both models,
and the mode pairing issue is circumvented [1]. The deviation metric can be formed as a
nonlinear least squares problem, as in Equation (2.20), that is smooth and weights high
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and low structural responses equally.

̂𝜽 = arg min
𝜽

𝝐𝐻(𝜽)𝝐(𝜽)
𝑁

𝝐(𝜽) = log10vect(𝐇𝐹𝐸(𝜽)) − log10vect(𝐇Σ)
(5.2)

The superscript 𝐻 denote the conjugate transpose and vect(⋅) stands for the vectorisation
operation in which a matrix is transformed into a column vector by stacking the columns
of the matrix.

Model updating is used in Paper B to update model parameters towards three front
subframes, individually. In Paper C bushing rubber stiffness is estimated using model
updating of one rear subframe, together with other model parameters. The procedure is
deterministic and does not consider any types of uncertainty discussed above, other than
parametric variability in Paper A for the three components. Therefore, other methods
need to be used so that influences of noise and parameter variability can be accounted
for. This is discussed in the next sections.

The parameter selection is a non-trivial subject [25, 80]. Selecting too many parameters
easily renders the model updating problem ill-posed as all of the parameters might not be
identifiable from the observed data. Selecting too few might not yield satisfactory results.
Which parameters to select might be the hardest problem in a calibration procedure.
Ideally parameters that are not well known, or uncertain, should be selected. Geometric
parameters are recommended in [25]. Many times this is not possible, and parameters
considered uncertain might not be identifiable. Therefore, often a selection of surrogate
parameters has to be done. An identifiability study can be performed to exclude parame-
ters that would render the model updating problem ill-posed. The CRLB can be used
where the FIM is computed from the output sensitivities relative the parameters [80, 50].

ℱ = 𝐉𝑇𝐉 with 𝐉𝑖𝑗 =
𝜕 [𝝐(𝜽)𝐻𝝐(𝜽)]

𝑖
𝑁𝜕𝜽𝑗

(5.3)

Here 𝑖 = 1, … , 𝑁 where 𝑁 is the number of points in the deviation metric, and 𝑗 = 1, … , 𝑝
with 𝑝 representing the number of parameters. A parameter with very high variance
compared to other parameters should therefore be discarded, as model outputs are not
very sensitive to small changes to it.

5.3 Inverse uncertainty quantification
A deterministic calibration yields a point estimate in the parameter space, meaning that
no statistical description about the estimator exist. Performing predictions with such a
parameter setting is not best practice as no statistical confidence bounds in the results are
obtained. Therefore, methods exist to account for the uncertainties in the observed data.
Generally two viewpoints for the statistical inference problem exist, the frequentist and
Bayesian viewpoints [74].
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The frequentist view of probability is many times considered the traditional viewpoint.
Here the probability for en experimental outcome is interpreted as the relative frequency
of occurrence of that outcome in a long sequence of experiment repetitions [50, 74].
Thus, the estimator uncertainty is represented by the probability distribution obtained by
applying an estimator to the experiment repetitions. Parameters of interest are viewed
as deterministic but unknown. Structural dynamics methods taking the frequentist
approach is common, see [61, 95]. A common estimator used is the maximum likelihood
estimator (MLE) which gives a parameter setting that maximises the likelihood function
[50]. From Equation (5.1), assuming that 𝐡𝑋 = 𝑣𝑒𝑐𝑡(𝐇𝑋) and 𝐡𝐹𝐸 = 𝑣𝑒𝑐𝑡(𝐇𝐹𝐸), and with
the assumption that 𝐍𝐺 ∼ 𝒩(𝟎, 𝚺) the likelihood function can be formed as

𝑙(𝐡𝑥|𝜽) ∝ 𝑒𝑥𝑝 [−
1
2 (𝐡𝑋 − 𝐡𝐹𝐸)𝑇 𝚺−1 (𝐡𝑋 − 𝐡𝐹𝐸)] . (5.4)

Here ∝ denote proportionality between two expressions. The MLE estimator ̂𝜽𝑀𝐿𝐸 is
then found as

̂𝜽𝑀𝐿𝐸 = arg max
𝜽

𝑙(𝐡𝑥|𝜽). (5.5)

Under certain conditions the MLE estimator ̂𝜽𝑀𝐿𝐸 distribution can be shown to be [50]

̂𝜽𝑀𝐿𝐸
𝑎∼ 𝒩 (𝟎, ℱ−1(𝜽)) . (5.6)

Here 𝑎∼ denote the asymptotically distributed symbol.
Another approach to find the sampling distribution of the MLE estimator is based on

using bootstrapping [40, 52, 98, 95]. This approach is used in this thesis in Paper B and
Paper C. The procedure works by repeatedly drawing random datasets 𝐡𝑏

𝑋 with replace-
ment from the original data set 𝐡𝑋. The calibration procedure is then performed towards
this new data set 𝐡𝑏

𝑋 in Equation (5.2) so that a new calibration parameter setting ̂𝜽𝑏 is
obtained. This procedure is repeated 𝑛𝑏 times. Thus 𝑛𝑏 vectors of calibrated parameters

̂𝜽𝑏 will be obtained, from which statistics can be computed [52, 98].
The Bayesian viewpoint, on the other hand, interprets probability as a degree of

plausibility. Therefore, the parameters are considered random variables and a prior belief
about their distribution can be used, if it exist. In structural dynamics much research is
presently focusing on Bayesian techniques and especially their computational challenge
using Markov chain Monte Carlo methods, see [9, 8, 14, 94]. The methods work by using
Bayes’ theorem [12]

𝑝(𝜽|𝐡𝑋) =
𝑝(𝐡𝑋|𝜽)𝑝(𝜽)

𝑝(𝐡𝑋) (5.7)

where 𝑝(𝐡𝑋|𝜽) is the likelihood function, 𝑝(𝜽) the prior distribution and 𝑝(𝐡𝑋) a normal-
isation constant so that the posterior distribution 𝑝(𝜽|𝐡𝑋) becomes a valid probability
density function. The posterior distribution is therefore associated with the prior distri-
bution, but is updated with respect to the data, and so new information is incorporated
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in this framework. The posterior distribution can be used in an estimator. It is common
to use the maximum a posteriori (MAP) estimator [50].

̂𝜽𝑀𝐴𝑃 = arg max
𝜽

𝑝(𝜽|𝐡𝑥) (5.8)

This estimator selects a parameter setting ̂𝜽𝑀𝐴𝑃 that will maximise the posterior distri-
bution, i.e. find the posterior distributions mode. Another common estimator is the
minimum mean squared error (MMSE) estimator [50].

̂𝜽𝑀𝑀𝑆𝐸 = ∫ 𝜽𝑝(𝜽|𝐡𝑥)𝑑𝜽 = E [𝜽|𝐡𝑥] (5.9)

Here the parameter setting ̂𝜽𝑀𝑀𝑆𝐸 is chosen so that the estimator minimises the mean
square error (MSE). For other estimators see [50]. The computational burden associated
with Bayesian techniques is very high for high dimensional parameter spaces (curse of
dimensionality) which is one of the drawbacks of the method. The method has also
been criticised as biased due to the prior distribution, which can sometimes be chosen
arbitrarily. Furthermore, the implementation is fairly complex compared to the simpler
frequentist methods.

Other approaches exist for the treatment of uncertainties and variability in model
parameters for the inverse problem. Non-probabilistic methods have surfaced recently,
such as the fuzzy set method [39, 80]. They have been introduced due to the inability of
probabilistic methods to account for epistemic uncertainty [67], i.e. uncertainty that very
little is known about or non-random uncertainty. In other words many authors propose
that probabilistic methods should be avoided when the uncertainties are epistemic, i.e.
lack-of-knowledge type uncertainties are present [10].

5.4 Forward uncertainty quantification
When uncertainties are associated with the simulation model one single deterministic
simulation will generally not be sufficient for predictive purposes. That is because no
confidence bounds for the results are present. In reality uncertainties about simulation
models are always present. For instance when no experimental data about the model exist,
or in cases when it is known that a particular parameter is representing a property created
by a production process with some randomness with a known probability distribution. In
such situations uncertainty propagation, or forward uncertainty quantification methods
can be used. The most well known method is the Monte Carlo method, which is also
often used as a reference for other methods. It can be seen as a brute force method in
which the deterministic simulation is run very many times with different realisations of
input parameters and controlled by the parameter distribution. Statistics about the output
quantities are then obtained which in turn provide more confidence in the simulated
results. This method is usually very computationally expensive as a single deterministic
simulation can take many hours, and many simulations are needed for just one varying
parameter. It is common to have hundreds of uncertain parameters, and hence a very
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large parameter space. Therefore, other methods have been developed to circumvent this
problem. Good overviews of methods are given in [91, 77, 78, 78, 89]. It should be noted
here that the inverse quantification methods in the previous section generally solve the
forward problems many times, and so the output uncertainties are implicitly obtained.

For probabilistic finite element analysis uncertainty propagation methods using pertur-
bation techniques exist [54]. These are normally based on Taylor series expansion, which
are generally well suited when the first and second moments, i.e. mean and variance,
of the outputs are sought [91]. From reliability engineering the first and second order
reliability methods exist which are well suited when the tail probabilities are sought [91],
e.g. to assess a structures probability of failure. Further, spectral finite element methods
exist [28] which strive to be suited for any type of problem. Although, these methods
are not well suited for nonlinear problems and can be computationally intensive [89].
Sensitivity analysis is another important part of stochastic mechanics, which was briefly
explained above where a local sensitivity analysis method was outlined in terms of the
CRLB. It can be used to asses the importance of parameters and hence reduce the cost of
simulations. Global sensitivity analysis on the other hand strives to quantify the output
uncertainty due to uncertainty in all input parameters combined [91].

Most of the focus so far has been on parametric methods, in which specific model
parameters are varied. Non-parametric approaches have surfaced recently based on
random matrix theory [84, 87, 85, 86, 83]. The main idea is that the EOMs system matrices
can be treated as random, i.e. the nominal model can be considered as the mean and
very few parameters are used to represent the uncertainties in the matrices. The obvious
disadvantage of the method is that no physical insight is usually retained, but on the other
hand all types of uncertainties might be considered. This has resulted in an application
for structural-acoustic modelling in automotive vehicles [17].

Possible ways of circumventing the computational burden of Monte Carlo methods is to
use reduced order models, or surrogate models, e.g. through a multi-fidelity approach [35,
71, 69]. Another approach relies on substructuring, or component mode synthesis, where
reduced order models are assembled to obtain system responses [41]. In comparison to
the non-parametric methods, substructuring methods will generally allow for a greater
physical insight as simpler components are coupled to form the complex system. Further,
surrogate techniques exist, such as Gaussian processes [23]. Many of these techniques
are computationally expensive in the creation of the surrogate models, but cheap in the
evaluation of the surrogate models. Therefore, the sometimes millions of runs required
by the Monte Carlo method can be performed cheaply. The drawback is that the surrogate
models need to be recreated for other parameter configurations, and that surrogate models
introduce errors in the system outputs.

Other approaches exist for the treatment of uncertainties and variability in model
parameters, e.g. non-probabilistic methods. Common methods are the convex interval
method [10] and the fuzzy set method [65]. These methods are especially useful in the
treatment of epistemic uncertainty, i.e. lack-of-knowledge uncertainty rather than random
uncertainty. The convex interval method is based on the assumption that many times the
parameter range is constrained and as such it tends to form a convex set which simplifies
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the analysis. The fuzzy set approach is based on fuzzy sets [99], which are sets where
elements have a degree of membership associated with them, i.e. the degree of belonging
to the set is defined by the membership function. The methods have surfaced due to
the many times arbitrary assumption of the probability density function governing the
uncertainties, e.g. when not enough data about the uncertain parameters exist which is
many times the case. Experiments tend to be time consuming and expensive and only a
limited number can be performed. These methods could thus be classified as a middle
ground between deterministic simulations and stochastic methods.
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6 Summary of appended papers

Paper A: Redundant information rejection in sensor localisation using system gramians

In this paper the method of effective independence (EfI) is shown to select redundant
sensor positions in symmetric models and very detailed finite element models. An exten-
sion of the EfI method is proposed where sensors are ranked by the EfI metric and sensor
positions containing redundant information are identified and rejected from the final
sensor set. The redundant sensor position criteria is based on system gramians and works
for sensors measuring in any direction. The method is verified on a simple symmetric
clamped plate.

Paper B: Calibration, validation and uncertainty quantification of nominally identical car
subframes

Vibration experiments of three nominal Volvo XC 90 (2015) front subframes are performed.
Experimental models are acquired through system identification. Sensor placement is
based on the method proposed in Paper A. The spread in dynamical and static properties
is reported. It is found that within certain frequency regions the spread in dynamical prop-
erties is considerable. The damping equalisation, frequency based, calibration method
FEMcali is used to calibrate 9 physical parameters for the three subframes in independent
calibrations up to 400 Hz towards the experimentally identified models. Considerable
improvement in model predictability is achieved. A bootstrapping procedure, towards
raw experimental data, is utilised in assessing the parameter uncertainty with respect to
the measurement noise. It is found that one parameter is sensitive to the measurement
noise for two components.

Paper C: Parameter estimation and uncertainty quantification of a subframe with mass
loaded bushings

One Volvo XC 90 (2015) rear subframe is considered. Vibration experiments, with sensor
placement based on the method proposed in Paper A, are performed with and without
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mass loaded bushings. Experimental models are identified using system identification.
Model calibrations of configurations with and without mass loaded bushings are per-
formed with the FEMcali method towards the experimentally identified models. High
fidelity bushings models are created and the rubber stiffness updated towards the mass
loaded experimental models. The updated subframe model is then further updated
towards the configuration without mass loaded bushings for various physical parameters.
Very good model predictability is achieved.

Paper D: A reduced interface component mode synthesis method using coarse meshes

A component mode synthesis (CMS) method with efficient interface reduction is proposed.
CMS methods provide an efficient modelling methodology for large scale structural
models. When a high density mesh is used, with detailed interfaces, the method’s
efficiency is reduced. It is proposed that coarse mesh models are used in forming a
reduction basis of the interface degrees of freedom. The method is verified on a simple
plate model consisting of two substructures.
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7 Conclusion and future work

This thesis deals with the development of methods for creation of predictive models
under uncertainties for use in structural dynamics. The goal is twofold. Minimising mea-
surement uncertainties and enabling computational models to account for uncertainties.
The focus lies on complex industrial structures from the automotive industry. Therefore a
component approach is considered so that physical insight is retained. The more complex
system of interest can be obtained from an assembly of the individual components.

In reducing measurement uncertainties an existing procedure for sensor position se-
lection, the method of effective independence, is extended for rejection of sensor positions
carrying similar information using system gramians. Further, a measurement software,
implemented in MATLAB, for faster stepped sine vibration experiments is developed
such that experimental data with low noise levels can be obtained relatively fast.

To quantify model parameter uncertainties a model updating method using frequency
response functions and equalised damping with a bootstrapping uncertainty quantifi-
cation procedure is used on two automotive structures. A front and a rear subframe
are considered. Very good models are obtained, that can be used in a future synthesis.
Physical parameters are updated, but it is noted that geometric parameters are highly
desirable for a better parametrisation. It is found that the identification of an experimental
system is very difficult, and tools for ease of use should be further developed. Spread in
dynamical properties between nominally identical components of the two structures is
also noted.

A component mode synthesis interface reduction method is also developed which
enables fast computations of high fidelity finite element models. The method is based on
the usage of coarse meshes to reduce the dimension of the linear system solved in a static
condensation.

For future work the assembly of components will be considered, and how the vari-
ability between nominally identical components propagate through such assemblies, in
both experimental and computational models. Some possible methods to consider for
propagation of uncertainties in built up structures are component mode based techniques
[41, 48, 47].
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