
Active learning of neural network from
weak and strong oracles
Master’s thesis in Complex Adaptive Systems

BJÖRN MATTSSON

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Master’s thesis 2017:EX006

Active learning of neural network from weak and
strong oracles

BJÖRN MATTSSON

Department of Signals and Systems
Chalmers University of Technology

Gothenburg, Sweden 2017

Active learning of neural network from weak and strong oracles
BJÖRN MATTSSON

© BJÖRN MATTSSON, 2017.

Supervisor: Daniel Langkilde, Recorded Future
Examiner: Lennart Svensson, Department of Signals and Systems

Master’s Thesis 2017:EX006
Department of Signals and Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Flowchart describing the algorithm proposed in this thesis to do active learn-
ing from both a strong and a weak oracle.

Typeset in LATEX
Gothenburg, Sweden 2016

iv

Active learning of neural network from weak and strong oracles
BJÖRN MATTSSON
Department of Signals and Systems
Chalmers University of Technology

Abstract
When implementing deep learning techniques in real-world applications acquiring
labeled data can be the most difficult and expensive part. Sometimes in this process
there is both a weak (and cheap to ask) oracle as well as a strong (but expensive to
ask) oracle available to which one can ask for labels to examples. The weak oracle
can for example be non-expert mechanical turks or a rule-based system, whereas the
strong oracle may be human experts that provide very reliable labels.

We propose an algorithm to do active learning in the presence of a weak and
a strong oracle. A central part of the algorithm is an agreement classifier which
predicts the probability of the weak oracle knowing the correct label for an example.
However, at prediction time the agreement classifier is only assumed to be able to
sort the examples after how much the weak oracle can be trusted, which is believed to
be a key reason behind why the algorithm works in practice. A second key idea in the
algorithm is that the agreement classifier does not only condition the classification
on the information from the input space, but also on the label proposed by the weak
oracle. A third idea that is examined is to leverage the probabilities supplied by the
agreement classifier directly in the cost function of the main classifier.

To test the algorithm we built a test environment based on binary sentence
classification as well as three types of synthetic weak oracles. The algorithm performs
well with these three synthetic oracles. It manages to decrease the cross entropy on
the learning task more per example queried to the strong oracle than what standard
active learning do.

Keywords: active learning, deep learning, artificial neural network, natural language
processing, machine learning

v

Acknowledgements
I want to express my gratitude to Recorder Future who gave me the opportunity
to carry out this study, and who also offered me a fun and friendly working en-
vironment while doing so. Furthermore I want to give special thanks to Daniel
Langkilde, supervisor of this thesis, for invaluable guidance and support throughout
the process. I want to thank Lennart Svensson, examiner at Chalmers, for many
insightful discussions and advices during the thesis. I also want to give thanks to
David Lidberg, opponent for the thesis, for providing me with thorough feedback.
Finally I want to thank Olof Mogren, PhD student of the machine learning research
group at Chalmers, for helping me in the early stages of the project.

Björn Mattsson, Gothenburg, February 2017

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Purpose . 2
1.2 Objective . 2
1.3 Scope . 2
1.4 Formal problem description . 2
1.5 Related work . 4
1.6 Thesis outline . 4

2 Sentence classification with convolutional neural networks 7
2.1 Word tokenization and word embedding 8
2.2 Convolutional filters . 8
2.3 Max-over-time pooling . 9
2.4 Fully connected layer and softmax . 9
2.5 Cost function and backpropagation 10
2.6 Early stopping and regularization . 11

3 Active learning 13
3.1 Learning by random sampling . 13
3.2 Active learning . 14

4 Bi-oracle learning algorithm 17
4.1 Overview of the algorithm . 17
4.2 Controlling the error in the data . 20
4.3 Agreement classifier . 21

4.3.1 High accuracy on parts of the input space 21
4.3.2 High accuracy for some output class 22

4.4 Cost function with soft labels . 22
4.5 Usage on finite input space . 23

5 Method 25
5.1 Data set and preprocessing . 25
5.2 Paremeter settings for convolutional neural network 26
5.3 Active learning method . 26

ix

Contents

5.4 Bi-oracle learning algorithm . 26
5.4.1 Design of agreement classifier 27
5.4.2 Random expert weak oracle 27
5.4.3 Category expert weak oracle 28

5.5 Experimental design and visualization 29

6 Results 31
6.1 Active learning . 31
6.2 Bi-oracle learning algorithm . 32
6.3 Random expert weak oracle . 34
6.4 Category expert weak oracle . 36
6.5 Category expert weak oracle with randomly assigned unknown labels 37
6.6 Comparing the different weak oracles 39
6.7 Lowering precision of weak oracle . 39
6.8 Cost function with soft labels . 40

7 Discussion 43
7.1 Structure of the algorithm . 43
7.2 Performance on different types of weak oracles 44
7.3 Outlook and real-world applications 45

8 Conclusion 47

Bibliography 49

x

List of Figures

2.1 Illustration over the convolutional neural network architecture used
in this thesis. For each layer a specific usage of the corresponding
function is showed, the input values is marked as grey cells and the
location of output value is showed with solid lines. 7

3.1 Flowchart describing the random sampling procedure to construct a
training data set for the classifier. Lines represent: single data points
(dashed), data set (solid). Boxes represent: data sets and distribu-
tions (cylinder), classifier (square, sharp edges), algorithm (square,
rounded edges), labeling oracle (ellipse). 13

3.2 Flowchart describing the active learning algorithm. Lines represent:
single data points (dashed), data set (solid), classifier predictions
(dotted). Boxes represent: data sets and distributions (cylinder),
classifier (square, sharp edges), algorithm (square, rounded edges),
labeling oracle (ellipse). 14

4.1 Flowchart describing a simplified version the proposed algorithm. The
path of the examples in the validation set it not included. The de-
tails regarding sc and T are left out. Lines represent: batches of
data (dashed), access to data sets and distributions (solid), classi-
fier predictions (dotted). Boxes represent: data sets and distribu-
tions (cylinder), classifiers (square, sharp edges), decision algorithms
(square, rounded edges), labeling oracles (ellipse). 19

6.1 Accuracy and Cross entropy after different amount of queried ex-
amples for both an algorithm that chooses examples at random and
examples chosen by active learning. The black line is there for refer-
ence. Dashed lines are one standard error of the mean away from the
main line. 32

xi

List of Figures

6.2 Relevant metrics for the execution and evaluation of the bi-oracle
learning algorithm for one run with a weak oracle as described in
section 5.4.2 with precision of 1.0 and recall 0.75 for class y = +1. The
upper figure shows the cross entropy on the test set, the validation
set and the set of new examples to the validation set. The lower
figure shows the share correctly labeled examples on the training set,
an estimation of that, and that share on a hypothetical training set
formed by the validation set. It also shows the trust threshold, T , of
the algorithm. 33

6.3 Accuracy and cross entropy after different amount of queried exam-
ples to the strong oracle for both the standard active learning algo-
rithm and the bi-oracle learning algorithm used with a REWO. The
number in parenthesis is equal to p(yW = y|y = +1) for that weak
oracle. 35

6.4 Accuracy and cross entropy after different amount of queried exam-
ples to the strong oracle for both the standard active learning algo-
rithm and the bi-oracle learning algorithm used with a CEWO. The
number in parenthesis is equal to p(x ∈ Wcorrect|y = +1) for that
weak oracle. 37

6.5 Accuracy and cross entropy after different amount of queried exam-
ples to the strong oracle for both the standard active learning algo-
rithm and the bi-oracle learning algorithm used with a CEWOr. The
number in parenthesis is equal to p(x ∈ Wcorrect|y = +1) for that
weak oracle. 38

6.6 Comparison between three runs with the bi-oracle learning algorithm
with different types of weak oracles. The meaning of the value in the
parenthesis differs, but are as in figures 6.3, 6.4 and 6.5. 39

6.7 Comparison between three runs with the bi-oracle learner algorithm
with different CEWO. The first value in the parenthesis equals p(x ∈
Wcorrect|y = +1) and the second value equals p(yW = y|x ∈ Wcorrect). . 40

6.8 Comparison of the algorithm with different cost functions. Hard la-
bels means that the cost function in equation (1.3) was used, whereas
for the two other bi-oracle learning algorithm runs the cost function
defined in equation (4.5) was used. For Soft labels using sc, the al-
gorithm was apart from the cost function unchanged, for Soft labels
using T = 0.7 a fixed trust threshold was used throughout the run. . 42

xii

List of Tables

5.1 Categories used from AG’s corpus. 25
5.2 Overview over the three types of weak oracles studied and where the

agreement classifier will get the information needed to learn when
used with them. 28

6.1 Recall, precision on the two classes and accuracy for the weak oracle
used to generate the results in figure 6.3. 34

6.2 Recall, precision on the two classes and accuracy for the weak oracle
used to generate the results in figure 6.4. 36

6.3 Recall, and precision on the two classes and accuracy for the CEWOr
used to generate the results in figure 6.5. 37

6.4 Recall, precision on the two classes and accuracy for the category
expert weak oracle used to generate the results in figure 6.7. 41

xiii

List of Tables

xiv

1
Introduction

When designing and implementing methods based on machine learning for solving
real-world problems, the task can be divided into two sub-tasks: first of all to
construct a data set that can be used to train the model, and second to choose and
implement a method (eg. SVM or deep-learning) that suits the problem. It is the
second of these two sub-tasks that academia traditionally pays most attention to
(assuming well defined data sets exist). In many cases how to define and create the
data set can be what is most troublesome and costly in the industry.

At Recorded Future they have specialized in analyzing vast quantities of text,
found through various sources on the Internet, and with that data deliver insights,
in particular cyber security insights. One step in this process is to decide whether
a sentence describes a cyber attack or not. Traditionally this has been done with
a rule-based system, but recently a convolutional neural network model has been
implemented based on the architecture in [4]. When moving from a rule-based
system to a machine learning model, a data set on which the machine learning model
can be trained has to be created. A data set for classification is traditionally created
by letting a human assign labels to some examples taken from the data stream which
the classifier will be applied on. This is expensive since many examples are needed
which implies large human effort. This has motivated Recorded Future to invest in
new techniques for building the data sets.

A first step in decreasing the cost of creating a data set is to realize that choosing
examples to label randomly is inefficient. Many similar examples may be labeled
which creates redundancy in the data set, and too much redundancy in the data set
is unnecessary. A better approach is to use active learning. With active learning
the idea is to iteratively build the training data set by choosing examples to label
which the classifier thinks are difficult. The redundancy is thus reduced since when
the classifier has learnt the label for some type of examples it will not ask for labels
to similar examples.

At Recorded Future there is a rule-based system available which today does the
classification. Therefore the question was asked whether this rule-based system could
be leveraged when building the data set. This question was the motivation behind
this thesis. Various approaches to this problem were considered in the beginning.
The approach that was finally chosen was to modify the algorithm proposed by [11].
We propose an algorithm to do active learning in the presence of a strong oracle
(which is expensive to ask but always supplies the correct label) and a weak oracle
(which is cheaper to ask but sometimes supplies incorrect labels). Furthermore we
assume that the errors made by the weak oracle are not distributed over the input
space in any particular way. The weak oracle can be correct (or incorrect) both

1

1. Introduction

close to and far away from the true decision boundary. Applied to the problem
faced by Recorded Future the rule-based system takes the role as a weak oracle, and
the annotators the role as a strong oracle.

1.1 Purpose
The purpose of this thesis was to investigate whether a preexisting rule-based system
can be leveraged when doing active learning, and what characteristics this rule-based
system has to have to do this successfully. The goal was to help Recorded Future
develop methods that save money when building data sets for training machine
learning models.

1.2 Objective
The main objective of this thesis was to define and implement a algorithm to do
active learning in the presence of a strong and weak oracle. The algorithm proposed
by [11] is theoretically complicated and would be difficult to implement as is. It
contains many assumptions that probably do not hold in real-world applications.
Therefore this thesis aimed at developing a practical implementation using key ideas
from that paper.

To be able to develop the algorithm a test environment had to be built, in which
different implementations could be tested. To do this, a good and large enough,
data set to do the experiments had to be found and preprocessed for the task. Also,
synthetic weak oracles that works with this data set had to be constructed.

1.3 Scope
This project considered active learning from a strong and a weak oracle when the
task is binary classification. Experiments have been performed in a setting where
the examples are sentences. The classification was done with a convolutional neural
network. We assumed that the cost of asking the weak oracle was zero, thus we only
considered how to minimize the number of label queries made to the strong oracle.
Moreover, the strong oracle was assumed to always answer with the correct label.

1.4 Formal problem description
Here follows a formal description of the problem that also will serve as an introduc-
tion to the notation used in this report.

We are given unlabeled samples x distributed according to U that come from
an input space X . We can sample examples from this distribution pU(x). In this
particular case the examples x are sentences. The examples x can be mapped to
desired outputs y according to p(y|x). The outputs belong to a binary output space

2

1. Introduction

Y = {−1,+1}. These labels y tells us which category the corresponding sentence
belongs to. The joint distribution of examples and labels is defined as:

pD(x, y) = p(y|x)pU(x) (1.1)

and is jointly distributed as D.
We have a classifier fw whose weights, w, we want to train, ideally so that

fw(y|x) = p(y|x)1. This means that for a given sentence x the prediction our
classifier gives about whether a particular sentence describes a cyber-attack or not
would perfectly reflect the reality. Since reaching a perfect mapping is impossible
on most real world problems we have to measure the performance of the classifier.
This will be done by using the cross entropy and the accuracy of fw. The cross
entropy is defined as:

LD(fw) =− E(x,y)∼D[log fw(y|x)] (1.2)

LS(fw) =− 1
N

∑
(xi,yi)∈S

log fw(yi|xi), (1.3)

where the first equation represents the case where we have access to the underlying
distribution D. The second equation represents the real world scenario where we
only have N samples of (xi, yi) ∈ S. The accuracy of fw is defined as:

accD(fw) =E(x,y)∼D[I{fw(y|x) > 0.5}]

accS(fw) = 1
N

∑
(xi,yi)∈S

I {fw(yi|xi) > 0.5} ,

where I{·} equals 1 when the expression inside it is true and 0 otherwise. As for
the cross entropy the two equations describes the cases where we have access to D
and only have samples from it respectively. For simplicity we will from now let y|x
denote the label y corresponding to x even when the context is not a conditional
probability.

To be able to reach high accuracy we need to label enough examples sampled
from U with their corresponding y so that fw can learn an internal representation
of how to distinguishes between the two classes. We can query the annotators (from
now on called the strong oracle) S about the label, yS of a specific sample, x. This
strong oracle knows the ground-truth but is expensive to ask. That it knows the
ground-truth can be expressed as that it has the same conditional distribution as
the real underlying mapping, i.e. p(yS|x) = p(y|x). We can also ask the rule-based
system (which we call the weak oracle) W about the label of a sample, yW . The
second oracle can be asked for free but does not always provides us with the right
answer. This means that its conditional distribution does not agree with the real
world and p(yW |x) 6= p(y|x) on parts of the input space. Important to the definition
of this problem is that the errors made by the weak oracleW are not uniformly noisy,
nor necessarily more frequent close to the true decision boundary. This means that
the errors made by the weak oracle can be more and less frequent in different regions.

1We will let fw(y|x) represent the conditional probability returned by the classifier. When the
y i omitted we assume the positive class, i.e. fw(x) = fw(y = +1|x)

3

1. Introduction

Furthermore the regions where the weak oracle frequently is wrong can occur far
from the decision boundary separating the classes Y in the input space X . The
opposite is also true, regions where the weak oracle with high probability supplies
the correct label could contain parts of the decision boundary in them.

Now, we are ready to formally define the problem. The aim is to develop an
algorithm for creating a data set by sampling x from U and labeling some of them
by using S and W so that we can reach a sufficiently good performance of fw with
as few queries to the strong oracle as possible. We want the performance of fw to
rise as quickly as possible for the queries we make to S.

1.5 Related work
An initial overview of the field of active learning can be found in [3]. In [1] they
present a more theoretically well founded algorithm called agnostic active learning.

The active learning problem where different oracles, or labelers, exist has been
analyzed from different perspectives. [6] for example discuss a problem arising when
using crowdsourcing platforms to annotate data: how many times should examples
be relabeled?

Some previous work analyzed the setting where two different types of labelers
exist: both a strong one (that always supplies the correct label) and a weak one
(which sometimes is wrong). The work presented in [10] porpose a theoretical algo-
rithm to do this type of active learning. They assume that the weak oracles are more
likely to be correct in label-homogeneous areas than close to the decision boundary.
In [7] they analyze the problem where there is both a weak and a strong annotator
in an online active learning setting.

The previous work that has largest resemblance with the algorithm proposed
in this thesis is [11]. First of all the problem description is identical, with a weak
oracle that rather than being uniformly noisy can be incorrect both close to and far
away from the decision boundary. Both that paper and the algorithm proposed here
use a separate classifier which has the purpose of learning the discrepancy between
the strong and weak oracle. Finally, classical active learning is in both approaches
considered to be an integral part in how to sample new points from the input space.

However the algorithm proposed in [11] is a theoretical algorithm with many
assumptions that would be difficult to apply in practice. For example central to
their algorithm is the assumption of knowledge about the Vapnik–Chervonenkis
(VC) dimension (see [9] for an overview). This thesis has been an attempt to take
the core ideas from from the algorithm they propose and apply it in practice for a
real neural network. Therefore the structure of the algorithm proposed in chapter
4 deviates much from what was proposed by [11].

1.6 Thesis outline
In chapter 2 and 3 important background theory is introduced. The former describ-
ing how convolutional neural networks are used in this thesis to classify text, and
the latter describing a standard active learning procedure. Chapter 4 contains the

4

1. Introduction

contribution of this thesis, which is an algorithm to do active learning in the pres-
ence of both a strong and weak oracle. Chapter 5 describes the method used when
evaluation the algorithm. In chapter 6 the results from the experiments are pre-
sented, these are later discussed in chapter 7. Finally the conclusions are presented
in chapter 8.

5

1. Introduction

6

2
Sentence classification with

convolutional neural networks

The convolutional neural network for sentence classification used in this report is
based on the architecture in [4]. In this chapter follows a description of that archi-
tecture. In figure 2.1 we can see a illustration of it.

The goal is to given a sentence x from an input space X predict the output
label y belonging to an output space Y . We thus want our classifier fw to be able
to represent the true conditional probability of the data p(y|x) as good as possible
by adjusting the weights w.

Figure 2.1: Illustration over the convolutional neural network architecture used in
this thesis. For each layer a specific usage of the corresponding function is showed,
the input values is marked as grey cells and the location of output value is showed
with solid lines.

7

2. Sentence classification with convolutional neural networks

2.1 Word tokenization and word embedding
Before we can apply the methods offered by deep learning we need to do some
preprocessing of the sentences. We want to transform the sentences in our data set
to a standardized form and thus help the algorithm generalize to new examples. We
put all characters in lower-case. We also tokenize the sentence into its constituting
words and interpunctuations. With tokenization of a sentence we mean that we
from x create a time ordered list, where each element either is a word or some
interpunctuation.

Now we let the token i in our vocabulary be represented by a k-dimensional
real-valued vectorwe

i , commonly called word embedding. This representation will be
shared between all sentences in our data set, so ’company’ for example will always be
represented by the same vector for all sentences. The word embeddings are trainable
so that in the backpropagation step the vector we

i representing a specific word i can
be changed. In total the number of trainable parameters in the word embedding is
k ·D, where k is the word embedding dimension and D is the size of our vocabulary.
When the word embeddings are trained their parameters have been found to change
so that words with similar meanings move closer to each other in the embedding
space. This property will help us in analyzing the sentences. Word embeddings also
serve as a way to reduce the dimensionality of the space of tokens in the vocabulary.

We now have represented our sentence as a list of vectors, which effectively
is a matrix. We denote this representation x ∈ Rn×k (for simplicity we let this
representation keep the same notation as before), where n is the number of words
in the sentence and k is the dimensionality of the word embeddings. We want all
matrix representations to be of equal size, so sentences of varying length will either
be truncated or padded to the length n.

2.2 Convolutional filters
We want to find patterns in the matrix representation x ∈ Rn×k of our sentence
that can convey information on which class y it belongs to. Since words can mean
different things when surrounded by different words we do not want to look at single
words, but rather groups of words. We create a convolutional filter with a weight
matrix and a bias term:

wf ∈ Rh×k, bf ∈ R,
where h is the filters window size. We want to use this filter to consider h consecutive
words in our matrix representation of the sentence. Features ci are extracted from
our sentence by applying:

ci = g

 h∑
j=1

k∑
l=1

xi+j−1,l · wf
j,l + bf

 ,

here g is a non-linear function. In this thesis a rectified linear unit is used:

g(x) =

x if x > 0,
0 otherwise.

8

2. Sentence classification with convolutional neural networks

Since words with similar meanings will be trained to have word embeddings that
are similar to each other the extracted feature ci can be expected to be similar when
applied to chunks of sentences with similar meanings. If we continuously apply the
filter ci to all possible consecutive sequences of words for a sentence we get a feature
map:

c = [c1, c2, . . . , cn−h+1]T ∈ Rn−h+1.

This feature map represents how much of the pattern detected by the filter defined by
wf and bf can be found in different parts of the sentence. If we want our algorithm
to detect different kinds of patterns in our sentence we can create many different
filters. They can have different window sizes to detect patterns of different size.
Each filter should have its own trainable parameters wf and bf . The total amount
of trainable parameters introduced in the convolution step equals:

m∑
i=1

(hik + 1),

where hi is the window size for filter i out of m filters.

2.3 Max-over-time pooling
When classifying sentences there, to some degree, exists translational-invariance (or
time-ivariance). If you for example want to decide if a movie review is positive or
negative, it does not matter if you read "I loved this movie" as first or last statement
in the movie review, the meaning will be the same. With this in mind it is natural
to only consider the most prominent feature found by each filter in the convolutional
step. If the filter that has been tuned to detect "I loved this movie" finds a similar
pattern in one part of the sentence it is of marginal value to know how similar all
other chunks of the sentence were to that pattern. To only consider the pattern most
similar to the filter we have applied is called max-over-time pooling. Mathematically
we express this as that we take the maximum value of the vector c belonging to a
specific filter:

ĉ = max(c)

2.4 Fully connected layer and softmax
Finally we want to synthesize the information in the features extracted by the convo-
lution and max-over-time pooling layer. The features extracted by the convolution
layer are concatenated in the vector z as:

z = [ĉ1, ĉ2, . . . , ĉm]T ∈ Rm,

where m is the number of different filters we have used. To transform this vector
into output values we use the output layer weights:

wo ∈ R2×m, bo ∈ R2,

9

2. Sentence classification with convolutional neural networks

where we have used 2 since we do binary classification. The number of trainable
parameters in this final step is 2 · (m+ 1).

We multiply the feature vector with the output weights and add the bias to
obtain the vector of output values y as:

y = wo · z + bo.

The values in y here represents how much the algorithm believes the input example
x belongs to a specific class. A more easily interpretable measure would be the
probability that the it belongs to the class. We can transform the value into a
probability by using the softmax function:

p(y = yi) = eyi∑
j e

yj
.

We have now reached a point where we have an algorithmic and mathematical
representation of p(y|x,w) where w are all the trainable parameters, or weights,
in the model. We will denote this neural network model as fw(y|x). The next
step is how we can modify the weights w so that this algorithmic representation
approximates the true distribution p(y|x).

2.5 Cost function and backpropagation
To train our neural network we use the cross entropy, as defined earlier:

LS(fw) = − 1
N

∑
(xi,yi)∈S

log fw(yi|xi), (1.3)

where S is the training data set that we have available. A lower value of the cost
function LS(fw) equals a better fit of our parameters w to the data set S. If there
are large imbalances in the number of examples of the different classes in S there is
a risk that the neural network only will learn the distribution between the classes
in S. To make sure that this does not happen we can add a class-specific weight cy

to the cost function (1.3) as:

LS(fw) = − 1
N

∑
(xi,yi)∈S

cyi
log fw(yi|xi). (2.1)

The value of cy is defined as:

cy =
∑

y Ny

2Ny

,

where Ny represents the number of examples of class y in the training data. The 2
in the denominator is used to make E[cj] = 1.

Minimizing our cost function is difficult since it is non-convex. However when
optimizing neural networks it is often good enough to find a local minimum. To find
a local minimum in a neural network it is common to use the gradient of the cost
function. The gradient is defined as:

∇LS(fw) =
[
∂LS(fw)
w1

,
∂LS(fw)
w2

, . . . ,
∂LS(fw)
wn

]T

.

10

2. Sentence classification with convolutional neural networks

To find the derivative of LS(fw) in all directions of w we use backpropagation.
The idea is to use the chain-rule to expand an arbitrarily complex function into
atomic parts which are easy to differentiate and then multiply these parts together.
If we for example have the function f(g(w)) we could find the the derivative ∂f

wi
as:

∂f

wi

= ∂f

∂g

∂g

∂wi

.

An interesting property with backpropagation is that to calculate the derivative
in different directions i we only have calculate ∂g

∂wi
in each direction, it suffices to

calculate ∂f
∂g

once. This leads to that it is efficient to calculate the gradient in all
directions of w.

When we have found the gradient there are many different ways for how to do
the optimization, the most simple way is by gradient descent, in this report however
we use a variant of that called Adam [5].

2.6 Early stopping and regularization
One major risk with our training procedure is that the model learns to represent
the distribution in our training set Strain well but does not generalize well to the real
data distribution D of x and y. When this happens we say that the model overfits.
To stop this from happening we use a validation set Sval separated from the training
set Strain. On the validation set we continuously evaluate the cross entropy but we
do not use it for training. When the cross entropy starts to increase on Sval we can
conclude that the model is overfitting and we stop training it at that point. We call
this procedure for early stopping.

Besides doing early stopping we can also avoid overfitting by regularizing the
network. We will in this thesis use two regularization techniques: dropout and l2-
regularization. Applying dropout to a layer means to multiply each node in that
layer with a random variable Rd (drawn independently for each node) defined as:

Rd =

1/Pd with probability Pd,

0 with probability 1− Pd,

where Pd is the probability of keeping each node. The nodes that are kept are
multiplied with 1/Pd to ensure that E[Rd] = 1, this to avoid introducing any scaling
of the signal. Dropout is applied to the layer that we get as output from the max-
over-time pooling layer. In reality we as input to the fully connected layer thus
use:

ĉd
i = Rd,i · ĉi.

Dropout is only used at training time and not when we evaluate the performance
on the validation set or use the model to do predictions. Intuitively dropout can be
understood as that we restrict the model to only have a subset of the convolutional
filters available at training time. If it can only access a random subset of feature
extracting convolutional filters at training time the classification of an example has

11

2. Sentence classification with convolutional neural networks

to depend on many different filters. Consequently we avoid creating features that
are highly specialized to just some specific examples which would lead to overfitting.

l2-regularization is applied as an extra penalty to the cost function that penal-
izes large weights. The full cost function after l2-regularization is:

C(w) = LS(fw) + λ
1
2 ||w

o||22,

where we have applied the penalty to the output weights wo, and λ is a penalty
parameter that we use to decide how much we should penalize large weights. We use
1
2 to get λwo when differentiating the l2-penalty with respect to wo, which is a nice
and intuitive form. This cost term effectively pulls the gradient in the direction of
the origin, and weights further out will be pulled harder. The l2-regularization can
be interpreted as that we do not want any single feature to be too dominant when
deciding the class of examples. Each time the training algorithm does not find a spe-
cific convolutional filter useful it will pull the corresponding weights slightly towards
zero. As for dropout this will create filters that are general and applicable to many
different examples. It should be noted that in [4] they instead of l2-regularization
use a different approach to avoid too large values of wo.

12

3
Active learning

In this chapter a brief overview of active learning is given, as it plays a central role
in the algorithm proposed in chapter 4. For a more thorough discussion of active
learning see [3]. Active learning in its most distilled form only considers one oracle,
which always supplies the correct label. The problem can be stated as: We want to
create a data set by sampling x from X distributed as U and assigning labels y to
some of them by querying the oracle, so that we can reach as good performance on fw
as possible with as few queries to the oracle as possible. We want the performance of
fw to improve as quickly as possible with the number of queries made to the oracle.

3.1 Learning by random sampling

Figure 3.1: Flowchart describing the random sampling procedure to construct a
training data set for the classifier. Lines represent: single data points (dashed),
data set (solid). Boxes represent: data sets and distributions (cylinder), classifier
(square, sharp edges), algorithm (square, rounded edges), labeling oracle (ellipse).

If we disregard the cost of asking the oracle and only care about the final
performance of our classifier fw we could sample U randomly and ask for the labels
of all the examples. In figure 3.1 we can see a flowchart of how this would be done.
From the input space X we randomly choose samples x according to U which we
then pass along to our oracle that label according to p(y|x). We put the example x

13

3. Active learning

and its corresponding label y in our training data set. Finally, this training data set
is used when training our classifier fw. When the classifier is trained we measure its
performance on some separate data set, if its performing well enough we are done.
If not we continue the sampling procedure as in the flowchart until the classifier
performs well enough.

The random sampling algorithm above works well for problems were little data
is needed and/or the labeling procedure is cheap. In most real-world applications
however that is not the case. One example when random sampling does not work
well is when for most of the examples x it is easy to predict their label y, and only
for a tiny fraction of the examples distributed as U the prediction is difficult. For
the classifier to be able to learn these difficult examples one would have to sample
and label so many examples x from U such that enough examples from the tiny
fraction of examples that are difficult are present in the training data set. This
leads to many label queries to the oracle which can be expensive.

3.2 Active learning

Figure 3.2: Flowchart describing the active learning algorithm. Lines represent:
single data points (dashed), data set (solid), classifier predictions (dotted). Boxes
represent: data sets and distributions (cylinder), classifier (square, sharp edges),
algorithm (square, rounded edges), labeling oracle (ellipse).

The idea behind active learning is to choose as difficult examples as possible, as
they probably contain information that is more valuable to the classifier. In figure
3.2 we can see a simple flowchart describing a simple active learning procedure.
Instead of just randomly sample examples from the input distribution U we let the
classifier fw assign probabilities of them belonging to the different classes Y . We
then choose the examples which the classifier is most uncertain of. In the case of
binary classification being uncertain of an example x means to have a low value of
|fw(x)− 0.5|. In algorithm 1 we see a description of this process. If U is infinite it

14

3. Active learning

Algorithm 1 Active learning algorithm (for binary classification) AL(U, fw, n)
1: Input: distribution of unlabeled samples U , classifier fw, number of samples to

query n
2: Sort x ∈ U after |fw(x)− 0.5| in ascending order
3: Q← {the n first examples x from the sorted list}
4: return Q

is not feasible to sort all x ∈ U . In that case we would use some sampled subset of
U . An alternative is to accept points for which fw(x) lies in some interval around
0.5.

Instead of randomly sampling U we say that we sample from the decision bound-
ary of fw. Consequently the distribution over examples in the training data set and
the input space will differ. The difference is that the training data set is more heav-
ily concentrated around difficult regions of X , for which the classifier needs more
examples to learn.

Now we return to the example discussed above, where just a tiny fraction of
the input distribution U are difficult. We ask ourselves how the active learning
algorithm would sample data in this case? In the beginning all examples in U would
be close to the decision boundary of the classifier as it has no training set to train
on. Therefore it would choose example from all over U . Quite quickly though it
would learn how to predict these easy examples and it would assign them high
probability of belonging to one of the classes. However, the classifier would continue
to struggle with the tiny subset of difficult examples, and it would not assign them
high probabilities of belonging to either class. The active learning algorithm would
thus be able to cherry-pick these examples and pass them along to the oracle to let
them form part of the training set.

When constructing the data set ideally one would pick and label one example
from X , add it to the training data set, retrain the classifier and then repeat the
procedure. This is in practice not a feasible approach since all those steps takes
time. In practice active learning is done batch-wise. This means that instead of just
choosing one new example each iteration a batch of new examples are chosen from
X , labeled, and added to the training data set.

Above the simplest available active learning version was introduced. This is
the method that will be used in this thesis and that forms a part of the algorithm
introduced in section 4. There are more advanced and theoretically complicated
versions. An introductory overview can be found in [3]. One algorithm they discuss
is called "Query by Committee". This algorithm maintains a set of classifiers which
are trained on the training data set. After training they will reach slightly different
minima. Therefore they will also make predictions that differ. Examples for which
the classifiers disagree about which label it should be given are chosen for labeling
by the strong oracle and then added to the training data set. In [1] active learning
is discussed from a more theoretical approach.

15

3. Active learning

16

4
Bi-oracle learning algorithm

This chapter will introduce the algorithm developed in this thesis to solve the active
learning problem from section 1.4. We will refer to this algorithm as bi-oracle
learning algorithm. First an overview over the algorithm will be given. After that
the design of the different core parts of the algorithm will be detailed.

4.1 Overview of the algorithm
To make fw learn how to classify the examples correctly we have to label enough
examples of x. The choice of examples to label does not necessarily have to be
distributed according to U . A more efficient way of choosing examples to label can
be achieved through active learning as described in chapter 3. In this report active
learning will be done simply by sampling from the decision boundary of fw.

Since the weak oracle W is not uniformly noisy but rather have different prob-
abilities of being correct in different regions we can describe this behaviour with the
distribution p(y = yW |x). In this thesis we assume that the cost of querying the
weak oracle is zero. We can then query the weak oracle for the labels to all examples,
thus yW will always be available. Therefore we will condition the distribution above
also on yW , and we obtain:

p(y = yW |x, yW). (4.1)

We will train a separate classifier to learn this distribution, or in other words to
predict whether the weak and strong oracles agree. We will denote this agreement
classifier as fag

θ , where θ are trainable weights. We want to train this classifier to a
high similarity with the distribution in (4.1) so that fag

θ ≈ p(y = yW |x, yW).
A key idea in the proposed algorithm (shared with [11]) is that if we manage

to achieve a good approximation fag
θ ≈ p(y = yW |x, yW) we can use this classifier

to predict whether a label provided by the weak oracle have a high probability
of coinciding with the true label or not. If they have a high probability of being
equal (i.e. p(y = yW |x, yW) ≈ 1) we do not have to ask the strong oracle for the
label. When we are uncertain about whether they are equal or not (i.e. p(y =
yW |x, yW) ≈ 0.5) we have not got enough faith in the label provided by the weak
oracle and we will have to ask the strong oracle for the label of that example. A
third possibility where p(y = yW |x, yW) ≈ 0 exists. This means that the labels
differs with high probability, in this case we can assign the opposite label of what
the weak oracle suggested. Whether this last case will occur or not in real-world
problems is questionable. It effectively means that we have a weak oracle that for
some regions of the input space X always are wrong about the label. However, as

17

4. Bi-oracle learning algorithm

Algorithm 2 Bi-oracle learning algorithm
1: Input: distribution of unlabeled samples U , strong oracle S, weak oracle W ,

main classifier fw, agreement classifier fag
θ , number of samples to query nt,

share of examples to put in the validation set sv and desired share of correct
labels sc in the train set.

2: Let t← 0, Strain ← ∅ and Sval ← ∅
3: repeat
4: Qt ← AL(U, fw, nt) . see algorithm 1
5: Randomly split Qt into Qval,t and Qtrain,t according to sv

6: Let Sval ← Sval ∪ {{x, yS, yW} ∀x ∈ Qval,t} by querying S and W
7: Choose the trust-threshold T ← T (sc, f

ag
θ ,Sval) . see section 4.2

8: Let Strain ← Strain ∪ {{x, yW} ∀x ∈ Qtrain,t} by querying W
9: for each x ∈ Strain do
10: if yS|x ∈ Strain then
11: Continue
12: else if fag

θ (y = yW |x, yW) > T then
13: Let Strain ← Strain ∪ yS′ = yW |x
14: else if fag

θ (y 6= yW |x, yW) > T then
15: Let Strain ← Strain ∪ yS′ = ¬yW |x
16: else
17: Let Strain ← Strain ∪ yS|x by querying S
18: end if
19: end for
20: Train fw on {yS,x}∪{yS′ ,x} using Strain for training and Sval for supervision
21: Train fag

θ on {yS = yW ,x} using Strain for training and Sval for supervision
22: Calculate performance metrics
23: t← t+ 1
24: until Performance is good enough
25: return Main classifier fw, train set Strain and val set Sval

we will see it is natural to include the possibility of this case in our algorithm so
therefore we will do that.

The main algorithm is outlined in Algorithm 2 and visualized in figure 4.1. As
input it takes the distribution U over the input space X from which we can sample
unlabeled examples, the strong and the weak oracles S and W , the main classifier
fw that we want to achieve a high accuracy on predicting p(y|x), and the agreement
classifier fag

θ described above. There are also three settings that the user have to
choose: nt which is the number of samples to query at time step t, the share of
samples to be put in the validation set, sv, and the desired share of correct labels in
the training set, sc. In section 4.2 we present the motivation behind sc and how it
is used.

For each iteration through the algorithm it first chooses a set Qt of new exam-
ples. This is done through some active learning method. In this report it is simply
done by choosing the examples which the main classifier fw is most uncertain how
to label. It then proceeds to split up this set of previously unseen examples between

18

4. Bi-oracle learning algorithm

the validation set and the training set. For all the examples in the validation set,
the algorithm queries both the strong and weak oracle. Next, the algorithm chooses
a trust threshold, T . The trust threshold reflects for what levels of confidence we
should trust our agreement classifier. How this is chosen is discussed in section 4.2.

Figure 4.1: Flowchart describing a simplified version the proposed algorithm. The
path of the examples in the validation set it not included. The details regarding sc

and T are left out. Lines represent: batches of data (dashed), access to data sets
and distributions (solid), classifier predictions (dotted). Boxes represent: data sets
and distributions (cylinder), classifiers (square, sharp edges), decision algorithms
(square, rounded edges), labeling oracles (ellipse).

Having chosen a trust threshold, T , for our agreement classifier we now proceed
to process the the training set. This is done on lines 8-19. First all new examples are
added, but only the weak oracle is queried about their label. When this has been
done, the examples for which the agreement classifier is certain enough is either
correctly labeled or incorrectly labeled by the weak oracle are temporarily labeled
as either yS′ = yW or yS′ = ¬yW respectively. We can see here that it is easy to
include the second case, where the agreement classifier is certain the label from the
weak oracle is incorrect. The examples for which the agreement classifier is uncertain
the strong oracle is queried and their true labels yS are stored.

Next step is to retrain the two classifiers on the training set. This is done on
line 20 and 21. The agreement classifier is trained only on the subset of examples
for which we have queried the strong oracle. The process will be described more
in detail in section 4.3. The main classifier on the other hand is trained on all
x ∈ Strain. The examples for which yS is unknown we use yS′ as a substitute. How
to define this cost function when training the main classifier is discussed in section
4.4.

Finally some performance metrics, such as the cross entropy and accuracy are
evaluated. This should be calculated using a data set separate from the rest of the
algorithm.

19

4. Bi-oracle learning algorithm

4.2 Controlling the error in the data
We want to be able to avoid querying the strong oracle when possible but at the
same time maintain a training data set that does not contain too many errors. If
our training data set contains too many errors our main classifier will learn a poor
representation of the true decision boundary and will not achieve good performance.
To prevent this from happening we want to be able to control the share of examples
that are labeled correctly in the training data set, we call this sc.

Given the total size of our training set, |Strain|, and sc we can calculate how
many erroneous labels we can afford as:

E = (1− sc)|Strain|. (4.2)

For the examples which the agreement classifier is more certain belongs to any of
the two classes than T the strong oracle will not be queried. This will introduce
errors in the training data set. The number of errors introduced can be estimated
as: ∑

{x∈Strain : p(yS′ =yS |x)>T}
E[p(yS′ 6= yS|x)].

Since we wanted the total number of errors to be smaller than E we can combine
the two previous equations to:∑

{x∈Strain : p(yS′ =yS |x)>T}
E[p(yS′ 6= yS|x)] < (1− sc)|Strain|. (4.3)

Now we can choose a T as large as possible without violating the inequality.
Now we have to find a way to calculate the left hand side of equation (4.3) in

practice. A naive approach would be to use the approximation p(y = yW |x, yW) ≈
fag
θ . p(y = yW |x, yW) can then easily be remapped to p(yS′ = yS|x) and p(yS′ 6=
yS|x). However, while this approach might seem plausible in theory it turns out
that in practice it does not work. In practice the value of the agreement classifier is
a bad approximation of the probability p(yW = yS|x, yW), as we will see in section
6.2.

We also have a validation set with samples distributed just as the training set
but with both the labels y and yW assigned. A possibility is to use this set to
obtain T given a fixed sc on the validation set. We create a hypothetical training
set of the data in the validation set. Then we go through all the examples in this
hypothetical training set, starting with the ones the agreement classifier is most
certain about. This can be done by passing all the examples to fag

θ and sorting
them. For each example that the weak and strong label differs we increment the
counter of the numbers of hypothetical errors. When we hit the critical point of
(1− sc)|Sval| number of errors we stop and choose the value of fag

θ for that example
to be our trust threshold, T . All the examples the agreement classifier is less certain
about are assigned correct strong labels in this hypothetical training set and will
thus not be processed at the next iteration when it is time to choose a new trust
threshold. Because Sval and Strain are sampled identically we will get similar values
of sc when calculated like this for the validation set. In conclusion we will in reality
not keep sc fixed on the training set, but rather sc on the validation set. However,

20

4. Bi-oracle learning algorithm

they will be sufficiently close to each other. When looking at the results in section
6.2 we will see that this method works very well in practice.

We are now able to control sc, which is the share of labels used in training the
main classifier that are correct. A high value of sc should lead to a conservative
algorithm that avoids errors in the training data set. A lower value of sc should
lead to a more aggressive algorithm that exploits the availability of the weak oracle
to a larger extent but will also lead to more errors in the training data set. This
parameter can of course be changed as the learning process proceeds.

4.3 Agreement classifier
The agreement classifier plays a central role in the algorithm. To train it we use
all examples for which we have queried the strong label. The examples that end
up in the training set of the agreement classifier are those which both the main
classifier and agreement classifier are uncertain about. This could be understood
as that we implicitly do active learning of the agreement classifier, but only on the
parts of the input space which are relevant for the main classifier. Because of this,
the distribution of the training set for the agreement classifier differs from that of
the main classifier. Their validation sets on the other hand are the same.

The purpose of the agreement classifier is to predict whether the weak and
strong oracle will provide the same label for a given example or not. To perform
this prediction the agreement classifier can use two types of information: the example
x, and the label predicted by the weak oracle yW . Remember that we conditioned
the probability of agreement on both x and yW in equation (4.1) to allow for this.
This leads us to that we could write the classifier as fag

θ (x, yW), however we will
mostly continue to use fag

θ for simplicity.
In the following two subsections we will discuss why it is important to feed

the classifier both with the information obtained through x and through yW . This
discussion will be based on two different types of characteristics that a weak oracle
can have. Most weak oracles will of course rather have a combination of these than
being clear-cut cases.

4.3.1 High accuracy on parts of the input space
One characteristic that a weak oracle can have is to be expert on a particular region
of the input space, where it knows how to classify the examples. Formally this means
that p(y|x) ≈ p(yW |x) when x ∈ XW ⊂ X . On other parts of the input space it
does not know how to classify the examples and therefore p(y|x) 6= p(yW |x) when
x /∈ XW ⊂ X . If the weak oracle is a rule-based system it will have these properties
if it has been configured very well to a particular problem (either intentionally or
unintentionally). In this case the new classifier seeks to replace that rule-based
system but also be able to solve other problems. One example would be a credit
fraud detection system fine-tuned on one specific type of cardholder, say females
aged 25-35, whereas the new machine learning method should work for all types of
customers.

21

4. Bi-oracle learning algorithm

For weak oracles with these property the task of the agreement classifier is
to detect when a new sample, x, is inside the region XW where the weak oracle
is certain. In the example above, just a simple classifier relying on whether the
cardholder x falls in that specific category would of course suffice. However, in
many cases the weak oracle has been built organically over a long time period and
it is hard to tell on which parts of the input space it performs well and on which
parts it does not. This leads to the weak oracle being unintentionally rather than
intentionally configured to perform well on XW . This is the argument behind why
as agreement classifier use a classifier able to learn complex decision boundaries in
X .

4.3.2 High accuracy for some output class
A second type of trait that a weak oracle can have is that it has a high precision
on a particular class. So that if the weak oracle proposes that particular class we
can conclude that it is correct with high probability. The cost of false positives and
false negatives usually differs, and real-world rule-based systems to do prediction
are usually configured to avoid one of them. For example false positives is what
is avoided at Recorded Future; too many false positives would lead to its clients
getting spammed with unimportant data. In health care on the other hand false
negatives is what is costly, because you do not want to tell a patient she is healthy
if she in the end turns out to have terminal disease.

From this we can conclude that important information of the accuracy of the
weak oracle can be inherent in the label yW that the weak oracle produces. To take
advantage of this information only it would of course suffice with a simple classifier
only relying on yW . However important information regarding the accuracy of the
weak oracle might also be encoded in the sample x, which would be lost if the
classifier only took yW as input.

4.4 Cost function with soft labels
When training neural networks to do binary classification the cross entropy is com-
monly used as cost function. The cross entropy was defined in equation (1.3) as:

LS(fw) = − 1
N

∑
(xi,yi)∈S

log fw(yi|xi),

where S is the data set we use to evaluate it. At training time this cost is calculated
and the errors are backpropagated. The cost function can be extended to the case
where we have probabilities on the values of the examples. We start of with the
formal definition of the cross entropy from equation (1.2):

LD(fw) = −E(x,y)∼D[log fw(y|x)].

This can be written as:

LD(fw) = −
∫
X ,Y

pD(x, y) log fw(y|x) = −
∫
X ,Y

p(y|x)pU(x) log fw(y|x),

22

4. Bi-oracle learning algorithm

where we have used equation (1.1). If we have samples of xi distributed according
to S the loss over those examples can thus be evaluated as:

LS(fw) = −
∑

y

∑
xi∈S

p(y|xi) log fw(y|xi).

In the binary case where y only can take two values it can be easier to understand
the expanded expression:

LS(fw) = −
∑
xi∈S

[p(y = −1|xi) log fw(y = −1|xi) + p(y = +1|xi) log fw(y = +1|xi)] .

(4.4)
Applied to our problem we can for the examples where only yW is available use

the agreement classifier fag
θ to approximate p(y = yW |xi). With this approximation

we can use equation (4.4) to define the loss as:

LSS∪SW
(fw) = −

∑
(yi,xi)∈SS

log fw(yi|xi)

−
∑

(yi,xi)∈SW

[fag
θ (xi) log fw(yi|xi) + (1− fag

θ (xi)) log fw(¬yi|xi)]. (4.5)

In conclusion we now have two possibilities for calculating the cross entropy
when we train our classifier. Either we round off the values given by fag

θ and feed
the examples directly into equation (1.3), or we take the information given by fag

θ

into account and use equation (4.5) instead. Both possibilities are equal for the
examples where we have the strong label available, but they differ for the examples
where we only have the label from the weak oracle available.

4.5 Usage on finite input space
It is important to understand that this algorithm assumes the input space X to
be infinite. In almost all practical applications this is the case, but in lab settings
where a limited data set is used this is not the case (as for the results in this report
for examples). When the input space is not infinite the active learning algorithm
will sooner or later be forced to choose points which the main classifier is certain
about. This leads to a larger error budget through equation (4.2). At the same
time the new data points are added far from the decision boundary, and more errors
will be allowed close to the decision boundary. The consequence of this is that
the performance of the main classifier will decrease. This can however easily be
countered by at each iteration monitoring the cross entropy of the main classifier on
the old validation set Sval and the new examples in the validation set Qval,t. When
the cross entropy is lower on the latter we should start to increase the desired share
of labels correct in the training data, sc, instead of asking for new data points.

23

4. Bi-oracle learning algorithm

24

5
Method

In this chapter we will outline the experimental setup used to evaluate the algorithm
proposed in chapter 4.

5.1 Data set and preprocessing

To do the experiment we needed a labeled data set. AG’s corpus over news articles
was used1. The data set contains 496,835 news articles. Each news article contains
a title, a description, a category, a source and some other information. We used
four of these categories, Business was the category that our classifier should be
able to find, i.e. the class with positive label. The categories World, Sports and
Sci/Tech acted as negative examples. To do the prediction the classifier was given
the information in the description field, cases for which that field was empty were
discarded. Statistics for these four categories can be seen in table 5.1. Summarizing
the data set consisted of 239,014 examples of which 54,432 or 22.8% were positive.
It was important to have such a large data set. With a smaller data set it would
have been hard to discern the difference between number of queries made to the
strong oracle for the different algorithms.

Category Label No. of examples
Business +1 54,432
World −1 81,299
Sports −1 62,151
Sci/Tech −1 41,132

Table 5.1: Categories used from AG’s corpus.

For preprocessing BeautifulSoup was used to remove html tags that some of the
descriptions contained. All characters were put in lower case. Word tokenization
was made with the toolkit NLTK [2]. Finally all descriptions that were longer than
60 tokens were truncated to that length.

1The data set was downloaded from http://www.di.unipi.it/~gulli/AG_corpus_of_news_
articles.html

25

http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

5. Method

5.2 Paremeter settings for convolutional neural
network

As main classifier the architecture described in section 2 was implemented. Pa-
rameters were chosen to be as in [4] since they worked well. The word-embedding
dimension was set to k = 128, and initialized by sampling a uniform random vari-
able on the range (−0.1, 0.1). Filter sizes h = 3, 4 and 5 with 100 different filters
each were used. For regularization we set the dropout probability to Pd = 0.5 and
the l2-regularization parameter to λ = 3. A mini-batch size of 50 was used. The
performance of the classifier was evaluated against the validation set once every 50
iterations. Whenever the cross entropy on the validation set had not decreased for
5 consecutive evaluations the training was interrupted, and the model with lowest
cross entropy for the validation set was saved.

5.3 Active learning method
Since there is a diminishing return in how much valuable information each example
contains when doing active learning it is more important with small batches early
on in the learning procedure. We also wanted to avoid using too large batches late
in the learning procedure due to time-constraints of how long time an experiment
reasonably could take. How many examples to include in a batch was calculated as:

max(1000, 0.75 · (|Strain|+ |Sval|), (5.1)
where |Strain| + |Sval| is the size of the training and validation set at that point. In
the case of bi-oracle learning the number of queries to the weak oracle was used
when evaluating |Strain| + |Sval|. The active learning schedule described here was,
besides a separate algorithm, also used in the bi-oracle learning algorithm.

To save time the neural network was trained from the point where it had been
stopped with early stopping on the latest batch. It then starts training from a point
where it ended up when training with less information than currently available. A
risk with this that early training procedures may end up in a local minimum which
will be difficult to escape later. To avoid this we, with 25% probability, retrained it
completely from scratch after each training procedure. When a complete retraining
had been done we chose the model which had lowest cross entropy on the validation
set.

5.4 Bi-oracle learning algorithm
When constructing the algorithm as described in section 4 many different parameter
settings were tried out in the development process. For the results presented in this
thesis if not specified explicitly the settings as described in this paragraph were used.
As cost function the most simple form of the cross entropy, as defined in equation
(1.3), was used:

LS(fw) = − 1
N

∑
(xi,yi)∈S

log fw(yi|xi).

26

5. Method

As described in section 4.5 we increased the parameter sc as the input space X was
depleted of difficult examples. Three different steps of increasingly high value of sc

were chosen as 0.95, 0.99 and 1 (in practice most of the times the algorithm took
the step from 0.95 to 0.99 and from 0.99 to 1 directly after one-another).

Next we describe how the convolutional neural network was configured to work
as agreement classifier. After that how the synthetic weak oracles that were inves-
tigated in this report were designed.

5.4.1 Design of agreement classifier

The agreement classifier used largely the same design and parameters as the main
classifier, but with one small but important tweak. Appended to the output from
the max-pooling layer was the weak label yW . Including this value makes the al-
gorithm able to take advantage of differing precision of the weak oracle between
the subclasses. The weights connecting this value to the output neurons were also
exempted from the l2-regularization. The reason behind this is that we want the
classifier to learn the precision of the weak oracle for the different classes completely
and are not worried about overfitting to the weak label.

Some of the experiments performed are designed so that it in the data exists
a high imbalance between the number of examples for which the strong and weak
oracles agree or disagree. Therefore we used the modified cost function from equation
(2.1) when training the agreement classifier.

5.4.2 Random expert weak oracle

As discussed in section 4.3.2 a first hypothesis was that the algorithm would perform
well in conjunction with a weak oracle that has high precision on one class. In
this case the value of the label from the weak oracle yW would encode information
valuable for the agreement classifier to learn which examples the weak and strong
oracle often agree upon. The easiest imaginable weak oracle of this type is one
that knows the correct label for some random share of the data. A weak oracle like
this was constructed, we call it for random expert weak oracle (REWO). For the
examples it did not know the correct label it always answered with the negative
label −1. This lead to that it had a precision of 1.0 on the label +1. The recall on
label +1 could be controlled.

Whether this weak oracle knows the correct label or not is completely indepen-
dent of the example x. It has an equally large probability of knowing the correct
label close to the decision boundary as far from the decision boundary. This al-
lows the algorithm to leverage the weak oracle both early on and late in the active
learning process. However since it only got valuable information through yW it also
probably made the task a bit more difficult for the agreement classifier used in this
report since its architecture is not constructed with this structure of the data in
mind.

27

5. Method

Weak oracle Information from x Information from yW

REWO X
CEWO X X
CEWOr X

Table 5.2: Overview over the three types of weak oracles studied and where the
agreement classifier will get the information needed to learn when used with them.

5.4.3 Category expert weak oracle
The next step is to include the information provided in the example x as motivated
in section 4.3.1. To do this a another weak oracle was constructed, which we call
category expert weak oracle (CEWO). Instead of knowing the correct label for some
random share of the data this weak oracle knows the correct label for each example
x that contains one of a specified set of words, Wcorrect. If the sentence does not
contain any of those words the weak oracle always provides the negative label −1.

Theoretically this weak oracle should provide more information to the agree-
ment classifier than the category expert weak oracle. If one of the words in Wcorrect
is included in x the agreement classifier should be able to predict agreement in both
the cases when yW = +1 and when yW = −1. This in contrast with the random
expert weak oracle for which the agreement classifier only is promised agreement
when yW = +1. Furthermore the architecture of the agreement classifier used is con-
structed with this structure of the data in mind, where the information is contained
in x. It is however not designed for data where the information is contained in a
single word in x, but rather in groups of words through the use of convolutional win-
dows. But since the algorithm turned out to work well even when the window sizes
were 3, 4 and 5 as described in section 5.2 this was not changed. Wcorrect contained
business related words and thus p(x ∈ Wcorrect|y = +1) > p(x ∈ Wcorrect|y = −1).

We will also introduce a variant of this weak oracle, one which when an example
does not contain any of the words specified in Wcorrect assigns a random label. The
probability of a specific label being assigned was equal to the share of that class in
the data. We call this weak oracle for CEWOr, where r stands for random. When
the agreement classifier is used with this type of weak oracle the relevant information
will be contained in x, and the information from yW will not be very useful as the
precision on the two classes will be low.

In table 5.2 we see an overview over the three types of weak oracles introduced
which will be used to generate results. The CEWO weak oracle should be the most
useful one, since it provides information both in the form of x and yW , whereas the
other two only provides information through one of those two variables.

For all three weak oracle that have been introduced we have assumed perfect
labeling on some subset of the data. Whenever the REWO proposed the label
yW = +1 the true label was also always +1. And when an example x contained a
word from Wcorrect the CEWO and CEWOr always supplied the correct label. The
assumption that given some condition on the example x and the weak label yw one
can be sure that the answer always is correct is very strong. To test what happens
when this assumption is loosened the CEWO was modified so that one could choose
the probability of it responding with the correct label given that x contained some

28

5. Method

word from Wcorrect.

5.5 Experimental design and visualization
Most experiments described in the results have been generated using 10-fold cross-
validation. 90% of the data for each fold were used as the input space X in the
algorithm. The algorithms had this X available to sample from in the active learning
process. The algorithms had to subdivide the chosen examples into both a training
set and a validation set and assign them labels according to the algorithm. The test
set, Stest, which consisted of 10% of the data for each fold, was used for generating
results presented in section 6. Besides for generating results for later inspection
the algorithm never used any information from Stest. As validation set we for all
algorithms randomly picked 10% of the data chosen in each active learning batch
(i.e. sv = 0.1 in algorithm 2).

Since the goal as stated in the beginning of the thesis is to reach a good per-
formance on some metric with as few queries to the strong oracle as possible the
results are most easily visualized as a graph with number of queries to the strong
oracle on the x-axis and performance for the chosen metric on the y-axis. To do
these types of visualizations the relevant metrics were evaluated after each batch
and subsequent training of the classifiers. Furthermore these values were calculated
as mean values over the 10-fold cross-validation. Standard errors of the mean were
also calculated and are in the figures in section 6 visualized as dashed lines at a
distance of one standard error of the mean from the main line. For the bi-oracle
learning algorithm the amount of queries to the strong oracle made after a specific
batch varies between different runs since it is dependent on how much the agreement
classifier has learned up until that point. This becomes a problem when calculating
the averages since we instead of getting multiple values on the y-axis for a specific
value on the x-axis will get both different values for the y- and x-axis. To overcome
this we did linear interpolation between each two consecutive batches for a specific
run. For each value on the x-axis we could now calculate the mean and standard
error over all the runs even though all of them did not have a value measured at
that specific point.

29

5. Method

30

6
Results

This chapter contains the results generated with the experimental setup described
in chapter 5. The first section presents results from standard active learning. In
the second section metrics from a single run with the bi-oracle learning algorithm
is presented and analyzed. The remaining sections compare the performance of the
bi-oracle learning algorithm for some different specifications of the weak oracle.

6.1 Active learning

In figure 6.1 we can see how the cross entropy and accuracy changes for our classifier
when we either use active learning to choose new examples to label or when we choose
new examples randomly. The black line labeled All at once is there for reference and
shows the value reached when the classifier immediately was trained on all training
examples. The figure has been generated by doing a cross-validation of ten runs for
each method, the dashed lines are placed at one standard error of the mean away
from the main line.

As we can see it is more efficient to do active learning than to just randomly
choose new samples to label. The difference is more notable for accuracy than it is for
cross entropy. We can also note that the active learning algorithm actually reaches a
better final value than what was reached when we trained with all examples at once
or when the algorithm chose new examples randomly. This is counter intuitive since
the algorithms at this stage should have exactly the same training data available.
The explanation behind this result lies in the experimental design. In all cases we
use early stopping on a separate validation set. Since the two algorithms that are
continuously fed with more and more data restarts training from the up until that
best point after each new batch of data they have more chances of escaping local
minima. Therefore they can be expected to reach better performance. But why
does then the active learning algorithm and the algorithm that chooses examples
randomly differ so much in the end? The reason behind this is probably that the
algorithm that randomly chooses data will get many relevant examples late in the
training procedure. Consequently it will not have as many chances to train with all
the relevant data as the active learning algorithm, which early on will have most of
the important examples available.

31

6. Results

0 50,000 100,000 150,000 200,000 250,000
Number of queries

0.15

0.20

0.25

0.30

0.35

0.40
C
ro
ss

 e
nt
ro
py

All at once
Randomly chosen data
Active learning

0 50,000 100,000 150,000 200,000 250,000
Number of queries

0.86

0.88

0.90

0.92

0.94

A
cc

ur
ac

y

All at once
Randomly chosen data
Active learning

Figure 6.1: Accuracy and Cross entropy after different amount of queried examples
for both an algorithm that chooses examples at random and examples chosen by
active learning. The black line is there for reference. Dashed lines are one standard
error of the mean away from the main line.

6.2 Bi-oracle learning algorithm

In figure 6.2 we can see some important metrics for one run with the bi-oracle
learning algorithm. This particular run was performed with a random expert weak
oracle as described in section 5.4.2 with precision of 1.0 and recall of 0.75 on class
y = +1. The x-axis in both figures describe how many queries to the strong oracle
the algorithm has performed up until that point. In the upper figure we see how the
cross entropy changes during the run for three different data sets: the test set, the
validation set (which the algorithm continously builds up through active learning),
and the latest batch added to this validation set. In the lower figure we see two
different types of values: three different measures of the share correctly labeled
examples sc, and also the trust threshold, T .

We can in the figure see some interesting signs of how the algorithm works. The
first thing one notices is that the data points arrive with longer and longer distance
between them. The reason behind this is that the batch size of queries to the weak
oracle is decided by the growing function in equation (5.1). What we measure on
the x-axis is the number of queries to the strong oracle, since that is somewhat

32

6. Results

0 50,000 100,000 150,000 200,000
Number of queries

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
C
ro
ss
 e
nt
ro
py

Cross entropy on Stest

Cross entropy on Sval

Cross entropy on Qval

0 50,000 100,000 150,000 200,000
Number of queries

0.5

0.6

0.7

0.8

0.9

1.0

S
ha

re
 c
or
re
ct
 &
 T
ru
st
 th

re
sh

ol
d

sc on Strain

Estimated sc on Strain

Hypothetical sc on Sval

T

Figure 6.2: Relevant metrics for the execution and evaluation of the bi-oracle
learning algorithm for one run with a weak oracle as described in section 5.4.2
with precision of 1.0 and recall 0.75 for class y = +1. The upper figure shows the
cross entropy on the test set, the validation set and the set of new examples to the
validation set. The lower figure shows the share correctly labeled examples on the
training set, an estimation of that, and that share on a hypothetical training set
formed by the validation set. It also shows the trust threshold, T , of the algorithm.

correlated with the number of queries to the weak oracle it will also be growing.
This is not always true since we do not expand our data set with new examples x
when increasing sc.

As described in sections 4.5 and 5.4 the algorithm will increase the desired sc

whenever we measure a better cross entropy on Qval (the new data points in the
validation set) than on the entire validation set Sval. This happens when the only
examples left in X are more easy to classify than the ones we have already chosen.
We can see this occurring in the upper figure after around 30,000 queries. The two
following steps we increase the desired sc which we see in the lower figure, the move
along the x-axis for these steps is only due to the algorithm querying the strong
oracle for some points in Strain, no new examples x are added.

In the lower part of figure 6.2 we see three curves for sc. The curve labeled sc

on Strain describes how large share of the labels y in our training data set that are
correct. This value would not be available in a real-world use case. To calculate

33

6. Results

it we need all the true labels for all examples in Strain, and the purpose of this
algorithm is avoid needing them all. However it is this value that we wish to control
somehow. As described in section 4.2 the approach to control it used here is by in
reality controlling sc on a hypothetical training set created with the validation set.
The value of this is visualized with the curve Hypothetical sc on Sval. By comparing
this curve with sc on Strain we see that this works well in practice, the two curves
are close to each other. An alternative solution is to assume that f ag

θ is a good
approximation of p(yW = y|x, yw) and use equation (4.3). The value obtained by
this approximation is showed as the curve Estimated sc on Strain. As we can see in
the figure this approximation does not seem to work well in practice. It for almost
all time steps overestimates the number of errors that we have in Strain, often by a
factor of two.

We can in the lower part of figure 6.2 also observe the trust threshold, T , which
is the value we control to maintain the hypothetical sc on Sval at the desired value.
All examples for which fag

θ (x, yw) > T or fag
θ (x, yw) < 1 − T the algorithm will

not ask the strong oracle for the corresponding label. This value fluctuates heavily
during the run of the algorithm, it starts close to 0.5, and then increases to finally
reach a value closer to 1.0 (ignoring the final dip).

One interesting thing to note when looking at how the cross entropy changes
over time for the three different data sets is how the improvement in them differs.
The cross entropy on the test set Stest decreases much more rapidly than on Sval.
The reason behind this is that the active learning procedure deliberately chooses as
difficult examples as possible from X when building the training and validation set.
Therefore, the cross entropy for most parts of the run will be worse on the validation
set Sval. In the end when all points in X have been queried the distribution of points
in Sval will be identical to the one in Stest and the cross entropy for those two sets
should converge to the same value, which we also see happen.

6.3 Random expert weak oracle

p(yW = y|y = +1) 0.5 0.75 0.95
Recall y = +1 0.5 0.75 0.95
Precision y = +1 1 1 1
Recall y = −1 1 1 1
Precision y = −1 0.87 0.93 0.99
Accuracy 0.9 0.95 0.99

Table 6.1: Recall, precision on the two classes and accuracy for the weak oracle
used to generate the results in figure 6.3.

Now we turn to the results achieved by using a random expert weak oracle as
described in section 5.4.2. This type of weak oracle knows the label for a random
subset of the examples, for the ones it does not know the label it will always answer
with the label −1. Thus it has a precision of 1.0 for the label +1, and a recall of

34

6. Results

0 25,000 50,000 75,000
Number of queries

0.15

0.20

0.25

0.30

0.35
C

ro
ss

 e
nt

ro
py

All at once
Active learning
REWO (0.95)
REWO (0.75)
REWO (0.5)

0 25,000 50,000 75,000
Number of queries

0.88

0.89

0.90

0.91

0.92

0.93

0.94

A
cc

ur
ac

y

All at once
Active learning
REWO (0.95)
REWO (0.75)
REWO (0.5)

Figure 6.3: Accuracy and cross entropy after different amount of queried examples
to the strong oracle for both the standard active learning algorithm and the bi-
oracle learning algorithm used with a REWO. The number in parenthesis is equal
to p(yW = y|y = +1) for that weak oracle.

1.0 for label −1. This weak oracle was used with three different levels of recall for
label +1. In table 6.1 we can see other relevant metrics for the weak oracle.

In figure 6.3 we can see the performance of the bi-oracle learner for these weak
oracles compared with the active learner. We can clearly see that the higher recall
the weak oracle has the better the algorithm performs, which is intuitive since the
weak oracle in that case has knowledge about more examples. Furthermore we see
that the gains are most significant in the beginning. The bi-oracle learning algorithm
differs most from the active learning algorithm early on, later the performance of
the two algorithms converge more and more. This is reasonable since when the
algorithm chooses to only ask the weak oracle some errors will be introduced in the
training data set. To achieve the last performance all errors need to be forced out
of the training set which requires many queries to the strong oracle and hinders us
from being able to leverage the weak oracle any more.

In the case where the recall is 0.95 the increase in performance is extremely
rapid. The reason behind this is that a recall this high leads to an almost perfect
classifier as we can see in table 6.1. By analyzing the numbers behind this graph we
found out that almost all queries made to the strong oracle up until the point where

35

6. Results

the cross entropy flattens out are made up of examples in the validation set. Thus
the bi-oracle learning algorithm in this case feels so certain about the performance
of the weak oracle that it does not ask the strong oracle for almost any examples in
the training set.

For the two other weak oracles, they also have high precision on class y = −1
and high accuracy as we can see in table 6.1. But for these weak oracles the precision
on class y = −1 is less than 0.95, which is the share correctly labeled examples, sc,
that we force our training set to have. Therefore the agreement classifier has to
learn a more difficult decision boundary in this case.

6.4 Category expert weak oracle

p(x ∈ Wcorrect|y = +1) 0.3 0.5
Recall y = +1 0.3 0.5
Precision y = +1 1 1
Recall y = −1 1 1
Precision y = −1 0.83 0.87
Accuracy 0.87 0.9

Table 6.2: Recall, precision on the two classes and accuracy for the weak oracle
used to generate the results in figure 6.4.

The second type of weak oracle that has been investigated in this thesis was
introduced in section 5.4.3. This weak oracle has perfect knowledge of the labels y
in some subspace of X defined as those examples that contain any of a given set
of words Wcorrect. For the examples which does not contain any of those words it
will always answer with label −1. As for the previous described weak oracle the
precision on class +1 will thus be 1.0 and the recall on class −1 will also be 1.0.
In table 6.2 we can see some metrics for this weak oracle for the two set of words
Wcorrect that were used in this thesis. The words in Wcorrect were chosen carefully to
achieve a weak oracle with similar classification properties as for the random expert
weak oracle used in section 6.3, to facilitate comparison between the two.

In figure 6.4 we can see the results obtained for the bi-oracle learning algorithm
with the category expert weak oracle. For both the weak oracle with a recall of 0.3
and 0.5 on the negative examples we can see that they perform better than when
doing standard active learning. With higher recall the algorithm was able to do less
queries to the strong oracle to reach a given performance. As for the previous weak
oracle we can in this experiment as well also notice that the effect decreases as we
allow for more and more queries to the strong oracle.

36

6. Results

0 25,000 50,000 75,000
Number of queries

0.15

0.20

0.25

0.30

0.35
C

ro
ss

 e
nt

ro
py

All at once
Active learning
CEWO (0.5)
CEWO (0.3)

0 25,000 50,000 75,000
Number of queries

0.88

0.89

0.90

0.91

0.92

0.93

0.94

A
cc

ur
ac

y

All at once
Active learning
CEWO (0.5)
CEWO (0.3)

Figure 6.4: Accuracy and cross entropy after different amount of queried examples
to the strong oracle for both the standard active learning algorithm and the bi-
oracle learning algorithm used with a CEWO. The number in parenthesis is equal
to p(x ∈ Wcorrect|y = +1) for that weak oracle.

p(x ∈ Wcorrect|y = +1) 0.3 0.5
Recall y = +1 0.46 0.61
Precision y = +1 0.38 0.49
Recall y = −1 0.78 0.81
Precision y = −1 0.83 0.88
Accuracy 0.73 0.79

Table 6.3: Recall, and precision on the two classes and accuracy for the CEWOr
used to generate the results in figure 6.5.

6.5 Category expert weak oracle with randomly
assigned unknown labels

A variant of the weak oracle presented in section 5.4.3 is the category expert weak
oracle with randomly assigned unknown labels (CEWOr). This weak oracle also
knows exactly how to assign labels when an example contains any one of a set of
words Wcorrect. However, when an example does not contain any of those words it

37

6. Results

0 25,000 50,000 75,000
Number of queries

0.15

0.20

0.25

0.30

0.35
C

ro
ss

 e
nt

ro
py

All at once
Active learning
CEWOr (0.5)
CEWOr (0.3)

0 25,000 50,000 75,000
Number of queries

0.88

0.89

0.90

0.91

0.92

0.93

0.94

A
cc

ur
ac

y

All at once
Active learning
CEWOr (0.5)
CEWOr (0.3)

Figure 6.5: Accuracy and cross entropy after different amount of queried examples
to the strong oracle for both the standard active learning algorithm and the bi-
oracle learning algorithm used with a CEWOr. The number in parenthesis is equal
to p(x ∈ Wcorrect|y = +1) for that weak oracle.

will assign the label randomly instead of always giving it a negative label. Thus it
will not have equally high precision as was the example for CEWO and REWO. In
table 6.3 we see some relevant metrics for the performance of this weak oracle. We
can see a big difference in performance between this weak oracle and the two other
weak oracles used. This weak oracle has much worse performance on all metrics
compared with the other types of weak oracles.

In figure 6.5 the results generated for this types of weak oracles are displayed.
We see that it is clearly possible for the bi-oracle learning algorithm to save on
queries to the strong oracle when used for this type of weak oracle. We can also see
that the weak oracle with p(x ∈ Wcorrect|y = +1) = 0.5 actually performed worse in
average than the active learning algorithm for parts of the curve. However at the
same place the standard error widens considerably so this is probably due to one or
two of the ten cross-validation runs taking an improbable path. That the agreement
classifier with the weak oracle p(x ∈ Wcorrect|y = +1) = 0.5 should be worse than
with p(x ∈ Wcorrect|y = +1) = 0.3 is not a possible explanation since Wcorrect for
the latter contains a subset of words of Wcorrect for the former.

38

6. Results

0 25,000 50,000 75,000
Number of queries

0.15

0.20

0.25

0.30

0.35
C
ro
ss

 e
nt
ro
py

All at once
Active learning
REWO (0.5)
CEWO (0.5)
CEWOr (0.5)

0 25,000 50,000 75,000
Number of queries

0.88

0.89

0.90

0.91

0.92

0.93

0.94

A
cc
ur
ac
y

All at once
Active learning
REWO (0.5)
CEWO (0.5)
CEWOr (0.5)

Figure 6.6: Comparison between three runs with the bi-oracle learning algorithm
with different types of weak oracles. The meaning of the value in the parenthesis
differs, but are as in figures 6.3, 6.4 and 6.5.

6.6 Comparing the different weak oracles
The results discussed in the previous three sections are generated on the same cross
validation splits to facilitate comparison. In figure 6.6 we plot a comparison between
bi-oracle algorithm running with a REWO, CEWO or CEWOr. They have all been
configured so that 50% of the examples belonging to class +1 should be easy for the
agreement classifier to learn.

Comparing the weak oracles we see that the CEWO performs best, which should
not be surprising since it obtains information through both x and yW as we can see
in table 5.2. For most parts of the curve it seems like CEWOr outperforms REWO,
even though it is a bit difficult to draw any clear conclusions since the CEWOr curve
has large standard error of the mean around 10,000 queries to the strong oracle.

6.7 Lowering precision of weak oracle
In this section we investigate what happens when we loosen the assumption that
the category expert weak oracle always will provide the correct label given that x

39

6. Results

0 25,000 50,000 75,000
Number of queries

0.15

0.20

0.25

0.30

0.35
C
ro
ss

 e
nt
ro
py

All at once
Active learning
CEWO (0.5,1.00)
CEWO (0.5,0.95)
CEWO (0.5,0.90)

0 25,000 50,000 75,000
Number of queries

0.88

0.89

0.90

0.91

0.92

0.93

0.94

A
cc

ur
ac

y

All at once
Active learning
CEWO (0.5,1.00)
CEWO (0.5,0.95)
CEWO (0.5,0.90)

Figure 6.7: Comparison between three runs with the bi-oracle learner algorithm
with different CEWO. The first value in the parenthesis equals p(x ∈ Wcorrect|y =
+1) and the second value equals p(yW = y|x ∈ Wcorrect).

contains any of the words in Wcorrect. We thus instead let the probability p(yW =
y|x ∈ Wcorrect) vary. We let this value be 1.0, 0.95 and 0.9. How this changes
the performance can be seen in table 6.4. The reason behind that the precision
on y = +1 decrease more rapidly than p(yW = y|x ∈ Wcorrect) should be the class
imbalance. Even though the words in Wcorrect are chosen to be such that they are
more frequent in the positive class there are much more negative examples in the
data set.

In figure 6.7 we plot the performance of the algorithm used with the CEWO
with settings as in table 6.4. We can see a visible decrease in performance even
as p(yW = y|x ∈ Wcorrect) only decreases slightly. The probability of a label being
correct given that the example is in the weak oracles expert region seems to influence
the performance of the algorithm much.

6.8 Cost function with soft labels

In section 4.4 an alternative cost function was introduced. It uses the prediction
made by the agreement classifier to supply soft labels on the examples for which

40

6. Results

p(x ∈ Wcorrect|y = +1) 0.5 0.5 0.5
p(yW = y|x ∈ Wcorrect) 0.9 0.95 1.0
Recall y = +1 0.45 0.47 0.5
Precision y = +1 0.89 0.94 1
Recall y = −1 0.98 0.99 1
Precision y = −1 0.86 0.86 0.87
Accuracy 0.87 0.88 0.9

Table 6.4: Recall, precision on the two classes and accuracy for the category expert
weak oracle used to generate the results in figure 6.7.

only a weak label exists. To test this cost function results were generated using a
category expert weak oracle with Wcorrect including 50% of the examples in class
+1. This is the same weak oracle that was used in section 6.4. In figure 6.8 we can
see how the algorithm behaves for this cost function compared with the standard
cost function with only hard labels. The soft label cost function was tested both
using a fixed value of sc, and thus varying T , as well as instead keeping T fixed to
0.7. We can see that using the soft label cost function in both cases leads to similar
performance as the hard label cost function.

41

6. Results

0 25,000 50,000 75,000
Number of queries

0.15

0.20

0.25

0.30

0.35

C
ro
ss

 e
nt
ro
py

All at once
Active learning
Hard labels
Soft labels using sc
Soft labels using T=0. 7

0 25,000 50,000 75,000
Number of queries

0.88

0.89

0.90

0.91

0.92

0.93

0.94

A
cc
ur
ac
y

All at once
Active learning
Hard labels
Soft labels using sc
Soft labels using T=0. 7

Figure 6.8: Comparison of the algorithm with different cost functions. Hard labels
means that the cost function in equation (1.3) was used, whereas for the two other bi-
oracle learning algorithm runs the cost function defined in equation (4.5) was used.
For Soft labels using sc, the algorithm was apart from the cost function unchanged,
for Soft labels using T = 0.7 a fixed trust threshold was used throughout the run.

42

7
Discussion

In this chapter the implications of the results presented in chapter 6 will be discussed
in a larger scope. First, the key features of our algorithm will be discussed and
motivated. The last two sections will discuss how it performs for the different
synthetical weak oracles and with what real-world weak oracles it can be expected
to work.

7.1 Structure of the algorithm
In the proposed algorithm a central parameter is the trust threshold, T . T decides
for what values of the agreement classifier we should trust the weak oracle. A first
approach for how to control the algorithm would be to set this parameter to some
fixed value. While this idea might seem natural it did not work well in practice. In
section 4.2 it was proposed that instead of using a fixed value of T we let it vary
as more examples becomes available in the training set. What is kept fixed then
instead is the share correctly labeled examples, sc, in the training set, or at least a
good approximation of that. By observing figure 6.2 we can see how much T varies
during the run. If we instead would have kept T fixed one can imagine that sc would
vary significantly during the run. There would be a risk of sc becoming dangerously
low.

As described in section 4.2 there exists some different possibilities for how to
control sc on the training set. One possibility is to approximate p(y = yW) with
fag
θ , another one is to let the validation set hypothetically play the role of the
training set. In this algorithm we have used the second alternative since the first
one did not work well in practice. The first one is believed to work poorly since the
approximation did not hold up in practice which we can see in figure 6.2. When we
use the second alternative we do not assume that agreement classifier can produce a
good approximation of p(y = yW), but merely that it can order the examples after
how much we should trust them. As we will see this is a much more reasonable
assumption, and makes for a robust algorithm.

It is worth diving deeper into why fag
θ has not been a good approximation of

p(y = yW). The theory suggests that a neural network if trained with a cross entropy
cost function is a good approximation of the probability of an example having a
specific label [8]. However [8] finds that this approximation only holds if sufficiently
many training examples exists. This is an assumption one cannot make in active
learning! If we have sufficiently many training examples there would be no need for
active learning. Furthermore when estimating sc we sum over the approximations

43

7. Discussion

(see equation (4.3)), this magnifies potential errors in the approximation of p(yW =
y). If the estimation of p(yW = y) is biased to low or high values, these errors will
be reinforced. This explains the large difference in figure 6.2 between the estimated
and real value of sc on Strain.

The proposed algorithm uses just one hyperparameter, which needs to be de-
cided when using it. This is the desired share correctly labeled examples in the
training set, sc. All the results in this report use an increasing value of sc of 0.95,
0.99 and finally 1.0 as the difficult examples are depleted from X in accordance with
section 4.5. Some experiments were made with different series of increasing values.
Nevertheless, none are presented amongst the results since the necessity of having a
series of increasing values of sc originates from the fact that X is finite, and this is
not something that would occur in a real-world application of the algorithm. When
X is infinite the active learning process leads to that examples closer and closer to
the decision boundary of the main task are added to the training set. Therefore
the errors in the training set allowed by sc ought to move closer and closer to the
decision boundary as well. This leads to the conclusion that the algorithm should
be robust to choices of sc in real-world applications. It is important to point out
that this is a speculative conclusion founded on intuition rather than results.

The proposed algorithm is heavily dependent on the availability of the validation
set Sval. The validation set is used at three different places in the algorithm: when
training the agreement classifier, when deciding the T given a desired sc, and when
training the main classifier. The prominent role of the validation set in the proposed
algorithm cannot be too emphasized.

In figure 6.8 we can see the soft label cost function (proposed in equation
(4.5)) tested with both a fixed sc and a fixed T . We cannot see any significant
difference between the performance of the algorithm with these settings or with the
soft label cost function. We can see that when we used the soft label cost function the
algorithm worked even when we used a fixed T . This is interesting and is something
that could be worth to investigate more in the future. From this we can conclude
that the approximation fag

θ ≈ p(y = yW) is not completely off. When we use the
approximation as a part of the soft label cost function we do not sum over it, as
we did when estimating sc in equation (4.3). That might be the reason why the
approximation works well when used in the soft label cost function.

7.2 Performance on different types of weak ora-
cles

As discussed in section 4.3 the information fed to the agreement classifier can arrive
through the example x and/or the weak label yW . Our algorithm have been tested
and worked on synthetic oracle that feed information through either one of those
channels, or through both.

The classification the agreement classifier had to make in these three examples
was easy, the decision boundaries were extremely simplified. Either it was just
to recognize the label of yW , or learning whether x contained a specific word or
not, or a combination. What was not studied in this report is for how difficult

44

7. Discussion

learning problems faced by the agreement classifier it is possible to successfully
use the algorithm. Studying this is hard since it is difficult to construct realistic
synthetic weak oracles. Nevertheless, by doing some reasoning we can come to some
conclusions. There has to exist some subspace Ω ⊂ (X ,Y) where it is more easy for
the agreement classifier to learn when the weak and strong oracle can be expected
to agree than what it is for the main classifier to learn p(y|x). If this is not the case
the main classifier will learn its task more quickly than what the agreement classifier
learns for which examples it can skip querying the strong oracle. Thus the active
learning algorithm will stop adding new examples x ∈ Ω to the data set before the
agreement classifier learns which it can skip asking the strong oracle about. The
problem the agreement classifier faces only has to be more easy on some subset
Ω ⊂ (X ,Y), since it to sucesfully use the algorithm is enough to be able to avoid
querying the strong oracle for some examples.

In section 6.7 it was studied how the performance of the algorithm decreased
when changing the probability of the weak oracle supplying the correct label when
x ∈ Wcorrect. We saw that even a slight decrease in performance of the weak oracle
in its expert region made it more difficult for the algorithm to leverage the weak
oracle. This is reasonable since if the agreement classifier cannot be certain enough
about its predictions many errors will be introduced when only the weak oracle is
asked and subsequently sc will be reached early after few included weak labels. This
leads us to the conclusion that the accuracy of the weak oracle on some subspace
Ω ⊂ (X ,Y) has to be close to 1 (or 0) for the proposed algorithm to be able to avoid
doing queries to the strong oracle on that subspace. It is not enough that the weak
oracle performs quite well over the entire (X ,Y). There has to exist subspaces on
which its performance is very high.

The conclusions drawn in this section can be summarized as: to be able to
leverage the weak oracle with this algorithm p(yW = y|x, yW) has to be close to 1
(or 0) on some region of (x, yW) ∈ (X ,Y) which the agreement classifier can learn
to identify faster than the main classifier learns p(y|x) on the same region.

7.3 Outlook and real-world applications
This thesis have focused on binary classification of text. It is apparent that it
should be possible to extend to other types of binary classification. It should also be
possible to extend the algorithm to multiclass classification without large changes
since the agreement classifier still could be trained as the probability of two labels
agreeing. In this case however the prediction of two labels disagreeing would not
add any particularly useful information, since the example then may belong to one
of many other classes. Applying this method to regression would be more difficult.
At least two possible formulations of the agreement classifier exists: one where it is
trained to predict E[yW −y] (it would in this case be a regression problem and not a
classification problem), and another one where it is trained to predict p(|yW−y| < ε)
for some ε. Evaluating these, and other approaches is left to future work.

Another extension which is left to future work is how to modify the algorithm
to allow for more than one weak oracle. A tricky part in doing so will probably
be how to define sc when multiple weak oracles exist; how many errors should each

45

7. Discussion

weak oracle be allowed to introduce in to the training set?
A third extension which has not be considered at all in this thesis is the set-

ting where there exist multiple oracles that have different performances, as well as
different costs of querying. In this case it is hard to see how this algorithm could
be applied. Instead of always asking the weak oracle we might for some examples
want to directly query the strong oracle. Introducing this feature to the proposed
algorithm would be quite unnatural. Creating an algorithm more similar to the one
proposed by [11] might be a possibility. They use a separate training set for the
agreement classifier (or disagreement classifier as they call it), and then only ask one
of the oracles for each example when building the training set for the main classifier.

In section 7.2 we discussed what structure a weak has to have for it to be feasible
to leverage the proposed algorithm. Now we will instead discuss two types of real-
world settings which this algorithm suits well (based on the discussions in sections
4.3.1 and 4.3.2). One possible use case is when there is an already existing rule-based
system which one hopes to improve by introducing a machine learning method. To
do so one would have to build a new data set. If the rule-based system has a high
performance on one class, or if the subspace for which it has high agreement with
the strong oracle has an easy to learn decision boundary it should be possible to
use the rule-based system as a weak oracle. Another use case is when there exists
two categories of annotators, one very expensive expert, and another cheaper non-
expert annotator (of negligible querying cost in comparison to the expert). They
could then play the roles of strong and weak oracles respectively.

Independently of what active learning problem one faces there is a method that
could help the researcher to get a feeling for whether it would be possible to leverage
this algorithm or not. Early on in the process of building the data set one could
just try to learn the classification problem p(y = yW |x, yW). By evaluating the
performance of this classifier on some test set it should be possible to draw initial
conclusions of the feasibility of this approach.

46

8
Conclusion

In this chapter the conclusions drawn in this thesis are summarized. More details
concerning the conclusions and the justification behind them can be found in chap-
ters 6 and 7.

• The proposed algorithm to do active learning in the presence of a strong and
weak oracle has been shown to be working for training a neural network to do
sentence classification with some different types of synthetic weak oracles.

• The algorithm uses an agreement classifier, which is trained to predict the
probability of the weak oracle supplying the correct label, but when used it
is only assumed to be able to sort the examples after how much trust we can
put in them. That only this weak assumption is made about the agreement
classifier is believed to be critical to the algorithm.

• Instead of conditioning the response of the agreement classifier only on x this
thesis proposes that it also should be conditioned on yW , which can contain
useful information.

• The desired share correctly labeled examples in the training set, sc, is the
only hyperparameter that has to be set by the user when using the proposed
algorithm.

• Experiments have successfully been performed using a soft label cost function.
In this case when we only have the weak label we use the probability that the
agreement classifier supplies when training the main classifier.

• Important for the use of the algorithm is the structure of the weak oracle. It
should have high accuracy on some region of the input and/or output space,
and the agreement classifier should be able to learn this region faster than
what the main classifier can learn the label distribution on that region.

• This thesis has focused on binary sentence classification. It should be easy
to extend the work to other types of classification problems. Extending it to
regression problems is probably possible but more difficult.

47

8. Conclusion

48

Bibliography

[1] Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic ac-
tive learning. In Proceedings of the 23rd International Conference on Machine
Learning, ICML ’06, pages 65–72, New York, NY, USA, 2006. ACM.

[2] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with
Python. " O’Reilly Media, Inc.", 2009.

[3] M. Hasenjäger and H. Ritter. In Lakhmi C. Jain and Janusz Kacprzyk, edi-
tors, New Learning Paradigms in Soft Computing, chapter Active Learning in
Neural Networks, pages 137–169. Physica-Verlag GmbH, Heidelberg, Germany,
Germany, 2002.

[4] Yoon Kim. Convolutional neural networks for sentence classification. CoRR,
abs/1408.5882, 2014.

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2014.

[6] Christopher H Lin, Daniel S Weld, et al. To re (label), or not to re (label). In
Second AAAI conference on human computation and crowdsourcing, 2014.

[7] Luigi Malago, Nicolo Cesa-Bianchi, and J Renders. Online active learning with
strong and weak annotators. In NIPS Workshop on Learning from the Wisdom
of Crowds, 2014.

[8] Michael D Richard and Richard P Lippmann. Neural network classifiers es-
timate bayesian a posteriori probabilities. Neural computation, 3(4):461–483,
1991.

[9] Eduardo D Sontag. Vc dimension of neural networks. NATO ASI Series F
Computer and Systems Sciences, 168:69–96, 1998.

[10] Ruth Urner, Shai Ben-David, and Ohad Shamir. Learning from weak teachers.
In Neil D. Lawrence and Mark A. Girolami, editors, Proceedings of the Fifteenth
International Conference on Artificial Intelligence and Statistics (AISTATS-
12), volume 22, pages 1252–1260, 2012.

[11] Chicheng Zhang and Kamalika Chaudhuri. Active learning from weak and
strong labelers. CoRR, abs/1510.02847, 2015.

49

	List of Figures
	List of Tables
	Introduction
	Purpose
	Objective
	Scope
	Formal problem description
	Related work
	Thesis outline

	Sentence classification with convolutional neural networks
	Word tokenization and word embedding
	Convolutional filters
	Max-over-time pooling
	Fully connected layer and softmax
	Cost function and backpropagation
	Early stopping and regularization

	Active learning
	Learning by random sampling
	Active learning

	Bi-oracle learning algorithm
	Overview of the algorithm
	Controlling the error in the data
	Agreement classifier
	High accuracy on parts of the input space
	High accuracy for some output class

	Cost function with soft labels
	Usage on finite input space

	Method
	Data set and preprocessing
	Paremeter settings for convolutional neural network
	Active learning method
	Bi-oracle learning algorithm
	Design of agreement classifier
	Random expert weak oracle
	Category expert weak oracle

	Experimental design and visualization

	Results
	Active learning
	Bi-oracle learning algorithm
	Random expert weak oracle
	Category expert weak oracle
	Category expert weak oracle with randomly assigned unknown labels
	Comparing the different weak oracles
	Lowering precision of weak oracle
	Cost function with soft labels

	Discussion
	Structure of the algorithm
	Performance on different types of weak oracles
	Outlook and real-world applications

	Conclusion
	Bibliography

