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Abstract: Composite Higgs Models are often constructed including fermionic top partners

with a mass around the TeV scale, with the top partners playing the role of stabilizing the

Higgs potential and enforcing partial compositeness for the top quark. A class of models

of this kind can be formulated in terms of fermionic strongly coupled gauge theories. A

common feature they all share is the presence of specific additional scalar resonances,

namely two neutral singlets and a colored octet, described by a simple effective Lagrangian.

We study the phenomenology of these scalars, both in a model independent and model

dependent way, including the bounds from all the available searches in the relevant channels

with di-boson and di-top final states. We develop a generic framework which can be used

to constrain any model containing pseudo-scalar singlets or octets. Using it, we find that

such signatures provide strong bounds on the compositeness scale complementary to the
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traditional EWPT and Higgs couplings deviations. In many cases a relatively light scalar

can be on the verge of discovery as a first sign of new physics.
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1 Introduction

The LHC has entered a phase with exceptional potential for discovering new physics, and

new data is being collected at an unprecedented rate during the Run-II that started last

year. Not surprisingly, this fact has led to a flurry of model-building activity, with the

intent of charting the landscape Beyond the Standard Model (BSM) and proposing new

discovery channels.

Among the various BSM proposals, the idea that the Higgs sector of the Standard

Model (SM) is dynamically generated by a confining strong dynamics is playing an impor-

tant role and is being continuously tested experimentally. In particular, the models dis-

cussed in this work are four dimensional gauge theories combining the concept of the Higgs

as a pseudo-Nambu-Goldstone boson (pNGB) [1] with that of partial compositeness [2],

where the top quark mass arises by a linear coupling with a spin-1/2 “top-partner”. There-

fore, the main requirement on the underlying theory is to provide a viable Higgs sector

together with the appropriate colored fermionic bound states. The construction of these

models has been discussed elsewhere [3, 4], and some specific examples were given in [5–7].

With the exception of [7], all models contain at least two species of underlying fermions

belonging to different irreducible representations (irreps) under the confining hypercolor

(HC) gauge group. This observation will play a crucial role in the rest of this paper. The

chiral perturbation theory for these models has been recently presented in ref. [8]. The

coupling to tops has been addressed in [9].

The phenomenology of Composite Higgs models has been already extensively studied,

with particular focus on the minimal symmetry breaking pattern SO(5)/SO(4) that leads

to only a Higgs boson in the pNGB spectrum (see [10, 11] for recent reviews). Because of

the lack of additional light scalars, collider searches have focused on colored top partners,

together with other indirect constraints on SM quantities. The current bounds on the

masses of top partners range around 700-900 GeV [12–16]. However, it is very challenging

to obtain the minimal scenario starting from a four dimensional fermionic theory: attempts

present in the literature are either relying on supersymmetry [17] or on effective four-

fermion interactions à la Nambu-Jona Lasinio (NJL) [18].

In the class of models we consider, based on a confining gauged HC and with only

fermionic matter fields,1 the symmetry breaking patterns are determined by the represen-

tations of the underlying fermions [20, 21], giving rise to non-minimal cosets with additional

pNGBs. Thus, the main message we want to convey is that the first evidence of this class

of models of partial compositeness may come from the discovery of the additional pNGBs

rather than from the direct observation of the top partners.

The phenomenological relevance of pNGBs in composite models is not new [22–26].

What we aim at, on the other hand, is to directly link their presence to the mechanism of

partial compositeness. To do so, instead of looking at the details of each model [4], we focus

on two types of scalars that are universally present in all models: singlet pseudo-scalars

1The possibility of top partners arising as bound states of a fermion and a scalar has been recently

proposed in [19].
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associated to global U(1) symmetries [27], and a color octet arising from the presence of

colored underlying fermions.

The presence of two types of fermions in the underlying theory guarantees that there

is always a combination of the two U(1)’s which is non anomalous with respect to the

hypercolor group. Thus, contrary to the anomalous axial current in QCD, the associated

pseudo-scalar will be light. Inspired by large-Nc estimates in QCD, we will also keep the

anomalous U(1) scalar in the spectrum because, depending on the model, it may also be

light. These two states will be denoted a and η′ in the mass eigenstate basis (as non-trivial

mixing is present).

We will briefly review the salient points of these constructions, however the focus of the

paper is to investigate their phenomenology, derive all constraints from up-to-date searches,

point to the promising signatures and their correlations, and make concrete suggestions for

their further exploration at the LHC. In particular, we will focus on the two singlets and

on the color octet, commonly present in all models. Their couplings to the SM gauge

bosons are generated via the Wess-Zumino-Witten [28, 29] anomalous term, and are thus

computable in terms of the properties of the underlying theory.

Additional couplings to tops can also appear: we prove that the singlets always couple

to tops via partial compositeness, while this coupling may be absent for the octet, and we

present an estimate of the couplings to tops (and other SM fermions) proportional to their

mass. The calculability of the phenomenologically relevant couplings makes these three

pseudoscalars standard candles for fundamental models of partial compositeness, that will

shine in particular via di-boson searches at the LHC. In fact, the observation of resonances

in di-boson channels would allow to extract information about the WZW couplings, which

are directly related to the properties of the underlying theory.

The scalar singlet production via gluon fusion and its subsequent decay to a pair of

gauge bosons, both mediated by the WZW interactions, leads to clean signatures at the

LHC. Such final states are intensely searched for at the LHC, and recently the emergence

of excesses in both di-boson and di-photon, now less prominent or entirely disappeared, was

the source of big excitement and inspiration in the particle physics community. A pseudo-

scalar decaying via WZW interactions can easily accommodate such signatures [30], and

the case of the models under investigation has been already pointed out by a subset of the

authors [27, 31].

The paper is organized as follows: in section 2 we briefly present the content of the

models under consideration and their salient dynamical properties. In section 3 we discuss

the pNGBs of relevance for this work. We present their chiral lagrangian, their couplings

and their masses. Section 4 discusses their phenomenology and presents up-to-date (post

ICHEP2016) bounds on their couplings in a model-independent way. We focus on the most

updated constraints deriving from di-boson searches, di-top resonances and other relevant

channels (like pair production in the case of the color octet). Section 5 confronts these

bounds with the models presented in section 2. We explore two specific models and extract

a combined lower bound on the decay constant of the pNGBs. Being associated to the

Higgs sector, the value of such scale is a direct measure of the fine tuning involved in

these models. As a result of this study we set up the strategy and create the framework

– 3 –
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for a generic exploration of the models with di-boson, di-jet and top-quarks final state

signatures. We summarize our findings and conclude in section 6.

2 Classification of the models

The models we consider are gauge theories based on a simple HC group GHC characterized

by having two distinct irreps of fermions, denoted by ψ and χ.2 In addition to hypercolor,

the ψ fermions carry electroweak (EW) quantum numbers chosen in order to generate a

composite pNGB Higgs, while the χ carry QCD color and hypercharge.

The phenomenological reasons for this choice are two-fold. On the one hand, these

models easily accommodate the presence of potential top partners obtained from HC neu-

tral bound states of three fermions. To this end a non zero hypercharge Yχ has to be

consistently assigned to the fermions χ. On the other hand, separating color (carried by

the χ’s) from the Higgs sector avoids problems with spontaneous color breaking and the

presence of light colored pNGBs. Even more relevant for this work, the presence of two

distinguished irreps allows for the existence of a light pNGB associated to a U(1) axial

symmetry non-anomalous under HC.

The main constraints on the models under consideration which define their group

stucture are: implementation of a composite Higgs mechanism compatible with custodial

symmetry, the existence of top partners and the protection of the Z → bLb̄L branching ratio.

The last requirement eliminates some possible solutions that were present in the lists [3, 27]

with ψ in a complex irrep and top partners in the (2,1) of SU(2)L × SU(2)R [32].

The Higgs mass is generated by the explicit breaking of the global symmetry of the

strong sector. Typical sources of breaking are the coupling to the EW bosons and to the

heavy quarks as well as possible bare masses for the hyperquarks. The measured Higgs

mass is then used as an input to give one relation between these couplings, the low-energy

coefficients of the strongly coupled theory (in principle computable on the lattice) and fψ.

A similar relation follows from fixing the Higgs vev. That it is possible to fix the Higgs

mass and vev to their physical values (at the cost of some fine-tuning) is shown in various

previous works: e.g. [33] and [4] for the cosets of interest in this paper.

Within the constraints above there are three minimal cosets SU(5)/SO(5), SU(4)/Sp(4)

and SU(4) × SU(4)′/SU(4)D in the case of Nψ = 5 real, Nψ = 4 pseudo-real or Nψ = 4

complex (plus its conjugate) irreps of GHC respectively coming from condensation of the

fermions ψ. If this were the only condensate forming, there would be no more pNGBs in

the spectrum. In particular, in this case the axial U(1)ψ rotating all ψ by the same phase

would be spontaneously broken but also explicitly broken by a U(1)ψG
2
HC Adler-Bell-Jackiw

(ABJ) anomaly and thus its would-be Goldstone boson would acquire a large mass.

In the present class of models, however, the χ also condense, giving rise to new colored

pNGBs associated to the cosets SU(6)/SO(6), SU(6)/Sp(6) and SU(3) × SU(3)′/SU(3)D
for Nχ = 6 real, Nχ = 6 pseudo-real or Nχ = 3 complex (plus its conjugate) irreps of

GHC respectively. Now there is also an additional axial U(1)χ spontaneously broken and

2We always work with Weyl fermions, unless otherwise specified, and consider only vector-like theories.

A complex irrep and its conjugate is counted as one, see [4] for details.
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it is possible to construct an ABJ anomaly free linear combination U(1)a by choosing the

charges qψ,χ to obey

qψNψT (ψ) + qχNχT (χ) = 0 , (2.1)

where T denotes the Dynkin index of the irrep and for complex irreps we must count both

the complex and its conjugate, i.e. count the index twice. The pNGB ã associated to

this symmetry is naturally lighter than the typical confinement scale, while the remaining

orthogonal state η̃′ acquires a larger mass. We denote these states with a tilde because they

do not yet correspond to mass eigenstates, as will be discussed in the following section.

Among the remaining states, a color octet π8 stands out as an unavoidable prediction,

independent on the type of irreps in the model. For the case SU(3) × SU(3)′/SU(3)D this

turns out to be the only one, for SU(6)/SO(6) and SU(6)/Sp(6) there is an additional color

sextet and triplet respectively. The full list of pNGBs is given in table 2.

The relative model independence of these three pseudo-scalars (the a, η′ and π8) and

the fact that they have a direct coupling to gluons via the WZW anomaly, implying a larger

cross section as compared to e.g. the pNGBs in the electro-weak sector, are the reasons

why we focus on them in this work. They are indeed “standard candles” that will allow to

falsify these models with the minimal number of additional assumptions.

We conclude this section by presenting in table 1 the complete list of models that are

the focus of this work.

We split the table according to the reality properties of the irreps, from which the

pNGB coset can be read-off. We also indicate the range of hypercolors for which the

theory is likely to be outside of the conformal region.3 In fact, the mechanism of partial

compositeness relies on the fact that the theory is conformal in the UV, so that a large

anomalous dimension for the operator corresponding to the fermionic bound state can,

in principle, be generated. This large anomalous dimension would allow to decouple the

scale of flavor symmetry breaking and the EW scale. The compositeness scale Λ then is

identified with the scale where conformal invariance is broken explicitly.

One possible philosophy is to view the compositeness scale Λ as the scale in which

some hyperfermions acquire a mass and the theory exits the conformal window due to

the reduced number of fermionic matter. This mechanism has recently been tested on

the Lattice for a multi-flavor QCD-like theory [36, 37]. With this interpretation, the

promising models are those which are not conformal and yet contain enough light fermions

to allow for the construction of a custodial coset for EW symmetry breaking as well as

top-partners. These models can then be simply brought into the conformal window by

adding additional fermions of mass ≈ Λ, possibly in the same irreps already used. Another

possible philosophy is to rely on the top couplings responsible for partial compositeness:

the operator responsible for the linear mixing grows in the IR due to the large anomalous

3It is notoriously difficult to exactly characterize the conformal region of non-supersymmetric gauge

theories outside of the perturbative regime. There are however some heuristic arguments and, luckily, most

of the models in table 1 are rather clear-cut cases [4]. There has also been intensive work on the lattice,

reviewed in [34], with some more recent related contributions in [35, 36], but unfortunately a universal

consensus has not yet been reached.
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GHC ψ χ Restrictions −qχ/qψ Yχ Non Conformal Model Name

Real Real SU(5)/SO(5) × SU(6)/SO(6)

SO(NHC) 5× S2 6× F NHC ≥ 55 5(NHC+2)
6 1/3 /

SO(NHC) 5×Ad 6× F NHC ≥ 15 5(NHC−2)
6 1/3 /

SO(NHC) 5× F 6× Spin NHC = 7, 9 5
6 ,

5
12 1/3 NHC = 7, 9 M1, M2

SO(NHC) 5× Spin 6× F NHC = 7, 9 5
6 ,

5
3 2/3 NHC = 7, 9 M3, M4

Real Pseudo-Real SU(5)/SO(5) × SU(6)/Sp(6)

Sp(2NHC) 5×Ad 6× F 2NHC ≥ 12 5(NHC+1)
3 1/3 /

Sp(2NHC) 5×A2 6× F 2NHC ≥ 4 5(NHC−1)
3 1/3 2NHC = 4 M5

SO(NHC) 5× F 6× Spin NHC = 11, 13 5
24 ,

5
48 1/3 /

Real Complex SU(5)/SO(5) × SU(3)2/SU(3)

SU(NHC) 5×A2 3× (F,F) NHC = 4 5
3 1/3 NHC = 4 M6

SO(NHC) 5× F 3× (Spin,Spin) NHC = 10, 14 5
12 ,

5
48 1/3 NHC = 10 M7

Pseudo-Real Real SU(4)/Sp(4) × SU(6)/SO(6)

Sp(2NHC) 4× F 6×A2 2NHC ≤ 36 1
3(NHC−1) 2/3 2NHC = 4 M8

SO(NHC) 4× Spin 6× F NHC = 11, 13 8
3 ,

16
3 2/3 NHC = 11 M9

Complex Real SU(4)2/SU(4) × SU(6)/SO(6)

SO(NHC) 4× (Spin,Spin) 6× F NHC = 10 8
3 2/3 NHC = 10 M10

SU(NHC) 4× (F,F) 6×A2 NHC = 4 2
3 2/3 NHC = 4 M11

Complex Complex SU(4)2/SU(4) × SU(3)2/SU(3)

SU(NHC) 4× (F,F) 3× (A2,A2) NHC ≥ 5 4
3(NHC−2) 2/3 NHC = 5 M12

SU(NHC) 4× (F,F) 3× (S2,S2) NHC ≥ 5 4
3(NHC+2) 2/3 /

SU(NHC) 4× (A2,A2) 3× (F,F) NHC = 5 4 2/3 /

Table 1. Models of interest in this paper. “Restrictions” denotes requirements such as asymptotic

freedom and compatibility with the reality properties of the irrep. “Non Conformal” indicates the

sub-range for which the model is likely outside of the conformal region: a “/” indicates that there

are no solutions, i.e. all models are likely conformal. −qχ/qψ is the ratio of charges of the fermions

under the non anomalous U(1) combination. F,A2,S2,Ad and Spin denote the fundamental, two-

index antisymmetric, two-index symmetric, adjoint and spinorial irreps respectively. A bar denotes

the conjugate irrep.

dimensions, thus it breaks the conformal invariance when its coefficient becomes relevant.

We will however rely on the former scenario.

We would like to end this section by commenting on the possible symmetry breaking

patterns for these theories. First of all, all models in table 1 are “vector-like” in the sense

that a gauge invariant mass term can be added for every fermion. This implies, by the Vafa-

Witten argument [38], that the HC group remains unbroken and thus a 〈ψχ〉 condensate

never forms.

As far as the condensation of each separate pair 〈ψψ〉 and 〈χχ〉 goes, there is also

the logical possibility of the presence of massless composite fermions in the IR matching

the ’t Hooft anomaly [39] of the chiral global symmetry and thus preempting the need for

– 6 –
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Electro-weak coset SU(2)L ×U(1)Y

SU(5)/SO(5) 3±1 + 30 + 2±1/2 + 10

SU(4)/Sp(4) 2±1/2 + 10

SU(4)× SU(4)′/SU(4)D 30 + 2±1/2 + 2′±1/2 + 1±1 + 10 + 1′0

Color coset SU(3)c ×U(1)Y

SU(6)/SO(6) 80 + 6(−2/3 or 4/3) + 6̄(2/3 or −4/3)

SU(6)/Sp(6) 80 + 32/3 + 3̄−2/3

SU(3)× SU(3)′/SU(3)D 80

Table 2. The SM quantum numbers of the pNGBs appearing in the models of table 1 in addition

to the ubiquitous a and η′. The Electro-weak coset arises from the condensation of ψ while the

Color one from χ. The sextets can have two possible charge assignments depending on whether the

top-partners are realized as “χψχ” or “ψχψ”.

symmetry breaking. This possibility has been suggested as the reason behind the lightness

of top partners in [40, 41]. By invoking the persistent mass condition, however, we find

this last scenario unlikely. In all the models classified as non-conformal in table 1, the only

possible hypercolor invariant fermionic bound states composed of at most three elementary

fields must contain at least one ψ and one χ fermion. Giving a common mass to one type

of fermions (e.g. ψ) renders all the fermionic bound states massive. However, the other

type of fermion (e.g. χ) is still massless and with non vanishing ‘t Hooft anomaly. Since

such an anomaly cannot be canceled by the composite states, the corresponding symmetry

must be spontaneously broken. Reversing the role of the fermions we reach the same

conclusion for the other coset. We point out that this argument is not rigorous. Its main

weaknesses are the possible existence of phase transitions [42], invalidating the massless

limit, as well as the fact that we are ignoring bound states composed by five or more

fundamental fermions, which can sometimes be formed using only one fermion species. We

find it however sufficiently convincing to assume that both condensates form, a necessary

condition for the existence of the pNGBs considered in this work.

3 Properties of the U(1) singlets and the octet

3.1 Chiral Lagrangian

In this section we discuss in detail how an effective Lagrangian formalism can be used to

describe the properties of the singlets associated to the global U(1)’s. A chiral perturbation

theory for the class of models of interest has been recently presented in ref. [8], including

the singlet — referred as a in our work — associated with the non-anomalous U(1). Here,

we want to be more general and keep both states a and η′ in the low energy Lagrangian,

as the mass generated for the anomalous current may be not very large.

As the model contains two fermion condensates, the chiral Lagrangian can be described

in terms of two copies of the pNGB matrix Σr and two singlets Φr, where r = ψ, χ.

The Σr’s contain the pNGBs from the non-abelian cosets, while Φr’s contain the singlets.

– 7 –
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Furthermore, we want to choose the normalization of the decay constants fr’s in such a

way that the mass of the W (and Z) bosons can be written as

mW =
g

2
fψ sin θ , (3.1)

where θ is an angle describing the misalignment of the vacuum [1] (thus, sin θ = 1 represents

the “Technicolor” limit of the theory, where fψ = vSM = 246 GeV). In this way, we can

define the ratio

ε =
v2

SM

f2
ψ

= sin2 θ (3.2)

as a measure of the fine tuning needed in the alignment of the vacuum. The presence

of the parameter ε characterizes the main advantage of models of this type compared to

earlier Technicolor models. The S-parameter has an additional suppression by a factor ε

circumventing EW precision tests albeit at the price of some fine-tuning.

This notation has the additional advantage that the Higgs couplings to the vector

bosons are the same for all cosets and are, in fact, the same as those of the minimal

coset SO(5)/SO(4) (for which EW precision tests and Higgs couplings generically require

ε . 0.1 [10, 11], or equivalently fψ & 800 GeV). However, this forces us to normalize the

chiral lagrangian differently depending on the nature of the ψ irrep. To allow us to write

a common expression for all cases, we introduce the quantity

c5 =

{√
2 for ψ real ,

1 elsewhere ;
(3.3)

in terms of which

Σr = ei2
√

2c5πarT
a
r /fr · Σ0,r , Φr = eic5ar/far , (3.4)

where T ar are the non-abelian generators in the fundamental irrep normalized so that

Tr[T ar T
b
r ] = δab/2, fr and far are the decay constants for the non abelian pions and the

singlets respectively. The matrix Σ0,r is the gauge-preserving vacuum.4

Following this convention, the lowest order chiral Lagrangian can be written as:

Lχpt =
∑
r=ψ,χ

f2
r

8c2
5

Tr[(DµΣr)
†(DµΣr)] +

f2
ar

2c2
5

(∂µΦr)
†(∂µΦr) . (3.5)

Notice that we chose the same normalization (driven by the nature of the ψ irrep) for both

cosets, in order to simplify the notation for the abelian pNGBs later.

A few comments are in order at this stage: for the singlets, the lowest order operator

simply gives a kinetic term which does not depend on far . However, the couplings of ar will

always be generated by the couplings of the U(1) currents to the underlying fermions, which

4In this approach, the EW symmetry breaking arises from the pNGB corresponding to the Brout-Englert-

Higgs doublet developing a vacuum expectation value. This effect can also be seen as a misalignment of

the vacuum with respect to the gauged generators. We chose the former approach for simplicity.
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depend on an arbitrary parameter, i.e. the charge Qr of the fermions under the global U(1).

This consideration justifies why the decay constants fr and far are, in principle, unrelated.

In the following, we fix the decay constants by choosing Qr = 1 for r = ψ, χ. A stronger

relation between the decay constants of the singlets and the non-abelian pions in each

sector can only be drawn assuming that both are dominantly made of di-fermion states.

In QCD, this situation is achieved in the large-Nc limit [43], following from Zweig’s rule,

where the singlet associated to the anomalous U(1) is also expected to become light. All

mesons can therefore be described by a single meson matrix Φ2
rΣr (the Φ2

r comes from the

fact that the condensate has charge 2). The chiral Lagrangian, then, looks like

Lχpt =
∑
r=ψ,χ

f2
r

8c2
5

Tr[(DµΦ2
rΣr)

†(DµΦ2
rΣr)] , (3.6)

which is consistent with the above formulation for far =
√
Nrfr, Nr being the di-

mension of the flavour matrix Σr (Nψ = 4 for SU(4)/Sp(4) and SU(4)×SU(4)/SU(4),

Nψ = 5 for SU(5)/SO(5), Nχ = 6 for SU(6)/Sp(6) and SU(6)/SO(6), and Nχ = 3 for

SU(3)×SU(3)/SU(3)). In the following, we will be interested in cases like the large-Nc

limit of QCD where both singlets can be light, so that we introduce the parameters

ξr = Nr
f2
r

f2
ar

, (3.7)

which should be equal to 1 in the large-Nc limit. Note that corrections to this relation will

be generated by loop corrections in the chiral Lagrangian [44, 45].

Out of the 2 singlets we introduced, only one remains a pNGB because it is associated

to the anomaly-free combination of U(1)’s. If qψ and qχ are the charges associated to

the anomaly-free current, defined in eq. (2.1), the pNGB gauge eigenstates, ã and the

anomalous η̃′, can be defined as

ã =
qψfaψaψ + qχfaχaχ√

q2
ψf

2
aψ

+ q2
χf

2
aχ

, η̃′ =
qψfaψaχ − qχfaχaψ√

q2
ψf

2
aψ

+ q2
χf

2
aχ

. (3.8)

For later convenience, we define a single dimensionless parameter describing this basis, i.e.

an angle ζ:

tan ζ =
qχfaχ
qψfaψ

. (3.9)

Note that all physical observables will only depend on ratios of the two charges qr . The

values of qχ/qψ for the various models are listed in table 1, always leading to values of

tan ζ < 0 (for which we define the angle in the rage −π/2 < ζ < 0 in the rest of the paper).

3.2 Couplings within the strong sector

The couplings of the singlets can only be generated by terms explicitly breaking the global

symmetries. The partial gauging of the non-abelian global symmetries cannot do the job,

as the gauged generators are not charged under the U(1)’s. (For recent lattice results on
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the case of charged pNGBs see [46]. Even more recently, a detailed analysis of the reach of

the LHC in the search for the doubly charged pNGB present in the SU(5)/SO(5) models

has been given in [47].) If a mass term for the underlying fermions is added, however,

it necessarily carries the U(1) charge of the specific fermion. Following [8], we add the

fermion masses in the Lagrangian as follows:

Lm =
∑
r=ψ,χ

f2
r

8c2
5

Φ2
rTr[X†rΣr] + h.c. =

∑
r=ψ,χ

f2
r

4c2
5

[
cos

(
2c5

ar
far

)
ReTr[X†rΣr]

− sin

(
2c5

ar
far

)
ImTr[X†rΣr]

]
. (3.10)

The spurions Xr are related to the fermion masses linearly

Xr = 2Brmr r = ψ, χ , (3.11)

where Br is a dimensional constant (that can, in principle, be calculated on the Lattice).

Note that, without loss of generality, mr is a real matrix in the non-abelian flavour space

of the fermion specie r. From the above expressions, we can read off the masses of the

singlets and non-abelian pions:

(
m2
πr

)ab
= 4Br Tr[T ar T

b
rΣ0,rmr] , m2

ar = 2
f2
r

f2
ar

Br Tr[Σ0,rmr] . (3.12)

In the limit where the condensates are aligned with the mass matrices mr = µrΣ
†
0,r,

which corresponds to the EW preserving vacuum and where µr is a common mass for all

underlying fermions, the masses simplify to (all the non abelian pions having the same mass)

m2
πr = 2Brµr , m2

ar = 2Nr
f2
r

f2
ar

Brµr = ξr m
2
πr , (3.13)

where Nr is the dimension of the matrix Σr. We recover the result that in the large-Nc

limit, the masses of all mesons are equal as ξr = 1.

We also note that eq. (3.10) contains linear couplings of the singlets to the non-

abelian pions:

Lm ⊃ −
f2
r

2c5far
arImTr[ΣrX

†
r ] , (3.14)

which potentially include mass mixing terms between the singlet and the non-abelian pions.

In the limit where both vacuum and mass matrices are aligned with the EW preserving

direction, the expression simplifies to

Lm ⊃ −Brµr
f2
r

farc5
arImTr[e

i2
√

2c5
πar
fr
Tar ] =

√
2c2

5m
2
πr

3frfar
ar
∑
abc

dabcπarπ
b
rπ

c
r + . . . , (3.15)

where the dots include terms with more fields and dabc = 2Tr[T ar {T br , T cr }] is a fully-

symmetric tensor. The presence of mixing with or couplings to other non-abelian pions
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depends on the coset. In the EW sector, 3 possible cosets are allowed. For the coset

SU(4)/Sp(4), we found that no mixing and no coupling is possible as the trace Tr[ΣψX
†
ψ]

is real. In the SU(4)×SU(4)/SU(4) case, at leading order in v/fψ no mixing is generated

however a coupling to the triplets and to the second doublet is generated, allowing 2-body

decays into these additional pions. This coupling can potentially affect the phenomenol-

ogy of the singlet, if the additional pions are light enough. In the SU(5)/SO(5) case, we

found that a mass mixing with all neutral pseudo-scalar is generated by the Higgs VEV

at leading order. More details on such couplings can be found in the appendix B. Finally,

in the color sector generated by the χχ condensate, we found that a coupling to 3 colored

pions is present in the SU(6)/Sp(6) and SU(6)/SO(6) cases.

3.3 Couplings to SM fermions

The link of the strong dynamics to SM fermions is another source of explicit breaking of

the global symmetries that may induce direct couplings of the singlets to fermions [9]. To

generate a mass for the top, the class of models we want to investigate implements partial

compositeness, where the top mass is proportional to two linear mixings of the elementary

fermions to composite states:5

Lmix ⊇ yL q̄LΨqL + yR Ψ̄tRtR + h.c. , (3.16)

where ΨqL/tR are fermionic composite operators that have the same quantum numbers as

the left-handed and right-handed tops respectively, and which contain the top partners at

low energy. As such operators are made of 3 fermions, they carry charge under the two

U(1)’s: the couplings of the pions can then be recovered by assigning a charge to the pre-

Yukawas yL/R that matches the one of the composite operators. Without loss of generality,

each spurion can be associated with a combination of pion matrices

yL → Φ
nLψ
ψ Φ

nLχ
χ yL , (3.17)

and similarly for yR. As mtop ∼ yLyR, the singlets decouple from the top quark as long

as the charges of the two pre-Yukawas are opposite [27, 48]. However, this situation can

never be realized in the class of models under consideration. If both pre-Yukawas involve

the same operator in terms of fundamental states, then the charges are the same as the

U(1)’s are axial. The charge assignments depend on the structure of the fermionic bound

states: if the fermion is of type “ψψχ”, then the possible charges of the spurions and of

the top mass are6

yL(R) → (nL(R)ψ, nL(R)χ) = (±2, 1) , (0,−1)

⇓ (3.18)

mtop → (nLψ + nRψ, nLχ + nRχ) ≡ (nψ, nχ) = (±4, 2) , (0,±2) , (±2, 0) .

5We use Dirac spinors in this subsection.
6The various assignments correspond to the following operators: (2, 1) for ψψχ, (−2, 1) for ψ̄ψ̄χ and

(0,-1) for ψ̄ψχ̄. Here we only focus on left-handed operators, which can be made of 3 left-handed fermions,

or 2 right-handed and 1 left-handed one.
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For “ψχχ”, it suffices to exchange the two charges. We see that in no case the charge of the

top mass can be zero for both singlets. The couplings of the singlets to tops can therefore

be written as

Ltop = mtopΦ
nψ
ψ Φ

nχ
χ t̄LtR + h.c. = mtop t̄t+ ic5

(
nψ

aψ
faψ

+ nχ
aχ
faχ

)
mtop t̄γ

5t+ . . . (3.19)

Changing basis to ã and η̃′, the couplings read

ic5
mtop√

q2
ψf

2
aψ

+ q2
χf

2
aχ

(
(nψqψ + nχqχ) ã+

(
nχqψ

faψ
faχ
− nψqχ

faχ
faψ

)
η̃′
)
t̄γ5t , (3.20)

where we recognize that the couplings of the pNGB ã is proportional to the charge under

the non-anomalous U(1). Note, however, that the reasoning above is only valid if the

operators ΨqL and ΨtR , that mix to the top, have definite charges, i.e. they correspond to

a well defined combination of hyperfermions. In general, as different operators transform

in the same way under the global symmetries, mixing among operators is possible.

In this class of composite Higgs models, the matter content of the confining sector

cannot accommodate enough partners to realize partial compositeness for all fermions: the

Yukawa couplings of the light fermions must therefore come from a different operator. A

simple possibility [49] is to introduce couplings of SM bilinears f̄f with the strong sector:

ybil
Λ2
F

f̄f ψ̄ψ , (3.21)

where ybil ∼ mf and the flavour scale ΛF can be much higher than the condensation scale.

While these operators are generically irrelevant, they can be large enough to reproduce

light quark masses, and suppressed enough to evade flavour bounds [4, 50, 51]. Another

possibility would be that the masses of light fermions are generated at higher scale, possibly

via partial compositeness [52]. The U(1) symmetries can be formally restored promoting

ybil to be a spurion only charged under U(1)ψ, and this implies a low energy coupling

proportional to

mfΦ2
ψ f̄LfR + h.c. = mf f̄f + 2ic5

mf

faψ
aψ f̄γ

5f + . . . (3.22)

This coupling has the same form as the one we derived for the top, but with fixed charges

nψ = 2 and nχ = 0.

3.4 Masses and mixing of the singlets

The masses for the singlets are generated by the masses of the underlying fermions, mψ

and mχ, and the instanton related to the anomalous current. Even though couplings to

tops and light fermions exist, they do not lead to corrections to the mass of the singlets.

One way to see this is that all loops of fermions will be proportional to the absolute value of

the spurions in order to write an operator which is gauge invariant. Thus, the dependence

on the singlet pions, which comes in via exponentials, vanishes.
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The mass matrix for the singlets, therefore, can be written from

−Lmass =
1

2
m2
aχa

2
χ +

1

2
m2
aψ
a2
ψ +

1

2
M2
A(cos ζaχ − sin ζaψ)2 (3.23)

where M2
A is the mass generated by instanton effects, proportional to the topological sus-

ceptibility of the hypercolor group, for the singlet η̃′ associated with the anomalous com-

bination of U(1)’s. For now, we will consider it as a free parameter, even though the

topological mass is, in principle, calculable once the underlying dynamics is specified.

In the following, we want to entertain the case where the topological mass may be

small, as it happens in large-Nc QCD [43, 53]. In fact, in many of the models we consider

the number of colors is large and/or the representation of the underlying fermions is large.

Another physical consideration allows us to simplify the mixing structure: the mass of the

pNGBs in the EW sector, due to the condensation of the ψ’s, also contributes to the mass

of the SM-like Higgs boson. Thus, its value is constrained to be small in order to minimize

the fine tuning in the Higgs mass. While the details depend on the specific model, some

general considerations are in order. The mass term can be used to stabilize the Higgs

potential against the contribution of the top loops and obtain a small misalignment in

the vacuum [54, 55]. In such cases, one would expect mπψ ∼ fψ. Alternatively, if the

top partners are light enough, their contribution to the Higgs potential is also enough to

stabilize it and give the correct value of the Higgs mass [56–58]. In this case, therefore,

one would require that the contribution of the fermion mass were small, i.e. mπψ � fψ.

This situation contrasts with the coset generated by χ: here, colored pNGBs are expected

and the strong constraints from searches at the LHC require their masses to be close to

the TeV scale [59]. It is thus natural to expect that mπψ � mπχ .7 In the following, we will

work under this assumption and, for simplicity, neglect the contribution of maψ .8

We will first diagonalize the mass matrix from eq. (3.23), after setting maψ = 0. We

define the mass eigenstate as(
a

η′

)
=

(
cosα sinα

− sinα cosα

)(
aψ
aχ

)
(3.24)

with

m2
a/η′ =

1

2

(
M2
A +m2

aχ ∓
√
M4
A +m4

aχ + 2M2
A m2

aχ cos 2ζ
)
. (3.25)

The mixing angle can be expressed in terms of the mass eigenvalues and the parameter

ζ as

tanα = tan ζ

1−
m2
η′ +m2

a −
√

(m2
η′ −m2

a)
2 − 4m2

η′ m
2
a tan−2 ζ

2m2
η′

 . (3.26)

7The pNGB masses are related to the hyperquark masses mψ and mχ by the usual Gell-Mann Oakes-

Renner relation, see eq. (3.12). The hierarchy mπψ � mπχ can be obtained by choosing mψ � mχ.
8To restore the dependence on maψ it is sufficient to replace m2

aχ → m2
aχ −m

2
aψ , m2

a → m2
a −m2

aψ and

m2
η′ → m2

η′ −m2
aψ in all the formulas in this section, as long as maψ < maχ .
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Note that for ma � mη′ (maχ �MA), then α ∼ ζ and the mass eigenstates coincide with

the pNGB and the anomalous combination, as expected.

The mass matrix depends on 3 independent parameters: 2 masses and the angle ζ. It

is convenient to trade the two masses for the mass eigenvalues which have a more direct

physical meaning. Thus, we can define a “physical basis” thanks to the following relations:

2m2
aχ = m2

η′ +m2
a −

√
(m2

η′ −m2
a)

2 − 4m2
η′ m

2
a tan−2 ζ , (3.27)

2M2
A = m2

η′ +m2
a +

√
(m2

η′ −m2
a)

2 − 4m2
η′ m

2
a tan−2 ζ . (3.28)

However, there are constraints on the value of the physical masses. From the positivity of

the argument of the square root in the above formulas, we can derive a lower bound on the

mass difference:

m2
η′ −m2

a >
2 cos ζ

1− cos ζ
m2
a . (3.29)

From the equation above we can see that the two masses can be equal only in the limiting

cases ζ = ±π/2 and ζ = 0, when the two U(1) pNGBs decouple: in the former, aχ
is identified with the non-anomalous U(1), while in the latter it is aψ. Note that the

apparent divergence for ζ = 0 is removed by the fact that ma = 0 in that limit. The value

of the lighter mass is also a monotonically increasing function of MA, thus it reaches the

maximum value for MA →∞:

0 < m2
a < m2

aχ sin2 ζ . (3.30)

The above constraint has significant physical implications as, for models with low values

of ζ, it implies that the mass of the lightest singlet has to be much lighter than the

condensation scale fχ, as maχ cannot be much larger than fχ without spoiling the validity

of the chiral Lagrangian expansion. It is also interesting to notice that the mixing angle α

is bounded between: ∣∣∣∣ tan
ζ

2

∣∣∣∣ < | tanα| < | tan ζ| . (3.31)

The lower bound corresponds to the minimal splitting between the two mass eigenvalues,

while α = ζ is achieved in the decoupling of η′.

As already mentioned the topological mass term is in principle calculable in a given

underlying theory. We can then extract a simple correlation between the mass mixing angle

α and the mass of the lightest singlet ma for fixed topological mass MA

tanα = tan ζ

(
1− m2

a

M2
A sin2 ζ

)
. (3.32)

From eq. (3.25) we can extract the allowed range for each mass eigenvalue when maχ ≤MA,

i.e. (cosine is taken to be positive)

0 ≤ m2
a ≤M2

A(1− cos ζ) , M2
A ≤ m2

η′ ≤M2
A(1 + cos ζ) . (3.33)

For ma �MA we get the upper bound in eq. (3.25), while for ma maximal we can saturate

the lower bound. Such an additional constraint can be significant when the topological

mass is not larger than a few TeV.
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3.5 Non-abelian pions: the octet

Among the many non-abelian pions present in these models, there is a common player that

appears necessarily in all cosets: a color octet from the χχ condensation. Independently on

the representation of χ under the confining HC, the octet π8 can be identified as a bound

state of 〈χ1χ2〉, where χ1,2 are the fermions transforming like a QCD color triplet and anti-

triplet respectively. Due to its ubiquitous presence, and the fairly large production cross

sections one may expect at the LHC, in the following we will consider its phenomenology

and possible connections with the properties of the singlets.

As a first connection, we note that its mass can be expressed in terms of the χ-mass as

m2
π8 = m2

πχ + Cg
3

4
g2
s f

2
χ =

1

ξχ
m2
aχ + Cg

3

4
g2
s f

2
χ , (3.34)

where the second term comes from loop corrections from QCD, and Cg > 0 is an unknown

order one number (the loop contribution is cut off at a scale Λ ∼ 4πfχ). This provides

a link between the mass of the octet and the masses in the singlet sector: in fact, maχ is

related to the singlet masses by eq. (3.27). We also recall that ξχ ∼ 1, as expected in the

large Nc-limit in QCD. In the limit of ma � mη′ , where the lighter singlet reaches its

maximal mass ma ∼ maχ sin ζ, we obtain

m2
π8 ∼

m2
a

ξχ sin2 ζ
+ Cg

3

4
g2
s f

2
χ . (3.35)

The relation above shows that typically we would expect the octet to be heavier than the

light singlet pNGB, even if the color corrections were small.

The octet has also the possibility to couple to tops: like in the case of singlets, the

presence or not of this coupling depends on the representation of the composite top partners

under the global symmetries. As the octet pNGB is associated to the bound state 〈χχ〉,
which is also charged under the U(1)χ, it is straightforward to find a correlation between the

effective charges of the top mass and the presence of a coupling with the octet. If the top

mass has a effective charge ±2 under U(1)χ, as indicated in the previous section, then the

effective operator generating the mass of the top needs to be “dressed” by the appropriate

pNGB matrix Φ2
χΣχ. If the charge is ±4, then two matrices are needed: this can also be

understood in terms of indices of the global symmetry that cannot be contracted in an

invariant way (but need the breaking generated by the consensate). On the other hand, if

the charge is zero, then it is not needed to couple Σχ to the top mass term, and a coupling

to the octet is not necessarily present. One can thus find a nice correlation between the

charges determining the coupling of the singlets to the tops, and the presence of an octet

coupling. If present, the coupling will have the form:

mtt̄L(Σχ)nχ/2tR + h.c. ∼ mtt̄t+ i
nχ√

2
c5
mt

fχ
πa8 t̄γ

5λat+ . . . (3.36)

where λa are the Gell-Mann matrices, and we have omitted the other pNGB and sin-

glets. For the light quarks, if their masses are generated by 4-fermion interactions then no

couplings to the octet pNGB are generated.
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It should also be remarked that, contrary to the case of the singlet, the presence of top

couplings will also generate corrections to the masses of the octet. Those contributions are

more model dependent, as they crucially depend on the representations of the top partners,

and are typically of the same order as the QCD corrections but expected to be negative:

we refer the reader to [59] for an example.

3.6 Wess-Zumino-Witten terms

The couplings of the singlets to the SM gauge bosons, generated by the WZW term, can

be computed in a similar way as in QCD [44]. Following the normalization adopted in this

work, the couplings can be written as

LWZW ⊃
αA
8π
c5
CrA
far

δab ar ε
µναβAaµνA

b
αβ , (3.37)

where

CrAδ
ab = 2drTr[SaSb] , for complex reps ,

CrAδ
ab = drTr[SaSb] , for real/pseudo-real reps , (3.38)

and dr is the dimension of the rep r of HC, and Sa,b in the trace correspond to the gauged

generators with gauge coupling αA = g2
A/(4π). The normalization of the gauged generators

depends on the global group the gauge interactions are embedded in, so that their trace is

not the same as for the generators of the flavor group. Specifically, we note that, in the

cases of interest

Tr[SaSb] = δab , for SU(5) (ψ) and SU(6) (χ) ;

Tr[SaSb] =
1

2
δab , for all other cases .

For completeness and comparison, the WZW term for the non-abelian pions is

LWZW ⊃
√
αAbαAc

4
√

2π
c5

Cr
AbAc

fr
cabc πar ε

µναβAbµνA
c
αβ , (3.39)

where

CrAbAcc
abc = drTr[T aπ {Sb, Sc}] (3.40)

for complex r, and there is an additional factor of 1/2 for real/pseudo-real representations.

3.6.1 Singlets

The coefficients for the anomalous couplings of the two singlets are summarized in table 3,

where we recall that dψ and dχ are the dimensions of the representation of the fermions

under HC. These numbers, calculated directly from the WZW term, have a simple physical

interpretation. In the EW sector described by ψ, up to a factor of 1/2, the CW (CB)

coefficients count the number of Weyl spinors transforming as SU(2)L (SU(2)R) doublets:
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r coset ψ CψW CψB coset χ CχG CχB

complex SU(4)×SU(4)/SU(4) dψ dψ SU(3)×SU(3)/SU(3) dχ 6Y 2
χ dχ

real SU(5)/SO(5) dψ dψ SU(6)/SO(6) dχ 6Y 2
χ dχ

pseudo-real SU(4)/Sp(4) dψ/2 dψ/2 SU(6)/Sp(6) dχ 6Y 2
χ dχ

Table 3. Coefficients of the anomalous couplings of the singlets. dψ and dχ are the dimensions of

the representation of the fermions under HC and Yχ the hypercharge carried by χ.

dψ in the SU(4)/Sp(4) coset and 2dψ in the other two cases. Furthermore, as the theory is

symmetric under the custodial symmetry, the number of doublets is equal, leading to

CψB = CψW . (3.41)

Similarly, in the χ sector, the anomaly of QCD color is equal to half the number of SU(3)c
triplets, which is 2dχ in all cases. Furthermore,

CχB = 6Y 2
χC

χ
G . (3.42)

Combining the two relations above, we can see that for both aψ and aχ, the values of the

anomalous couplings always satisfy the relation:

CW = CB − 6Y 2
χCG , (3.43)

which only depends on the model-specific value of the hypercharge Yχ. This relation will

also be respected by the coupling of any linear combination of the two singlets, thus also

by the mass eigenstates. As Yχ = 2/3 or 1/3, all the models under consideration have

anomalous couplings lying on 2 universal lines

CW = CB −
8

3
CG , CW = CB −

2

3
CG . (3.44)

3.6.2 Color octet

The anomalous coupling of the octet with the gluon field strength Gaµν and the hypercharge

field strength Bµν can be computed from eq. (3.39), and are

L ⊃ αsc5

4
√

2πfχ

(
dχ
2
dabc

)
πa8ε

µνρλGbµνG
c
ρλ +

√
αsαY c5

4
√

2πfχ

(
2dχYχδ

ab
)
πa8ε

µνρλGbµνBρλ , (3.45)

where dabc = 1
4Tr[λa{λb, λc}] and Yχ is the hypercharge assigned to the χ fermions, in

agreement with [60]. The second term, coupling the color octet to a gluon and hypercharge

gauge boson, will thus induce an effective coupling with a photon and one with a Z boson.

Neglecting the mass of the Z boson and using the color factors (1/8)
∑

abc(d
abc)2 = 5/3

and (1/8)
∑

ab(δ
ab)2 = 1, we find the following relations between partial widths in the

3 channels

Γgg : Γgγ : ΓgZ =
1

2

5

3
α2
s : 4Y 2

χαsα : 4Y 2
χαsα tan2 θW ,
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BR(π8→gγ)
BR(π8→gg)

BR(π8→gZ)
BR(π8→gg)

Yχ = 1/3 0.048 0.014

Yχ = 2/3 0.19 0.058

Table 4. Values of ratios of BRs in di-bosons for the pseudo-scalar octet for a mass of 1 TeV. The

mass fixes the dependence due to the running of the strong gauge coupling, αs(1TeV) = 0.0881

used for this evaluation.

with the additional factor of 1/2 in Γgg being due to the indistinguishability of the gluons.

This means that the ratios of branching ratios in di-boson final states only depend on the

hypercharge assigned to the χ’s, which has two possible assignments (see table 1). The

numerical values are thus reported in table 4, where the coupling constants are evaluated

at a mass scale of 1 TeV. We see that while the decay to a Z boson is always suppressed

by a tan2 θW factor, the decay into a photon can be sizeable, especially for Yχ = 2/3, and

will lead to interesting phenomenology [61].

3.6.3 Top loop effects

Due to the presence of couplings to fermions, loops of tops contribute to the decays of both

the singlets and octet to gauge bosons via triangle loops. The numerical impact of top

loops compared to the WZW interactions crucially depends on the ratio of the couplings,

but also on the mass of the pseudo-scalar. In fact, in the limit of large mass, the top loop

amplitudes are suppressed by two powers of the top mass over the pseudo-scalar mass: one

coming from the coupling itself and the other from a chirality flip of the fermionic line

in the loop. Thus, we can expect the loop to become subleading for large masses. The

complete results for the top loop amplitudes are reported in appendix C.

Another important observation is that top loops are phenomenologically relevant only

for large couplings to the top, in which case one would also expect that the decay rate is

dominantly into tops. In such a case, the WZW couplings, with top loop corrections, are

only important for the production cross section via gluon fusion. To illustrate this fact, we

focus on the octet. The correction to the amplitude for gluon fusion production from the

top loops from eq. (C.1) gives:

A(gg → π8) = AWZW

(
1 +

2

dχ

m2
t

m2
π8

f

(
m2
π8

m2
t

))
, (3.46)

where the function f(x) is defined in eq. (C.5). This correction can be compared to the

ratio of partial width in tops and gluons (not including top loops):

Γ(π8 → tt̄)

ΓWZW (π8 → gg)
=

192π2

5α2
sd

2
χ

m2
t

m2
π8

√
1− 4

m2
t

m2
π8

. (3.47)

Already from the numerical factors involved one can see that the partial width into tops

dominates over the one into gluons well before the top loop corrections become relevant.

The same conclusion can be obtained for the singlet, unless the WZW amplitude is small:

in this case, however, that particular channel is not relevant for the phenomenology.
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Figure 1. Production cross section of a pseudo-scalar π0 with coupling κg/fπ = 1 TeV−1 from

gluon fusion as a function of its mass Mπ0
at the LHC.

4 Phenomenology

We now turn our attention to characterizing the LHC phenomenology of the singlets a

and η′ (that we collectively denote as π0 in this section) and of the color octet π8. The

experimental results coming from post ICHEP2016 data will be used to derive general

constraints on the production cross sections that can be later applied to any of the specific

models.

Our goal in this section is to be as model independent as possible. We thus introduce

a common notation for the couplings of the various pseudo-scalars to vector bosons, with

coefficients denoted by κg, κW , κB, and to tops, with coefficient Ct and perform the

analysis with this notation. In section 5 we show how to relate these coefficients with the

model-specific ones computed in section 3 and obtain model-specific bounds.

4.1 Phenomenology of the singlet pseudo-scalars

As we discussed in the previous section, the singlet pseudo-scalars couple to a pair of SM

gauge bosons via the WZW anomaly terms, and to a pair of top quarks. The generic

effective Lagrangian for a SM neutral pseudo-scalar π0 can be written as

Lπ0 =
1

2

(
∂µπ0∂

µπ0 −M2
π0π

2
0

)
+ i Ct

mt

fπ
π0 tγ5t

+
αs
8π

κg
fπ

π0

(
εµνρσGaµνG

a
ρσ +

g2

g2
s

κW
κg

εµνρσW i
µνW

i
ρσ +

g′2

g2
s

κB
κg
εµνρσBµνBρσ

)
,

(4.1)

which is characterized by five parameters: the mass Mπ0 , the dimension-full coupling κg/fπ
(coefficient of the anomalous coupling to gluons) that controls the production cross section,

and the three ratios Ct/κg, κB/κg and κW /κg which dictate the branching ratios.

In the following, we will neglect the effect of top loops to the branching ratios into a pair

of gauge bosons: the main rationale behind this is that, once such effects are sizeable, the

decay is dominated by the tt̄ final state, so that searches in di-boson final states become

irrelevant. Thus, in this large top coupling limit, the only phenomenologically relevant

effect will be on the gluon fusion production. As shown in appendix C, the effect on gluon
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fusion can be encoded in a Mπ0-dependent shift of the κg coupling. Thus, our analysis can

be extended in a straightforward way.

The dominant production channel for π0 is gluon fusion.9 In figure 1 we show the pro-

duction cross sections from gluon fusion as a function of Mπ0 at the LHC with 8 and 13 TeV,

calculated at leading order (without K-factor) using MadGraph 5 [62] and cross-checked

against CalcHEP [63]. In our analysis we have used the NNPDF23LO (as_0130_qed)

PDF set [64] and the QCD scale naturally chosen to be the mass of the resonance. We

would like to note that although we evaluate cross sections at LO, one can re-scale them

to known higher order corrections, which, for example for CP-Even Higgs boson produc-

tion, are determined up to N3LO in QCD (see e.g. [65] for review and references there

in). Since in our signal simulation we do not include correction factors for higher order

QCD corrections, the estimate of the LHC potential to probe the theories under study

is conservative.

In figure 1, the coupling to gluons is fixed to κg/fπ = 1 TeV−1, and the production

cross section scales like (κg/fπ)2.

The singlet pseudo-scalars decay to either di-boson via the WZW interactions or to tt̄.

The partial widths are related to the parameters in the Lagrangian in eq. (4.1) as [30]

Γ(π0 → gg) =
α2
sκ

2
gM

3
π0

8π3f2
π

, (4.2)

Γ(π0 →WW ) =
α2κ2

WM
3
π0

32π3f2
π sin4 θW

(
1− 4

m2
W

M2
π0

) 3
2

, (4.3)

Γ(π0 → ZZ) =
α2 cos4 θW

(
κW + κB tan4 θW

)2
M3
π0

64π3f2
π sin4 θW

(
1− 4

m2
Z

M2
π0

) 3
2

, (4.4)

Γ(π0 → Zγ) =
αα cos2 θW

(
κW − κB tan2 θW

)2
M3
π0

32π3f2
π sin2 θW

(
1−

m2
Z

M2
π0

)3

, (4.5)

Γ(π0 → γγ) =
α2 (κW + κB)2M3

π0

64π3f2
π

, (4.6)

Γ(π0 → tt̄) =
3C2

tMπ0

8π

m2
t

f2
π

(
1− 4

m2
t

M2
π0

)1/2

, (4.7)

where θW is the Weinberg angle. Decays into other SM fermions are negligible, since they

are suppressed by the fermion masses. As the couplings are typically small, we expect the

total width to be always small. To give a numerical estimate, the partial widths in gluons

and tops (that are typically dominant) evaluate to:

Γ(gg) ∼ 0.04 GeV

(
1 TeV

fπ/κg

)2( Mπ0

1 TeV

)3

, Γ(tt̄) ∼ 0.4 GeV

(
1 TeV

fπ/Ct

)2( Mπ0

1 TeV

)
.

(4.8)

It is instructive to split the decay modes into the final state tt̄ and into di-boson final

states. Furthermore, we will use ratios of branching ratios, which depend only on few of

9The only other production channels are vector boson fusion and associated production with gauge

bosons or tops. However they are always subdominant.
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the couplings, to characterize the decay pattern of the singlets. As a starter, the ratio

BFtt/gg ≡
Γ(π0 → tt̄)

Γ(π0 → gg)
=

(
α2
s

3π2

)−1
C2
t

κ2
g

m2
t

M2
π0

(
1− 4

m2
t

M2
π0

)1/2

(4.9)

only depends on the ratio Ct/κg, and on the mass Mπ0 : this is mainly due to the fact

that the partial width in tt̄ scales linearly with the scalar mass versus the cubic power

in di-boson partial widths. Therefore, the relevance of the top final states decreases for

increasing π0 mass. We also define di-boson ratios

BFXY/bosons ≡
Γ(π0 → XY )

Γ(π0 → bosons)
, with XY = gg,WW,ZZ,Zγ, γγ . (4.10)

These ratios depend on the coupling ratios κB/κg and κW /κg, while the dependence on

the mass is weak and only entering through kinematic phase space due to the non-zero

masses of the W and Z bosons and the logarithmic running of the couplings (in particular,

the QCD one). We will thus use the ratios defined above to characterize the decay rates

in a model-independent way.

For illustration and later use, in figure 2 (a)–(e) we show the ratios BFXY/bosons in

the κW /κg vs. κB/κg plane, while figure 2 (f) shows the branching fraction BFtt/gg as a

function of Mπ0 . The first plots, (a)–(e), depend on Mπ0 via the running of αs (the weak

couplings are fixed to their values at the Z pole for simplicity, as their running up to the

TeV scale is mild), thus the plots refer to a mass Mπ0 = 1 TeV. The mass dependence

can be disentangled by absorbing the running coupling in the definition of κg, so that the

ratios at a different mass can be obtained by rescaling

κW/B

κg
→

κW/B

κg

(
αs(1 TeV)

αs(Mπ0)

)
. (4.11)

figures 2 show that the gg channel dominates the di-boson branching fractions, followed

by WW which becomes increasingly important for increasing κW /κg. The (smaller)

branching fractions of ZZ, Zγ, and γγ increase along the directions |κW + κB tan4 θW |,
|κW − κB tan2 θW |, and |κB + κW |. The magnitude of the branching fraction into tops is

mainly controlled by Ct/κg. As the tt̄ partial width scales with Mπ0 while all di-boson

partial widths scale with M3
π0 , the branching fraction into tt̄ is reduced at high masses

Mπ0 � 2mt and kinematically suppressed near the threshold Mπ0 = 2mt.

4.1.1 Experimental bounds from di-boson and tt̄ resonance searches

Both ATLAS and CMS presented numerous searches for di-jet, WW , ZZ, Zγ, and di-

photon resonances in the high mass region. The list of searches we include into our study

is summarized in table 5. Where possible, we directly use the bounds on the production

cross section times branching ratio (σ ×BR) into the respective channel given by ATLAS

and CMS. In several studies (in particular for di-jet searches and partially for Zγ and γγ

searches), some results were presented in terms of fiducial cross sections or in terms of cross

section times acceptance. In appendix A, we summarize the assumptions made in order to

extract the bounds from ATLAS and CMS studies for the model discussed in this article.
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Figure 2. Ratios of the π0 decay channels. In (a)–(e) we show BFXY/bosons in the κW /κg vs.

κB/κg plane, evaluated at Mπ0
= 1 TeV (the mass-dependence mainly enters through the running

of αs). In (f), BFtt/gg is plotted as a function of Mπ0 for Ct/κg = 0.1 (BFtt/gg scales like (Ct/κg)
2
).

8 TeV 13 TeV

channel ATLAS CMS ATLAS CMS

gg [66] [67, 68] [69, 70] [71]

γγ [72] [73] [74] [73]

WW [75–77] [78, 79] [80–82] [83–85]

ZZ [77, 86, 87] [78, 79] [82, 88–90] [83, 91, 92]

Zγ [93, 94] [95] [96, 97]

tt̄ [98] [99] [100] [101]

Table 5. List of di-boson and tt̄ searches included in our analysis. For a more detailed discussion

see appendix A.
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Figure 3. Bounds on the di-boson and tt̄ channels from 13 TeV searches and 8 TeV searches on

the 13 TeV production cross section times branching ratio. 8 TeV bounds have been rescaled by the

ratio of 13 TeV / 8 TeV production cross section for gluon fusion in order to allow direct comparison.

For the di-photon channel, we show the combined results from 13 and 8 TeV determined by CMS

as well as the (still separate) 8 and 13 TeV search results by ATLAS.

We aim at presenting collective bounds for the different di-boson and tt̄ final states

from pNGB decays. For searches in a given channel at
√
s = 13 TeV, we do not perform a

combination of the ATLAS and CMS searches but simply use the strongest bound obtained

for a given Mπ0 . To include Run I bounds, we analogously take the strongest bound at

Mπ0 in each channel, and rescale the cross section by a factor σ(gg → π0)13/σ(gg → π0)8.

The resulting constraints on the σ × BR at 13 TeV for the gg, WW , ZZ, Zγ, γγ, and tt̄

channels are shown in figure 3.10

10For the di-photon channel, CMS performed a combination of the 8 TeV and 13 TeV bounds, so for this

channel we give the ATLAS bounds from 13 and 8 TeV data and the combined bound from CMS.

– 23 –



J
H
E
P
0
1
(
2
0
1
7
)
0
9
4

4.1.2 Model-independent bounds on the singlet pseudo-scalar parameter

space

The experimental constraints shown in figure 3 translate into bounds for the still allowed

production cross section as a function of (Mπ0 , κW /κg, κB/κg, Ct/κg) via the branching

fractions following from eqs. (4.2)–(4.7), as exemplified in figure 2. Using figure 1, the bound

on the production cross section translates into a bound on the coupling to gluons κg/fπ.

To simplify the impact of the multi-dimensional parameter space, it is useful to split

the final states into two categories: di-boson and tops (tt̄). The advantage is that the ratios

between di-boson modes only depend on two ratios of couplings (and very mildly on the

mass), while the rate of tt̄ final states can be expressed in terms of Ct/κg. We thus define

the following strategy apt to explore, in a way which is as model independent as possible,

the parameter space of this class of models:

- define the cross section in a specific di-boson final state as:

σ ×BR(π0 → XY ) = (σ ×BRbosons)×BFXY/bosons ; (4.12)

- from the above, one can extract a bound on σ × BRbosons as a function of the mass

and the two ratios of couplings κW /κg and κB/κg;

- for each value of Ct/κg, the function BFtt/gg can be used to calculate the cross section

in tt̄ final state, as

σ ×BR(π0 → tt̄) = (σ ×BRbosons)×BFgg/bosons ×BFtt/gg , (4.13)

matching the di-boson bound, which can be directly compared to the bound from tt̄

searches as shown in figure 3.

The latter step allows to determine whether the strongest bound comes from di-boson

searches, or from tt̄. Note, however, that this approach is only valid in the narrow width

approximation, which is always true in this class of models where the couplings are small,

as suppressed by a loop factor in the case of WZW interactions, or a ration mt/fπ for top

couplings, as shown in eq. (4.8).

To map out the model parameter space, let us first consider bounds for fixed mass Mπ0 .

In figure 4 we show the bounds on σ13×BRbosons in the κW /κg vs. κB/κg plane for various

resonance masses. The colored regions tag the decay channel that, with current data, yields

the strongest bound at a given parameter point. At κW /κg = κB/κg = 0, the branching

ratios in all di-boson channels, apart from gg, are zero, thus strongest bound around the

origin arises from the gg channel (in orange). For increasing |κB,W /κg|, the bound on

σ13 × BRbosons initially becomes marginally weaker because of a depletion in the leading

gg channel. For further increased |κB,W /κg|, channels other than gg become the most

constraining ones, at which point the bound becomes stronger again, being dominated by

EW boson final states. We see that along the direction κB ∼ κW , it is γγ that dominates the

constraints (in blue), while along the orthogonal direction, where the coupling to photons

partially cancels, the WW (green) and/or Zγ (yellow) channels take over the lead.
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Figure 4. Combined bounds on the production cross section at 13 TeV times branching ratio

into di-bosons (σ13 × BRbosons [pb]) in the κW /κg vs. κB/κg plane for Mπ0
= 500, 1000, 1500,

2000 GeV. The contours give the bounds in pb. The colored areas indicate the decay channel that,

with current data, yields the strongest constraint: gg (orange), WW (green), Zγ (yellow), or γγ

(blue). The two grey diagonals indicate the lines on which the SM singlets a and η′ of the models

discussed in section 2 lie.

Figure 4 quantifies the bounds for any model described by the effective Langrangian in

eq.(4.1). As outlined in section 2, the models considered in this article predict SM singlets

a and η′ for which

κW = κB − 6Y 2
χ κg with Yχ = 1/3 or 2/3 (4.14)

depending on the hypercharge of χ: the two grey diagonal lines in figure 4 mark these

model lines for reference.

As becomes clear from figure 4, all di-boson channels (apart from ZZ) yield the domi-

nant constraint in some portion of the parameter space. Figure 4 only indicates the channel

setting the bound, but through figure 2, or equivalently eqs. (4.2)–(4.6), and the experi-

mental bounds shown in figure 3, the relevance of each decay channel at a given parameter

point Mπ0 , κB/κg, κW /κg can easily be obtained.

As an example of how to use these results in application to a specific model, let us

consider the point (κBκg ,
κW
κg

) = (2.1,−0.55) at Mπ0 = 1 TeV.11 From figure 4 (top right),

the constraint on σ13 × BRbosons reads as 0.3 pb. Multiplying 0.3 pb by BF σXY/bosons =

11This sample point corresponds to the pseudo-scalar a in model M9 from table 3, in the decoupling limit

of the η′ mass.
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Figure 5. Bounds on σ13 ×BRbosons (in pb) in the mass vs. κB/κg plane. We present the results

for two particular lines in the κB/κg vs. κB/κg parameter plane. The relation κW = κB− 2
3κg (left

plot) is realized for a and η′ of all models with Yχ = 1/3 discussed in section 2, while the relation

κW = κB − 8
3κg (right plot) is realized for a and η′ of all models with Yχ = 2/3. The colored areas

indicate the decay channel which with current data yields the strongest constraint: gg (orange),

WW (green), Zγ (yellow), or γγ (blue). The strongly varying bounds in the area below ∼ 1 TeV

are a direct consequence of the strong variation with mass of the experimental constraints (mainly

the di-photon) as evident in figure 3.

(98%, 1%, 0.14%, 0.9%) for XY = (gg,WW,ZZ,Zγ) (extracted from figure 2) one obtains

a signal cross sections of (290 fb, 3 fb, 0.4 fb, 2.7 fb) for the respective final states. These

values are a factor of (6, 6.5, 50, 3.5) respectively lower than the cross section bound for

Mπ0 = 1 TeV in figure 3, showing how close each bound is to the limit. Following this

universal recipe different models from table 3 with different mass values can be easily

tested using the information from figures 2–4.

As outlined in section 2, the models considered in this article predict SM singlets a

and η′ whose couplings lie on two lines depending on the hypercharge of the χ’s (shown by

the grey diagonals in figure 4). In order to present bounds for different resonance masses

than the ones given in figure 4, we give results along the above lines. The bound on

σ13 × BRbosons as a function of Mπ0 and κB/κg is shown in figure 5, with the same color

code as above.

In addition to the di-boson bounds presented in figures 4 and 5, tt̄ resonant searches

provide a further constraint, that depends on the precise value of the ratio of couplings

Ct/κg: we present here a simple way to extract the bound on the cross section. The tt̄

constraint dominates over the di-boson bounds if

(σ13 ×BRtt̄)exp < (σ13 ×BRbosons)max ×BFgg/bosons ×BFtt/gg, (4.15)

where (σ13 ×BRtt̄)exp is shown in figure 3 (f) and the value of (σ13 ×BRbosons)max can

be extracted from figures 4 and 5. The values of BFgg/bosons and BFtt/gg are shown in

figure 2, and BFtt/gg is the only quantity that depends on Ct/κg (scaling quadratically

with it). Thus, given a set of values of the couplings, one can easily extract the dominant

bound. To quantify the relevance of top decays, following eq. (4.15) we determined the

minimum value of Ct/κg as a function of κB/κg and κW /κg, Mπ0 above which the decay

into tops yields the strongest constraint. The results are shown in figure 6 for a set of

sample masses (4 plots on the top), and projected along the two model lines (two plots
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Figure 6. Values of Ct/κg at which tt̄ searches start to yield strongest constraint on the production

cross section in pb. The top four figures show the results in the κW /κg vs. κB/κg plane for the

same masses Mσ as in figure 4. The two figures on the bottom show the results in the κB/κg vs.

Mσ plane, along the same two lines in the κW /κg vs. κB/κg parameter plane as in figure 5.

on the bottom). The plot shows that in the regions where final states with EW bosons

dominate the bound, the tt̄ final state overcomes the constraint for large values of the top

couplings with Ct ∼ κg. On the other hand, in the central region where gg drives the

bound, much smaller values of the top coupling are enough to drive the constraint.

4.2 Phenomenology of the color octet

The color octet π8, which is present in all models discussed in section 2, can be described

by the effective Lagrangian

Lπ8 =
1

2
(Dµπ

a
8)2 − 1

2
m2
π8(πa8)2 + i Ct8

mt

fπ8
πa8 t̄γ5

λa

2
t

+
αsκg8
8πfπ8

πa8 ε
µνρσ

[
1

2
dabc GbµνG

c
ρσ +

g′κB8

gsκg8
GaµνBρσ

]
, (4.16)
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Figure 7. Production cross sections of the color octet pNGB as a function of Mπ8
at 8 and 13 TeV

LHC. Left: pair-production via QCD interactions. Right: single-production (through gluon fusion)

for κg8/fπ8 = 1 TeV−1. Single production scales with (κg8/fπ8)2.

where the covariant derivative contains QCD interactions with gluons. In the models

discussed in this article (fπ8 = fχ), matching with eq.s (3.45) and (3.36), the coefficients

are equal to

κg8 = c5

√
2dχ , κB8 = c52

√
2dχYχ , Ct8 = c5nχ

√
2 . (4.17)

The octet π8 is produced at the LHC in pairs via QCD interactions or singly via gluon

fusion.12 The production cross section at the LHC for 8 and 13 TeV are shown in figure 7.

Like for the singlet, we calculated the cross section at leading order (without K-factor)

using MadGraph 5 and cross-checked against CalcHEP both with the NNPDF23LO

(as_0130_qed) PDF set, and the QCD scale set to the mass of the resonance.

The partial widths of π8 from the Lagrangian (4.16) are given by:

Γgg =
5α2

sκ
2
g8M

3
π8

768π3f2
π8

, (4.18)

Γgγ =
ααsκ

2
B8M

3
π8

128π3f2
π8

, (4.19)

ΓgZ =
ααs tan2 θW κ2

B8M
3
π8

128π3f2
π8

(
1−

m2
Z

M2
π8

)3

, (4.20)

Γtt =
C2
t8Mπ8

16π

m2
t

f2
π8

(
1− 4

m2
t

M2
π8

)1/2

. (4.21)

Like for the singlets, the total width is always small, as numerically shown for the di-gluon

partial width below:

Γπ8(gg) ∼ 2 MeV

(
1 TeV

fπ8/κg8

)2( Mπ8

1 TeV

)3

. (4.22)

12Single production through gluon-photon fusion would require very large hypercharge of the constituent

fermions, so we neglect it, here. Single production from tt̄ fusion is also suppressed by the need of creating

top pairs from gluon splittings as well as by the additional (mt/fπ8)2 suppression from (4.16).
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In all the models under study in this paper, the ratio of the two WZW couplings only

depends on the hypercharge Yχ, that can take two values Yχ = 1/3 or 2/3, depending

on the model. Instead of a complete model independent analysis, we will impose this

constraint that fixes the ratios of decay rate in the bosons. In analogy with the singlets,

we can thus define

BF π8gγ/gg ≡
Br(π8 → γg)

Br(π8 → gg)
=

24α

5αs
Y 2
χ , BF π8gZ/gg = tan2 θW BF π8gγ/gg

(
1−

m2
Z

M2
π8

)3

. (4.23)

Besides a mild mass dependence, the rate into a Z is suppressed by the Weinberg angle:

numerical values of these ratios are reported in table 4. The decay in tops, however,

strongly depends on the ratio Ct8/κg8 which is very dependent on the details of the model,

and on the mass of the octet:

BF π8tt/gg ≡
Br(π8 → tt̄)

Br(π8 → gg)
=

48π2

5α2
s

C2
t8

κ2
g8

m2
t

M2
π8

(
1− 4

m2
t

M2
π8

)1/2

. (4.24)

In the following we will treat the ratio Ct8/κg8 as a free parameter. For the models in

section 3, this ratio is always smaller than 1 and it vanishes when the couplings to tops

is absent.

4.2.1 Searches and bounds for pair-produced color octets

Spin zero color octets have already received some attention in the literature [102–104], as

they arise in other models like sgluons in extended supersymmetry [105, 106], and they

are copiously produced at hadronic colliders. Their decays lead, in general, to several

final states due to the four allowed decay modes: tt̄, gg, gγ and gZ. However, most of

these final states are not explicitly searched for in the ATLAS and CMS exotics searches,

with two exceptions. The search for pair produced resonances with each one decaying into

two jets done by CMS with 8 TeV data [107] and ATLAS with 13 TeV data [108] can be

straightforwardly reinterpreted to cover the (gg)(gg) final state.13 Analogously, ATLAS

has searches for scalar color octets producing a 4-top final state in the 8 TeV data, both in

the same-sign di-lepton channel [109] and in the lepton-plus-jets final state [110].14

A direct comparison of cross sections can be seen in figure 8 where we show the pair

production cross sections at 8 and 13 TeV, together with the bounds on the cross section

times branching ratios in the two covered final states, (σ×BR(4g))exp and (σ×BR(4t))exp

respectively. The bound on the 4-top final state can be directly compared to the production

cross section for large Ct8/κg8, for which the BR in tt̄ is nearly 100%, excluding masses

below 880 GeV. On the other hand, in the absence of top couplings, the bound on 4-jet

13For the 8 TeV search, CMS presents bounds for an inclusive search for R-parity violating decays of pair

produced squarks as well as for a coloron (a scalar octet) search. We use the latter, which yields weaker

bounds, such that the exclusions quoted here are conservative. We remark that the 13 TeV search [108]

yields stronger bounds than both searches at 8 TeV.
14A first search with the 13 TeV data has been published [111], however not presenting the case of the

color octet. Thus, we cannot use directly these results.
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Figure 8. Color octet pair production cross section (from ref. [59]) and the current bounds on

σ ×BR(pp→ t̄tt̄t) [109, 110] and σ ×BR(pp→ 4j) [107] for
√
s = 8 TeV (left) and σ ×BR(pp→

4j) [108] for
√
s = 13 TeV (right).

depends on the BR which depends on Yχ:15

BRgg(Yχ = 2/3) ≈ 75% , BRgg(Yχ = 1/3) ≈ 94% . (4.25)

A recast of the pair production bounds as a function of Ct8/κg8 is shown in figure 9.

For vanishing top coupling, the lower bound on the mass from the 13 TeV search gives 650

(700) GeV for Yχ = 2/3 (1/3).

We wish to point out that pair produced color octets have a large number of additional

final states after decay, some of which promise a competitive sensitivity. Possible final states

are all combinations of tt̄, gg, gγ and gZ. The 4g and 4t channels are covered by current

ATLAS and CMS searches which have been used above in order to obtain constraints on

the parameter space. The (gg)(tt̄) channel can be searched for in a single-lepton search

similar to the 4t search [110], or in a search for two leptonically decaying tops and two

jets (which however suffers from a lower branching ratio of the tops into leptons). Such a

search would yield additional bounds which can be relevant if the octet decay into tt̄ and

gg are comparable.

A very interesting option is to search for (gγ)(gg), i.e. a di-jet resonance with the same

invariant mass as a photon-jet resonance. As compared to the two di-jet channel (gg)(gg),

the cross section of the (gγ)(gg) channel is only reduced by σ(pp→ π8π8 → γggg)/σ(pp→
π8π8 → 4g) ≈ 0.4 (0.1) for Yχ = 2/3 (1/3).16 However, the background of the process can

be vastly reduced due to the photon in the final state.

Finally, the decay π8 → gZ would also allow to search for, e.g., (gZll)(gg) or (gZll)(tt̄)

with leptonic Z’s. These channels promise very low background, but the signal cross

section is reduced as compared to the (gγ)(gg) and (gγ)(tt̄) states, by a factor of BR(π8 →
gZ)×BR(Z → ll)/BR(π8 → gγ) ≈ 0.02.

4.2.2 Searches and bounds for a singly produced color octet

The color octet π8 can be singly produced via gluon fusion, with cross section at
√
s = 8 TeV

and 13 TeV shown in figure 7. The possible final states for single-production are tt̄, gg, and

15We give branching ratios for a reference mass Mπ8 = 1 TeV, here.
16We use the branching ratios for an octet mass of 1 TeV given in table 4.

– 30 –



J
H
E
P
0
1
(
2
0
1
7
)
0
9
4

Figure 9. Bounds on Ct8/κg8 as a function of Mπ8 from 4t and 4j searches. The parameter regions

excluded by 8 and 13 TeV data are also shown, as they do not depend on the overall value of the

couplings.

gγ, and gZ. The bounds on the di-jet, and tt̄ resonances are shown in figure 3 (e) and (f),

and can be reused here as the kinematical differences due to the color of the resonance are

subleading. The contribution of a color octet to tt̄ production was also analyzed in [112] in

the similar context of multiscale technicolor. The gγ final state offers a clean channel due

to the presence of an energetic photon [61]. While dedicated searches are not available, one

can easily adapt searches for excited quarks by both ATLAS [113, 114] and CMS [115, 116]

where the gluon is replaced by a light quark jet. The bounds from these searches are

summarized in figure 10, where we take the strongest bound from all searches for a given

mass Mπ8 expressed in terms of the cross section at
√
s = 13 TeV. The gZ final state can

be constrained by two published searches: the Zhadj search by CMS [79] at 8 TeV, and

by mono-jet searches (sensitive to invisible decays of the Z, Zinvj) by ATLAS [117, 118]

and CMS [118, 119] at both 8 and 13 TeV. In ref. [120], a recast of the 8 TeV searches

in di-boson channels for a color octet scalar are presented, showing that, for the Zg/gg

branching ratios in the models considered in this article, the Zg channel yields subleading

bounds as compared to the gg and gγ channels. We therefore do not include the Zg channel

in our analysis.

To combine the constraints on singly produced color octets, we follow a strategy similar

to the one designed for the singlet pseudo-scalars in section 4.1: the analysis is simpler

because the color octet bosonic ratios BF π8gγ/gg and BF π8gZ/gg in eq. (4.24) are fixed up to

a discrete choice Yχ = 1/3 or 2/3. For these two choices, we can directly translate the

bounds on the gγ channel (figure 10) and the gg and tt̄ channels (figure 3) into bounds

on the π8 production cross section as a function of the mass and the model parameters

Ct8/κg8, as shown in figure 11.

5 Implications for composite models

After presenting general results in section 4, we want to look back at the models introduced

in section 2 and study how the present searches can constrain the presence of the singlet

and octet pseudo-scalars, and what are the prospects at the LHC Run 2. Instead of looking

at all models, we will derive general properties before focusing on a few interesting cases.
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Figure 10. Bounds from excited quark searches (final state: γ j) at 13 TeV [114, 116] and

8 TeV [113, 115] which we use to constrain the γg channel of color-octet decay. The 8 TeV limits

are rescaled to the value of the 13 TeV cross section times branching ratio (8 TeV bounds have been

appropriately rescaled by the ratio of 13 TeV/8 TeV production cross section for gluon fusion).

Figure 11. Bounds on the production cross section (in pb) in the Ct8/κg8 vs. Mπ8 plane for

Yχ = 1/3 (left) and Yχ = 2/3 (right). The blue region is excluded by octet pair production searches.

The currently strongest bounds arise from the tt̄ channel (gray regions), gg channel (orange regions)

and the gγ channel (light-cyan regions).

The first step is to connect the general Lagrangians used in the previous section with the

couplings derived in section 3: the two scales fπ and fπ8 that we used to normalize the

couplings are arbitrary, thus allowing us to chose the most convenient normalization.

For the singlets, the most natural choice is to normalize fπ = fψ for both mass eigen-

states, as this is the scale most directly connected to the EW symmetry breaking and thus

to the fine tuning in the Higgs sector. Furthermore, the couplings will depend on the mixing

angle α that defines the mass eigenbasis. For the lightest singlet a, the couplings to field

strengths in eq. (3.37) are mapped to the model independent parametrization eq. (4.1) by

κA = c5
fψ
faψ

(
CψA cosα+

faψ
faχ

CχA sinα

)
with A = g, W, B . (5.1)

Similarly, the coupling to tops is matched by

Ct = c5
fψ
faψ

(
nψ cosα+ nχ

faψ
faχ

sinα

)
, (5.2)
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where we recall that nψ/χ are the U(1)ψ/χ charges associated to the top mass operator. The

couplings of η′ are obtained from the same formulas with the replacement α → α + π/2.

Concerning the octet pseudo-scalar, it is convenient to normalize fπ8 = fχ, as this is the

only scale directly connected to it. The couplings to the field strengths in eq. (4.16) have

already been identified in eq. (4.17).

Once a specific model is chosen, the group theory factors are fixed, however the Chiral

Lagrangian contains other unknown parameters: 4 decay constants fψ, faψ , fχ and faχ ,

the singlet mass induced by the anomaly MA, 2 explicit fermion masses mψ and mχ (in

the following, as explained in section 3, we will work at mψ = 0), and the loop corrections

to the octet mass (from QCD and tops). In addition, we have a discrete choice of nψ
and nχ associated to the operator that generates the top partners. However, not all these

parameters are on the same footing:

- the decay constants, the anomaly mass MA and the loop corrections to the pNGB

masses are dynamical quantities, in the sense that they can be calculated if the

underlying dynamics is solved (on the Lattice, one may potentially compute all the

ratios of these dimensional quantities, so that only a single tuneable scale remains);

- the underlying fermion masses are free parameters, external to the dynamics, and

can assume any value as long as the Chiral expansion does not break down;

- the charges nψ and nχ are determined by the UV physics generating the partial

compositeness couplings.

While no Lattice data is available, we will reduce the number of unknown parameters by

imposing some reasonable relations between the decay constants:

1. we impose the “large-Nc” relation between the decay constants of the singlets and

non-abelian pNGBs: faψ =
√
Nψfψ and faχ =

√
Nχfχ;

2. we fix the ratio of the two remaining decay constants to be equal: fχ = fψ.

Regarding the second relation, this simple choice is not entirely justified on dynamical

grounds,17 and it is only chosen for its simplicity. The effect of making any other choice

for this ration can be easily inferred by rescaling the couplings of the effective theory.

One could use an argument based on the MAC hypothesis [121] to estimate the ratio

of the scales where the two condensates occur [122]. This argument has been used in [6]

to estimate the ratio in the case of the SU(4) hypercolor theory. A similar estimate for all

models M1 to M12 yields the following ratios

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

fψ/fχ 1.4 0.75 0.73 1.3 2.8 1.9 0.58 0.38 2.3 1.7 0.52 0.38
.

(5.3)

17We thank Michele Frigerio for pointing out this argument to us.
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M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

− tan ζ 0.91 0.45 0.91 1.82 1.82 1.29 0.32 0.41 3.26 3.26 0.82 0.38
ma
mη′

∣∣∣
max

0.39 0.22 0.39 0.59 0.59 0.49 0.16 0.20 0.74 0.74 0.36 0.18

Table 6. Values of tan ζ and of the maximum ration of the light/heavy singlet masses for the 12

models under consideration, assuming fχ = fψ. Note that tan ζ is proportional to fχ/fψ.

As this arguments are semi-quantitative at best, we do not use these numbers in the

paper, but only present them to show that it reasonable to expect the ratios to be of order

one. Similar estimates have been performed earlier in the context of multi-scale walking

technicolor [112, 123].

Besides one decay constant fψ, setting the scale of condensation, the other 3 mass

parameters can be traded for the 3 mass eigenvalues ma, mη′ and mπ8 . The mixing angle

α between the two singlets is then related to the mass eigenvalues (and the value of ζ) by

eq. (3.26).

A first phenomenological observation is that the mass splitting m2
η′−m2

a is constrained

by eq. (3.29) and models with small | tan ζ| predict a large mass splitting and vice versa.

To better quantify this effect, eq. (3.29) that contains the minimum mass splitting, can

be used to extract the maximal ratio of the two masses (achieved at minimal splitting

with α = ζ/2):

ma

mη′

∣∣∣∣
max

=

√
1− cos ζ

1 + cos ζ
=

∣∣∣∣tan
ζ

2

∣∣∣∣ . (5.4)

Numerical values of tan ζ and the quantity in the above equation for the 12 models under

consideration, and under our ansatz on the decay constants, are reported in table 6. In

models with small tan ζ, like for instance M2, M7, M8 and M12, therefore, the light singlet

tends to be substantially lighter than the second one and the octet. Another consideration

is that the largest ma mass is correlated to the χ-mass by ma ≤ maχ sin ζ: for the lighter

singlet to be in the TeV range, one would thus need the mass generated by the χ to be in

the multi TeV scale, implying that χ tends to behave like a heavy flavor — a fundamental

fermion with sizeable mass compared to the condensation scale — and the chiral Lagrangian

description needs to be modified. Those are qualitative arguments, but they tend to point

towards a situation where only one of the two singlets (η′) may be relevant at the LHC. In

models with large tan ζ, like M4, M5, M6, M9 and M10, on the other hand, the two mass

eigenvalues can be close to each other, and one can easily have a situation where both lie

in the mass range where the LHC is sensitive.

Another more general consideration involves the value of the coupling to tops, for

both singlets and octet. If such couplings are large, then the most sensitive final state for

their detection at the LHC is in di-top (or 4-tops for pair produced octets), and the LHC

cannot be very sensitive to the di-boson final states. On the other hand, models with small

coupling to tops have a better chance to be detected in the di-boson final states, from

which more information can be extracted.
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In the following, instead of studying all the models, we will focus on two sample cases:

they are chosen in such a way that the symmetries at low energy are the same, so that they

can be described by the same low energy effective theory, and they have small couplings

to tops. Nevertheless, they differ in the value of tan ζ, which substantially affects the

spectra and couplings of the singlets. Complete tables reporting the numerical values of

the couplings for all models can be found in appendix D.

5.1 Two explicit examples

The two models we focus on are M8 and M9 (see table 1), where M8 was first introduced

in [5] and its phenomenology partially studied in [59]. The two models are based on

very different underlying gauge theories, however the global symmetry breaking pattern is

the same,

G/H =
SU(4)× SU(6)× U(1)

Sp(4)× SO(6)
, (5.5)

so that they can be described, at low energy, by the same chiral effective Lagrangian. To

completely specify the phenomenology, the operators that couple to the top must also be

chosen, in order to fix the charges of the top mass operators under the two global U(1)’s:

we then focus on the 2 cases (nψ, nχ) = (±2, 0) and (0,±2). This choice allows to compare

the case where the octet couples to tops (the latter) versus a situation where such coupling

is absent (the former). Furthermore, we checked that top loops are always small corrections

for masses above 500 GeV in those two cases. For completeness, we would like to specify the

representation under the global symmetries of the chosen top partners in the various cases:

note that the sign of the charge, now, matters while it is irrelevant for the phenomenology.

The transformation properties of the top partner operators, O1 and O2, associated to the

4 charge choices are summarized in table 7. Note that in both cases, the bound states

contain 2 ψ’s and one χ, and that either operator can be associated with the left-handed or

right-handed tops, according to the transformation properties under the EW gauge group.

Interestingly, in all cases the right-handed top can couple to a singlet of Sp(4) and the

left-handed one to a 5-plet.

Once the gauge theory and the top partner operators are specified, the couplings of

the singlets and octet can be calculated: as an example, we provide the numerical values

in table 8, where the couplings of the singlets are provided for a mixing angle α = ζ (which

corresponds to the decoupling of η′) and α = ζ/2 (corresponding to the minimal splitting).

We recall that the couplings are normalised to fψ for both singlets, and to fχ (here set

equal to fψ) for the octet. The table clearly shows that the two models give rise to very

different values of the couplings, thus providing an handle apt to distinguish the two if a

signal is detected. Armed with the values of the couplings in the table, one can go back to

the plots of the previous section and reconstruct the best constraint for each mass point.

In the following, we will put together all the constraints, and extract a lower bound on the

decay constant fψ.

We start by discussing the octet in the two models: combining all the searches described

in section 4, one can extract a lower bound on fχ as a function of the octet mass. The
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(nψ, nχ) O1/2 SU(4)U(1)ψ ,U(1)χ Sp(4)

(2, 0) ψψχ (6⊕ 10)2,1 1⊕ 5⊕ 10

ψψ̄χ̄ (1⊕ 15)0,−1 1⊕ 5⊕ 10

(−2, 0) ψ̄ψ̄χ (6)−2,1 1⊕ 5

ψψ̄χ̄ (1⊕ 15)0,−1 1⊕ 5⊕ 10

(0, 2) ψψχ (6⊕ 10)2,1 1⊕ 5⊕ 10

ψ̄ψ̄χ (6)−2,1 1⊕ 5

(0,−2) ψψ̄χ̄ (1⊕ 15)0,−1 1⊕ 5⊕ 10

Table 7. Representations of the top partners corresponding to the four choices of charges studied

in this section. Either operator can be associated to tL or tR. When only one operator is shown,

both top chiralities are associated to it.

Model κg
κW
κg

κB
κg

Ct
κg

(2, 0) Ct
κg

(0, 2)

M8 a −0.77(−0.39) −1.2(−2.5) 1.5(0.17) −1.2(−2.5) 0.40(0.40)

η′ 1.9(2.0) 0.20(0.096) 2.9(2.8) 0.20(0.0.96) 0.40(0.40)

π8 7.1 0 1.3 0 0.40

M9 a −4.3(−2.7) −0.55(−2.4) 2.1(0.26) −0.068(−0.30) 0.18(0.18)

η′ 1.3(3.6) 5.8(1.3) 8.5(4.0) 0.73(0.16) 0.18(0.18)

π8 16. 0 1.3 0 0.18

Table 8. Couplings for the two models discussed in the text in the limit α = ζ (and in parenthesis

the values for α = ζ/2).

Figure 12. Lower bounds on fχ from LHC searches sensitive to the octet, in the case of model M8

(Left) and M9 (Right). The two lines correspond to the two choices of charges (2, 0) and (0, 2).

final result is shown in figure 12, Left plot for model M8, and Right plot for model M9.

The first feature we observe is that the constraint is much stronger for M9, due to the

larger coupling to gluons of the octet, as shown in table 8. The two charge assignments

also bear very different features. For (2, 0) the coupling to tops vanishes and the bound is
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dominated by the di-boson final states: pair production searches (di-jet pairs — shown by

the vertical line to the left) exclude masses below 640 GeV. For masses above 650 GeV, the

constraint is given by gγ searches, which start at this threshold as shown in figure 10. In

the case (0, 2), couplings to tops are present and affect the bounds. First of all, the lower

bound from pair production on the mass is stronger, as coming from 4-top searches (we

observe a lower bound of 880 GeV). At higher masses, the bound from single production

crucially depends on the model. For M8, which has larger couplings to tops w.r.t. the gluon

couplings, the tt̄ final state dominates over the whole mass range, providing weak bounds

on fχ. On the contrary, for M9, the tt̄ final states only dominated up to 1500 GeV, above

which the gγ final states dominates again: the weaker bound w.r.t. the (2, 0) case is due to

a depletion of the signal because of a non-zero BR into tops. On general grounds, we see

that the constraint on the decay constant is always comparable if not stronger than the

typical lower bound f ≥ 800 GeV from EW precision tests. This comparison, however, is

only valid if fψ = fχ. While here we consider only the octet, these two models also feature

a charged sextet in the spectrum: its phenomenology has been studied in detail in [59].

The sextet mainly couples to right-handed tops, and it is expected to be slightly lighter

that the octet. It only affects searches for 4-tops, which yield a lower bound on the mass

of the order of 1 TeV, thus stronger that the octet one, while the other octet final states

are not affected by the presence of the sextet.

The channels that can give a direct probe of the fine tuning in the EW scale are the

singlets, which can directly feel the value of fψ. Also, for singlets, the two models appear

rather different due to the value of tan ζ: in particular, for M8, the lighter singlet is always

expected to be much lighter that the second one, as ma . mη′/5. Furthermore, due to the

large coupling to tops, as shown in table 8, it will dominantly lead to tt̄ final states with

a weak bound on fψ of the order of 200 GeV for a mass below 1 TeV. We thus decided

to focus on the signatures generated by the heavier singlet η′: in the top row of figure 13

we show the results for the two charge assignments, assuming decoupling limit (i.e. α = ζ

and ma � mη′). From the ratio values in table 8 and figure 6 (bottom right), we see

that for (nψ, nχ) = (±2, 0) the most constraining channel is γγ in the entire mass range

500 GeV < mη′ < 4000 GeV, while for (nψ, nχ) = (0,±2), the γγ and the tt̄ channels

yield comparable bounds. Closer investigation shows that the current constraint from the

tt̄ channel dominates only in the mass regime 900 GeV < mη′ < 1100 GeV. Overall, the

bound on fψ is weaker for the (nψ, nχ) = (0,±2) charge assignment, which has a larger

coupling to tops, because the larger branching ratio into tt̄ reduces the dominant γγ one.

The plots also show that the bounds tend to be below the EW precision test ones, except

for very light masses.

In the case of model M9, we can study the constraint as a function of the two masses,

as they are allowed to be close. We recall that the mixing angle α depends on the values

of the two masses, thus the couplings are not fixed over the parameter space, making

the interpretation of the results more difficult. The result is shown in the bottom row of

figure 13, where we present the lower bounds on fψ as a function of the two masses. Like

for M8, we see that the bound is weakened in the model with larger top couplings, i.e.

(0,±2). Nevertheless, in both cases, the bounds are stronger that the ones expected from
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Figure 13. Lower bound on fψ (in GeV) from LHC searches sensitive to singlets. Top row shows

results for model M8, as a function of mη′ . Bottom row for model M9, as a function of the two

masses ma and mη′ . The Left (Right) plots corresponds to charges (±2, 0) ((0,±2)). The red

line in the M9 plots delimits the region where the bound is driven by the η′ (below) from the a

one (above).

EW precision tests in a wide portion of the parameter space. The general behavior of the

bound is difficult to read, because it comes from a complicated interplay of many factors.

One general remark is that the mixing angle varies from the value α = ζ/2 near the border

of the inaccessible region, where the lightest singlet couples dominantly to the SU(2) gauge

bosons (W ’s), while for heavy η′ the coupling to the hypercharge becomes dominant. As

an example, we would like to discuss what happens for the (±2, 0) case at ma = 1000 GeV.

From the bottom-right plot in figure 6, we see that near the inaccessible boundary, where

κB/κg ∼ 0, the bound on a is dominated by the tt̄ final state due to the fairly large value

of the top coupling, as |Ct/κg| = 0.3. This shows that the strong bounds on fψ observed in

the plot are driven by the η′, which has large coupling to gluons and large BR in di-photons

(due to the large κB).

Moving away at larger mη′ , a takes over with weaker bounds due to the fact that the

coupling to tt̄ is still large and the region near 1 TeV shows a very sensitive island to low

values of it (with Ct/κg below 0.1, see figure 6). For increasing values of mη′ , the bound

on fψ from a gets stronger due to the increase in the value of the coupling to gluons κg,

thus explaining the presence of a minimum around mη′−ma ∼ 500 GeV. The fact that the

bound at ma = 1 TeV is weaker that other mass values around it is due to the fact that the
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top coupling remains close to the critical value shown in figure 6. A red line in figure 13

shows the watershed dividing the region where the bound is driven by the η′ (below the

red line) and the one driven by a (above).

A final word is necessary on the arbitrary parameters that we fixed in order to obtain

simple results. While the relation between the far and fr (r = ψ, χ) is somewhat justified,

there is no underlying reason why fχ = fψ. The decay constants in the two sectors can,

in principle, be different. We checked that, varying this ratio, our numerical result do

not change qualitatively but there are O(1) changes in the numerical values of the bound

on fψ, due to the change in the couplings. This ambiguity can, however, be fixed if the

models under study is studied on the Lattice: in this case, the ratios between the various

decay constants can be calculated, and a more solid prediction can be obtained for each

model. The plots we present in this section are, therefore, just a numerical example. New

plots following any Lattice input can be easily obtained following the recipe presented in

this paper.

6 Conclusions

We investigated the dynamics of a specific class of Composite Higgs Models with top partial

compositeness, constructed via ordinary four-dimensional gauge theories with fermionic

matter belonging to two different irreps of the hypercolor group. These models give rise to

EW cosets beyond the “minimal” SO(5)/SO(4) type and thus contain additional pNGBs

carrying EW charges. Furthermore, additional colored pNGBs arise from the need of

introducing hyperquarks carrying ordinary color in order to construct top-partners. Two

more pseudo-scalars arise from the breaking of the two chiral global U(1) symmetries

associated to the two hyperquarks.

In our choice of models of this type, we were guided by the need to preserve both

the custodial symmetry of the Higgs sector as well as the one protecting the Z → bL b̄L
branching ratio. As discussed in section 2, we focused on models that are likely to lie

outside of the conformal window and that can be brought into it from strong coupling at

energies above the confinement scale Λ.

We identified a set of three pseudo-scalars, the two singlets a and η′ with respect to

the SM groups and a color octet π8, that are present in all models in this class. Their

dynamics is controlled by model-specific group-theory data and a few phenomenological

parameters such as the hyperfermion masses and the pNGBs decay constants. In particular,

the couplings to gauge bosons are determined by the coefficients of the WZW anomalies,

which are sensitive to the microscopic details of the model.

One of the most striking signals from these preudo-scalars are di-boson signatures

which is one of the main focuses of the paper. We have performed a complete analysis

of the constraints from di-boson and di-top final states (also including pair production for

the octet) using post-ICHEP2016 LHC data and the respective experimental results, and

formulated a model independent strategy to combine known bounds and establish new

limits on models under study.

Following our recipe, formulated in section 4 (with the concrete example given in

section 4.1.2) we applied the bounds to the models under consideration, giving numerical
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results in the case of two of them (M8 and M9 in table 1). We found that present LHC

data already sets important constraints on the condensation scale which are stronger than

the typical bounds from EW precision tests, thus demonstrating that the direct search for

additional pNGBs with di-boson and di-top signatures in models of partial compositeness

can be the first probe for such models. The fact that the couplings are predictive and

sensitive to the underlying model makes these channels attractive. We should remark that

the presence of these signatures is common to all models of partial compositeness based on

a gauge-fermionic underlying theory.

The analysis of the post-ICHEP2016 data, and the framework we have developed in

section 4 can be used in a straightforward way (including an update with the new coming

data) to any model containing pseudo-scalar singlets or octets at the TeV scale.
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A Interpretation of ATLAS and CMS searches used in this article

In this appendix, we summarize the experimental searches used in this article in order to

constrain the diboson channels, the tt̄ channel, and the octet pair production channels and

detail the assumptions made in order to extract the bounds for the models discussed.

A.1 Diboson and tt̄ searches

ATLAS and CMS published a large number of searches for jj, WW , ZZ, Zγ, γγ, jγ,

and tt̄ resonance searches at run I (with a center of mass energy of
√
s = 8 TeV) and run

II (with a center of mass energy of
√
s = 13 TeV). The constraints are typically given

as bounds on the (folded) production cross section as a function of the resonance mass.

In those cases, we directly use the bound on the folded cross section, implicitly assuming

that the acceptances and efficiencies of the pseudo-scalar SM singlet resonance π0 and

the color octet π8 are comparable to the ones of the sample model used in the respective
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Figure 14. Bounds on the di-boson and tt̄ channels from 8 TeV searches.

experimental study. We do not perform explicit recasts of the various searches. In cases

in which bounds are given as constraints on a fiducial cross section or on cross section

times acceptance times efficiency, we estimate the acceptance and efficiency following the

information provided in the respective articles and list our assumptions below. Finally, in

some cases, studies give bounds on the cross section in a particular final state after the

decays of the SM gauge bosons. In these cases we rescale results with the appropriate SM

gauge boson branching ratios.

8 TeV searches. A summary of the di-boson bounds from run I are shown in figure 14,

where we used the following searches and assumptions:

gg-channel:

• ATLAS: ref. [66], figure 9 (gg fusion, lowest width). Bounds are given in terms of

cross section × acceptance. We assume an acceptance of 50%.18

18Acceptances for excited quark, scalar color octet, and quantum black hole searches are reported as 58%,
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• CMS l.m.r.: ref. [67], figure 3 (gg fusion, low mass region). Bounds are given in terms

of cross section × acceptance. We assume an acceptance of 50%.

• CMS h.m.r.: ref. [68], figure 4 (gg fusion, high mass region). Bounds are given in

terms of cross section × acceptance. We assume an acceptance of 50%.

WW -channel:

• ATLAS had.: ref. [77], figure 6 (Randall-Sundrum Kaluza-Klein graviton).

• ATLAS h.m.r.: ref. [76], figure 2 (Randall-Sundrum Kaluza-Klein graviton).

• ATLAS l.m.r.: ref. [75], figure 12 (gg fusion).

• CMS had.: ref. [79], figure 8 (Randall-Sundrum Kaluza-Klein graviton).

• CMS s.l.: ref. [78], figure 9 (Randall-Sundrum Kaluza-Klein graviton).

ZZ-channel:

• ATLAS had.: ref. [77], figure 6 (Higgs-like scalar produced in gluon-gluon-fusion).

• ATLAS h.m.r.: ref. [87], figure 2 (Randall-Sundrum Kaluza-Klein graviton).

• ATLAS l.m.r.: ref. [86], figure 12 (gg fusion).

• CMS had.: ref. [79], figure 8 (Randall-Sundrum Kaluza-Klein graviton).

• CMS s.l.: ref. [78], figure 9 (Randall-Sundrum Kaluza-Klein graviton).

Zγ-channel:

• ATLAS Zγ∗: ref. [124], figure 3c (scalar). The article gives a bound on the fiducial

cross section, only. Without a detailed recast, we are not able to interpret this bound

in terms of the full cross section in order to compare it to other searches. Thus, we

give the bound on the fiducial cross section of this study only for reference, and do

not use it in our combined constraints.

• CMS, llγ: ref. [93], figure 2 (Narrow signal model).

• CMS, qqγ: ATLAS l.m.r.: ref. [94], figure 5 (results for narrowest width spin-0

resonance).

γγ-channel:

• ATLAS γγ: ref. [72], figure 4 (Randall-Sundrum Kaluza-Klein graviton).

61–63% and 52–56% [66]. In the absence of a full recast of the search for our pseudo-scalar resonance, we

assume a slightly lower acceptance of 50%, leading to a conservative estimate of the constraint of the folded

cross section.
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• CMS γγ∗: ref. [125], figure 2 (Randall-Sundrum Kaluza-Klein graviton, narrowest

available width). CMS by now provides combined bounds of run I and run II searches

in the γγ resonance. The bound shown here is the run-I bound, and is only given for

reference. We do not use it in our analysis, but instead include the combined run-I

and II bound from CMS.

tt̄-channel:

• ATLAS γγ: ref. [98], figure 11 (scalar resonance search).

• CMS γγ *: ref. [99], figure 14 (narrow width Z ′ search).

To combine the different bounds in each of the channels we take as a constraint the

strongest bound in each channel at a given mass. In the model we discuss, the by far

dominant single-production mechanism is gluon fusion, for which the ratio between the

production cross section at 13 TeV and 8 TeV as a function of mass is determined by the

cross sections given in figure 1. In order to compare the bounds from run I searches to

those from run II searches, we rescale the bounds on the production cross section times

branching ratios into the the di-boson and tt̄ final states by σ(gg → π0)13/σ(gg → π0)8

and show the resulting bounds in figure 3, labeled at “8 TeV”.

13 TeV searches. A summary of the di-boson bounds from run II are shown in figure 15,

where we used the following searches and assumptions:

gg-channel:

• ATLAS l.m.r: ref. [69], figure 8 (Gaussian signal with detector resolution). Bounds

are given in terms of cross section × BR × acceptance. For the acceptance, we use

the acceptances provided in tables 3 and 4 of ref. [69].

• ATLAS h.m.r.: ref. [70], figure 5 (Gaussian signal with detector resolution). Bounds

are given in terms of cross section × acceptance. We assume an acceptance of 50%.

• CMS: ref. [71], figure 6 (gg fusion, low- and high mass region). Bounds are given in

terms of cross section × acceptance. We assume an acceptance of 60% (acceptance

given in ref. [71] for isotropic decays).

WW -channel:

• ATLAS had.: ref. [82], figure 6 (Randall-Sundrum Kaluza-Klein graviton).

• ATLAS s.l.: ref. [81], figure 2 (scalar produced in gg fusion, narrow width approxi-

mation).

• ATLAS lep: ref. [80], figure 5 (scalar produced in gg fusion, narrow width approxi-

mation).

• CMS had.: ref. [83], figure 10 (Randall-Sundrum Kaluza-Klein graviton).

• CMS s.l.: ref. [85], figure 7 (Randall-Sundrum Kaluza-Klein graviton).

• CMS lep: ref. [84], figure 5d (SM-like heavy Higgs, narrowest width available).
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Figure 15. Bounds on the di-boson and tt̄ channels from 13 TeV searches.

ZZ-channel:

• ATLAS ννqq: ref. [89], figure 12 (Higgs-like scalar produced in gg fusion)

• ATLAS llqq: ref. [89], figure 10 (Higgs-like scalar produced in gg fusion)

• ATLAS llνν: ref. [90], figure 7a (narrow width Higgs-like scalar produced in gg fusion)

• ATLAS had: ref. [77], figure 6 (Higgs-like scalar produced in gg fusion).

• ATLAS 4l: ref. [88], figure 11a (scalar produced in gg fusion, narrow width approxi-

mation).

• CMS had.: ref. [83], figure 10 (Randall-Sundrum Kaluza-Klein graviton).

• CMS had. 2: ref. [91], figure 12c (Randall-Sundrum Kaluza-Klein graviton).

• CMS 4l: ref. [92], figure 16 (SM-like heavy Higgs, narrow width approximation).
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Figure 16. Bounds on gγ channel from 8 and 13 TeV searches.

Zγ-channel:

• ATLAS llγ: ref. [95], figure 6 (narrow width scalar).

• CMS, llγ: ref. [96], figure 4.

• CMS, qqγ: ref. [97], figure 5c (narrow width spin-0 resonance).

γγ-channel:

• ATLAS γγ: ref. [74], figure 7a (spin-0 resonance, narrow width approximation). The

study gives bounds on the fiducial cross section. To obtain bounds on the full cross

section — following the information on the fiducial volume given in ref. [74] — we

divide the bounds given by a fiducial volume function which is 54% for a mass of

200 GeV, linearly extrapolated to 61% at 700 GeV, and 61% above.

• CMS γγ *: ref. [73], figure 8 (narrow width spin-0 resonance). CMS provides com-

bined bounds of run I and run II searches in the γγ resonance. The bound shown

here is the combined bound.

tt̄-channel:

• ATLAS γγ: ref. [100], figure 11 (Z ′ search).

• CMS γγ *: ref. [101], figure 8a (narrowest width Z ′ search).

To combine the different bounds in each of the channels,we take as a constraint the

strongest bound in each channel at a given mass. The resulting bounds are shown in

figure 3, labeled at “13 TeV”.

A.2 Excited quark searches as constraints on the γg final state

Excited quark searches for the final state γj can be used to constrain the γg channel

relevant for the octet pseudo-scalar search. For the 8 TeV searches we used the following

bounds shown in figure 16 (left):
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• ATLAS: ref. [117], figure 2 (excited quark, narrowest width). The bound is given on

the cross section × acceptance × efficiency. To obtain the bound on the cross section

we divide the bounds given by A = 60% × ε = 60%, according to acceptances and

efficiencies quoted in ref. [117] for excited quark searches.

• CMS: ref. [119], figure 2 (excited quark search).

The combined bound used in this article is obtained by taking the strongest bound at each

resonance mass mπ8 . In order to compare the bounds from run I searches to those from

run II searches, we rescale the bounds on the production cross section times branching

ratios into gγ by σ(gg → π8)13/σ(gg → π8)8 and show the resulting bounds in figure 10,

labeled “8 TeV”.

For the 13 TeV searches we used the following bounds shown in figure 16 (right):

• ATLAS: ref. [114] figure 5a (excited quark search).

• CMS: ref. [116], figure 5 (excited quark search).

The combined bound is obtained by taking the strongest bound at each resonance mass

mπ8 . The resulting bound is shown in figure 10, labeled “13 TeV”.

B Additional mass mixing (and couplings) of the singlets

In this appendix, we briefly discuss the possible presence of mixing of the U(1) singlets

aψ and aχ with pNGBs from the non-abelian flavor symmetries. These mixing terms can

only arise from spurions explicitly breaking the flavor symmetries, and in particular from

the mass terms of the fermions which also generate masses for the pNGBs. In addition to

mass mixing, couplings to two non-abelian pNGBs may also be generated thus opening the

case for additional decay channels. We will discuss each case individually, as the physics

involved is very different.

Coset SU(4)/Sp(4). This coset, generated by ψ in the pseudo-real representation, con-

tains 5 pNGBs, which transform under the custodial symmetry as a singlet η and a bi-

doublet H (which plays the role of the BEH field).

The underlying theory consists of 4 Weyl spinors: two transforming as a doublet of

SU(2)L, and the other 2 as a doublet of SU(2)R, thus one can write down two independent

mass terms, mL and mR respectively. We will parametrize the two masses as

mL = µψ(1 + δ) , mR = µψ(1− δ) , (B.1)

where µψ is the common mass used in section 3.2 and δ is a parameter describing the

deviation from Universality: δ is required to be small in order to preserve the stability of

the vacuum.

Following the normalization adopted in this work, we find that:

ImTr[ΣX†] = 2Bψµψδ

(
−4

η

fψ

fψ sin
√
η2 + |H|2/fψ√
η2 + |H|2

)
. (B.2)
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Plugging this expression in eq. (3.14), we see that a linear mixing with the non-abelian

singlet η is generated, proportional to the universality breaking parameter δ:

Lm ⊃ 2
fψ
faψ

m2
πψ
δ aψη + . . . (B.3)

We also notice that no mixing nor coupling can be generated in the Universal case: this

fact can be easily understood in terms of symmetries. In fact, there exists a symmetry

acting on the pNGBs under which only η is odd, provided that SU(2)L ↔ SU(2)R are

exchanged [26]. Following the CP properties of the scalar fields, and invariance under

Sp(4), the possible linear couplings of the aψ singlet to the non abelian pNGBs need to

have the following form:

aψη
2n−1(H†H)m , where n and m are integers. (B.4)

The odd power on η derives from CP-invariance. This coupling, however, is odd under the

η-parity described above, unless the coefficient is odd, i.e. proportional to δ ∼ mL −mR.

Coset SU(4)×SU(4)/SU(4). This coset also arises in the EW sector when ψ is com-

plex. The 15 pNGBs transform as a singlet η, two bi-doublets H1,2, an SU(2)L triplet

∆ and an SU(2)R triplet N . Like in the previous case, the 4 ψ’s (and their conjugates)

transform like doublets of the custodial symmetry, thus we can write down two mass terms

mL and mR. We can parametrize then as above, in eq. (B.1).

The vacuum structure of this model is more complex that the previous one, and it has

been discussed in detail in ref. [33]. It is easier to describe the theory in the EW preserving

vacuum, and think of the misalignment in terms of VEVs assigned to the pNGBs. The

only pNGBs that can develop a VEV are:

〈H0
1 〉 =

v√
2
, 〈H0

2 〉 = i
v2√

2
, 〈∆0〉 = 〈N0〉 = v3 , (B.5)

where v = vSM. It has been shown in [33] that the real VEV of the second doublet can

always be rotated away without loss of generality, thus we do not consider it here further.

Also, v2 violates CP, and for simplicity we set it to zero here: if present, however, it will

generate a tadpole for aψ proportional to the product of the 3 VEVs. Note also that the

triplet VEV is bound to be small as it does violate custodial invariance, thus we will neglect

it in the following for simplicity.

We then study the mass mixing by expanding the Lagrangian terms in eq. (3.14) up

to the 3rd power in the pNGB matrix, thus capturing effects up to quadratic order in the

VEVs. We find the following mass terms:

Lm ⊃ −2
fψ
faψ

m2
πψ
δ

(
1− v2

6f2
ψ

)
aψη + . . . . (B.6)

We see then that a mixing to the singlet η is generated in presence of Universality violation,

as in the SU(4)/Sp(4) case. Additionally, a mixing to the second doublet is generated if

the small triplet VEV is present.
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Couplings to two pNGBs can also be generated via the SM Higgs VEV v:

Lm ⊃
m2
πψ
v

fψfaψ
aψ

[
2

3
δ ηh+

√
2A∆0

(
1 +

δ

3

)
+
√

2AN0

(
1− δ

3

)
+
√

2iH+
2 ∆−

(
1 +

δ

3

)
+
√

2iH+
2 N

−
(

1− δ

3

)
+ h.c.

]
. (B.7)

The terms above can generate decays of the singlets to two pNGBs: note in particular

the presence of couplings to the second doublet and triplets which are not suppressed by

δ. As these pNGBs may be odd under a conserved parity (see [33]), this opens the way

to interesting invisible decay modes. Nevertheless, such couplings are proportional to the

mass mπψ which we assume being small, thus for the sake of simplicity we will neglect

them in our study.

Coset SU(5)/SO(5). This coset arises when the ψ’s are in a real representation of

Hypercolor. The 14 pNGBs transform like a singlet η, a bi-doublet H playing the role of

the BEH field, and a bitriplet, that can be decomposed into a real SU(2)L triplet φ0 and

a complex one φ+ with hypercharge +1. The 5 fermions ψ transform like a bidoublet of

the custodial symmetry plus a singlet, thus one can assign 2 independent masses m and

m0 = m(1 + δ) respectively.

Besides the VEV of the Higgs field, the vacuum structure also allows the triplets to

develop a VEV, so that in principle one can define 4 independent parameters:

〈H0〉 =
v√
2
, 〈φ0

0〉 = v0 , 〈φ−+〉 =
v1 + iv2√

2
. (B.8)

However, the triplets VEVs would violate custodial invariance unless a relation among

them is imposed [126]: v1 = 0 and v2 = −v0. Plugging this vacuum structure in eq. (3.14),

however, we see that a tadpole for the singlet aψ is generated unless v0 = v2 = 0: this is

easily understood, as the two VEVs correspond to CP-odd fields. Thus, in order to both

preserve custodial invariance and avoid tadpoles for the singlets, the triplet VEVs must

vanish: in the following, also for the sake of simplicity, we will impose this cancellation.

Expanding the mixing Lagrangian up to third order in the pNGB matrix, we find that

the following mixing terms are generated:

Lm ⊃
fψ
faψ

m2
πψ

[
4√
5

(
δ − 9 + 7δ

12

v2

f2
ψ

)
aψη +

(
1 +

δ

3

)
v2

f2
ψ

aψ(φ0
0 − 2Imφ−+)

]
. (B.9)

Like in the SU(4)×SU(4)/SU(4) coset, we notice a mixing with the singlets proportional to

the violation of the mass Universality, however at order v2/f2
ψ mixings with the singlets and

the two CP-odd neutral components of the triplets are generated also in the Universal limit.

Similarly, the following couplings to two pNGBs are generated at the leading order in v:

Lm ⊃ 2
m2
πψ
v

faψfψ

[
−9 + 7δ

3
√

5
aψhη +

(
1 +

δ

3

)
aψh(φ0

0 − 2Imφ−+)

]
. (B.10)
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C Top loops

In the present framework of pNGB composite Higgs model top mass is induced via partial

compositeness. This explicit breaking of the global flavor symmetry introduces direct

couplings between the pNGBs and top. The octet coupling is model dependent but the

coupling of the singlets is always present, as explained in section 3. Such new interactions

will induce loop corrections to the anomalous WZW terms, via a triangle fermionic loop.

In this appendix we summarize the main results of the top loop contribution.

For a pseudo-scalar, the amplitude is simply proportional to an epsilon tensor and other

gauge invariant tensor structures vanish due to the CP invariance.19 For a generic coupling

of the pNGBs to tops, i.e. iγ5Ctmt/fπ (were π can be either π0 or π8), the amplitude of

the process is given by:

Modd
top =

εµνρσε
µ(~k)εν(~p)kρpσ

4π2

Ct
fπ

[
c1C̃0(Rp, Rk, Rπ; ξ) + c2C̃1(Rp, Rp, Rπ; ξ)

]
. (C.1)

with Ri =
p2i
m2
t
, ξ = mb

mt
for the WW final state and ξ = 1 otherwise. The second term on

the right hand side will only be present for equal massive final states (WW and ZZ), we

have used the on-shell condition Rk = Rp when writing it. The c1,2 are combinations of

SM couplings for the top (or top-bottom) to gauge fields, which already include the trace

over the symmetry generators. For all neutral gauge bosons we have two loop diagrams

contributing, corresponding to the fermions in the loop going clockwise or anti-clockwise.

For the W+W− final state only one fermion flow contributes, this multiplicity is also taking

into account in the c1,2 parameters. In table 9 we summarize these coupling combinations.

The loop functions C̃0,1 are related the usual Passarino-Veltman functions by a re-

scaling, i.e. C0 = −C̃0/m
2
t and C1 = C̃1/m

2
t [127, 128]. Their integral form is given by

C̃0(Rp, Rk, Rπ; ξ) =

∫ 1

0

∫ 1−x

0

dydx

∆(Rp, Rk, Rπ; ξ)

C̃1(Rp, Rp, Rπ; ξ) =
1

2

∫ 1

0

∫ 1−x

0

xdydx

∆(Rp, Rp, Rπ; ξ)

(C.2)

with

∆(Rp, Rk, Rπ; ξ) = Rk(x
2−x)+Rp(y

2−y)−(Rπ−Rp−Rk)xy+(x+y)(1−ξ2)+ξ2 . (C.3)

These functions have in general very cumbersome analytic expressions. However, for sce-

narios with only massless gauge bosons or one massive they take a compact form

C̃0(0, 0, Rπ; 1) =
f(Rπ)

Rπ
, C̃0(RZ , 0, Rπ; 1) =

1

Rπ −RZ
(f(Rπ)− f(RZ)) (C.4)

with

f(x) =


2 arcsin2

√
x/4 0 < x < 4

−1

2

[
ln

1 +
√

1− 4/x

1−
√

1− 4/x
− iπ

]2

x ≥ 4
(C.5)

19This argument applies for the top loop contribution to H-Z-γ vertex in the SM, where the Higgs is a

scalar, thus the CP-Odd epsilon-term is exactly canceled because of the opposite sign in the clockwise and

anti-clockwise Feynman diagrams.
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channels c1 c2

π0gg g2
s 0

π0γγ
8

3
e2 0

π0Zγ
2ge

cW

(
1

2
− 4

3
s2
W

)
0

π0ZZ 2g2t2W

(
4

3
s2
W − 1

)
3g2

2

2c2
W

π0WW 0
3g2

2

2

π8gg
g2
s

2
dABC 0

π8gγ
2egs

3
δAB 0

π8gZ
gsg

2cW

(
1

2
− 4

3
s2
W

)
δAB 0

Table 9. Coupling combinations c1,2 induced by top loops for all di-boson channels. We use the

shorthand notation sW ≡ sin θW and similar for the other trigonometric functions.

We can write the general C̃1 function in terms of the scalar Passarino-Veltman functions:20

C̃1(Rp, Rp, Rπ; ξ) =

(
Rp + ξ2 − 1

)
Rπ − 4Rp

C̃0(Rp, Rp, Rπ; ξ) +
1

Rπ − 4Rp
(B0 (Rπ; 1)−B0 (Rp; ξ))

(C.6)

From the above amplitude we can compute the corrections to the decays. We get for

the singlet case

ΓWZW+top(π0 → gg)

ΓWZW (π0 → gg)
=

∣∣∣∣1 +
Ct
κg
C̃0(0, 0, Rπ0 ; 1)

∣∣∣∣2 ,
ΓWZW+top(π0 → γγ)

ΓWZW (π0 → γγ)
=

∣∣∣∣1 +
8

3

Ct
κB + κW

C̃0(0, 0, Rπ0 ; 1)

∣∣∣∣2 ,
ΓWZW+top(π0 →W+W−)

ΓWZW (π0 →W+W−)
=

∣∣∣∣1 +
3

2

Ct
κW

C̃1(RW , RW , Rπ0 ; ξ)

∣∣∣∣2 ,
ΓWZW+top(π0 → Zγ)

ΓWZW (π0 → Zγ)
=

∣∣∣∣1 +
2

c2
W

(
1

2
−

4s2
W

3

)
Ct

κW − t2WκB
C̃0(RZ , 0, Rπ0 ; 1)

∣∣∣∣2 ,
ΓWZW+top(π0 → ZZ)

ΓWZW (π0 → ZZ)
=

∣∣∣∣1 +
Ct

κW + t4WκB

(
3

2c4
W

C̃1(RZ , RZ , Rπ0 ; 1)

+2
t2W
c2
W

(
4s2
W

3
− 1

)
C̃0(RZ , RZ , Rπ0 ; 1)

)∣∣∣∣2 (C.7)

20The definition of two-point function in D-dimension is B0 (Ri; ξ) =
(2πµ)4−D

iπ2

∫ dDq

[q2 −m2
t ][(q + p)2 −m2

f ]
, with Ri = p2/m2

t and ξ = mf/mt.
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Model tanα κg κB κW
Ct (nψ , nχ)

(2, 0) (0, 2) (4, 2) (−4, 2)

M3

π8 — 14. 18.7 — 0. 4. 4. 4.

a
-.913 (-.388)

-2.72 (-1.46) -3.53 (.921) 3.74 (4.72) .934 (1.18) -.778 (-.417) 1.09 (1.94) -2.65 (-2.78)

η′ 2.98 (3.77) 11.4 (11.9) 3.41 (1.83) .853 (.457) .853 (1.08) 2.56 (1.99) -.853 (.162)

M4

π8 — 18. 24. — 0. 4. 4. 4.

a
-1.83 (-.592)

-4.56 (-2.65) -7.29 (1.64) 4.86 (8.71) .608 (1.09) -1.01 (-.589) .203 (1.59) -2.23 (-2.77)

η′ 2.50 (4.47) 15.5 (17.1) 8.88 (5.16) 1.11 (.645) .555 (.993) 2.77 (2.28) -1.66 (-.296)

M8

π8 — 7.07 9.43 — 0. 2.83 2.83 2.83

a
-0.408 (-.196)

-.771 (-.393) -1.13 (-.067) .926 (.981) .926 (.981) -.309 (-.157) 1.54 (1.81) -2.16 (-2.12)

η′ 1.89 (2.00) 5.42 (5.53) .378 (.193) .378 (.193) .756 (.801) 1.51 (1.19) 0. (.416)

M9

π8 — 15.6 20.7 — 0. 2.83 2.83 2.83

a
-3.27 (-.740)

-4.29 (-2.67) -9.11 (-.689) 2.34 (6.43) .293 (.804) -.781 (-.486) -.195 (1.12) -1.37 (-2.09)

η′ 1.31 (3.61) 11.2 (14.4) 7.65 (4.76) .956 (.595) .239 (.656) 2.15 (1.85) -1.67 (-.533)

M10

π8 — 14.1 18.9 — 0. 2.83 2.83 2.83

a
-3.27 (-.740)

-3.90 (-2.43) -8.07 (-.042) 2.34 (6.43) .293 (.804) -.781 (-.486) -.195 (1.12) -1.37 (-2.09)

η′ 1.20 (3.28) 10.8 (13.5) 7.65 (4.76) .956 (.595) .239 (.656) 2.15 (1.85) -1.67 (-.533)

M11

π8 — 8.49 11.3 — 0. 2.83 2.83 2.83

a
-.816 (-.356)

-1.55 (-.822) -2.58 (-.309) 1.55 (1.88) .775 (.942) -.516 (-.274) 1.03 (1.61) -2.07 (-2.16)

η′ 1.90 (2.31) 6.32 (6.82) 1.26 (.671) .632 (.336) .632 (.769) 1.90 (1.44) -.632 (.098)

M12

π8 — 14.1 18.9 — 0. 2.83 2.83 2.83

a
-.385 (-.186)

-2.07 (-1.05) -3.20 (-.355) 2.33 (2.46) .933 (.983) -.415 (-.211) 1.45 (1.76) -2.28 (-2.18)

η′ 5.39 (5.68) 15.3 (15.6) .898 (.457) .359 (.183) 1.08 (1.14) 1.80 (1.50) .359 (.770)

Table 10. Couplings for models with top partners of the form ψψχ, for fχ = fψ, normalised to fψ.

and for the octet

ΓWZW+top(π8 → gg)

ΓWZW (π8 → gg)
=

∣∣∣∣1 +
Ct
κg
C̃0(0, 0, Rπ8 ; 1)

∣∣∣∣2 ,
ΓWZW+top(π8 → gγ)

ΓWZW (π8 → gγ)
=

∣∣∣∣1 +
4

3

Ct
κgB

C̃0(0, 0, Rπ8 ; 1)

∣∣∣∣2 ,
ΓWZW+top(π8 → gZ)

ΓWZW (π8 → gZ)
=

∣∣∣∣1 +
1

2s2
W

(
1

2
−

4s2
W

3

)
Ct
κgB

C̃0(RZ , 0, Rπ8 ; 1)

∣∣∣∣2 .
(C.8)

D Couplings and mixing in models M1–M12

In this appendix we present numerical values for all models, M1 to M12, assuming fψ = fχ
and normalising all couplings with fψ. The couplings of the singlets are shown for the

two extreme values of the mixing angle α: α = ζ obtained when mη′ → ∞, and α = ζ/2

obtained in the limit of minimal splitting. We checked that the couplings run approximately

linearly with α. In table 10 we show models whose top partners are made of 2 ψ’s and one

χ, while in table 11 the cases with 1 ψ and 2 χ’s.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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Model tanα κg κB κW
Ct (nψ , nχ)

(2, 0) (0, 2) (2, 4) (2,−4)

M1

π8 — 16. 10.7 — 0. 4. 8. -8.

a
-.913 (-.388)

-3.11 (-1.67) 1.19 (3.01) 3.27 (4.13) .934 (1.18) -.778 (-.417) -.623 (.344) 2.49 (2.01)

η′ 3.41 (4.31) 5.26 (4.47) 2.98 (1.60) .853 (.457) .853 (1.08) 2.56 (2.61) -.853 (-1.70)

M2

π8 — 32. 21.3 — 0. 4. 8. -8.

a
-.456 (-.217)

-3.84 (-1.96) 2.62 (4.25) 5.18 (5.56) 1.15 (1.24) -.479 (-.245) .192 (.745) 2.11 1.73)

η′ 8.40 (9.03) 7.97 (7.23) 2.36 (1.21) .525 (.269) 1.05 (1.13) 2.63 (2.53) -1.58 (-1.99)

M5

π8 — 8. 5.33 — 0. 4. 8. -8.

a
-1.83 (-.592)

-2.03 (-1.18) .169 (1.94) 1.52 (2.72) .608 (1.09) -1.01 (-.589) -1.42 (-.089) 2.63 (2.27)

η′ 1.11 (1.99) 3.51 (2.94) 2.77 (1.61) 1.11 (.645) .555 (.993) 2.22 (2.63) 0. (-1.34)

M6

π8 — 8. 5.33 — 0. 4. 8. -8.

a
-1.29 (-0.490)

-2.58 (-1.44) .602 (2.45) 2.32 (3.41) .775 (1.14) -1.29 (-.719) -1.81 (-.302) 3.36 (2.57)

η′ 2. (2.93) 4.33 (3.63) 3. (1.67) 1. (.557) 1. (1.47) 3. (4.50) -1. (-2.38)

M7

π8 — 32. 21.3 — 0. 4. 8. -8.

a
-.323 (-.157)

-4.01 (-2.03) 3.34 (4.89) 6.02 (6.25) 1.20 (1.25) -.502 (-.254) .201 (.742) 2.21 (1.76)

η′ 12.4 (12.9) 10.2 (9.59) 1.94 (.983) .389 (.197) 1.55 (1.61) 3.50 (3.42) -2.72 (-3.03)

Table 11. Couplings for models with top partners of the form ψχχ, for fχ = fψ, normalised to fψ.
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