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Tunnel magnetoresistance of magnetic molecules
with spin-vibron coupling
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SE-412 96 Göteborg, Sweden
2Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
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The effect of molecular vibrations on the tunnel magnetoresistance (TMR) of a mag-
netic tunnel junction with a single spin-anisotropic molecule interconnecting its elec-
trodes is investigated theoretically. We demonstrate that if these vibrations couple at the
same time to the charge of tunneling electrons and to the spin of the molecule, the spin
anisotropy of such a molecule becomes enhanced. This has, in turn, a profound impact
on the TMR of such a device showing that molecular vibrations lead to a significant
change of spin-polarized transport, differing for the parallel and antiparallel magnetic
configuration of the junction. © 2017 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4974285]

I. INTRODUCTION

The driving force behind the growing interest in nano-electronic devices based on single
molecules is the prospect of harnessing their inherent functional properties,1 e.g., mechanical, opti-
cal or magnetic ones. Here, especially large-spin molecules are attractive as suitable candidates for
applications in information-storing and -processing devices.2 In this context, magnetic anisotropy
of such molecules is crucial to ensure their magnetic bistability —a key prerequisite for a system
to be considered as a memory element. Consequently, much efforts have been devoted to control
this by synthesis,2 mechanical straining3 or electrical gating.4 Yet, another unique feature of many
molecules is their ability to vibrate. Interestingly, these vibrations of a single molecule captured in
a junction can couple to the charge of tunneling electrons which can result, e.g., in modification of
spectroscopic signatures of a molecular device5,6 or even suppression of transport.7,8 Although such
effects have been experimentally addressed in various molecular systems,9–12 only recently these
have been investigated in spin-anisotropic molecules.13–16

In this Communication we address the problem of how vibrations of a magnetic molecule bridged
between electrodes of a magnetic tunnel junction affect the tunnel magnetoresistance (TMR) of such
a device. For this purpose, we consider a spin-anisotropic model molecule in which vibrations couple
to the charge of tunneling electrons as well as to the spin of the molecule. We show that the interplay
of these two types of couplings leads to renormalization of magnetic anisotropy of the molecule,
and this effect can be clearly observed in transport spectroscopy. Importantly, such mechanism pro-
vides a new means of enhancing magnetic anisotropy of a molecule, which essentially corresponds
to increasing an energy barrier for molecular spin reversal, and thus, to improving the performance
of a molecule as a memory switch. We calculate spin-dependent transport for two magnetic con-
figurations of the junction, that is, when the relative orientation of spin moments of electrodes is
parallel and antiparallel, demonstrating that molecular vibrations lead to non-monotonic variations of
the TMR.
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II. THEORETICAL DESCRIPTION

A. Model

The essential physical properties of a device consisting of a magnetic tunnel junction (MTJ) with
a single magnetic molecule embedded in it are modeled by the Hamiltonian Ĥ = Ĥmol + ĤMTJ, with
the first (second) term standing for the molecule (MTJ).

We consider here a generic molecule whose magnetic features at low temperatures are fully
accountable for by the giant-spin approach,17 within which the molecule in a specific charge state n
is simply treated as an effective large spin Ŝn. In the following we assume that the molecule is capable
of accepting only a single extra electron, and thus, it can be either neutral (n = N) or charged (n = N
+ 1) —for notational brevity we set N = 0. In the static case, i.e., in the absence of vibrations, the
molecule is described by Ĥmol ≡ Ĥ

stat
mol = Ĥmag + Ĥg, where the magnetic properties are captured by

Ĥmag =
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The first and second terms of Ĥmag represent, respectively, the uniaxial and transverse component of
magnetic anisotropy, with Dn and En denoting the corresponding relevant anisotropy constants. On
the other hand, Ĥg = ε(Vg)n̂ takes into account the effect of capacitive coupling of the molecule to
a gate electrode. Note that for conceptual simplicity we include here only one conducting molecular
orbital, with n̂ being its occupation operator. Consequently, the molecular magnetic eigenstates,
| χn〉=

∑
SnMnC

χn

SnMn |Sn, Mn〉, are superpositions of angular momentum (spin) states |Sn, Mn〉, with

Ŝz
n |Sn, Mn〉=Mn |Sn, Mn〉, and Cχn

SnMn denoting the linear expansion coefficients.
The situation becomes more complex if the molecule can support vibrations, which might couple

to the charge of tunneling electrons.5–8 This so-called charge-vibron interaction can be incorporated
into the present discussion using an Anderson-Holstein-like model,18 which approximates vibrations
by means of a harmonic oscillator, Ĥvib = ~ωb̂†b̂. Oscillator states |q〉v are characterized by the
number of vibrons q (i.e., quanta of molecular vibrations) with the ground state |0〉v denoting the
absence of vibrations. This oscillator is coupled to a molecular charge state, Ĥch-vib = λ~ω(b̂†+ b̂)n̂.
To keep the model simple, but still without losing its generic nature, we consider only a single
vibrating mode of energy ~ω, which is created (annihilated) by the operator b̂† (b̂). The charge-vibron
coupling is quantified by a dimensionless parameter λ. However, if the molecule is magnetic, one
expects that also its spin can couple to vibrations, which is the main subject of this Communication.
This spin-vibron coupling can be written as19,20

Ĥsp-vib =
∑

n
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(b̂† + b̂), (2)

where Λu(t)
n is the dimensionless coupling strength of vibrations to the uniaxial (transverse) com-

ponent of the molecular spin. As a result, the molecule is described by the total Hamiltonian
Ĥmol = Ĥ

stat
mol + Ĥvib + Ĥch-vib + Ĥsp-vib, and a new basis of molecular states

{
| χn〉 ⊗ |q〉v

}
has

to be used, including both magnetic and vibronic degrees of freedom. Obviously, Ĥmol is not diag-
onal in this basis owing to the presence of the charge- (Ĥch-vib) and spin-vibron (Ĥsp-vib) couplings.
Whereas the former coupling can be eliminated by application of the Lang-Firsov transformation,21

the latter one cannot be removed in general.22 Nevertheless, an appropriate canonical transforma-
tion22 can be found for a specific case of a molecule characterized by S0 = 1/2 and S1 = 1, to which
we limit our considerations henceforth. The contribution (Ĥ stat

mol)
′

to the canonically transformed

molecular Hamiltonian, Ĥ ′mol = (Ĥ stat
mol)

′
+ Ĥvib, has essentially the same form as Ĥ stat

mol; however, it

incorporates new effective anisotropy constants D′n and E ′n, see Eq. (1), which depend on λ and Λu(t)
n

—for details see Ref. 22. The key achievement of this procedure is that Ĥ ′mol is diagonal in the basis{
Ĥ ′mol |ξ〉= Eξ |ξ〉: |ξ〉 ≡ | χn〉 ⊗ |q〉v

}
, which allows for tracking down easily the transitions between

different molecular vibronic states due to charge transport, as we discuss below.
To complete the model necessary to study spin-polarized transport, such a molecule is next

inserted into a MTJ. This junction is represented by the Hamiltonian ĤMTJ = Ĥel + Ĥtun describing
both the electrodes (Ĥel) as well as electron tunneling process through the junction via the molecule
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(Ĥtun). Essentially, the junction is formed by two metallic ferromagnetic electrodes, referred to as
source (r = s) and drain (r = d), characterized by collinear —parallel (P) or antiparallel (AP)— relative
orientations of their spin moments, which are also collinear with respect to the easy (z) axis of the
molecule. These serve as reservoirs of non-interacting, itinerant and spin-polarized electrons, and are
described by Ĥel =

∑
rkσ ε

r
kσ âr†

kσ âr
kσ . Here, the operator âr†

kσ (âr
kσ) creates (annihilates) an electron

with orbital quantum number k and spin σ in the rth electrode. The magnetic properties of the
rth electrode are fully parametrized by the total DOS, ρr = ρ

r
+ + ρ

r
−, with ρr

+(−)(ε)= ρr
+(−) denoting

the density of states (DOS) of spin-majority (-minority) electrons in the flat-band limit, and by the
spin-polarization coefficient, Pr = (ρr

+ − ρ
r
−)/(ρr

+ + ρ
r
−).

The processes of electron tunneling are captured by23

Ĥtun =
∑
rkσ

∑
χ1χ0

TrT
σ
χ1χ0

X̂
†
| χ1〉〈χ0 |â

r
kσ + H.c. (3)

The parameter Tr is used here to quantify the strength of electron tunneling between the rth electrode

and the molecule, X̂
†
= exp

[
λ(b̂† − b̂)

]
, and

T σ
χ1χ0
=
∑

M0M1

C
χ1∗

S1M1
C
χ0
S0M0
〈S0, M0; 1

2 ,σ |S1, M1〉. (4)

The third factor on the right-hand side stands for the Clebsch-Gordon coefficient for adding spins
S0 and 1/2 to get S1 and imposes spin-selection rules on the charge transport via the molecule.
Finally, one can write spin-dependent broadening of molecular levels due to tunneling of electrons
as Γr

± = (Γr/2)(1 ± Pr) with Γr = 2πρr |Tr |
2. Assuming that both electrodes are made of the same

material (ρs = ρd) and the molecule is symmetrically coupled to electrodes (Ts=Td), we obtain a single
parameter Γ= Γs = Γd determining the strength of electron tunneling. If Γ� kBT , with temperature T,
a perturbative approach can be used to study charge transport through the system under consideration.

B. Transport calculation

Here, we concentrate on the limit of weakly coupled molecules, where stationary transport in first-
order (∝ Γ) is of interest. We furthermore focus on the case of a collinear magnetic configuration of
the MTJ, and assume that the energy separation of molecular states is sizable (i.e., |Eξ −Eξ′ | � Γ, for
all |ξ〉, |ξ ′〉). It is then convenient to describe transport properties in terms of occupation probabilities
Pξ of the molecular states |ξ〉,22,24 whose time-evolution is found from the master equation:

dPξ
dt
= 0=

∑
ξ′

Σξξ′Pξ′ . (5)

The self-energies Σξξ′ , describing tunneling transitions between molecular states, can be derived by
means of Fermi’s golden rule or a standard diagrammatic technique.25 The average tunneling current
through the junction via a molecule is defined as I = (Id − Is)/2, and

I =−
ie
2~

Tr
[
ΣI
P

]
. (6)

To keep compact notation, the occupation probabilities are written in vector form, P, whereas the
matrix ΣI consists of the current self-energies which are evaluated diagrammatically,25 similarly to
the self-energies.

III. DISCUSSION OF NUMERICAL RESULTS

We consider a model molecule with spin values S0 = 1/2 and S1 = 1, so that the notion of
magnetic anisotropy in the neutral charge state becomes obsolete, and we assume D1 ≡D= 0.1 meV
and E1 ≡E = 0.2D. Despite its simplicity, this model proves to be physically very insightful, as we
show below. The molecule is characterized by the following spin states, see the inset in Fig. 1(a):
the spin doublet | χ±0 〉= |1/2,±1/2〉 for the neutral charge state is degenerate, whereas the states

| χ0
1〉= |1, 0〉 and | χ±1 〉=

(
|1, 1〉± |1,−1〉

)
/
√

2 for the charged state are split in energy due to magnetic
anisotropy.
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FIG. 1. Top panel: Differential conductance dI/dV shown as a function of gate Vg and bias V voltages for the system
without (a) and with (b) molecular vibrations included in the parallel magnetic configuration of the MTJ for Ps =Pd ≡P= 0.4
[~ω/D= 3, λ= 1.3 and Λu

1 = (4/3)Λt
1 = 0.05]. Inset in (a): Schematic of the energy spectrum of the model molecule at Vg = 0.

Bottom panel: Tunnel magnetoresistance, TMR= (IP − IAP)/IAP, cross-sections for: (c) |e |Vg/D=−0.5 and (d) |e |Vg/D= 0.5
—see the dashed lines in (b). Other parameters: kBT/D= 0.05, and Γ/D= 0.001.

A. Transport through a static molecule

In the absence of molecular vibrations, spectroscopic features in transport through a molecule
are determined by spin transitions allowed by the selection rules (4). One easily concludes that
sequential tunneling of electrons should lead to all possible transitions between the two spin manifolds
corresponding to different molecular charge states. Indeed, this can be observed as distinct resonances
in Fig. 1(a): 1© and 2© result from the ground-to-ground-state transitions | χ±0 〉→ | χ

−
1 〉 and | χ−1 〉

→ | χ±0 〉, respectively, while 3© and 4© are associated with the ground-to-excited-state transitions
| χ±0 〉→ | χ

+
1 〉 and | χ±0 〉→ | χ

0
1〉. Transitions between ground and excited states can only occur when

the molecule becomes reduced, i.e., when it accepts an additional electron. They are absent for the
reverse process (oxidation) since the neutral charge state involves only a degenerate spin doublet.
Finally, the position of 3© and 4©with respect to 1© allows for deducing the spin anisotropy parameters
D and E, as indicated in Fig. 1(a).

B. Effect of molecular vibrations

The situation gets more complex when a molecule can vibrate, as molecular vibrations usually
result in strong spectroscopic signatures in transport,9–16 see Fig. 1(b). Basically, in such a case the
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spin spectrum shown in Fig. 1(a) is duplicated at energies q~ω (for q= 1, 2, 3, . . .) corresponding to
excited vibrational states |q〉v of the molecule. Here, the spin-vibron coupling leads also to exchange
of the relative position of states | χ±1 〉. Transitions between different vibrational states are governed
by Franck-Condon factors,8 which in combination with the spin selection rules (4) allow one to
understand the mechanism behind the resonance pattern in Fig. 1(b).

To begin with, due to the presence of vibrationally excited spin states | χ±0 〉 ⊗ |q〉v, more tran-
sitions upon oxidation of the molecule become visible, see resonances parallel to 2© in Fig. 1(b).
One particular feature worthy of note is that the first two of these resonances do not continue to
1©, which indicates that they originate from excited-to-excited-state transitions. Specifically, reso-

nance 5© arises owing to | χ0
1〉 ⊗ |0〉v→ | χ

±
0 〉 ⊗ |1〉v, whereas 6© is due to | χ−1 〉 ⊗ |0〉v→ | χ

±
0 〉 ⊗ |1〉v

transitions. The next pronounced resonance 7© represents transitions between ground spin states
of two neighboring vibrational states, i.e., | χ+1 〉 ⊗ |q〉v→ | χ

±
0 〉 ⊗ |q

′〉v for q′ − q= 1, with dom-
inating equilibrium contribution from q = 0, and hence, this resonance extends to 1©. In gen-
eral, the higher-voltage resonances occur as a result of spin-allowed transition between vibronic
states with |∆q| > 1, and are characterized by lower intensities due to decreasing Franck-Condon
factors.

Another crucial feature that can be spotted in Fig. 1(b) is the renormalization of the anisotropy
constants, Eq. (1), which manifests as a shift of resonances 3© and 4© as compared to Fig. 1(a). These
resonances move towards larger bias-voltage values, meaning that the molecule’s spin anisotropy
increases. A large spin anisotropy is desirable for a bistable system to be utilized as a memory
element: in the presence of the uniaxial term of magnetic anisotropy only, it corresponds to an
increasing energy barrier for molecular spin reversal.

C. Tunnel magnetoresistance (TMR)

Molecular vibrations significantly affect the TMR of the considered spin-anisotropic device
leading to a rich gate- and bias-dependence, as illustrated in Figs. 1(c)–(d).

First, transverse magnetic anisotropy [see the second term in Eq. (1)] leads to a mixing of
molecular spin states, such that the picture of two independent spin-channels for describing transport
through the molecule does not hold any longer. This is clearly visible from the fact that the asymptotic
(high-voltage) value of the TMR=P2/(1 − P2), characteristic to the sequential tunneling regime
when all molecular states participate in transport,26 is never reached, neither in the absence nor in
the presence of molecular vibrations.

Furthermore, the effect of the vibrationally induced enhancement of the magnetic anisotropy
can be observed. To visualize this, we compare the case of a static molecule (black dashed line) to a
vibrating molecule at different electrode spin-polarization strengths in panel (c) of Fig. 1. As a result,
large steps in the TMR at low bias voltage that can be associated with transitions between different
molecular spin states within the vibronic ground state ( 3© and 4©) are shifted towards larger bias
voltages.

Finally, opening of new transport channels due to ground-to-excited-state transitions enabled
by the presence of excited vibrational states, is distinctly reflected as new, more subtle, features in
the TMR as a function of the bias voltage. Overall, the TMR is tendentially increased by molecular
vibrations. However, interestingly, once transitions between different vibronic states come into play
at a sufficiently large bias voltage, these lead to non-monotonic changes of the TMR. Here the
behavior is strongly asymmetric with respect to the gate voltage: Only for Vg > 0, small regions
occur, where the TMR can be reduced with respect to the static molecule or even almost completely
canceled, see Fig. 1(d). In these regions, a major contribution to transport stems from transitions
between the spin-degenerate neutral state, | χ±0 〉, and the zero-spin charged state, | χ0

1〉, which show
high symmetry with respect to spin-dependent tunneling processes. This is followed by an increase
of the TMR when also transitions between | χ±1 〉 to the neutral (vibrationally excited) neutral state
contribute. This sequence of features in the TMR reduction/increase is repeated (less pronouncedly)
with every new vibronic excitation state entering the bias window. Consequently, it can be seen that
molecular vibrations can be employed to improve the electrical tunability of the TMR of a molecular
device.
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IV. CONCLUSIONS

In this Communication, we demonstrated that, due to the presence of molecular vibrations and
their interplay with the magnetic anisotropy of the molecule, the TMR of the device is more variegated
and more susceptible to electrical tuning either by the application a bias or a gate voltage. This property,
which manifests in the occurrence of subtle, non-monotonic changes in the TMR, can be explained
by the impact of the charge- and spin-vibron coupling on the magnetic anisotropy, as well as by the
contribution of excited-to-excited state transitions within the vibrational spectrum of the molecule.
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