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Abstract 

Water is a prerequisite for life and we therefore need pure drinking water to survive. Yet 
there are more than half a billion people that do not have access to pure drinking water. 
Water treatment can be performed in many different ways, one of the most commonly used 
being filtration. As the climate is getting warmer and sources of fresh water are being 
increasingly contaminated, attention is shifted to the sea in the search for drinking water. 
Sea water does, however, need to be desalinated before it is usable as drinking water. 
Desalination is commonly conducted using the process of reverse osmosis (RO), where 
water is forced to penetrate water-selective barriers in filters. The main issues with reverse 
osmosis are that the pressure needed to drive the process against the osmotic pressure 
build-up is significant and that the diffusivity of water through the selectively permeable 
layer is relatively slow. The energy input needed to run a reverse osmosis process using 
saline sea water is therefore substantial and the process is mainly performed in large-scale 
desalination plants. A more energy-efficient solution is needed in order to produce drinking 
water in a more sustainable manner as well as on a smaller scale. 
Nature purifies water in a variety of ways such as large-scale water passage through sand 
and small-scale purification conducted by mussels. The aim of this thesis was to design a 
water filter using inspiration from nature. The model system of choice was the water 
transport across the cell membrane, which is present in both animals and plants. This water 
transport is conducted by transmembrane proteins called aquaporins, and the aim of this 
thesis was to incorporate aquaporins in a design that could potentially be used for water 
filtration purposes. 
This thesis proposes a design where aquaporins are supported by mesoporous silica in order 
to improve robustness. A straightforward assembly process was developed and the resulting 
design was evaluated using a range of characterization techniques. The results showed that 
the mesoporous substrate greatly facilitated the spontaneous rupture and bilayer formation 
from proteoliposomes. Furthermore, neutron reflectivity data provided evidence of 
protein–silica intercalation where aquaporins made use of the aqueous pore environment 
to host their extracellular domains. This behavior is thought to improve the robustness of 
the system. The proposed water filter design put forward in this thesis will hopefully prove 
useful in the production of drinking water in the future. 
Keywords: Water Treatment, Drinking Water, Filter, Biomimicry, Silica, Aquaporin,
 Membrane Protein, Supported Lipid Bilayer, Liposome  
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Introduction 

Water is commonly considered to be one of the fundamental requirements for life. The 
Earth is very abundant in water and the water cycle that comprises evaporation, 
condensation, and precipitation keeps the total amount of water balanced. Despite the 
abundancy, 663 million people (9 % of the population on Earth) do still not have access to 
an improved source of drinking water.1 Access to an improved source of drinking water 
means access to safe drinking water, whereas lack thereof means less control of the water 
quality. 
1.1 Scarcity of safe drinking water 
Although a lot of people do still not have access to an improved source of drinking water, 
the share of people that do is steadily on the rise. Major improvements were made between 
1990 and 2010, when more than 2 billion people gained access to an improved source of 
drinking water. In 2010, more than 780 million people were however still relying on unsafe 
drinking water for their everyday needs.2 Despite the global population growth, this number 
has continued to decrease steadily to an estimated 748 million in 2012 and 663 million in 
2015.1, 3 Out of these 663 million, 319 million live in sub-Saharan Africa.1 
The lack of improved drinking water is mainly confined to poorer areas but there are other, 
more wide spread, drinking water related issues that relate to countries of lower and higher 
living standards alike. Two of the most pressing drinking water related issues that have 
rightfully drawn a lot of attention recently are global warming and pollution. 
1.1.1 Global warming 
A lot of awareness was quite recently raised about the dangers of human-induced global 
warming. Although more than 90 % of independent climate researchers are of the opinion 
that the global temperature increase since the start of industrialism is due to human 
intervention,4 there are still sceptics that claim the increase to be part of the natural long-
term temperature cycle. Regardless of which, temperatures are on the rise with droughts 
and rising sea levels as results. 
The recent drought in California is one example where drinking water supply is limited due 
to lack of rainfall as a consequence of a drier climate. Another effect of heating is that Arctic 
ice is melting. This results in rising sea levels, since water that has been withheld in the form 
of ice melts to water. Large amounts of cold freshly melted water are thereby threatening 
to weaken the Gulf stream, which could strangely enough lead to a colder climate in the 
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northern parts of Europe.5 Another issue with rising sea levels is that cities that are located 
on the shore are in greater risk of flooding. The saline sea water eventually contaminates 
ground water that is a common source of drinking water, which means that global warming 
has a profound impact on water treatment in different ways. 
A closely related issue in terms of Swedish drinking water is the situation on Gotland. 
During the summer in 2016, there was a severe ground water shortage due to a long-term 
lack of rainfall in the southeastern parts of Sweden. The regional government in Gotland 
decided to build a desalination plant to convert brackish water of the Baltic sea into drinking 
water. It was operated during the summer and has the capacity to provide 3000 residents 
with drinking water, which is 5 % of the population in Gotland. Reverse osmosis (RO) is 
used to separate the water from ions and other solutes. The required energy for RO in this 
case is relatively low due to the low salinity of the incoming water and most of the capacity 
is needed during the tourism-intensive summer period, hence a fair amount of energy can 
be deduced from solar panels. The drinking water production capacity of the plant is about 
20 m3 h–1. 
 
1.1.2 Pollution 
Pollution is a global problem with examples of common pollutants being smog, greenhouse 
gases and compounds that are toxic to the marine environment. In terms of water pollution, 
recent concerns regard plastic nanoparticles and pharmaceutical residues. Plastic particles 
are released from plastics, for instance during washing of clothing made from synthetic 
fibers. The fibers are mechanically ground into smaller particles that pass through waste 
water treatment plants and end up in the sea where they are taken up by fish and other 
animals.6 Drinking water production is globally often not refined enough to prevent 
nanoparticles from ending up in the drinking water, which results in human uptake. 
Another similar example that has recently received a lot of attention is pharmaceutical 
residues.7 These are metabolites or degradation products of pharmaceuticals that conduct 
a similar journey as the plastic particles to end up in our drinking water. 
1.2 Water treatment through filtration 
There are various ways in which a lack of safe drinking water can be combated, the major 
and most versatile one being water treatment through filtration. This process is commonly 
conducted through the use of man-made filters in order to prevent undesired compounds 
that are larger than the pores in the filter from ending up in the drinking water. Two major 
types of man-made filters are those based on size exclusion and those based on selective 
permeability barriers. Since many ions are small species the latter is used in RO, which is 
the process of converting saline water into drinking water. Saline water is taken from the 
sea and RO is therefore common in countries that possess a shoreline and have limited 
access to fresh water, such as Israel and Australia. The selectivity-based permeability barrier 
is a necessary tradeoff made in order to achieve high purity of the processed water and it 
usually consists of a phase inversion membrane made from polymers. It has the inherent 
drawback of fairly low water diffusion rates, hence requiring large amounts of energy to 
push the water through at decent rates.8 The specific energy requirement for membrane sea 
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water desalination is less than 4 kW h m–3 whereas the theoretical minimum energy 
requirement of seawater desalination is 1.29 kW h m–3 (at 75 % recovery).9 
Water treatment is also a common process in nature, where large quantities of water are for 
instance filtered through sand and gravel in the ground to reach a higher level of purity. 
1.2.1 Water filtration inspired by nature 
Mankind has copied natural water treatment processes for a long time, with one of the 
more straightforward examples being the utilization of slow sand filters in waterworks.10 
This kind of approach is typically called biomimicry, an expression coined by Schmitt in 
1957. Biomimicry means to mimic biology or nature, using biologically inspired designs or 
making use of entities derived from nature.11 There is a range of large-scale biomimetic and 
bioinspired water treatment solutions available on the market. 
In addition to large-scale water treatment, nature performs water filtration on the 
nanometer scale. This process is conducted across the cell membrane of living cells and it 
is present in plants as well as animals. The cell membrane consists of many components 
with lipids being the most abundant, hosting other cell membrane entities in or in 
connection to a lipid bilayer. An example of a cell membrane entity is the transmembrane 
protein. Transmembrane proteins are proteins that transverse the cell membrane, some of 
which are able to act as gateways across the membrane. These gateways are pores that may 
conduct compound-selective transport of for example calcium ions12, potassium ions13 or 
water14. Water-channeling aquaporin proteins are abundant in both plants and animals and 
one type named aquaporin 4 has been shown to outperform the other aquaporins in water 
permeability tests.15 Aquaporins are considered promising in water treatment applications 
due to their high water selectivity and permeability, a combination of features that phase 
inversion RO membranes cannot deliver.8 
The objective of this thesis was to design a proposed water filter using aquaporins with the 
long-term goal of achieving energy efficient, highly selective and cheap drinking water 
production. The first design is described in Paper I, which provides a detailed and 
comprehensive examination of the design, emphasizing the interface between the 
aquaporins and the porous silica. Paper II describes the production of porous silica 
nanoparticles with high pore-to-particle diameter ratios. An alternative design to what was 
presented in article I, using silica particles as the stabilizing layer instead of a film, is 
currently under consideration. 
This thesis consists of 3 major sections: A description of the proposed filter design, an 
overview of the experimental methodologies and analysis methods used, and a summary of 
the obtained results. 
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Proposed filter design 

In order to produce a water filter using biomimicry, there are a few key components needed. 
As for any filter, there has to be an impermeable component and a permeable component, 
which together provide a certain degree of penetration specificity. In the case of selective 
water transport in and out of the cell the permeable component is the aquaporin. The lipid 
bilayer is to some extent also water permeable but prevents solutes and other solvents than 
water from crossing the cell membrane. Aquaporins are transmembrane proteins that 
facilitate highly specific water transport across the cell membrane.14 The proposed filter 
described in this thesis aims at stabilizing aquaporins using straightforward proteoliposome 
adsorption and rupture on mesoporous silica (Figure 1) in order to potentially achieve 
energy-efficient and robust drinking water production in the future. 
 

 
Figure 1. Schematic illustration showing the process of human aquaporin 4 (blue)-containing supported POPC (brown) bilayer formation from proteoliposomes on mesoporous silica (gray). The enlargement depicts extracellular protein domains reaching into a pore in the mesoporous silica.  
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In Paper I, we have mimicked the cell membrane water transport by incorporating human 
aquaporin 4 (hAQP4) in a lipid bilayer made of 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC), which is a major constituent of many cell membranes. A free-
standing bilayer–aquaporin construct cannot withstand significant forces exerted upon 
them and since elevated pressures are commonly used to overcome the osmotic pressure 
differences across desalination membranes, this work utilizes a porous silica film as a 
mechanical support for the lipid bilayer and the proteins. We developed a layer-by-layer 
design where the protein-containing supported lipid bilayer (pSLB) is intercalated with the 
mesoporous silica film. Another way of stabilizing the aquaporins may be to coat porous 
silica particles with protein-containing lipid bilayers. The silica nanoparticles described in 
Paper II are suitable candidates that will be evaluated in terms of aquaporin-bilayer 
intercalation. In order to obtain a filter, the coated particles should be packed into a tight 
layer through which the aquaporins provide a selective water-permeable pathway. 
2.1 Human Aquaporin 4 (hAQP4) 
Aquaporins are a group of transmembrane proteins that were first discovered in 1988 by 
Denker et al.16 It took another four years until the same group made the discovery that this 
protein selectively transports water across the cell membrane.14 Since then, more 
aquaporins have been discovered in both prokaryotes and eukaryotes. There are 11 
mammalian aquaporins known to date (denoted 0-10).17 Among these there are two 
subgroups; aquaporins and aquaglyceroporins. Aquaglyceroporins are able to transport 
small molecules such as glycerol in addition to water whereas aquaporins are exclusively 
selective for water. 
The aquaporin water selectivity is a direct result of the protein structure. Aquaporins are 
hour-glass shaped transmembrane proteins with 6 alpha-helices fully spanning the cell 
membrane and two shorter alpha-helices that orient in such a way that they define a part of 
the pore wall. The ends of the shorter alpha-helices that face the narrow pore are called 
NPA-motifs since they comprise the amino acid sequence asparagine-proline-alanine (NPA 
in short). These motifs equip the aquaporin with an electrostatic barrier that blocks the 
passage of charged species. The water molecules are transported through the aquaporin in 
a single line, while interacting with carbonyl oxygens in the main chain of the protein. 
Hydrogen bonds are formed between the water molecules and the carbonyl oxygens, which 
results in a certain orientation of the water molecules during passage. The aquaporin water 
selectivity is further enhanced by a selectivity filter, which is located prior to the NPA-
motifs. In AQP4, a histidine residue reaches into the channel to restrict the pore diameter 
to ~1.5 Å.18 
Human aquaporin 4 (hAQP4) is a 34.8 kDa protein19 predominantly located in the 
perivascular end-feet in the brain.20, 21 It is found in two different splicing isoforms 
depending on where the splicing mechanism starts. The full-length protein is spliced in such 
a way that it starts from methionine number 1 (hAQP4M1), whereas the other isoform is 
spliced so that it starts from methionine number 23 (hAQP4M23). It has been shown that 
hAQP4M23 is prone to array-formation as opposed to hAQP4M1 that inhibits it.21 
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In this thesis, we have used the hAQP4M23 isoform throughout in order to tailor the 
underlying substrate according to the defined pattern in which the proteins arrange. The 
use of the hAQP4M23 isoform as opposed to the hAQP4M1 isoform also favors higher 
protein-to-lipid ratios due to tighter protein packing through array-formation, which should 
have a positive impact on the water permeability rate due to the possibility to incorporate 
more water channels (pores) in the lipid bilayer. 
2.2 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) 
Lipids are the main and shape-defining components of membranes present in prokaryotes 
as well as eukaryotes. They are amphipathic molecules, meaning that they consist of a 
hydrophilic part and a hydrophobic part. Lipids are commonly pictured as molecules having 
a head and one or more tails, where the head is the hydrophilic part and the tail is 
hydrophobic. There are several classes of lipids according to structure. The major class in 
eukaryotic organisms is glycerophospholipids, comprising phosphatidylcholine, 
phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and phosphatidic acid. 
From these, more than half of the lipids present in eukaryotes are phosphatidylcholines.22 
Furthermore, phosphatidylcholine (PC) is the most abundant class of lipid in mammalian 
membranes.23 
One of the most well studied lipids is 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 
(POPC). It belongs to the phosphatidylcholine lipid class, meaning that it possesses a 
hydrophobic diacylglycerol backbone carrying a phosphate group, which is esterified to a 
choline to form the hydrophilic head group.22 POPC consists of two acyl chains, one 
saturated and one mono-unsaturated. This structure results in an almost cylindrical shape.22 
Due to their amphipathic character, lipids possess interesting characteristics such as the 
ability to self-assemble into ordered structures in solution or at interfaces. Their behavior 
in solution is dependent on the lipid concentration and the properties of the solvent. When 
the concentration of lipids in aqueous solution reaches the critical micelle concentration 
(CMC) the lipids start to form micelles in which their hydrophobic tails are oriented towards 
the center and the hydrophilic heads towards the solution. At higher concentrations the 
lipids arrange into bilayer structures adopting for example spherical shapes, as in the case 
of the vesicles used in this thesis. One way of studying lipid bilayers in more detail is to 
deposit them on a surface, which was done in this thesis. The resulting structure is a 
supported lipid bilayer (SLB), which is more robust than a non-supported bilayer and 
convenient to investigate in detail due to its flat geometry. 
2.3 Mesoporous silica 
Silica (SiO2) is an amorphous material that is abundant in sand and used as the main 
constituent in glass. It is widely used in industrial applications in the form of colloidal 
particles, which have traditionally been produced using the established Stöber process.24  
Mesoporous silica particles, by definition having pore diameters of 2-50 nm,25, 26 were first 
presented by researchers at the Mobil corporation in 1992 using surfactants (surface active 
agents) as pore templating agents.27 In 1998, Zhao et al. produced mesoporous particles 
with larger pores using block-copolymers as templating agents instead of surfactants.28 
Surfactants and the block-copolymers used by Zhao et al. are similar in the sense that both 
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are amphipathic. Surfactants and amphipathic block-copolymers do therefore self-assemble 
into well-defined structures when dispersed in solution. What structure the amphipathic 
molecules form is mainly governed by the entropy. Intermolecular forces between 
surfactants as well as between surfactants and water play a major role in the strive to achieve 
an as low-as-possible energy state of the system. 
At high surfactant concentrations the self-assembly results in long-range ordered liquid 
crystalline phases that arrange in for example lamellar, cubic or hexagonal structures. These 
liquid crystalline structures can be used for pore templating of silica nanoparticles. In order 
to form silica from the liquid crystalline mold, a silica precursor molecule is used. 
Commonly used precursors are silicon alkoxides, which hydrolyze in the presence of water 
according to 
 

                   ≡ ܵ݅ − ܱܴ + ≡ ↔ ଶܱܪ ܵ݅ − ܪܱ +  (1)               ܪܱܴ
 
where the three stacked horizontal lines depict the covalent bonds between silicon and the 
additional alkoxide groups of the precursor. The hydrolysis results in the formation of 
silanol groups (Si-OH), that starts a condensation polymerization reaction according to 
 

          ≡ ܵ݅ − ܱܴ + ܱܪ − ܵ݅ ≡ ↔ ≡ ܵ݅ − ܱ − ܵ݅ ≡  (2)               ܪܱܴ+ 
          ≡ ܵ݅ − ܪܱ + ܱܪ − ܵ݅ ≡ ↔ ≡ ܵ݅ − ܱ − ܵ݅ ≡  ଶܱ               (3)ܪ + 

 
The formed ≡Si–O–Si≡ linkages are called siloxane bridges and they are the backbone of 
silica. In addition to siloxane bridges there are also silanol groups present, in particular on 
the silica surface. These are more reactive than the siloxane bridges and can therefore be 
used for functionalization purposes. 
The same concept of silica precursor hydrolysis followed by condensation can be used to 
form mesoporous silica thin films. A very convenient methodology to form mesoporous 
silica thin films was presented by Brinker et al.29 They introduced the evaporation-induced 
self-assembly (EISA) process, in which a volatile solvent is added to the reaction mixture. 
The volatile solvent will evaporate quickly upon deposition onto a substrate, which can be 
performed using methods such as spin-coating or dip-coating. Rapid solvent evaporation 
leads to the formation of liquid crystalline structures in the non-volatile solvent remaining 
on the substrate, in which the silica precursor hydrolysis and condensation reactions take 
place to form mesoporous silica.29 The silicon alkoxide used as a precursor in this thesis 
was exclusively tetraethylorthosilicate (TEOS). 
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Experimental 

The experimental procedures utilized in this thesis relate to the design of the proposed 
biomimetic water filter. This section starts by providing an overview of the preparation 
methods followed by a description of the analysis techniques used to produce and 
characterize the proposed filter. Both the section on preparation methods and the section 
on analysis techniques are ordered in a top to bottom fashion; starting with the mesoporous 
silica support before moving into proteoliposome preparation and finishing with the 
proposed filter design. 
3.1 Preparation methods 
The preparation methods used in this thesis are presented according to the proposed filter 
design, moving from the mesoporous silica substrates into protein production and 
proteoliposome incorporation before reaching pSLB formation. 
3.1.1 Mesoporous silica thin films 
Mesoporous silica films were formed using the nonionic block copolymer poly(ethylene 
glycol)20-poly(propylene glycol)70-poly(ethylene glycol)20 (Pluronic P123) as templating 
agent. In P123 the centrally positioned hydrophobic poly(propylene glycol) chain folds to 
orient the hydrophilic poly(ethylene glycol) chains in the same direction, which gives rise 
to the amphipathic behavior.26 The silicon alkoxide TEOS was used as the silica precursor. 
The EISA method was used to prepare mesoporous silica thin films on glass substrates, 
QCM-D crystals, titanium discs, and silicon blocks. Briefly, pre-hydrolysis of TEOS was 
conducted by mixing TEOS, EtOH and HCl (pH 2). P123 was meanwhile dissolved in 
EtOH and then mixed with the pre-hydrolyzed TEOS solution. The solution was deposited 
onto substrates using spin-coating. The rapid evaporation of EtOH during the spin coating 
process induced liquid crystalline phase formation in the remaining aqueous phase 
containing P123. The pre-hydrolyzed TEOS continued to hydrolyze in the presence of 
water and the low pH catalyzed the reaction. The resulting silanol species condensed and 
polymerized into silica, which was formed in accordance to the liquid crystalline phase 
imposed by P123. Mesoporous silica was obtained by heat treatment in which the organic 
P123 was burnt off to leave pores within the amorphous silica film. 
3.1.2 Mesoporous silica particles 
Mesoporous silica particles with a high pore to particle diameter ratio and potentially similar 
pore diameters as for the mesoporous silica thin films were formed and characterized. We 
were interested in the Hiroshima mesoporous material (HMM) particle synthesis developed 



10  

by Nandiyanto et al. in 2009,30 since HMM particles possess some of the desired 
characteristics. The original particle synthesis protocol did, however, seem unusually 
complex. In order to simplify the synthesis process, the polymer, the polymerization 
initiator and the inert atmosphere were removed from the synthesis procedure. In addition, 
the proposed catalyst L-lysine was substituted for ethanolamine in 3 out of the 4 synthesis 
procedures. The particle size and pore morphology were optimized using 3 different 
surfactants as templating agents, in addition to CTAB that was used in the original synthesis 
(Figure 2). Particles synthesized using CTAB were denoted MPS-1, whereas particles 
synthesized using 12-6-12, 12-2-12, and Ethylan 1008 were denoted MPS-3, MPS-4, and 
MPS-5, respectively. The formation of a water-in-oil-in-water (W/O/W) double emulsion 
was conducted by vigorous mixing of surfactant, de-ionized water, n-octane and L-
lysine/ethanolamine at 70 °C. TEOS was added to the emulsion, entering the oil phase due 
to the alkoxide hydrophobicity. TEOS hydrolysis was initiated at oil–water interfaces, 
followed by silica condensation. The reaction was continued for 20 h, after which the 
reaction mixture was decanted into a separation funnel. The water phase was collected and 
freeze dried in order to retrieve the particles, which were then heat-treated to remove the 
pore-templating surfactants. 
 

 
Figure 2: Chemical structure of (a) the cationic surfactant CTAB, (b) the cationic gemini surfactant 12-6-12, (c) the cationic gemini surfactant 12-2-12, and (d) the nonionic surfactant Ethylan 1008. 
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3.1.3 hAQP4 protein production 
hAQP4 transmembrane proteins were recombinantly overexpressed in Pichia pastoris yeast 
cells, followed by cell membrane breakage and protein purification. Briefly, the gene coding 
for hAQP4 was amplified using the polymerase chain reaction (PCR) and cloned into the 
P. pastoris vector pPICZB together with a sequence coding for a C-terminal hexa-histidine 
tag. P. pastoris cells containing the pPICZB vector were selected in a zeocin screening 
process. The constructs were linearized and transformed into wild-type P. pastoris using the 
lithium chloride method, where the cells were resuspended in LiCl and subjected to heat 
shock in order for the cell membrane to become permeable to DNA. The transformed cells 
were grown in a bioreactor after which the cell membranes were subjected to breakage in a 
French pressure cell press, washed, and solubilized. The solubilized material was collected 
through centrifugation and from this material, hAQP4 was singled out in a Ni-NTA column 
that selectively targeted the His-tag on the C-terminal protein domain. The purified proteins 
were stabilized in n-octyl-β-ᴅ-glucoside (β-OG) until proteoliposome incorporation. 
3.1.4 Proteoliposome preparation 
Proteoliposomes were formed by incorporation of purified hAQP4 into liposomes made 
of zwitterionic POPC. Briefly, POPC was dissolved in chloroform upon delivery and 
subjected to rotary evaporation to form a lipid film. The lipid film was resuspended in Tris 
buffer to yield multilamellar POPC liposomes, which were formed through the process of 
molecular self-assembly. hAQP4 was incorporated into the lipid bilayer of the liposomes 
through a reconstitution process. Briefly, liposomes were mixed with extra Tris buffer 
constituents and partly solubilized in β-OG detergent. Detergent-stabilized hAQP4 was 
added to the mixture, whereby Biobeads SM2 adsorbent was added to withdraw β-OG. As 
the detergent was removed, the proteins spontaneously inserted into the liposome bilayer 
since they were no longer detergent stabilized in solution. Biobeads were removed by 
decantation and the proteoliposomes were subject to spin column filter centrifugation to 
produce unilamellar proteoliposomes having a certain size distribution. 
3.1.5 Protein-containing supported lipid bilayer formation 
pSLB formation is a matter of spontaneous proteoliposome adsorption, fusion and rupture 
on the mesoporous silica substrate. This process was straightforward both using a 
continuously flowing proteoliposome solution and without using any flow at all. Briefly, 
proteoliposomes in Tris buffer were deposited onto a mesoporous silica substrate. 
Proteoliposome diffusion and interaction with the negatively charged silica (pH 8) resulted 
in spontaneous proteoliposome adsorption on the mesoporous silica surface. Continuous 
adsorption led to crowding of proteoliposomes on the surface, resulting in 
proteoliposome–proteoliposome interactions. These interactions in combination with the 
proteoliposome–silica interactions eventually led to proteoliposome fusion and rupture, 
which finally resulted in pSLB formation. 
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3.2 Analytical techniques 
Characterization of organic and inorganic matter as well as the interface between them 
requires the use of a range of analytical techniques. This section describes the analytical 
techniques utilized in this thesis.  
3.2.1 Silica characterization 
Mesoporous silica is the inorganic component of the proposed water filter design. It is not 
as sensitive to harsh environments as the organic components and was therefore studied 
using electron microscopy (SEM, TEM) and SAXS. 
3.2.1.1 Electron microscopy 
Electron microscopy was employed to characterize the pore ordering and morphology of 
mesoporous silica thin films and particles. 
3.2.1.1.1 Scanning electron microscopy (SEM) 
SEM is a non-destructive analysis technique operated in an ultra-high vacuum environment. 
The sample is scanned by an electron beam, which results in the emission of secondary and 
back-scattered electrons from the sample surface. These are detected to provide 
information on the surface morphology and surface composition of the sample. 
The acceleration voltage for the electrons in the electron beam can be adjusted to tune the 
performance of the analysis according to the sample material. Silica is a bad conductor, 
which means that the electrons from the electron beam accumulate in the sample without 
adequate escape routes. The introduction of charge effects is undesired and can partially be 
avoided by lowering the acceleration voltage. Lowering the acceleration voltage decreases 
the electron penetration depth and hence the detection depth. In this thesis, SEM analysis 
on mesoporous silica samples was commonly conducted in the range of 2-5 kV using a Leo 
Ultra 55 FEG SEM (Zeiss). 
3.2.1.1.2 Transmission electron microscopy (TEM) 
TEM analysis is operated using an electron beam in ultra-high vacuum conditions. Higher 
acceleration voltages are used compared to SEM in order to allow the electrons to pass 
through thin samples. Electrons are scattered on their way through the sample and the 
magnitude of scattering is dependent on the density and thickness of the material. The 
scattering is monitored by focusing the transmitted electrons onto a fluorescent screen. A 
dense material hinders the passage of electrons, resulting in a dark projection. 
In this thesis, TEM analysis of mesoporous silica films and particles was performed using 
a JEM-1200 EX II (JEOL) operated at 120 kV acceleration voltage. Thin particle slices 
embedded in epoxy were analyzed using a LEO 706E operated at 80 kV acceleration 
voltage. TEM analyses provided data on the porous structure inside the material in addition 
to the surface. 
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3.2.1.2 Small-angle X-ray scattering (SAXS) 
SAXS was used to study long-range pore ordering in mesoporous silica. X-rays have a 
wavelength on the order of lattice planes in crystalline materials and are therefore suitable 
for studying mesoporous materials with repetitive long-range ordered porosity. The sample 
is exposed to a high intensity X-ray beam which hits the sample at a low angle (<10°), 
whereby radiation is scattered upon interaction with the electrons in the material. The 
intensity of the scattered radiation is plotted as a function of the scattering angle 2θ or the 
momentum transfer q. SAXS studies of long-range ordered materials result in diffractogram 
Bragg peaks due to constructive interference of scattered radiation. The relation between 
Bragg peaks was used to determine the long-range porous ordering in the material. 
Silica has a relatively high electron density, which results in fairly good scattering of X-rays. 
In order to improve the signal further, a radiation source providing a high flux of photons 
is used. One such source is the synchrotron facility MAX-lab in Lund, where the SAXS 
analyses in this thesis were performed (beamline I911).  
3.2.1.3 N2 physisorption 
N2 physisorption was used to assess the specific surface area, pore size, and pore size 
distribution of the mesoporous silica particles. Interactions between N2 and the silica 
surface are probed by controlled filling of empty pores in the particles, hence the first step 
was to degas the sample. The temperature was also lowered to 77 K prior to N2 addition. 
First, a monolayer of nitrogen was produced on the surface of the silica by increasing the 
N2 pressure. The monolayer data was processed using the universal gas law and the 
Brunauer–Emmet–Teller (BET) method to quantify the amount of adsorbed nitrogen.31 
By increasing the N2 pressure further the pore size and shape can be assessed. The N2 pressure was increased until the onset of N2 condensation (pore saturation), followed by a 
pressure decrease which resulted in N2 evaporation. The Barrett–Joyner–Halenda (BJH) 
method was used to calculate the pore size.32 
N2 physisorption measurements were conducted using a Micromeritics ASAP 2010 
instrument. 
 
3.2.2 Proteoliposome characterization 
Characterization of proteoliposomes prior to pSLB formation was performed using 
electron microscopy and light scattering. 
3.2.2.1 Cryogenic Transmission electron microscopy (cryo-TEM) 
Cryo-TEM is a version of TEM (presented above) that can be used to study organic 
samples. As previously stated, TEM uses ultra-high vacuum conditions and high electron 
beam acceleration voltages to provide high-resolution data on the material composition of 
thin samples. The harsh analysis conditions in the TEM cannot be used to study biological 
samples. In cryo-TEM, the sample is rapidly frozen and embedded in amorphous ice in 
order to be analyzed in TEM. Rapid plunge-freezing of the sample is critical in order to 
prevent formation of ice crystals that can disrupt the sample structures. The sample was 
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therefore plunged into liquid ethane (–180 °C) and transferred to a sample stage which was 
cooled by liquid nitrogen through the duration of the analysis. 
Cryo-TEM analysis was performed using a Philips CM120 cryo-TEM operated at 120 kV 
acceleration voltage. 
3.2.2.2 Light scattering 
Light scattering is essentially a mechanism of adsorption and re-emission of 
electromagnetic radiation.33 The incoming electromagnetic wave interacts with matter by 
setting electrons and protons into oscillatory motion. Analysis techniques based on light 
scattering were in this thesis utilized to determine proteoliposome size and to probe hAQP4 
water transport capabilities. 
3.2.2.2.1 Dynamic light scattering (DLS) 
Dynamic light scattering (DLS), also known as photon correlation spectroscopy (PCS) or 
quasi-elastic light scattering (QELS), was used to assess the size distribution of 
proteoliposomes. In DLS, the sample is irradiated by monochromatic light, which is either 
absorbed or scattered by the sample. Scattered light is monitored and the scattering angle 
in relation to the incoming light is determined.33 In dispersed particle systems as 
proteoliposomes in buffer, the main contribution to the scattering signal is caused by 
differences in refractive indices between the proteoliposomes and the surrounding buffer. 
Time-resolved light scattering measurements are employed to probe the movement of the 
scattering entities due to diffusion. Relaxation times can be determined from the diffusion 
characteristics of a sample, which in turn can be used to calculate the size of the scattering 
entities. 
A Malvern Zetasizer Nano ZS that was operated at a fixed angle of 173° was used for the 
DLS measurements presented in this thesis. 
3.2.2.2.2 Stopped-flow light scattering 
Stopped-flow light scattering was used to assess the water transport capabilities of hAQP4. 
In stopped-flow light scattering, sub-second kinetics of systems can be assessed upon rapid 
mixing of reactants. Upon mixing, the flow is stopped and the transition from reactants 
into the resulting compound sample is monitored using light scattering. 
In order to assess hAQP4 water transport capabilities, the proteoliposome solution was 
mixed with a hyperosmolar solution containing sucrose. The rapid introduction of sucrose 
in the proteoliposome surroundings upon mixing results in an osmotic gradient. The 
osmotic gradient results in water transport out of the proteoliposomes in order to dilute 
the sucrose and thereby balance the concentration of osmolytes across the bilayer. The 
rapid proteoliposome shrinkage is detected as changes in scattered light as a function of 
time, which can be fitted to an exponential function on the form 
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ܫ = ଵeି௞భ(௧ି௧బ)ܣ + ଶeି௞మ(௧ି௧బ)ܣ +  ଷ                 (4)ܣ
 

where I is the measured intensity, A1, A2, and A3 are coefficients, k1 and k2 are rate 
constants, t is the time, and t0 is the starting time. The rate constants of shrinkage can then 
be used to calculate the osmotic water permeability Pf from 
 

              ୤ܲ = ௞
(ௌ/௏బ)⋅௏౭⋅௖౥౫౪                (5) 

 
where S/V0 is the ratio of external surface area to internal volume, Vw is the partial molar 
volume of water, and cout is the external osmolality.34 
The stopped-flow light scattering equipment used in this thesis was an SFM 2000 (BioLogic 
Science Instruments) operated at a fixed 90° detection angle. 
 
3.2.3 Protein-containing supported lipid bilayer (pSLB) characterization 
The pSLB formation process and the proposed filter design were studied using surface 
sensitive techniques and neutron reflectivity. The use of these analysis methods allows 
verification of the existence of the proposed filter design and to study the interaction 
between the mesoporous silica and the pSLB. 
3.2.3.1 Surface sensitive techniques 
Surface sensitive techniques provide detailed information on a few surface layers of a 
material. In this thesis, surface sensitive techniques were employed to study the final step 
in the proposed filter design, i.e. pSLB formation. 
3.2.3.1.1 Quartz crystal microbalance with dissipation monitoring (QCM-D) 
Quartz crystal microbalance with dissipation monitoring (QCM-D) was employed to study 
the pSLB formation process. QCM-D is a surface sensitive technique that analyzes the mass 
deposition onto a surface as a function of time. The surface of interest is applied on a quartz 
crystal with two gold electrodes. An AC voltage is applied across the crystal, resulting in 
crystal oscillation in a shearing mode. The crystal oscillates at its acoustic resonance 
frequency, which is altered when mass is deposited on the surface. Mass adsorption results 
in a negative frequency shift. Provided that the deposited matter is rigid, the obtained 
frequency can be converted into mass using the Sauerbrey relation 

݉߂  = − ௱௙×஼
௡                 (6) 

where Δm is the adsorbed mass, Δf is the frequency shift, C is the mass sensitivity constant 
(17.7 ng Hz–1 cm–2), and n is the overtone number. In addition to the deposited mass, 
QCM-D also assesses the viscoelastic properties of the adsorbent by monitoring the 
dampening in the system upon deposition. 
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The QCM-D results presented in this thesis were obtained using a QCM-D E4 system 
coupled to a peristaltic pump. 
3.2.3.1.2 Total internal reflection fluorescence (TIRF) microscopy 
Total internal reflection fluorescence (TIRF) microscopy was used as a complementary 
method to QCM-D for studying the pSLB formation process. TIRF microscopy is a branch 
of fluorescence microscopy, which in turn is a subset within optical microscopy. Optical 
microscopy uses visible light to image objects using optics for magnification. The limitation 
of optical microscopy is the diffraction barrier using visible light, which resides at 
approximately half the wavelength of the light used to image the object. The pSLB 
presented in this thesis consists of lipids and proteins that are smaller than the diffraction 
barrier and cannot therefore be imaged using regular optical microscopy. 
Fluorescence microscopy is a means of imaging small entities using optical microscopy. 
The lipids and proteins used in this thesis are not inherently fluorescent and therefore need 
to be labeled with a fluorescent dye. A fluorescent dye is a molecule that has the ability to 
excite electrons to a higher energy level by absorbing incoming photons of energies 
matching the band gap between the excited state and the ground state. The excited state is 
however not stable and excited electrons are forced into a lower and more stable energy 
state in the process of relaxation. The electrons do not always go back to the ground state 
but rather to an intermediate state, meaning a smaller energy gap and hence a longer 
wavelength compared to that used to excite the electron in the first place. The benefit of 
this is that the specific fluorescence wavelength can be isolated from the illumination 
wavelengths using filters. This results in specific detection of fluorescent molecules. 
TIRF microscopy is a method used to specifically image fluorescent entities close to a 
surface and is hence beneficial in the study of substrate-supported planar membranes.35 An 
evanescent field is created from the interface between a substrate surface and a liquid when 
the angle of incidence of the incoming light is larger than the critical angle, which results in 
total reflection at the interface. The evanescent field decays exponentially with the distance 
from the surface in the direction perpendicular to the surface. Hence, the evanescent field 
only reaches a couple of 100 of nanometers into the bulk, making it a good method for 
probing surface interactions. 
The TIRF microscopy setup used in this thesis was inverted, meaning that the substrate–
liquid interface was imaged from below, through the transparent glass substrate. A Nikon 
Eclipse Ti-E microscope equipped with an Andor Ixon+ camera and a 60× oil immersion 
objective was used. 
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3.2.3.1.2.1 Fluorescence recovery after photobleaching (FRAP) 
Fluorescence recovery after photobleaching (FRAP) was used to assess the fluidity of lipids 
and proteins in the pSLB. In the FRAP36, 37 analyses conducted in this thesis, TIRF 
microscopy (presented above) was used to image movement of the fluorescent entities after 
disrupting their fluorescence in a specific area using a high intensity laser. The lipids located 
in the bleached area will diffuse out of that area whereas fluorescent lipids will diffuse into 
the bleached spot, homogenizing the lipid bilayer. This process was monitored through 
time lapse imaging from which a diffusion coefficient was calculated. 
 
3.2.3.2 Neutron reflectivity (NR) 
Neutron reflectivity (NR) was used to study the organic–inorganic interface in detail. 
Neutrons have wavelengths on the order of atomic distances, allowing them to provide 
highly resolved material data. Since they are not charged, they do not interact 
electrostatically with protons and electrons, allowing neutrons to non-destructively 
penetrate deep into materials. 
In the study of the proposed filter design presented in this thesis, neutrons were 
approaching the sample through a single-crystal silicon block. Every material has its neutron 
refractive index called a scattering length density. Neutrons thereby get reflected by an angle 
θ at the interface to a material having a higher scattering length density. Since neutrons 
interact with atomic nuclei the analysis is sensitive to isotopic differences as for instance 
the difference between hydrogen and deuterium. Isotopic substitution can therefore be 
used to increase the contrast between the entity of interest and the surroundings. In this 
thesis, H2O was substituted for D2O to enhance the contrast. 
The NR experiments presented in this thesis were conducted at the SURF reflectometer at 
ISIS, STFC Rutherford Appleton Laboratory (Didcot, UK).38 At this site, neutrons are 
produced through spallation. Spallation involves firing high-energy protons into a tungsten 
target, which induces a nuclear reaction that produces neutron beams. 
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Results and Discussion 

In this section, results obtained during the design of the proposed filter structure are 
presented. The chapter is divided into sections according to the proposed filter design, 
starting from the mesoporous silica to eventually move into pSLB characterization. 
4.1 Mesoporous silica thin films 
Structural and morphological characterization of mesoporous silica thin films was 
conducted using TEM, SEM and SAXS (Figure 3). The mesoporous film had an ordered 
porous structure as shown by TEM (Figure 3A) and SAXS (Figure 3B). The q-ratios 
between the peaks in the SAXS diffractogram revealed that the pores were hexagonally 
ordered, which was confirmed by TEM. The pore diameter of the material was uniform at 
~6 nm, as shown by TEM and SEM (Figure 3C). The pore visibility in SEM also revealed 
that the pore network was accessible from the surface of the film. Cross-section SEM was 
employed to assess the film thickness, which proved to be ~300 nm (Figure 3D). 
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Figure 3. (A) TEM micrograph showing hexagonal ordering of the porous network in the mesoporous silica substrate. The pores are uniform with a diameter of 6 nm. (B) SAXS data providing evidence of long-range hexagonal pore ordering in the mesoporous silica substrate. The numbers above the Bragg peaks denote the relative q-ratios between the peaks. (C) Top view of the mesoporous silica surface captured by SEM. Pores with pore diameters of ~6 nm are accessible from the surface. (D) SEM cross section of mesoporous silica thin film deposited on a glass slide 
(silica‒glass interface is depicted by black lines). The mesoporous thin film is ~300 nm thick. 
 
4.2 Mesoporous silica particles 
Structural and morphological characterization of mesoporous silica particles was conducted 
using TEM, SEM and N2 physisorption. TEM micrographs (Figure 4) show elongated 
pores for all four types of particles synthesized using the surfactants 
cetyltrimethylammonium bromide (CTAB, Figure 4A), 12-6-12 (Figure 4B), 12-2-12 
(Figure 4C), and Ethylan 1008 (Figure 4D), respectively. Particles templated using CTAB 
and 12-2-12 clearly showed wider pores than the other two particle types. 
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Figure 4. TEM micrographs of (a) MPS-1 (CTAB), (b) MPS-3 (12-6-12), (c) MPS-4 (12-2-12), and (d) MPS-5 (Ethylan 1008). 
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SEM micrographs (Figure 5) of the same four particle types clearly show elongated pores 
on the surface of particles templated using CTAB (Figure 5A) and 12-2-12 (Figure 5C). The 
pores are hardly distinguishable on particles synthesized using 12-6-12 (Figure 5B) and 
Ethylan 1008 (Figure 5D) as pore templating agents, which correlates well with TEM data 
(Figure 4) showing wider pores for MPS-1 and MPS-4. The data provided by SEM 
concluded that MPS-1 and MPS-4 possessed pores that were accessible from the particle 
surface, whereas the pore accessibility of MPS-3 and MPS-5 was more difficult to assess 
due to the narrower pore width of these materials. 
 

 
Figure 5. SEM micrographs of (a) MPS-1 (CTAB), (b) MPS-3 (12-6-12), (c) MPS-4 (12-2-12), and (d) MPS-5 (Ethylan 1008). 
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Mean particle diameters calculated based on a minimum of 25 particles from TEM and 
SEM micrographs are presented in Table 1. The results showed that the particle diameter 
ranged between 53 nm (MPS-1) and 91 nm (MPS-4), with all samples showing a similar 
degree of polydispersity. 
 
Table 1. Mean particle sizes as determined from SEM and TEM. 

Material Mean particle diameter (nm) Number of analyzed particles Standard deviation (% of mean value) 
MPS-1 53 25 16 MPS-3 56 25 12 MPS-4 91 30 14 MPS-5 60 25 11 

 
The pore width and particle morphology was investigated in more detail using N2 physisorption (Figure 6). The adsorption–desorption isotherms showed Type IV behavior 
for all of the particles (Figure 6A), which is typical for mesoporous materials.39 Table 2 
shows the BET surface areas and the total pore volume within the particles. All particles 
showed values within the range of mesoporous materials. MPS-3 and MPS-5 showed higher 
BET surface area per unit of mass than MPS-1 and MPS-4, which is in accordance with the 
differences in pore widths that were seen from TEM and SEM since smaller pore diameters 
mean higher surface area to pore volume ratios. Smaller pores do therefore frequently result 
in higher BET surface area per unit of mass. 
Pore width is of interest for the particle usability as a pSLB substrate for protein–silica 
intercalation. Pore distributions as calculated from N2 adsorption isotherms using the BJH 
method are presented in Figure 6B. MPS-3 and MPS-5 showed narrow pore size 
distributions as well as narrow pore widths, which is in good agreement with TEM and 
SEM data. MPS-1 and MPS-4 showed wide pore distributions and larger pore widths 
compared to MPS-3 and MPS-5. Particularly MPS-1 did to a large extent consist of pores 
in the range of ~6–14 nm, which is a promising characteristic for protein–silica intercalation 
purposes. 
 
Table 2. Material properties of mesoporous silica particles analyzed by N2 physisorption. 

Material BET surface area (m2/g) Total pore volume (cm3/g) 
MPS-1 493 1.42 MPS-3 769 1.38 MPS-4 650 2.27 MPS-5 737 1.18 
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Figure 6. Nitrogen physisorption measurements. (a) Nitrogen adsorption–desorption isotherms and (b) the pore size distribution of the mesoporous nanoparticles. 
 
Since MPS-1 showed greatest potential as a pSLB support, the internal structure of those 
particles was studied as well. SEM mainly provided data on the particle surface whereas 
TEM provided data on the particle as a whole, including the surface. In order to specifically 
assess the internal pore structure of MPS-1, particles were embedded in epoxy plastic and 
cut into thin (~60 nm) slices. These slices were studied in TEM (Figure 7) and the MPS-1 
particle interior was concluded to show great similarity to intact MPS-1 particles studied 
using TEM (Figure 5A). This observation strengthened the claim that these particles 
obtained their pore morphology from certain characteristics of the W/O/W emulsion, 
which was proposed to give rise to the pore structure. 
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Figure 7. TEM micrographs of MPS-1 particles embedded in epoxy plastic and cut into thin (~60 nm) slices. 
 
4.3 Proteoliposomes 
The size, morphology, and water transport capability of proteoliposomes were assessed 
prior to deposition on the mesoporous silica substrate (Figure 8). Cryo-TEM was used to 
study the morphology of the proteoliposomes since it is not possible to study liquids in the 
ultra-high vacuum conditions of a regular TEM. The micrographs depicting liposomes 
(proteoliposomes without proteins) (Figure 8A) and proteoliposomes (Figure 8B) showed 
clear and interesting differences. The first observation was that the bilayer thicknesses 
among liposomes seemed more uniform than the bilayer thicknesses among 
proteoliposomes. Assessing the bilayer thicknesses of 30 liposomes and 30 
proteoliposomes from cryo-TEM micrographs confirmed that there were differences in 
bilayer thickness between liposomes (Figure 8C) and proteoliposomes (Figure 8D). 
Interestingly, the liposomes consisted of a single bilayer thickness population centered 
around 5 nm whereas the proteoliposomes consisted of two populations centered around 
5 and 7 nm, respectively. This observation was attributed to preferential protein insertion 
in the reconstitution process, favoring some liposomes over others. In connection to this 
it was also observed that the proteoliposomes having a bilayer thickness of 7 nm never were 
closer than 1.9 nm to any other liposome. This strengthened the reasoning that there were 
both liposomes and proteoliposomes present in the proteoliposome sample since 
extracellular domains of hAQP4 would protrude from the bilayer and provide a sterical 
barrier in between the proteoliposome and its neighbor. 
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Figure 8. (A) Cryo-TEM micrograph of a POPC liposome sample. (B) Cryo-TEM micrograph of an hAQP4-containing POPC proteoliposome sample. (C) Bilayer thickness distribution of 30 liposomes as determined from POPC liposome samples showing one population centered at 5 nm. (D) Bilayer thickness distribution of 30 proteoliposomes as determined from hAQP4-containing POPC proteoliposome samples showing two populations centered at 5 and 7 nm, respectively. (E) Size distribution of a POPC liposome sample (solid) and an hAQP4-containing POPC proteoliposome sample (dashed) as assessed by DLS. (F) hAQP4 functionality assessment through stopped-flow light scattering measurements. hAQP4-containing POPC proteoliposomes (dashed) show 3 times higher osmotic water permeability than that of POPC liposomes (solid).  
 
The size distributions of liposomes and proteoliposomes were assessed by DLS (Figure 
8E). Liposomes and proteoliposomes showed very similar size distributions of 227 ± 9 nm 
and 234 ± 11 nm, respectively. 
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Proteoliposomes showed 3 times higher water transport rate compared to liposomes as 
assessed by stopped-flow light scattering, with osmotic water permeability values of 150.2 
± 1.0 µm s–1 and 55.6 ± 0.3 µm s–1, respectively (Figure 8F). This is in accordance with 
previously reported observations,40 and therefore a confirmation that the proteins are 
functional after having been subjected to the reconstitution process. 
 
4.4 Protein-containing supported lipid bilayers 
The formation process and characteristics of the pSLB were studied to confirm that a pSLB 
was obtained and to assess under which circumstances it was formed. The time-resolved 
analysis methods QCM-D and TIRF microscopy were used to assess the pSLB formation 
process. QCM-D showed that pSLB formation was readily conducted on mesoporous 
silica, albeit requiring approximately one order of magnitude more time compared to SLB 
formation on the same substrate (Figure 9A). Proteoliposomes were also introduced to a 
nonporous silica substrate, whereby no pSLB formation was observed using QCM-D. 
 

 
Figure 9. (A) QCM-D recording of the bilayer formation process from POPC liposomes and hAQP4-containing POPC proteoliposomes on nonporous and mesoporous silica, where sample 
was continuously added to the sensors at a flow rate of 50 µL min‒1. Normalized frequency shift on the left axis and dissipation on the right axis are presented as a function of time. Positive values represent ΔD and negative values represent Δf for the supported lipid bilayer (SLB) formation on mesoporous silica (blue), protein-containing supported lipid bilayer (pSLB) formation on nonporous silica (black), and pSLB formation on mesoporous silica (green). (B) TIRF microscopy images showing the pSLB formation on mesoporous silica as a function of time; 800 s of intact vesicle adsorption is seen as an increasing amount of bright dots (fluorescently labeled proteoliposomes), which is followed by proteoliposome rupture, pSLB formation, and hence rapid diffusion of fluorophores in the bilayer. 
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The pSLB formation process was also investigated using TIRF microscopy (Figure 9B), 
which confirmed pSLB formation on mesoporous silica. Furthermore, lipid and hAQP4 
diffusivity measurements were conducted using FRAP once the pSLB had been formed. 
The pSLB lipid diffusivity was 2.42 ± 0.04 µm2 s–1, which was slightly higher than the pSLB 
lipid diffusivity on nonporous silica (2.21 ± 0.07 µm2 s–1). hAQP4 was immobile on 
mesoporous silica, which could possibly be due to pore utilization. AQP4 has previously 
been shown to be immobile when forming orthogonal arrays in native cell membranes, 41 
which could possibly be the case in our setup as well. 
The formed pSLB was further studied using neutron reflectivity to assess the positioning 
of hAQP4 in the proposed water filter design. The reflectivity profiles of pSLBs on 
nonporous silicon oxide (Figure 10A) and mesoporous silica (Figure 10B) show the 
existence of bilayers on both substrates. The Bragg peak that appeared in the reflectivity 
profile on mesoporous silica was due to the long-range ordering of the pore network, as 
was previously seen using SAXS (Figure 3B). 
The bilayers formed on nonporous and mesoporous substrates did, however, share few 
common characteristics. The bilayer formed on the nonporous substrate did not seem to 
contain any proteins, as can be seen from Figures 10C and D. The bilayer formed on the 
nonporous substrate hence consisted of POPC only. The best fit to the data was obtained 
by including additional bilayer stacks on top of the bilayer, representing the existence of 
coadsorbed proteoliposomes. The bilayer surface coverage was 95 ± 5 % and the 
coadsorbed vesicle coverage was 3 %. 
The bilayer formed on the mesoporous silica substrate was completely different, as can be 
seen in Figures 10E and F. The bilayer surface coverage was similar at 87 ± 5 % but the 
hAQP4 content in the bilayer was as high as 58 ± 5 %. There were no coadsorbed vesicles 
resting on top of the pSLB. The greatest benefit of using neutron reflectivity is its high 
resolution in the z-direction (Å), meaning that differences in material composition in the 
direction perpendicular to the surface can accurately be probed. The plot of volume fraction 
as a function of distance from the center of the bilayer for the pSLB on mesoporous silica 
showed that the extracellular domains of the protein extended 10.0 ± 1.0 nm into the bulk 
solution. What was even more exciting was that proteins oriented in the opposite direction, 
having extracellular domains facing the substrate, were shown to reach 7.2 ± 1.0 nm into 
the substrate. As much as 10 ± 5 % of the volume at that depth was occupied by protein, 
suggesting that the proteins make use of the water-filled pores in the porous silica to 
accommodate their extracellular domains. 
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Figure 10. (A) NR curves and best fits (lines) for a supported lipid bilayer (SLB) on a nonporous substrate measured in four different bulk contrasts: H2O (circles), D2O (squares), cmSiO2 (triangles), and cmSi (diamonds). (B) NR curves and best fits (lines) for a protein-containing supported lipid bilayer (pSLB) on a mesoporous substrate, measured in the same four contrasts as the SLB. A Bragg peak is visible due to the long-range pore order in the silica substrate. (C) Volume fractions corresponding to the fits for the SLB on a nonporous Si substrate (bilayer thickness = 4.6 nm). (D) Illustration visualizing the NR data for the POPC (brown) bilayer on nonporous silica (gray) with an hAQP4 (blue) containing proteoliposome coadsorbed on top of the bilayer. (E) Volume fractions corresponding to the fits to the Si crystal surface for the pSLB on a mesoporous substrate (bilayer thickness = 4.8 nm). hAQP4 protruded 7.2 ± 1.0 nm into the porous substrate and 10.0 ± 1.0 nm into the bulk when facing the substrate and away from the substrate, respectively. (F) Illustration visualizing the NR data for the POPC (brown) bilayer containing hAQP4 (blue) intercalated with mesoporous silica (gray). 
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Concluding remarks and Future work 

Access to clean drinking water is a prerequisite for a healthy life. More than half a billion 
people do not have access to an improved source of drinking water, meaning that they are 
exposed to water-borne infections and other diseases on a regular basis. Global warming 
and increasing pollution add more stress to societies that are already suffering from a lack 
of safe drinking water. 
The sea is one source of water that has drawn a lot of interest lately. Desalination through 
RO is a commonly used procedure to convert saline sea water into drinking water. It is, 
however, an energy demanding filtration process that almost exclusively is conducted in 
large scale desalination plants. Since approximately 70 % of the Earth’s surface is covered 
in water, sea water is an abundant source of water. More energy efficient ways of converting 
saline water into drinking water are needed in order to approach a sustainable future. 
Nature is a master of water desalination using a variety of processes conducted on different 
length scales. The aim of this thesis was to come one step closer to energy efficient and 
low-cost water desalination for drinking water production by mimicking nature. The 
approach was to develop a design that mimics the water transport across the cell membrane. 
The ultimate goal of the project is to be able to utilize this kind of design as a filter in water 
treatment processes in the future. 
This thesis presented the design of a proposed biomimetic water filter along with the 
additional design option of using custom designed mesoporous silica nanoparticles instead 
of a mesoporous silica thin film as the substrate supporting the pSLB. The design was 
thoroughly characterized, providing knowledge on the morphology and dimensions of the 
mesoporous silica thin film and mesoporous silica nanoparticles as well as the 
proteoliposomes. The most important contribution of this thesis is however the study of 
the interface between the protein-containing supported lipid bilayer and mesoporous silica 
thin film. Aquaporins were shown to utilize the aqueous volume underneath the bilayer 
provided by the pores, resulting in protein–silica intercalation. This is an interesting feature 
in reverse osmosis desalination processes since high pressures are usually required to 
overcome the osmotic pressure that builds up across the filter membrane in the process. 
Good intercalation and the possibility for proteins to protect their extracellular domains 
within the pores are likely beneficial characteristics of a biomimetic water treatment filter. 
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What is not yet achieved in the project is to use the proposed filter design described in this 
thesis for drinking water production. The next step in the process of development will be 
to find suitable methods for evaluating the water treatment performance of such a filter. 
Other efforts within the project are focused on reinforcing the proposed filter design 
further to make the chances of implementation in pressure-driven processes even higher. 
The ultimate goal of the project is to achieve energy-efficient and low-cost water treatment 
using biomimicry. This thesis is a step in the right direction but there is still a lot more to 
be discovered, developed and finally implemented.  
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