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Analysis of VSC-based HVDC systems
GEORGIOS STAMATIOU
Department of Energy and Environment
Chalmers University of Technology

Abstract
The main objective of this thesis is to perform stability andcontrol studies in the area of VSC-
HVDC systems. A major part of the investigation focuses on the development of procedures,
whose aim is to understand, explain and avoid poorly-dampedconditions or instability that may
appear due to dc-side resonances, which stem from the interaction of converters and passive
elements in such systems.

An analytical approach is initially considered, where the eigenvalues of VSC-HVDC systems
are approximated by analytical closed-form expressions. The Similarity Matrix Transforma-
tion (SMT) method is introduced and applied to the reduced 4th order state-space model of a
two-terminal VSC-HVDC system. The results show that the SMToffers improved accuracy in
approximating the actual eigenvalues of the system, compared to the already established LR
method. Nevertheless, the two analytical methods are not free of limitations. The increase in
modeling accuracy of a system renders the analytical approach impractical or impossible to use.
A frequency-domain approach proves ideal in performing a stability analysis in such cases, and
is therefore considered and applied to a detailed two-terminal, two-level converter-based VSC-
HVDC system. The latter is modeled as a Single-Input Single-Output (SISO) feedback system,
where the VSC-system and dc-grid transfer functions are defined and derived. The passivity
analysis and the net-damping criterion are separately utilized and assessed on their potential to
be adequate analysis tool in VSC-HVDC stability studies.

In contrast with the typical Two-Level Converter (2LC), theModular Multilevel Converter
(MMC) has a fundamentally different structure that introduces internal dynamics and requires
additional control for the converter to operate properly. The dc-side input admittance of the
MMC is analytically derived, allowing the dynamic impact ofMMCs in two-terminal VSC-
HVDC systems to be analyzed from a frequency-domain perspective. The contribution of the
MMC’s circulating-current control to the closed-loop system stability is investigated and the
differences of the MMC and the 2LC in terms of their passivitycharacteristics are highlighted.

Finally, studies are performed in VSC-based Multiterminalgrids, with the objective of propo-
sing advanced control strategies that can offer robust performance during steady-state and tran-
sient conditions, with improved power flow and direct-voltage handling capabilities. The pro-
perties of the proposed controllers are assessed through simulations of four- and five-terminal
grids, where their benefits compared to those of their conventional counterparts are shown.

Index Terms: VSC, HVDC, MMC, Poor damping, Frequency Domain Analysis, Net
damping, Passivity Analysis, Symbolic eigenvalue expressions, MTDC, Droop control.
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Chapter 1

Introduction

1.1 Background and motivation

The use of Voltage Source Converter based High Voltage Direct Current (VSC-HVDC) sys-
tems is considered to be a major step in facilitating long distance power transfer and integrating
remotely located renewable energy sources to major consumption centers. First introduced in
1997, with the commissioning of a 3 MW technology demonstrator at Hellsjön, Sweden [1],
VSC technology has improved drastically over the years, in terms of power and voltage rat-
ing, harmonic performance and losses [2, 3]. VSC-HVDC is a fairly recent technology, free
of several constraints associated with the thyristor-based Line Commutated Converter (LCC)
technology, with added degrees of freedom such as independent control of active and reac-
tive power. Additionally, VSC stations can be connected to weak ac grids and even perform
black-start, in contrast to LCC stations that can only be connected to relatively strong ac grids.
This also represents a limitation for the LCC-based technology when it comes to integration of
renewable-power generation units (e.g. large scale wind farms), which usually comprise weak
grids due to their low Short Circuit Ratio (SCR). Furthermore, the VSC eliminates the need
for telecommunication links between stations (at least in apoint-to-point configuration), which
is otherwise a necessity in LCC-HVDC to perform the reversalof power flow. An LLC can
reverse its power flow only be reversing the polarity of its direct voltage. When it comes to
large-scale Multi-terminal HVDC (MTDC) systems, where allstations share the same dc-link,
such a feature prohibits the use of LCC as there can no longer be independent power-direction
control at the stations. A common dc-link voltage polarity does not hinder the use of VSC that
achieves power-flow reversal by reversing the direct current. This property renders the VSC an
ideal candidate for implementation in MTDC applications.

The introduction of power electronics in power systems has offered a breakthrough in terms
of controllability and stability. In turn, this has led to anincreased possibility of interactions
between the system components. Potential resonances mightappear that, if become poorly
damped, can degrade the effective damping of the system and increase the risk of instability.
Such occurrences have often been described in traction [4–7] and classical HVDC applications
[8–13]. The aforementioned versatility of the VSC has led toits widespread adoption in power-
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Chapter 1. Introduction

system applications, with related stability issues havingalready been described in the form of
dc-side poorly-damped resonances between the converter stations and the dc-transmission ca-
bles in two-terminal VSC-HVDC connections [14] or VSC-MTDCgrids [15,16]. The integrity
of VSC-HVDC systems can, therefore, be compromised and it isimportant to develop pro-
cedures, whose aim should focus on the understanding, explanation and finally avoidance of
poorly-damped conditions or instability that may appear because of dc-side resonances related
to the interaction of converters and passive elements in such systems. These procedures could
finally assist the designing process of VSC-HVDC systems, used for bulk-power transfer or
integration of renewable-energy sources.

Stability studies are typically approached by using numerical analysis to determine the actual
values of the system’s poles [17]. Alternative solutions may however offer a different perspec-
tive to the understanding of stability and poor damping. Such as solution is the analytical ap-
proach, where the eigenvalues of a system are approximated by analytical closed-form expres-
sions. This concept offers the benefit of a deeper understanding in the way selected parameters
of a system can affect the frequency and damping characteristics of its eigenvalues. A major
problem in this process is the fact that the analytical description of a high-order system is chal-
lenging and in many cases impossible. Modeling a VSC-HVDC connection while maintaining
a sufficient level of complexity, can lead to a system whose order can easily surpass the tenth or-
der. It is therefore important to significantly minimize theorder of such systems, in such a way
that most of the information on the dynamic response is preserved. Relevant research in the
analytical approach area has taken place mostly in electricdrives and traction systems [18,19],
where a rectifier and an inverter are connected via dc lines. In [14], the analytical eigenvalues
of the dc-link in a two-terminal VSC-HVDC connection is provided, but is only applicable
for zero power transfer. Approximate symbolic eigenvaluesin VSC-MTDC grids are provided
in [20] but require significant simplifications, influencingthe validity of the final expressions.
In [21–23], theLR iterative method is used to calculate the symbolic poles andzeros of analogue
electronic circuits, but at the cost of heavy computationalburden and numerous simplifications.
Consequently, it is necessary to develop analytical methods that are more computationally effi-
cient and provide sufficient accuracy in the approximation of a plurality of eigenvalues.

The analytical methods are, however, not free of limitations. As discussed earlier, the increase
in modeling accuracy of a system renders the analytical approach impractical or impossible
to use. An investigation in the frequency domain proves ideal in performing a stability ana-
lysis in such cases. A frequency-domain approach in stability-assessment studies is proposed
in [9, 24] and further utilized in [25, 26], where the passivity properties of a system are used
to derive design criteria. This concept has however limitations as it cannot provide answers for
non-passive systems, where other methods should be furtherused. A different frequency do-
main tool is the net-damping criterion, used in [27–30] to facilitate a subsynchronous torsional
interaction analysis of turbine-generator sets. There, the system was modeled as a Single-Input
Single-Output (SISO) feedback process, comprising of an open-loop and a feedback subsystem.
The assessment of the accumulated subsystemdampingat the open-loop resonant frequencies
offered direct and consistent conclusions, regarding the closed-loop stability. Nevertheless, this
method has never been used in VSC-HVDC studies and it would beinteresting to assessed its
potential as adequate analysis tool.

2



1.2. Purpose of the thesis and main contributions

The introduction of the Modular Multilevel Converter (MMC)has set new frontiers in VSC-
HVDC applications [31–33], due to e.g. the modularity of thedesign and the production of
high quality voltage/current waveforms with a subsequent limited need for filters. Compared
to the two-level converter (2LC), the MMC has a structure that introduces internal dynamics
and requires added control levels for the converter to operate properly. The overall effect of
using MMC stations in the stability of an HVDC system can be assessed via a frequency-
domain approach. This requires the derivation of the dc-side input admittance of the utilized
MMCs. The description of the MMC in the form of a dc-side impedance was first made in [34]
and re-assessed in [35]. However, the analysis entirely limited the control consideration to the
bare minimum, regarded the direct voltage as constant over time for most of the derivations
and disregarded the type of ac grid the MMC is connected to. Itis, therefore, important for
the stability assessment of MMC-based HVDC systems, that the dc-side input admittance of a
detailed and realistic MMC must be derived, taking also intoaccount the direct-voltage control
(DVC) and active-power control (APC) mode that the converter might have in a two-terminal
VSC-HVDC connection.

A system investigation should not, however, be limited in two-terminal VSC-HVDC connec-
tions. The concept of MTDC grids, as counterpart to the very well established High Voltage
AC grids, is an interesting approach when it comes to high power transmission over long dis-
tances. Relevant research in the field used to strictly consider LCC-HVDC stations [36,37], but
recently there has been a shift of interest towards VSC technology. Different types of control
strategies for VSC-MTDC grids have been suggested, e.g. thevoltage-margin control [38, 39],
or droop-based control [40–42]. In [43], a comprehensive analysis on the control and protection
of MTDC grids has been carried out, while other works such as [16, 17] deal with the study of
the stability in such systems. Further development is required for control strategies that offer
robust performance during steady-state and transient conditions, with improved power flow and
direct-voltage handling capabilities.

1.2 Purpose of the thesis and main contributions

The main purpose of this thesis is to perform studies on the stability of VSC-HVDC systems
and investigate the risk for interaction between the control structures and passive components,
for a variety of operating conditions. The ultimate goal is to develop methodologies and tools
that will allow the explanation and understanding of poorly-damped conditions that may appear
in such systems. Furthermore, the potential of using VSC technology in large scale MTDC
grids, requests a robust control structure with exceptional handling characteristics of the power-
flow and direct-voltage management. This is an area to which this thesis attempts to contribute
accordingly.

To the best of the author’s knowledge, the main contributions of this thesis are the following:

1. An approach is proposed to explain the origin of dc-side instability and poorly-damped
conditions in a two-terminal VSC-HVDC system, based on the frequency-domain ana-
lysis of the subsystems that constitute the latter. Furthermore, an almost linear correla-
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Chapter 1. Introduction

tion between the net-damping of a system and the damping factor of the poorly-damped
closed-loop dominant poles has been discovered.

2. A new method to derive the analytical eigenvalue expressions of a 4th order two-terminal
VSC-HVDC model, has been developed and its effectiveness was demonstrated. This
enables the extraction of eigenvalues in a closed form, making it possible to understand
how a certain system parameter or operational point contributes to the placement of a
pole and can therefore assist in understanding how a system can be simplified for easier
further analysis.

3. The dc-side input admittance of a highly detailed MMC, in either direct-voltage control
or active-power control mode, has been derived. This allowsrealistic MMC-based VSC-
HVDC systems to be assessed and analyzed in the frequency domain, highlighting the
contribution of the converters’ physical and control structure to the overall dynamic per-
formance. Furthermore, the dc-side input admittance of theMMC allows the converter
to be investigated in terms of its passivity properties and compare them to those of the
two-level converter.

4. Two new types of droop-based control strategies for application in MTDC grids, have
been developed and analyzed. The associated controllers offer steady-state and dynamic
enhancement in the handling of relatively stiff- or constant-power controlled VSC stations
connected to the grid, compared to conventional controllers.

1.3 Structure of the thesis

The thesis is organized into eight chapters with Chapter 1 describing the background informa-
tion, motivation and contribution of the thesis. Chapter 2 provides a theoretical base for the
understanding of the VSC-HVDC technology and presents the VSC control structure and its
limitations, the components of a realistic VSC-station andinformation on the latest advances in
converter topologies. Chapter 3 functions as a general introduction to the concept of damping
in dynamic systems and focuses on poorly-damped conditionsthat may appear. Examples are
provided in the areas of traction, electric drives, classical HVDC and VSC-HVDC, along with
the main contributing factors to such conditions in each case. Chapter 4 focuses on an ana-
lytical approach to the description of poorly-damped conditions in two-terminal VSC-HVDC
systems, by means of deriving analytical eigenvalue expressions that contain all the parameters
of the control and passive components of the system, as well as the nominal operating points.
As tools to accomplish this objective, the chapter introduces the SMT method and provides an
overview of the LR iterative method. The state-space model for a generic two-terminal VSC-
HVDC transmission system is developed and its eigenvalues are analytically extracted using
the SMT and LR methods. Having investigated the analytical approach in stability studies, the
dynamic behavior of two-terminal VSC-HVDC transmission systems is analyzed through a
frequency-domain approach in Chapter 5. Thepassivityapproach and thenet-dampingcriterion
are utilized to explain poorly-damped conditions and occasions of instability, as well as to de-
scribe the way certain interventions to the VSC control can improve the dynamic performance
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of the complete system. The utilization of frequency-domain concepts in HVDC stability stud-
ies is expanded in Chapter 6, where the use of the complex, in terms of structure and control,
MMCs is considered in VSC-HVDC systems. The dc-side input admittance of the DVC-MMC
and APC-MMC are derived and used to assess the dynamic behaviour of a two-terminal VSC-
HVDC system, as well as highlight the differences of the MMC and 2LC, as far as their pas-
sivity characteristics are concerned. Chapter 7 provides an insight to MTDC grids regarding
the technologies involved, grid topologies and control strategies. Within the context of direct-
voltage droop control in MTDC grids, the chapter introducestwo proposed droop-based control
methods with advantageous properties in the handling of relatively stiff- or constant-power con-
trolled VSC stations connected to the grid. Finally the thesis concludes with a summary of the
results achieved and plans for future work in Chapter 8.
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Chapter 2

VSC-HVDC system-operation and control

The use of VSC in HVDC applications and the analysis of the behavior of the associated sys-
tems require an understanding of the fundamental properties and functionalities of the VSC
technology. The intention of this chapter is to provide a basic but detailed background informa-
tion on VSC-HVDC systems. The main structure and componentsof a VSC-HVDC system are
initially described, followed by an introduction to the operational principles of a VSC. Thus,
the interconnected layers of control that allow the VSC to operate as a controllable voltage
source are presented. This will provide the basis for the understanding of the dynamic behavior
of VSC-HVDC systems, as will be investigated in the following chapters.

2.1 Introduction to VSC-HVDC systems

The typical configuration of a two-terminal VSC-HVDC transmission link is illustrated in
Fig. 2.1, where two VSC stations connect two ac systems via a dc transmission. The two ac
systems can be independent networks, isolated from each other, or nodes of the same ac system
where a flexible power transmission link is to be established. The interconnection point between
a VSC station and its adjacent ac system is called the Point ofCommon Coupling (PCC). The
main operating mechanism of a VSC station considers the ability of the VSC to function as
a controllable voltage source that can create an alternating voltage of selected magnitude and
phase, allowing the exchange of a predetermined amount of active and reactive power between

PCC1

dc-transmission 
linkA

C
 f

ilt
e
rs

VSC1
AC
Grid
#1

PCC2 AC
Grid
#2

VSC2Pg1 Pg2

dc,1υ
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-

A
C

 f
ilt

e
rs

dc,2υ
Phase 
reactor

Phase 
reactor

Fig. 2.1 Two-terminal VSC-HVDC transmission link. The controlled power is the power entering the
phase reactor with a positive direction towards the VSC station.
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itself and the ac system. This is achieved by operating the stations as devices that can actively
create a voltage waveform. In order to ensure that, the dc side of the converters must maintain
a fairly stiff direct voltage. For this reason, one of the VSCstations bears the duty of control-
ling the voltage in the dc transmission to a designated valuewhile the other station handles the
control of the active power flow that will be exchanged between the two ac nodes. In parallel to
that, each station can regulate the reactive power exchangewith its interconnected ac system,
independently from the active power handling. This is a major feature that the LCC-HVDC
lacks. Additionally, the presence of diodes connected in anti-parallel with the IGBTs provides
bidirectional power capabilities to the VSC without the need to invert the polarity of the dc-link
voltage, unlike in LCC-HVDC, by allowing the reversal of current flow through the converter’s
valves. The desired power exchange in a VSC station is imposed at the connection point of the
phase reactor, connecting the VSC main valves to the transformer, shown in Fig. 2.1.

The dc-transmission link may consist of overhead or cable type of conductors, based on the
operational characteristics of the transmission system. Avery common arrangement of the dc
link, used extensively in classical HVDC, is the asymmetricmonopole, with or without metal-
lic return. In this way only one pole is energized while the other is either a grounded conductor
or isolated ground connections at each station, respectively. For these arrangements, the tran-
sformers have to be designed for dc stresses and there is no redundancy if the single energized
pole is lost. The bipolar connection solves the redundancy issue by connecting two identical
asymmetric monopole systems in parallel, in such a way that the grounded parts of the stations
are connected to each other and there is a positively and negatively charged pole completing
the system. This arrangement is more costly, but if an energized pole is lost, the VSC-HVDC
can keep operating with the remaining pole, at a reduced power rating. The last type of VSC
connection is the symmetric monopole, as shown in Fig. 2.1, constituted by two conductors
connecting the VSC stations and operated at opposite voltages. This is achieved by splitting the
dc-side capacitor into two identical parts with a grounded midpoint. In this way, the transformer
does not suffer from dc stresses and redundancy is still offered at 50% of the rated power.

The following sections provide a detailed overview on the key components of a VSC transmis-
sion system, the operating principles and the control systems involved.

2.2 Main structure of a VSC-HVDC transmission system

2.2.1 Components of a VSC-HVDC station

The complete description of a VSC-HVDC transmission systemis presented in Fig. 2.2. Apart
from the switching valves, the station is comprised of a number of other key components as
well, that are necessary for the proper operation of the converter.
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Fig. 2.2 Components of a VSC-HVDC station.

AC-side transformer

A VSC station is usually connected to the ac grid via a converter transformer. Its main function
is to facilitate the connection of the converter to an ac system whose voltage has a different
rated value. Furthermore, the transformer blocks the propagation of homopolar harmonics to
the main ac system, while at the same time provides galvanic isolation between the latter and
the VSC station.

Phase reactor

The phase reactor is one of the key components of a VSC station. Its main function is to fa-
cilitate the active and reactive power transfer between thestation and the rest of the ac system.
With the one side of the reactor connected to the ac system, the VSC is able to apply a fully
controlled voltage to the other side of the reactor. The magnitude and phase difference of the
latter, compared to the ac-system voltage will induce a controlled amount of active and reactive
power transfer over the reactor. A secondary function of thephase reactor is to filter higher
harmonic components from the converter’s output current and also limit short-circuit currents
through the valves.

AC-side filters

The voltage output of the HVDC converters is not purely sinusoidal but contains a certain
amount of harmonics, due to the valve switching process. This causes the current in the phase
reactor to also contain harmonics at the same frequencies, apart from the desired sinusoidal
component at the grid frequency. Aiming to reduce the harmonic content of the VSC voltage
output, a range of passive filters are used, connected in shunt between the phase reactor and
the transformer [2,44]. Typical examples are 2nd order filters, 3rd order filters or notch filters, as
depicted in Fig. 2.3. Depending on the converter topology and its switching levels, the harmonic
content of the converter output can be reduced to a level where the necessary ac-side filters can
be reduced in number and size or even neglected.
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(a) (b) (c)

Fig. 2.3 AC-side filters. (a) 2nd order filter, (b) 3rd order filter and (c) Notch filter.

DC-side capacitor

The main function of the dc-side capacitor is to reduce the voltage ripple on the dc-side and
provide a sufficiently stable direct-voltage from which alternating voltage will be generated
on the ac-side of the converter. Furthermore, the capacitoracts as a sink for undesired high-
frequency current components that are generated by the switching action of the converter and
are injected to the dc-side. Additionally, the dc-side capacitor acts as a temporary energy storage
where the converters can momentarily store or absorb energy, keeping the power balance during
transients. The capacitor is characterized by thecapacitor time constant, defined as

τ =
Cdcυ

2
dc,N

2 · PN
(2.1)

whereCdc is the capacitance,υdc,N is the rated pole-to-pole direct voltage andPN is the rated
active power of the VSC. The time constant is equal to the timeneeded to charge the capacitor
of capacitanceCdc from zero toυdc,N, by providing it with a constant amount of powerPN [45].
A time constant of 4 ms is used in [46] and 2 ms in [2].

DC-lines

The transmission of power between VSC-HVDC stations is performed using dc-lines. Each dc-
pole is here modeled as aΠ-model, with resistanceRpole, inductanceLpole and two identical ca-
pacitors with capacitanceCpole/2 each. This is depicted in Fig. 2.4. Transmission lines are nor-
mally described in terms of resistance/km/poler, inductance/km/polel and capacitance/km/pole
c. With the length of the dc-transmission system being provided in km units, the previous cable
elements are defined as

• Rpole = r·(transmission line length);

Cpole/2

Rpole Lpole

Cpole/2

Fig. 2.4 Π-model of a single pole for a dc-transmission link.
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TABLE 2.1. PHYSICAL PROPERTIES FOR MODELING DC-TRANSMISSION LINES

Type of dc-transmission liner (Ω/km/pole) l (mH/km/pole) c (µF/km/pole)
Cable 0.0146 0.158 0.275

Overhead line 0.0178 1.415 0.0139

• Lpole = l·(transmission line length);

• Cpole = c·(transmission line length).

It is possible to use two different types of dc-transmissionlines: cables or overhead lines. Cable-
poles are normally laid very close to each other and therefore have a relatively high capacitance
and low inductance per km. On the contrary, overhead transmission line poles are located in a
relative distance from each other and as a result they have a relatively high inductance and low
capacitance per km. The values that are going to be used in thepresent thesis are presented in
Table 2.1.

2.2.2 Converter topologies

Even though numerous designs for potential HVDC convertersexist, only a few are considered
realistic for commercial use and even less have been implemented in practice. The great majority
of all VSC-HVDC connections having been built to date [3] arebased on the two-level converter
of Fig. 2.5(a). This converter can only switch between+υdc/2 and−υdc/2. The produced two-
level ac-side voltage has a high harmonic content and the useof filters is necessary, with losses
being high due to the high switching frequency at which the valves are operated. Nevertheless,
the structural and operational simplicity of this converter allows it to still be used in VSC-HVDC
applications.

A first effort towards multilevel ac voltage has been performed by adapting the Neutral-Point-
Clamped (NPC) converter to HVDC standards. This converter is presented in Fig. 2.5(b) in its
three-phase arrangement. The converter can now switch to three levels (+υdc/2, 0 and−υdc/2),
leading to lower total harmonic distortion, reduced lossesand filter requirements but at the
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Fig. 2.5 a) Two-level converter, b) Three-level Neutral-Point-Clamped converter.
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cost of higher mechanical complexity, increased convertersize, challenges in balancing the dc-
side capacitors and uneven loss distribution among the valves. An actively clamped topology
that solves the loss distribution problem of the NPC has beenintroduced, called Active NPC
(ANPC), with the clamping diodes being replaced by transistors [3,47].

A major breakthrough in VSC-HVDC however has been provided by the introduction of the
MMC concept [48]. Overall, the MMC resembles a two-level converter where the series IGBT
valve is replaced by a chain of series connected, identical and isolated cells each providing
fundamental voltage levels. The MMC is shown in Fig. 2.6(a).Cumulatively, the whole chain
produces a voltage consisting of a very finely-shaped ac waveform with a dc-offset of equal
magnitude to the direct voltage of the adjacent dc cable. Eventually
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Fig. 2.6 Modular Multilevel Converter: (a) Converter topology, (b) Voltage waveforms with half-bridge
cells and (b) Voltage waveforms with full-bridge cells.

(a) (b)

Fig. 2.7 Module cells for a Modular Multilevel Converter: (a) Half-bridge cell and (b) Full-bridge cell.

the phase voltage will consist of only the alternating part.In its simplest form, the MMC uses
the half bridge cell (Fig. 2.7(a)) where a capacitor is either inserted or bypassed, providing
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two possible voltage levels;Vcap or 0, whereVcap is the voltage of the cell capacitor. The arm-
and phase-voltage waveforms at one leg of the converter are plotted in Fig. 2.6(b). Other cell
topologies can also be used, like the full bridge cell in Fig.2.7(b), providing voltage levels
of Vcap, 0 or−Vcap. MMC with full bridge cells, with the associated arm- and phase-voltage
waveforms shown in Fig. 2.6(c), can produce higher magnitude alternating voltage and even
break dc-faults [49] at the expense of higher IGBT numbers. Overall the MMC offers very low
losses, low effective switching frequency and minimization of ac-side filters.

A number of proposed alterations to the original MMC concepts have been proposed and seri-
ously considered for the next generation of MMC [49]. The ”Series hybrid with wave shaping
on the ac side”, shown in Fig. 2.8, is a combination of the two-level converter and the MMC.
The idea is that the six-bridge converter provides a two-level voltage while a series connected
chain of cells creates a complex waveform which, when superimposed to the former, results in a
fine multilevel sinusoidal waveform. The main benefit of thistopology are the reduced switch-
ing losses since the cells of every arm need to switch and produce a sinusoidal arm voltage for
only half of the period of the fundamental.

Another proposed design is the ”Series hybrid with wave shaping on the dc side”, shown in
Fig. 2.9 [50]. Each arm of the converter consists of an IGBT-stack in series with a chain of
cells. The main principle of operation is that each arm is responsible for creating only half the
sinusoidal waveform. This results in chains of cells rated at approximately only half the total
dc-side voltage. The IGBT valves are needed to isolate the arm that is complementary to the one
connected to the ac-phase terminal at any time. Even though the MMC technology has only few
commissioned examples to present, the technology trend points towards the domination of the
MMC form in VSC-HVDC applications, mostly due to the very lowlosses that can be achieved
and the possibility to suppress dc-faults if full-bridge cells are used.

2.3 VSC control

The dominant method in the control of VSC in various applications is the vector control. Having
been widely applied in machine drives for the control of VSC-driven electrical machines, the
vector control is also highly applied in VSC-HVDC applications, as mentioned in [51]. The
main idea of the vector control involves the representationof a three-phase alternating quantity
of the ac system by a single vector. If this vector is observedfrom the perspective of a rotating
dq-frame that tracks the movement of the vector, the latter maybe characterized by dc-type of
properties. The resulting vector can then be controlled in asimilar manner as the voltage and
current of a dc system, and finally restored to its three-phase alternating representation to be
applied to the ac system.

The typical structure of a VSC-HVDC control system for a converter without internal dynam-
ics, e.g. the two-level converter, is illustrated in Fig. 2.10. Its backbone is the Vector Current
Controller. This control structure receives as inputs the currents referencesid⋆f andiq⋆f , with a
role of producing a pair of voltage referenceυd⋆

c andυq⋆
c . These are transformed into three-phase

quantities and provided as modulating signals to the PWM block, which will generate appropri-
ate firing signals for the VSC valves. The modulating voltagesignal to the PWM is internally
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Fig. 2.10 VSC control system

normalized by the value of the direct voltage of the dc-side capacitor in the VSC.

A Phase-Locked Loop (PLL) is used to synchronize thedq-rotating frame of the converter to the
rotating vectorυ(αβ)

g vector inαβ-coordinates, providing a reliable reference frame for anyabc-
to-dq anddq-to-abc transformations. A number of outer controllers are implemented in order
to control other quantities such as the direct voltage of thedc-side capacitor, the active and
reactive power transfer, and the magnitude of the alternating voltageυg. As already mentioned
in Section 2.1, the desired active and reactive power exchange in the VSC station is imposed at
the connection point of the phase reactor, connecting the VSC main valves to the transformer,
shown in Fig. 2.10. This is the power entering the phase reactor with a positive direction towards
the VSC valves, corresponding toPg andQg. Considering a voltage-orienteddq frame, the
active-power controller operates by controlling the current referenceid⋆f . The same applies for
the direct-voltage controller because the energy stored inthe dc-side capacitor (and therefore
its voltage) is controlled by active power injected to it by the VSC. This means thatid⋆f can be
used for the direct-voltage control as well. The referenceid⋆f is thus used either for active-power
or direct-current control. The reactive power is controlled by iq⋆f , and since the magnitude of
the alternating voltageυg is related to the amount of reactive-power transfer by the VSC, the
referenceiq⋆f is used either for reactive power or alternating voltage control.

In this section, the different control blocks that comprisethe complete VSC control system are
individually presented. Observe that the use of boldface inexpressions denotes complex space
vectors, whereas the overline notation ”(overline)” denotes a real space vector.
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2.3.1 Vector Current Control

The Vector Current Control, which will be referred to simplyas Current Control (CC) hence-
forth, finds itself at the core of the VSC-control scheme. Considering the equivalent process
representing the VSC in Fig. 2.11, if Kirchhoff’s voltage law (KVL) is applied across the phase
reactor, the following combined description of differential equations can be obtained for the
three phases

υ(abc)
g − υ(abc)

c = Lf
di

(abc)
f

dt
+Rfi

(abc)
f (2.2)

By applying Clarke’s transformation (described in the Appendix), (2.2) can be expressed in the
fixedαβ-coordinate system as

ῡ(αβ)
g − ῡ(αβ)

c = Lf
d̄i

(αβ)
f

dt
+Rf ī

(αβ)
f (2.3)

A further step is to apply the Park transformation (see Appendix). The PLL of the VSC is
synchronized with the voltage vectorῡ(dq)

g . The considered voltage and current vectors can then
be expressed as

ῡ(αβ)
g = ῡ(dq)

g ejθg (2.4)

ῡ(αβ)
c = ῡ(dq)

c ejθg (2.5)

ī
(αβ)
f = ī

(dq)
f ejθg (2.6)

Equation (2.3) can thus be transformed into

ῡ(dq)
g ejθg − ῡ(dq)

c ejθg = Lf

d
(

ī
(dq)
f ejθg

)

dt
+Rf ī

(dq)
f ejθg ⇒

ῡ(dq)
g ejθg − ῡ(dq)

c ejθg = j
dθg
dt

Lf ī
(dq)
f ejθg + Lfe

jθg
d̄i

(dq)
f

dt
+Rf ī

(dq)
f ejθg ⇒

ῡ(dq)
g ejθg − ῡ(dq)

c ejθg = jωgLf ī
(dq)
f ejθg + Lfe

jθg
d̄i

(dq)
f

dt
+Rf ī

(dq)
f ejθg (2.7)
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2.3. VSC control

whereωg is the angular frequency of thedq-rotating frame. Usually, the variations inωg(t)
are very small over time andωg(t) can then be replaced by a constant value ofωg. Under this
condition and eliminating the termejθg , (2.7) can be re-written as

Lf
d̄i

(dq)
f

dt
= −Rf ī

(dq)
f − jωgLf ī

(dq)
f + ῡ(dq)

g − ῡ(dq)
c (2.8)

which can be expanded to its real and imaginary part as

Lf
didf
dt

= −Rfi
d
f + ωgLf i

q
f + υd

g − υd
c (2.9)

Lf
diqf
dt

= −Rf i
q
f − ωgLfi

d
f + υq

g − υq
c (2.10)

These are two cross-coupled first-order subsystems, with the cross-coupling being initiated by
the termsωgLf i

q
f andωgLfi

d
f .

The complex powerSg can be decomposed into the active and reactive power as follows

Sg = ῡ(dq)
g

[

ī
(dq)
f

]′
=
(
υd
g + jυq

g

) (
idf − jiqf

)
⇒ Sg =

(
υd
gi

d
f + υq

gi
q
f

)
+ j

(
υq
gi

d
f − υd

gi
q
f

)
⇒

Pg = υd
gi

d
f + υq

gi
q
f (2.11)

Qg = υq
gi

d
f − υd

gi
q
f (2.12)

Considering that the PLL performs the synchronization by aligning thed-axis of thedq-rotating
frame to the vector̄υ(dq)

g , theq-component of the latter will be zero in steady-state, thus

ῡ(dq)
g = υd

g (2.13)

Applying (2.13) to (2.11) and (2.12) gives

Pg = υd
gi

d
f (2.14)

Qg = −υd
gi

q
f (2.15)

which means that the active power can be controlled via thed component of the current,idf ,
while the reactive power with theq component of the current,iqf . If the two currents can be
controlled independently, the VSC could have an independent and decoupled control of the
active and reactive power.

Regarding the active-power balance at the two sides of the valves of the VSC (as reactive power
does not propagate to the dc-side) and assuming that the losses on the valves are negligible, the
following relation applies

Pc = Pdc,in ⇒ Real{ῡ(dq)
c

[

ī
(dq)
f

]′
} = υdciin ⇒ υd

c i
d
f + υq

ci
q
f = υdcidc ⇒

iin =
υd
c i

d
f + υq

ci
q
f

υdc
(2.16)
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which is the direct current propagating to the dc side of the VSC, as shown in Fig. 2.11. In
steady-state, the currentiin becomes equal toidc, assuming a lossless dc capacitor and neglecting
harmonics due to switching.

Observing (2.8)-(2.10), the only manner in which the VSC canaffect the dynamics of the reactor
current and attempt to set it to a desired referenceī

(dq)⋆
f , is by changing its output voltagēυ(dq)

c

accordingly. Therefore a control law must be applied providing a referencēυ(dq)⋆
c , which the

VSC will apply with ideally no delay.

Equation (2.8) can be transformed in the Laplace domain as

sLf if = −Rf if − jωgLf if + υg − υc (2.17)

where the bold font indicates the Laplace transformation ofa correspondingdq-coordinate vec-
tor. If the currentif and the voltageυg are perfectly measured, the following control law is
suggested in [52], which eliminates the cross-coupling of the currentdq-components and com-
pensates for the disturbance caused byυg

υ
⋆
c = −F (s) (i⋆f − if)− jωgLf if + υg (2.18)

where,F (s) is the controller transfer function applied to the current error. If the controller
computational delay and the PWM switching are modeled as a delay time Td, thenυc =
e−sTd

υ
⋆
c , [53]. However, for simplification purposes, the delay timecan be neglected and then

υc = υ
⋆
c . Under this condition and ifF (s) is equated to a PI controller with proportional gain

Kp,cc = accLf and integral gainKp,cc = accRf , then substituting (2.18) in (2.17) yields

if = Gcci
⋆
f =

acc
s+ acc

i⋆f (2.19)

indicating that the closed-loop current control can be shaped as a first-order low-pass filter with
bandwidthacc. The block diagram of the complete CC based on relation (2.18) is provided in
Fig. 2.12. Several improvements can be implemented in the CCsuch as

• anti-windup functionalities in case of voltage saturation;

• active damping capabilities to reject undesired disturbances;

• filtering of signals before they are fed-forward into the control process.
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Fig. 2.12 Current Controller of the VSC.
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Fig. 2.13 Decomposition of the voltage vectorῡ
(αβ)
g into the converterdq frame and the idealdq frame.

2.3.2 Phase-Locked Loop

The duty of the PLL in the VSC control structure is to estimatethe angle of rotationθg of the
measured voltage vector̄υ(αβ)

g . Fig. 2.13 shows̄υ(αβ)
g , along with theαβ-stationary frame, the

ideally aligneddiqi frame (rotating with angular speedωg and angleθg) and the converterdq-
rotating frame (rotating with angular speedω̂g and an anglêθg). The latter is the frame that is
in the knowledge of the PLL, which tries to position it so thatthe d-axis is aligned with the
rotating vector.

As it can be seen, as long as the PLL’sdq frame is positioned at̂θg and is still not prop-
erly aligned withῡ(αβ)

g , the dq-decomposition of the vector is going to result in a non-zero
q-componentυq

g. The PLL must thus increase or decreaseω̂g speed (and thuŝθg) until the cal-
culatedυq

g becomes equal to zero. This means that from a control perspective, the termυq
g can

be used as an error signal, which when fed to a PI controller will lead to the creation of such
an ω̂g and θ̂g that eventually will setυq

g to zero. The structure of the adopted PLL is depicted

in Fig. 2.14. The voltageυ(abc)
g is transformed intōυ(αβ)

g and using the PLL’s estimation̂θg,
calculates̄υ(dq)

g . Based on the ”error”υq
g (normalized byυd

g,0), the PLL’s PI controller outputs a
correction signal∆ω, which is added to a constant pre-estimation of the vector’sangular speed
ωg,0. This provides the converter angular speedω̂g and is integrated to produce the updated ver-
sion of θ̂g, which is fed back to theαβ-to-dq block and produces the newυq

g. In steady-state,

ω̂g and θ̂g become equal toωg andθg, respectively. The gainsKp,pll andKi,pll are selected as
suggested in [54] as

Kp,pll = 2apll, Ki,pll = a2pll (2.20)
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ĝθ∆ω gω̂

d
g,0

1

υ

Fig. 2.14 Block diagram of PLL.
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Chapter 2. VSC-HVDC system-operation and control

In [55], a bandwidthapll for the closed-loop system of 5 Hz is selected and in [56] a range of 3
to 5 Hz is mentioned as typical bandwidth for grid-connectedapplications. In this thesis,apll is
selected to be 5 Hz (provided to the controller in rad/s units).

2.3.3 Direct-Voltage Control

The portion of the complete VSC model that describes the dynamics of the Direct-Voltage Con-
troller (DVC) is presented in Fig. 2.15. The energy stored inthe dc capacitorCdc of the DVC-
VSC isCdcW/2, with the valueW = υ2

dc being proportional to the energy of that capacitor.
The dynamics of the dc capacitor become

1

2
Cdc

dW

dt
= Pdc,in − Pdc (2.21)

The DVC can be a simple PI controllerF (s) with proportional gainKp and integral gainKi.
The output of the controller is a referenceP ⋆

g . Assuming no losses on the phase reactor (neglect
Rf) and a lossless converter, we have

Pg ≈ Pc ≈ Pdc,in (2.22)

Therefore,Pg can be considered as the power that is drawn from the ac grid and directly in-
jected to the dc-side capacitor to keep it charged, as in Fig.2.15(a). From a control point of
view, Pdc represents a disturbance. Therefore a dc-power feedforward term can be added to
cancel its effect in the closed-loop system. Consequently,F (s) can be represented solely by
Kp, still maintaining a zero state error under ideal conditions [53]. The incomplete knowledge
on the properties of all the converter’s components and the unavoidable existence of losses in
the system, requireKi to be maintained, providing a trimming action and removing steady-state
errors. In the present analysis however, these issues are neglected andKi=0. The expression of
the DVC can then be written as

P ⋆
g = F (s) (W ⋆ −W ) + Pf = Kp (W

⋆ −W ) + Pf ⇒

P ⋆
g = Kp (W

⋆ −W ) +H (s)Pdc (2.23)

whereW ⋆ is the reference ”energy” stored in the capacitor,H(s) is the transfer function of a
low-pass filteraf/(s+ af) having bandwidthaf , andPf represents the power-feedforward term
of the DVC, equal to the filtered value ofPdc. Given (2.14), the current referenceid⋆f could then
be equal toid⋆f = P ⋆

g /υ
d
g, whereυd

g could optionally be filtered as well through a low-pass filter
of bandwidthaf , as suggested in [53].

Observe that the DVC is not controllingυdc itself but rather the square of the latter,W . If the
controller were to operate directly on the errorυ⋆

dc − υdc, the voltage control process would be
non-linear and the small-signal closed-loop dynamics of the system would be dependent on the
steady-state operating pointυdc,0 and, thereby,υ⋆

dc (assuming thatυdc normally becomes equal
to the reference). This inconvenience is avoided by prompting the controller to alternatively
operate on the errorW ⋆ −W [53].
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Fig. 2.15 Direct-voltage control in a VSC: (a) Power flow across the converter, (b) Closed-loop direct-
voltage control process with power feedforward and (c) Closed-loop direct-voltage control
process without power feedforward.

Assuming perfect knowledge of the grid-voltage angle and aninfinitely fast current-control
loop, the requested active powerP ⋆

g can be immediately applied, thusPg = P ⋆
g . Substituting

(2.23) to (2.21) and considering (2.22), gives

W =
2Kp

2Kp + sCdc
W ⋆ +

2 [H (s)− 1]

2Kp + sCdc
Pdc =

2Kp

Cdc

s+ 2Kp

Cdc

W ⋆ +
2 [H (s)− 1]

2Kp + sCdc
Pdc ⇒

W = Gcp ffW
⋆ + Ycp ffPdc (2.24)

whereGcp ff is the closed-loop transfer function of the direct-voltagecontrol with power feed-
forward forPdc=0. If the proportional gain is selected asKp = adCdc/2, the transfer function
Gcp ff is now equal toad/(s + ad), which is a first-order low-pass filter with bandwidthad.
This serves as a valuable designing tool for the prediction of the closed-loop performance of the
DVC.

It is, however, fairly common practice to use a DVC without a power feedforward term, as
in Fig. 2.15(c). In this case, theF (s) must maintain both its proportional and integral gain to
guarantee a zero steady-state error, and the closed-loop dynamics become

W =
2F (s)

2F (s) + sCdc
W ⋆ − 2

2F (s) + sCdc
Pdc = Gcp nffW

⋆ + Ycp nffPdc (2.25)

whereGcp nff is the closed-loop transfer function of the direct-voltagecontrol without power
feedforward forPdc=0.Gcp nff can no longer be equated to a first-order filter but ifKp = adCdc

andKi = a2dCdc/2 [14], thenGcp nff has two real poles ats = −ad.
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Fig. 2.16 (a) Active-Power Controller of the VSC, (b) Reactive-Power Controller of the VSC and (c)
Alternating-Voltage Controller of the VSC.

2.3.4 Active-Power Control

The role of the Active-Power Controller (APC) is to set the flow of active power equal to a cer-
tain reference. The point of the VSC circuit where the activepower is measured and controlled,
is usually the connection point between the phase reactor and the ac-side filters. If the consid-
ered station is in power-control mode, i.e. it is the receiving-end station, the controlled power
corresponds to the powerPg that enters the phase reactor towards the valves of the VSC, with
regards to Fig. 2.10. As shown in (2.14), the active power depends only on the currentidf and
the voltageυd

g . The latter experiences only small variations in practice and its contribution to
Pg is considered to be constant. The active power will then be essentially decided byidf . Hence,
an active power controller as in Fig. 2.16(a) can be used where a PI controller is engaged to
generate the current referenceid⋆f that will be supplied to the CC and finally imposed to the
phase reactor.

The PI typically has a limitation function where the referenceid⋆f is limited to a maximum value
idmax equal to a rated propertyiN. This can be the rated ac current of the converter or a value close
to the maximum allowed valve current, both turned into an appropriatedq-current quantity.

2.3.5 Reactive-Power Control

Equation (2.15) shows that the reactive powerQg that enters the phase reactor is proportional
to the voltage valueυd

g and the currentiqf . Consequently,Qg can be considered solely a function
of iqf . The PI-based Reactive-Power Controller (RPC) in Fig. 2.16(b) can then regulateQg to
follow a referenceQ⋆

g by creating an appropriate currentiq⋆f to be provided to the CC and finally
imposed to the phase reactor. Notice thatQ⋆

g andQg are added with opposite signs thanP ⋆
g and

Pg in the previous section, because of the minus sign in (2.15).
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2.4. Summary

The RPC can have a limitation function where the referenceiq⋆f is limited to a maximum value
iqmax. Considering the previous maximum current limitationiN and a possible strategy that gives
priority to the establishment of the separately requestedidmax current, the limit of the reactive
current reference can be varied during operation by the relation

iqmax =

√

i2N −
(
id⋆f
)2

(2.26)

2.3.6 Alternating-Voltage Regulation

When the VSC is connected to a weak grid, the PCC voltage can beregulated and stiffened. A
weak grid connected to the PCC has by definition a relatively large grid impedance. The flow
of current between such a grid and the VSC would cause significant voltage drop across the
grid impedance and drastically change the voltage magnitude at the PCC, and thus the voltage
υg of the phase reactor as in Fig. 2.11. Considering a mostly inductive equivalent impedance of
the grid, if the VSC absorbs reactive power, the magnitude ofυg is going to decrease, with the
opposite phenomenon occurring for an injection of reactivepower from the VSC. Therefore,
since the reactive power is regulated throughiqf , a PI controller can be used as an alternating
voltage controller, as in Fig. 2.16(c). Observe that the signs of adding|υg|⋆ and|υg| are in such
a way so that a positive error|υg|⋆ − |υg|, (demand for increase of voltage magnitude) should
cause a demand for negative reactive power and therefore positive iq⋆f .

2.4 Summary

This chapter serves as an introduction to the concept of the VSC technology and focuses on
its application to HVDC transmission systems. The main parts of a VSC-HVDC station have
been presented, followed by the presentation of already available or futuristic VSCs that can be
used in a station. A range of interlinked controllers that perform the operation of a typical VSC
station have been presented, within the general context of vector control. Added details have
been provided on the derivation and tuning of the CC and the DVC.
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Chapter 3

Poorly-damped oscillations in systems

One of the problems that can generally be observed in dynamicsystems is the potential occur-
rence of poorly-damped oscillations following disturbances. This is of great concern for HVDC
applications, where the ratings and complexity level demand strict avoidance of such events.
The introduction of VSC technology has offered advanced controllability in the applications
that use it, but has also influenced their dynamic performance and therefore their ability to
damp potentially hazardous oscillations.

The intention of this chapter is to develop a background on poorly-damped oscillations that
may occur in systems and in particular those encompassing VSC-HVDC. A general description
of the concept of damping in systems is provided, followed bythe influence of the VSC and
constant power loads in the system. This is followed by examples, description and possible ways
to mitigate poorly-damped oscillations in the areas of traction, drives, LCC-HVDC and VSC-
HVDC. Finally, simulations scenarios illustrate the occurrence of poor damping and instability
in a two-terminal VSC-HVDC system.

3.1 Damping of systems

Most systems in nature can be well-represented by a 2nd order system, generically described as

G (s) =
n(s)

s2 + 2ζωns+ ω2
n

(3.1)

wheren(s) is a polynomial of a maximum order of two. In this case, the characteristic poly-
nomial of the system isp(s) = s2 + 2ζωns + ω2

n, whereωn is thenatural frequencyandζ is
the damping factor. The natural frequencyωn determines the speed of the response while the
damping factorζ determines the degree of overshoot in a step response, as well as the maximum
amplification from input to output. If

• ζ > 1 the characteristic polynomial factorizes into two real poles;

• ζ = 1 gives two equal real poles (critical damping);
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α

ωd

ωn

θ

Fig. 3.1 Complex conjugate pole pair of a 2nd order system.

• 0 < ζ < 1 gives a pair of complex conjugate poles (damped oscillations);

• ζ = 0 gives a pair of complex conjugate poles on the imaginary axisof thes−plane (pure
oscillations without damping);

• ζ < 0 response unstable.

A pair of complex conjugate pole pair is plotted in thes−plane as in Fig. 3.1.

The poles can be written in Cartesian form asα ± jωd or in polar formωn∠θ, whereωd is the
damped natural frequency. The following relationships hold

ζ = cos θ
α = ωn cos θ = ωnζ

ωd = ωn sin θ = ωn

√

1− ζ2
(3.2)

In a strict sense, poles havingζ less than 0.707 (orθ > 45◦) are considered to have a response
which is too oscillatory and are characterized aspoorly-dampedpoles. Conversely, values ofζ
greater than 0.707 (orθ < 45◦) indicate a behavior with sufficient damping of any oscillatory
components and the corresponding poles are addressed to aswell-dampedpoles. The damping
factorζ is also regarded as thedampingof the system.

In a multi-pole system, any complex conjugate pole pairs canbe defined by (3.2), with the poles
being characterized by their individual damping factor. However, the definition of a universal
damping in a multi-pole system cannot be given since all the poles contribute to the final re-
sponse. Nevertheless, poorly-damped complex conjugate poles are not desirable in a multi-pole
system and could be responsible for poorly-damped oscillations. If their damping becomes very
small, approaching zero, the concerned pole pair could become the closest to the imaginary
axis among all the poles of the system; thus becomingdominantpoles and their poorly-damped
behavior then dominating the complete system response.
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3.2. DC-side oscillations in industrial systems

3.2 DC-side oscillations in industrial systems

The introduction of power electronic converters in power systems has offered a breakthrough in
the controllability and stability impact of systems. In turn, this has led to an increased possibil-
ity of interactions between the system components. Consequently, potential resonances might
appear that, if become poorly damped, can degrade the effective damping of the system and
increase the risk of instability. Areas where related problems may or have already appeared are
presented in this section.

3.2.1 Effect of Constant Power Loads

The concept of a Constant Power Load (CPL) in power electronic applications can be identified
in the example of a drive system that is controlled to exchanges a constant amount of power
with a system e.g. a motor or a grid. This can be viewed in Fig. 3.2(a) where an inverter is fed
from a dc source through a filtering stage.Rf andLf also include possible line impedances. The
converter is in turn providing powerPL to a load, which is in this case set constant.

Cf

Lf

υfυs

Rf icis

PL

+
-

Load

PL

(a)

Cf

Rf Lf

υfυs

is ic

(b)

Cf

Rf Lf

∆υs
+
- ∆υf Req

∆is

(c)

Fig. 3.2 CPL load and modeling. (a) Full-model description,(b) Equivalent current-source model, (c)
Linearized model.

If the losses in the converter are disregarded, the load power can be assumed equal to the dc-link
power as

PL = υfic (3.3)

and the whole drive can then be modeled as a simple controlledcurrent-sourceic = PL/υf . The
equivalent circuit can be seen in Fig. 3.2(b). The behavior of this system can then be analyzed
with the hypothesis of a small variation around the nominal operating point. Linearizing the
capacitor dynamics around the operating point of load powerPL and capacitor voltageυf,0
gives

Cf
dυf
dt

= is − ic ⇒ Cf
d∆υf
dt

= ∆is −∆ic ⇒ Cf
d∆υf
dt

= ∆is −∆

(
PL

υf

)

⇒
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Cf
d∆υf
dt

= ∆is +
PL

υ2
f,0

∆υf (3.4)

The fact that∆ic = − PL

υ2
f,0
∆υf dictates that the small signal impedance of the converter is

Zinv =
∆υf
∆ic

= −
υ2
f,0

PL

= Req < 0 (3.5)

implying that for small variations around the steady-statenominal point, the drive acts as a
negative resistanceReq, when power is provided to the load. Taking into account the linearized
line dynamics

Lf
dis
dt

= υs − υf − isRf ⇒ Lf
d∆is
dt

= ∆υs −∆υf − Rf∆is (3.6)

the linearized model of the complete system can be seen in Fig. 3.2(c), with the presence of the
negative resistanceReq. The state-space model of the system becomes

d

dt

[
∆is
∆υf

]

=

[

−Rf

Lf
− 1

Lf
1
Cf

PL

υ2
f,0Cf

][
∆is
∆υf

]

+

[
1
Lf

0

]

∆υs (3.7)

From the Routh theorem, the stability conditions of (3.7) are

υ2
f,0

PL
> Rf (3.8)

Rf

Lf

>
PL

υ2
f,0Cf

(3.9)

Usually, condition (3.8) is satisfied but the same does not always apply in (3.9). Additionally,
in many common applications, the parameters of the system are such that the two eigenvalues
of (3.7) are a pair of complex-conjugate poles with a real part of

Re[p] = − Rf

2Lf
+

PL

2υ2
f,0Cf

(3.10)

It is the evident that for fixed passive components, an increased steady-state power transfer
PL, brings the complex poles closer to the imaginary axis and decreases their damping, with a
possibility of crossing to the Right-Hand s-Plane (RHP) andbecoming unstable. Consequently,
the use of converters in a system that operate as CPL causes stability concerns and are mainly
responsible for poorly-damped oscillations.

3.2.2 Traction and industrial systems

A typical and well-documented field where dc-side resonances and poorly-damped conditions
are recorded, is electrified traction. The most common example are electrical locomotives as
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Fig. 3.3 Rail vehicle with its main electrical components

the one presented in Fig. 3.3, which shows a motorized wagon fed with alternating voltage. On-
board the wagon there is a single-phase transformer connected to a rectifier (which can be active
or non-controllable) that charges the dc-link. A motor-side inverter is providing the necessary
power to an ac-machine, which serves as the prime mover of thewagon. The single-phase al-
ternating voltage provided to the wagon is typically a 15 kV,16 2/3 Hz supply (in the Swedish,
Norwegian, German, Austrian and Swiss systems) and is created by rotary synchronous- syn-
chronous frequency converters, as well as static converters. The former are discrete motor-
generator sets, consisting of one single-phase 16 2/3 Hz synchronous generator that is driven
directly by a three-phase 50 Hz, which in turn is fed from the three-phase public distribution
medium voltage supply. Danielsen in [4], investigates the properties of such systems in the Nor-
wegian and Swedish railway. It was found that for the investigated system, a low-frequency
(1.6 Hz) poorly-damped mode can be excited when a low-frequency eigenmode of the mechan-
ical dynamics of the rotary converter is close to the low bandwidth of the direct-voltage control
loop used in the wagon’s active rectifier. This led to a poorly-damped resonance on the dc-link
voltage.

It is however often that traction drives are directly supplied with direct voltage. In this case,
the internal electrifying system of the wagons is as in Fig. 3.4. Two types of resonances can be
excited in such systems, as documented in [5]. Figure 3.4(a)shows that the RLC circuit created
by the dc-filter of the inverter and the impedance of the transmission lines between the wagon
and the remote substation, may create a resonance at a critical frequency. Another problem may
occur on the wagon itself, if it is using multiple inverters to power multiple wheels. As shown
in Fig. 3.4(b), the filters of different converters are fed from the same dc-link, causing closed
resonant circuits to appear.

A common way in which such resonances are treated in tractionis by using active-damping
control [5, 57]. Figure 3.5 shows an inverter, connected to adirect voltage sourceυs via an
RLC filter, feeding a 3-phase motor. The converter is assumedto provide constant powerPout

to the ac-motor. As shown in Section (3.2.1), this system hastwo complex-conjugate poles,
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Fig. 3.4 System of traction drives considering resonance ofinput filter. (a) Resonance between substation
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which can be poorly damped. The idea of active-damping control implies that when a resonating
imbalance is measured on capacitorCf , an alternating currentidamp of the same frequency and
with a selected phase is injected to the capacitor, reducingthe fluctuations of its charge. The
active-damping control involves the filtering ofυs through a low-pass filterF (s) = af/(s+ af),
with bandwidthaf , producing the signalυcf . The constantK transforms the dc-sideidamp into
a dq-frame quantity. According to the arrangement of Fig. 3.5, the system can be described by
the circuit in Fig. 3.6(a), where the converter is replaced by a current source. The dynamics at
the dc-capacitor are

Cdc
dυf
dt

= is − ic ⇒ Cdc
dυf
dt

= is −
(
Pout

υf
+ idamp

)

⇒ Cdc
dυf
dt

= is −
Pout

υf
− υf − υcf

Rdamp
⇒

d∆υf
dt

=
1

Cdc

∆is +
Pout

Cdcυ
2
f,0

∆υf −
1

CdcRdamp

∆υf +
1

CdcRdamp

∆υcf (3.11)

The dynamics on the filter are

Ldc
dis
dt

= υs + υf − isRdc ⇒
d∆is
dt

=
1

Ldc
∆υs +

1

Ldc
∆υf −

Rdc

Ldc
∆is (3.12)

and on the filter
dυcf
dt

= af (υf − υcf) ⇒
d∆υcf
dt

= af∆υf − af∆υcf (3.13)
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The state space representation of this system is

d
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The visualization of (3.11) and (3.12) as an electrical circuit can be seen in Fig. 3.6(b), where
Req is the negative resistance due to constant load−Pout

/
υ2
f,0. As it can be seen, the active-

damping control has added a virtual resistance of valueRdamp in the circuit, which if chosen
large enough can not only cancel the negative resistanceReq, but also provide a sufficiently
positive resistance to the system, damping currents that may be caused by a fluctuating∆υs and
without adding actual losses. In this way,∆υf can be minimized, meaning that the voltage ofυf
of the dc-link of the converter can be almost immune to fluctuations of the feeding voltageυs.
In terms of eigenvalues, the state matrix in (3.14) has a realpole in the far left of the Left-Hand
s-Plane (LHP) and two complex conjugate poles. These have almost the same frequency as the
poles of the system without active-damping, but their real part has become much more negative,
implying that their damping has increased.

This type of active damping control is used extensively to damp dc-side resonances and poorly-
damped poles not only in traction, but in any application with controlled VSC converters con-
nected to a dc-link. A relevant damping control method for suppression of resonances in DC
power networks is presented in [58], while a more elaborate non-linear control strategy to mit-
igate negative-impedance instability issues in direct-voltage fed induction machines is investi-
gated in [6]. A virtual-resistance based method is presented in [7] where the rectifier-inverter
drives equipped with small (film) dc-link capacitors may need active stabilization. The im-
pact of limited bandwidth and switching frequency in the inverter-motor current control loop
is considered as well. A different concept of introducing a virtual capacitor parallel to the ac-
tual dc-capacitor of the inverter is introduced in [59], causing a similar effect as the virtual
resistance-based active damping.

The use of active filtering is another well-known method withlarge applicability. Tanaka et. al
in [18] consider large-capacity rectifier-inverter systems, such as in rapid-transit railways, with
single or multiple inverters connected to a single rectifierthrough dc-transmission lines. The
active method proposed is shown in Fig. 3.7, where a small-rated voltage source single-phase
PWM converter is connected in series to the dc-capacitorCdc1 through a matching transformer.
This acts as a damping to the dc-capacitor currentic1. Within this context, a variation of the
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Rf Lf
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(a)
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Rf Lf

∆υs
+
- ∆υf Req Rdamp cf
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1 υ∆−
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Fig. 3.6 (a) Current-source equivalent circuit of the inverter and filter system (b) Linearized model of
the system with the active-damping control.
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Fig. 3.7 Active filtering in Rectifier-Inverter systems

depicted active filter is presented in the same publication with the PWM converter using the
power of the capacitorCdc1 to operate in a regenerative manner.

3.2.3 LCC-HVDC

The origin and nature of the dc-side resonances in LCC-HVDC installations varies greatly com-
pared to the dc-side resonances of VSC-HVDC systems or generally dc networks with VSC
converters. The ac- and dc-side of a thyristor converter arenot decoupled as in a VSC, due to
the non-linear switching action of the thyristor converterthat causes a frequency transforma-
tion of voltages and currents between the two sides. This frequency transformation is important
when analyzing dc-resonances for two reasons [10]. Firstly, excitation sources of a certain fre-
quency on the ac side drive oscillations at different frequencies on the dc side. Secondly, the
impedances involved are at different frequencies at the ac and dc side. The thyristor converter
acts as a modulator of dc-side oscillations when transforming them to the ac-side. If the car-
rier frequencyfc is the fundamental frequency of the commutating voltage andthe modulation
frequencyfm is that of the dc-side oscillation, then new side-band frequencies atfc ± fm are
generated in the ac-phase currents. Ac-side voltages that excite dc-oscillations can be attributed
to system disturbances or by harmonic sources in the ac-network. Examples are

1. initial transformer energization with an inrush of magnetization inrush current;

2. transformer saturation;

3. single-line to ground faults near the converter resulting in unbalanced phase voltages
which generate second order dc-side harmonics;

4. persistent commutation failures generate fundamental frequency dc-oscillations.

On the dc-side, the harmonic voltages superimposed on the direct voltage produce harmonic
currents that enter the dc line. The amplitude of these depends on the inductance of the nor-
mally large smoothing reactor and the impedance of dc-filters. These harmonic currents may,
for instance, induce interference in telephone lines, in close proximity to the dc lines. This has
been a major concern in LCC-HVDC installations, with strictspecifications from the network
operators on mitigating actions. As a results, an increasedpresence of dc-side filters is required,
whose only function is to reduce harmonic currents.
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3.2. DC-side oscillations in industrial systems

Traditional passive dc-side filters have been the norm for years, but their large size and cost has
led to the consideration of active filtering. An early mentioning of the concept in LCC is being
made in [11], where active filtering similar to the one in Fig.3.7 is described. Possible locations
of implementation within the dc-circuit are discussed and aproof of concept is demonstrated
with the actual installation in the Konti-Skan dc-link at the Lindome converter Station, Sweden.
More information on actual concepts and applications is presented in [12] where the interaction
between multiple active filters of a dc-link is discussed, stating that long transmission lines
weaken the coupling between the active filters so that interactions among them do not disturb
the harmonic control. Aspects in the specification and design of dc-side filtering (both passive
and active) in multiterminal LCC-HVDC, are presented in [13] suggesting that active filters are
ideal. Changes in the dc-grid topology can alter the position of dc-resonances and an adaptive
control of the active filters can keep tracking them.

3.2.4 VSC-HVDC

The problem of dc-side resonances can also appear in VSC-HVDC links. A typical two-terminal
VSC-HVDC system is depicted in Fig. 3.8 where each of the transmission poles has been re-
placed with its equivalentΠ-section, as seen earlier in Chapter 2. A first observation isthat the
dc-link is effectively a closed RLC resonant-circuit. If the converter capacitors are considered
equal,Cdc1 = Cdc2 = Cconv, the resonant frequency of the circuit will be

ωres =
1

√

Lpole

(

Cconv +
Cpole

4

) (3.15)

When power is imported from the rectifier-side and exported from the inverter-side, the trans-
mission link is naturally unstable as will be investigated later in Sections (4.3). The rectifier
station is operating in DVC-mode with a certain controller speed, stabilizing the transmission
link and bringing a power balance. The interaction between the dynamics of the DVC and the
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Fig. 3.8 DC-link resonance loop in a two-terminal VSC-HVDC connection
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dc-link, lead to a closed-loop system whose properties are not always predictable. It can be
shown in Section (3.3) that the system may have poorly-damped poles (most often those asso-
ciated with the resonant frequency of the dc-link) or even become unstable. The contribution of
the CPL small signal deterioration of the systems stabilitycharacteristics should also be taken
into account.

In [15], the authors investigate the transient stability ofa dc grid comprising of clusters of off-
shore wind-turbine converters connected through HVDC-cables to a large onshore VSC inverter.
Using the traveling wave theory on long cables, it was demonstrated that choosing equal lengths
for the cluster cables was a worst case scenario in terms of grid stability. A two-terminal VSC-
HVDC connection between two weak ac grids is presented in [14] using Power-Synchronization
control on the converters, where it was also claimed that theresistance of the dc-link plays a
destabilizing role. A poorly-damped resonance was demonstrated to exist and a notch filter was
used in the control strategy to reduce the dc resonant peak. Investigation of the dynamic stability
has also been performed in multiterminal VSC-HVDC connections as in [16], where the impact
of the droop settingkdroop in the DVC of the stations was assessed. It was found that highvalues
of kdroop could turn a point-to-point droop controlled connection unstable.

3.3 Example of dc-side oscillations in two-terminal VSC-HVDC

Instances of poorly-damped behavior and instability are demonstrated in this section, with a
two-terminal VSC-HVDC system being considered the object under testing. The objective is to
highlight the effect of the system’s properties and operating points on its stability. The model
of the system is identical to the one visualized in Fig. 2.1, with full switching VSC stations,
ac filters and transformers, as described in Fig. 2.2. The ac grids to which the VSC stations
are connected, are considered infinitely strong and are therefore represented by 400 kV voltage
sources. The characteristics of the VSC stations are provided in Table 3.1. Regarding the ac-side
filtering, the model uses a notch filter centered at the switching frequencyfs (since the PWM
voltage waveform inherits most of its high-frequency components from the carrier wave that
oscillates atfs and forces the converter to switch at roughly the same frequency), in parallel
with a capacitor. The dc-transmission link is comprised of 100 km overhead lines. Compared
to the use of cable-type lines, as explained in Section (2.2.1), overhead lines normally have
much higher inductance per km (almost an order of magnitude greater) than cables of the same
voltage and power rating. A higher inductance in the dc-transmission link tends to decrease the
damping of the system. The overhead line used in this sectionhave physical properties provided
in Table 2.1.

3.3.1 Poorly-damped conditions

Two cases are considered to highlight potentially poorly-damped phenomena

- Case 1: The active-power controlled station imposes a steady-state power transfer of
Pout = 0 MW. At t =1 s, the voltage reference to the DVC is increased from 640 kV
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3.3. Example of dc-side oscillations in two-terminal VSC-HVDC

TABLE 3.1. RATED VALUES OF THE VSC-HVDC STATIONS

PN VSC rated power 1000 MW
υdc,N rated direct voltage 640 kV
υs,N rated voltage at transformer’s ac-grid side 400 kV
υg,N rated voltage at transformer’s converter side 320 kV
SN ac side rated power 1000 MVA
Xl transformer leakage inductance 0.05 pu
Lf phase reactor inductance 50.0 mH (0.153 pu)
Rf phase reactor resistance 1.57Ω (0.1×Xf)
Cdc dc-side capacitor 20µF
ad bandwidth of the closed-loop direct-voltage control 300 rad/s (0.96 pu)
af bandwidth of the power-feedforward filter 300 rad/s (0.96 pu)
acc bandwidth of the closed-loop current control 3000 rad/s (9.6 pu)
fs switching frequency 1500 Hz

fnotch notch-filter frequency 1500 Hz
Cfilter ac-side filter capacitor 5µF

to 645 kV. Att = 1.5 s, the voltage reference is set back at 640 kV.

- Case 2: The active-power controlled station imposes a steady-state power transfer of
Pout = −900 MW. Identically toCase 1, the voltage reference to the DVC is increased
from 640 kV to 645 kV att = 1 s and then set back to 640 kV att = 1.5 s.

The length of the overhead-transmission line is 200 km. For both of the examined cases, the
voltageυdc1 at the dc-terminal of the DVC-station and the input powerPin of the same station
are plotted.

Figure 3.9 shows the results for theCase 1scenario. The response ofυdc1 to the new refe-
renceυ⋆

dc seems to be sufficiently damped with only a small overshoot. This behavior is equally
reflected on the response ofPin. Both responses show that the excited oscillations are practi-
cally fully damped 70 ms after the step request inυ⋆

dc. Regarding the same system but under
the conditions ofCase 2, the response of the same entities are presented in Fig. 3.10. The
simulation shows that the response ofυdc1 has a higher overshoot, compared to Fig. 3.9, and
features a poorly-damped oscillation. Likewise, the response ofPin is dynamically similar to
υdc1. It presents a slightly higher overshoot than its counterpart in Fig. 3.9 (considering the ab-
solute power deviation) and suffers from a poorly-damped oscillatory component of the same
frequency as inυdc1.

This example demonstrated that operating the system under different steady-state conditions
(power transfer in this case), an identical excitation may cause significantly different dynamic
response, without changing any physical or controller parameter in the process.
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Fig. 3.10 Power and voltage response of the system inCase 2. Upper figure:υdc1 (gray line) andυ⋆dc
(black line). Lower figure:Pin.

3.3.2 Unstable conditions

The length of the dc-transmission link in the previous system is increased to 300 km and a
specific pattern of active-power reference is provided to the active-power controlled station,
while the direct-current controller receives a constant referenceυ⋆

dc =640 kV. The sequence of
events is as follows

1. P ⋆
out =0 MW until t = 5 s;
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2. P ⋆
out is linearly ramped from 0 to -500 MW untilt =5.5 s;

3. P ⋆
out remains unchanged untilt =6.5 s;

4. P ⋆
out is linearly ramped from -500 to -900 MW untilt =7 s and then remains constant

until t =8.5 s;

5. P ⋆
out is linearly ramped from -900 to -500 MW untilt =9 s and then remains constant

until then end of the simulation.

The response of the system can be observed in Fig. 3.11. In thefirst 7 seconds of the simu-
lation, the system manages to follow the active-power reference without any problems, with
the DVC performing seamlessly at all instances. However after t =7 s and when the power
reaches approximately 900 MW, the system experiences an oscillation of 31.74 Hz that con-
stantly increases in magnitude as evidently observed in thePin andυdc1 responses. This oscil-
lation quickly becomes unstable but the system integrity issustained due to the existence of
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limiters in the control structures, limiting the inputi⋆d at the current controllers of both VSC
stations to 1.1 pu in the examined scenario. As such,Pin never exceeds 1100 MW in magnitude
and the theoretically unstable oscillation is now contained in a bounded region. It should be
noted that even during this event, the active power controller manages to impose the request
P ⋆
out on its ac side. Only small signs of the oscillation can be traced onPout. This is attributed to

the fact that the corrected modulation wave of the PWM process is calculated and applied only
at the switching events. For a higher switching frequency, the oscillation is much smaller until
it disappears completely for non-switching converter models.

OnceP ⋆
out is ramped to -500 MW, the system gradually goes out of instability and becomes sta-

ble and fully operational again after t=9.4 s. This demonstrates how the level of power transfer
had a fundamental impact on the dynamic stability of the system. The instability exhibited in
the example of this section will be further investigated in the following chapter.

3.4 Summary

In this chapter, a background has been established on poor damping in dynamic systems, fo-
cusing mostly on VSC-HVDC applications. Initially, it has been identified that even though it
is not possible to specify the term of damping in a high-ordersystem, it is acceptable to closely
identify it with the damping factor of its dominant poles, which mainly characterize the dy-
namic response of the system. Following this, it has been shown how constant-power loads,
supplied by VSCs, can decrease the damping factor of complexpoles of the system they are
part of, leading to the potential appearance of poorly-damped oscillations. This is a commonly
experienced phenomenon in traction, where electrical machines are operated to supply con-
stant traction power. Existing control methods can improvethe damping characteristics of such
systems by means of active damping.

Furthermore, it has been shown how oscillation phenomena can be identified in LCC-HVDC
transmission links. There, the increased harmonic contentof the dc-side voltage is inevitably
expanded to the ac side as well, as the LCC cannot decouple itstwo sides. Oscillations may
also be experienced in VSC-HVDC systems and resonances, mostly associated with the charac-
teristic frequency of the dc-transmission link, could appear under specific conditions, e.g. long
transmission-line length. This has been further investigated by simulating a two-terminal VSC-
HVDC system, where a combination of long transmission linesand high power transfer gave
rise to poorly-damped resonances and even instability.

The present chapter has laid the foundations for the understanding of the analysis that will be
performed in the next three chapters, where the poor-damping characteristics of two-terminal
VSC-HVDC transmission systems are analyzed analytically and in the frequency domain.
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Chapter 4

Stability in two-terminal VSC-HVDC
systems: analytical approach

The stability of a system is typically assessed by numerically acquiring the real and imaginary
part of its poles, and tracking the trends in pole movement during parametric changes of selected
system’s properties. This is a powerful tool to investigatethe impact of different variables (either
system or control variables) on the system performance. However, one flaw in this kind of ap-
proach is that it does not provide a proper understanding of the impact of each parameter on the
system stability. This is where the major advantage of an analytical over the classical numerical
approach lies; by using an analytical method, the eigenvalues of the system can be expressed in
symbolic form and this provides important assistance in getting a deeper understanding on how
each single parameter impacts the stability and, more in general, the pole movement.

This chapter focuses on the derivation of closed-form analytical expressions for the description
of a system’s eigenvalues in terms of their real and imaginary part. The objective is to provide a
tool in thoroughly understanding the dynamics of the system, while maintaining a desired level
of accuracy on predicting the approximate location of the poles. One method to achieve this is
the existing LR iterative algorithm, an overview of which isgiven here. Additionally, a new me-
thod for the analytical derivation of eigenvalues, addressed to as the Similarity Transformation
Matrix (SMT), is proposed and its concept and applicabilityare analyzed.

Since both of the examined methods utilize the state-space representation of a system, the state-
space model of a two-terminal VSC-HVDC system is derived. Both methods are applied on the
latter, in an attempt to derive the analytical expressions of its eigenvalues. The models are trans-
formed into a suitable form for use by each of the methods and the accuracy of the analytically
derived expressions is assessed by comparing their values to those of the numerically derived
eigenvalues, for a wide range of parameter variation.
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4.1 Analytical investigation of dynamic stability

As observed earlier, a dynamic system may become poorly damped or even unstable under
certain conditions. A deeper knowledge of how a specific parameter (or group of parameters)
appears in the eigenvalue expressions of a system, is of importance in understanding the mech-
anisms that govern the stability of the latter and can be further used as a tool for its proper
design. Considering VSC-HVDC applications, poorly-damped resonances between the con-
verter stations and the transmission system can appear bothin point-to-point and multiterminal
configurations. An analytical description of the system poles, in terms of damping and charac-
teristic frequency, can provide useful information on the way the control parameters, amount of
power transfer, direct-voltage level or values of passive elements can contribute to conditions
of poor-dynamic performance. The derivation of analyticalexpressions can therefore be used
to predict and correct the behavior of a system of future consideration or modify an existing
VSC-HVDC installation to improve its dynamic properties. However, a great obstacle is that
the analytical description of the eigenvalues of a high-order system is challenging and in many
cases impossible. Although the eigenvalues of polynomialswith a degree up to the 4th can be
found analytically, the resulting expressions are usuallyvery complex and uninterpretable if
the degree is greater than two. Modeling a VSC-HVDC connection maintaining a good level
of complexity, can lead to a system whose order can easily surpass the 10th order. However,
under valid approximations, the description of a two-terminal VSC-HVDC connection can be
reduced to a 4th-order system. Any further attempt to reduce the system’s order would imply
the sacrifice of fundamental control components or criticalpassive elements that define the dy-
namic response of the system. Other approaches, as the ones described in the previous chapter,
must be considered if a more detailed model of the system is needed.

4.1.1 Cubic and Quartic equation

If it is possible to represent a system by a third order characteristic polynomial, there is an
analytical way to derive the symbolic eigenvalues. The general form of the cubic equation is

ax3 + bx2 + cx+ d = 0 (4.1)

with a 6= 0. The coefficientsa, b, c andd can belong to any field but most practical cases
consider them to be real (as will be the case below). Every cubic equation with real coefficients
will have at least one real solutionx1, with x2 andx3 being either both real or a complex-
conjugate pair.

The general formula for the analytical derivation of the equation’s roots is, as in [60],

xk = − 1

3a

(

b+ ukC +
∆0

ukC

)

, k ∈ {1, 2, 3} (4.2)
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where
u1 = 1, u2 =
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√
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2
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√
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√
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, ∆1 = b2 − 3ac, ∆2 = 2b3 − 9abc+ 27a2d

Even though (4.2) does not appear complicated, the existence of the root 3
√ within it is very

problematic if there is a complex-conjugate pair of solutions, whose real and imaginary parts
are desired to be treated separately. It is possible to derive such expressions for complex roots
of the equation, as in [61], but they always include complex cosines and arc-cosines. This is
not practical when it comes to presenting a direct relation between a coefficient of the cubic
equation and the final roots. Nevertheless, complex systemscan rarely be approximated by a
third-order characteristic polynomial, rendering the value of (4.2) even more questionable.

As with the cubic equation in the previous section, the general form of the quartic equation is

ax4 + bx3 + cx2 + dx+ e = 0 (4.3)

Every quartic equation with real coefficients will have: a) four real roots, b) two real roots and
a complex-conjugate root pair or, c) two complex-conjugateroot pairs. The general formula for
the analytical derivation of the equation’s roots is, as in [62],
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where
p = 8ac−3b2

8a2
, q = b3−4abc+8a2d
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∆0 = c2 − 3bd+ 12ae, ∆1 = 2c3 − 9bcd+ 27b2e+ 27ad2 − 72ace

The full expansion of (4.4) is too large to be presented, implying that the practical value of
such expressions is doubtful. Just as in the roots of the cubic equation, the existence of the root
3
√ within the quadratic solutions is very problematic if thereis a complex-conjugate pair of
solutions, whose real and imaginary parts are desired to be explicit in form. Another problem
is related to the consistency of the solutions in (4.4). Unfortunately, each of thex1, x2, x3 and
x4 expressions cannot consistently describe a selected root of the system while performing a
variation of the system’s coefficients. This means that evenif the expressions in (4.4) present a
simple form, they are not useful in describing specific poles.

4.1.2 Alternative solutions

Even if it is theoretically possible to derive the analytical poles of a 3rd and 4th order system, it
was shown that there are practical obstacles that prevent itfrom taking place if the exact solu-
tions are to be described. A solution to this problem is to develop approximating methods that
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can provide such analytical descriptions for equivalent models having poles that are sufficiently
close to those of the initial systems.

In [63–65], the approximate solutions of the generalized eigenvalue problem det(sB−A)=0 are
sought, where the matrix pencil (A, B) is computed by the semistate equations of an electronic
circuit. The solutions are found by an extensive elimination of those entries inA andB that are
insignificant to the computation of a selected eigenvalue, until the characteristic polynomial of
the system becomes 1st or 2nd order. This method has been developed into the commercial tool
”Analog Insydes” as a Mathematicar application package for modeling, analysis and design of
analogue electronic circuits. However, this process may not always be successful and could lead
to a significant loss of information. Following a different approach, the poles of an analogue
circuit are calculated through the time constant matrix of the system in [66]. However, only
the first two dominant poles are computed and any other pole requires major simplification
of the system. In [21–23, 67], the LR iterative method is usedto calculate the symbolic poles
and zeros of analogue electronic circuits, based on their state matrix. This involves intricate
computations which may quickly exceed the computational capabilities of a typical computer
[22]. Subsequently, the state matrix should not exceed6 × 6 in size while there should be no
more than four symbolic variables. Nevertheless, numeroussimplifications are still required to
produce compact final expressions. Despite these problems,the LR method appears to be the
most adequate candidate among the mentioned methods, in attempting to analytically describe
a relatively high-order system.

4.2 Approximating methods

In this section, two major approximating methods are presented, in an effort to establish a
foundation for the analytical investigation of the eigenvalues of a VSC-HVDC system. The LR
method is described in detail with special mention to its potential in symbolic approximation of
eigenvalues, along with its advantages and disadvantages.The other method is a newly proposed
algorithm which tries to achieve the same goal of analytically describing the eigenvalues of a
dynamic system, but in a non-iterative way.

4.2.1 Similarity Matrix Transformation

TheSimilarity Matrix Transformation(SMT) is a proposed method that is first introduced in this
thesis and aims to analytically derive the analytical eigenvalues of a dynamic system, which is
described in a state-space form. The entity that contains all the necessary information for the
eigenvalue characterization of the system is the state matrix A. In general, a direct extraction
of analytical expressions of the eigenvalues is not possible, as stated earlier, for systems higher
than second order. However, under certain conditions whichrequire matrixA to appear in a
special form, it is possible to extract the symbolic form of the eigenvalues. The concept of the
SMT relies on a proper manipulation of matrixA, while the latter remains in purely symbolic
form, in order to produce an equivalent matrix with the same eigenvalues but whose form allows
the extraction of analytical expressions of the eigenvalues.
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Eigenvalues of triangular and quasi-triangular matrices

The eigenvalues of a generic non-singular square matrixA are calculated by setting its char-
acteristic polynomialp(s) = |sI − A| equal to zero and solving in terms ofs. The solutions
correspond to the eigenvalues ofA. However as mentioned earlier, if the characteristic poly-
nomial contains symbolic expressions and its non-zero eigenvalues are more than two, it is
very challenging to derive interpretable symbolic solutions while for more than four non-zero
eigenvalues, it is mathematically impossible.

The determinant of a matrix that is triangular in form (either upper or lower triangular) equals
the product of the diagonal entries of the matrix. If matrixA is triangular, then the matrixsI -A,
whose determinant is the characteristic polynomial ofA, is also triangular. Consequently, the
diagonal entries ofA provide the eigenvalues ofA. If an eigenvalue has multiplicitym, it will
appearm times as a diagonal entry. Considering the previous property, if matrix A has strictly
real entries and is in the following triangular form (lower triangular in this case)

A =














a1,1
a2,2 0

. . .
ak,k

. . .
ai,j an−1,n−1

an,n














(4.5)

its eigenvalues will be the set of{a1,1, a2,2, . . ., ak,k, . . ., an−1,n−1, an,n} and will all be real.
If matrix A has strictly real entries, has a quasi-triangular form and is known to have pairs of
complex-conjugate eigenvalues, then for each eigenvalue pair, a2× 2 sub-matrix will be found
along the diagonal of A. However the opposite does not apply and the existence of such a2× 2
sub-matrix does not necessarily imply the existence of a complex-conjugate eigenvalue pair. The
existence of a non-zero2× 2 sub-matrix along the diagonal of a triangular matrix corresponds
to the existence of two eigenvalues which can be either a complex-conjugate eigenvalue pair or
two real eigenvalues.

Assume that matrix A has the following form

A =
















a1,1
a2,2 0

. . .
ak,k ak,k+1

ak+1,k ak+1,k+1

. . .
ai,j an−1,n−1

an,n
















(4.6)

The eigenvalues of this matrix will be the set of real eigenvalues represented by all the diagonal
entries ofA (excluding those found within the2 × 2 sub-matrix) as well as the eigenvalues of
the2× 2 sub-matrix itself. The latter two eigenvalues will be

43



Chapter 4. Stability in two-terminal VSC-HVDC systems: analytical approach

λ1,2 =
ak,k + ak+1,k+1

2
±

√

a2k,k + 4ak,k+1ak+1,k − 2ak,kak+1,k+1 + a2k+1,k+1

2
(4.7)

If the expression under the square root is negative, i.e.

a2k,k + 4ak,k+1ak+1,k − 2ak,kak+1,k+1 + a2k+1,k+1 < 0 (4.8)

the two solutions in (4.7) represent a pair of complex-conjugate eigenvalues

λ1,2 =
ak,k + ak+1,k+1

2
± j

√∣
∣a2k,k + 4ak,k+1ak+1,k − 2ak,kak+1,k+1 + a2k+1,k+1

∣
∣

2
(4.9)

otherwise (4.7) represents two real poles. If quasi-diagonal matrixA is known to havem pairs
of complex-conjugate eigenvalues, there will bem 2× 2 sub-matrices sufficing (4.8), along the
diagonal ofA.

Suggested method

In linear algebra, twon× n matricesN andÑ are called similar ifÑ=P-1NP for ann× n non-
singular matrixP. The transformation ofN→P-1NP is calledsimilarity transformationof matrix
N, where matrixP is thesimilarity transformation matrix[68]. An important property of the
similarity transformation is the fact thatÑ maintains the same eigenvalues asN. Since matrix
Ñ has the same eigenvalues asN, it is theoretically possible to appropriately choose aP matrix
that will causeÑ to be triangular or quasi-triangular. If this is achieved, then the eigenvalues of
Ñ, and therefore ofN, can be extracted from the diagonal entries ofÑ. However, formulating an
appropriate matrixP can be difficult and often impossible, especially if all matrices are given
in symbolic form.

In this thesis it is desired to mainly investigate the dynamics of a two-terminal VSC-HVDC
system. As will be shown later in Section (4.3.1), such a system can be sufficiently simplified
to a 4th order state-space representation. Given the task of extracting symbolic eigenvalues, a
similarity transformation is supposed to be applied to the system’s state matrix. As such, matrix
N is equated to the latter and will be4 × 4 in size. The system is dynamically described by
four eigenvalues. Without replacing numerical values to the symbolic entries of the matrix, it is
not possible to have an initial idea on the nature of these eigenvalues. There are three possible
cases:

1. All eigenvalues are real

2. There are two complex-conjugate eigenvalue pairs

3. There is one complex-conjugate eigenvalue pair and two real eigenvalues
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Even if the nature of the eigenvalues was known for a certain choice of numerical values for
the variables of matrixN, a slightly different choice of values might totally changethe nature
of the eigenvalues. This is of great concern if it is desired to obtain analytical solutions for the
eigenvalues and observe the results while sweeping the values of certain variables within a wide
interval. In this case, the obtained solutions may prove inconsistent.

To overcome this problem, it is assumed that the nature of theeigenvalues is unknown. However,
as mentioned earlier, a2 × 2 sub-matrix along the diagonal of a quasi-triangular matrixhints
the existence of two eigenvalues which can be either a complex-conjugate eigenvalue pair or
two real eigenvalues. Therefore, all three of the previous cases can be covered ifÑ is quasi-
triangular with two blocks of2 × 2 sub-matrices along its diagonal while one of the remaining
2 × 2 blocks is filled with zeros, depending on whetherÑ is upper or lower triangular. For the
lower triangular case,̃N has the following form

Ñ =







a1,1 a2,1 0 0
a2,1 a2,2 0 0
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4







(4.10)

where each of the2×2 enclosed sub-matrices is related to two eigenvalues. The block diagonal
matrix Ñ will have at least one zero non-diagonal block matrix, whichimplies that at least four
elements of̃N should be equal to zero; this leads to four equations to be solved.

A 4 × 4 similarity transformation matrixP is used to perform the similarity transformation of
N. Its general form is

P =







x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44







(4.11)

Performing the similarity transformation ofN based onP gives

Ñ = P−1NP =







x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44







−1

·N ·







x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44






⇒

Ñ =







y11 y12 y13 y14
y21 y22 y23 y24
y31 y32 y33 y34
y41 y42 y43 y44






=

[
Y11 Y12

Y21 Y22

]

(4.12)

The form of matrixÑ must comply with (4.10), therefore it is required that

Y12 = 0 ⇒
[
y13 y14
y23 y24

]

= 0 ⇒







y13 = 0
y14 = 0
y23 = 0
y24 = 0







(4.13)

45



Chapter 4. Stability in two-terminal VSC-HVDC systems: analytical approach

Equation (4.13) dictates that the definition of an appropriate transformation matrixP requires
the solution of four equations. However, each ofy13, y14, y23 andy24 is a non-linear function
of all elements ofP which renders the solution of (4.13) very cumbersome. Additionally, if
all sixteen elements ofP are expected to be defined symbolically, a solution is theoretically
not possible to be reached since there are four equations to be solved with sixteen unknown
variables to be defined. If a solution is expected to be found,only four entries ofPare considered
to be symbolic variables while the rest must be replaced withnumerical values. The more zero
entries matrixP has, the easier the task of solving (4.13) becomes.

Even limiting the symbolic entries ofP to only four, does guarantee the solution of (4.13) by
default. A random choice of the four necessary elements ofP will most likely lead to a large
expression ofP-1 which, in turn, shall lead to very complex expressions ofy13, y14, y23 andy24.
Consequently, it is important to ensure such a choice of elements inP thatP-1 will have a simple
form.

By definition, the inverse of matrixP is

P−1 =
1

det (P)
adj (P) (4.14)

A first step of simplification is to choose such aP that det(P) is as simple as possible. The best
choice is to consider a triangularP with all the elements across its diagonal being equal to 1. In
this case, det(P)=1. This leads to the expression

P =







1 x12 x13 x14

0 1 x23 x24

0 0 1 x34

0 0 0 1







(4.15)

As stated earlier, only four of the variable entries in (4.15) can be kept in symbolic form. Choos-
ing to equate termsx12 andx34 to 0, the final form ofP and correspondingP-1 are

P =







1 0 x13 x14

0 1 x23 x24

0 0 1 0
0 0 0 1






=

[
I X

0 I

]

(4.16)

P−1 =







1 0 −x13 −x14

0 1 −x23 −x24

0 0 1 0
0 0 0 1






=

[
I −X

0 I

]

(4.17)

This choice has givenP andP-1 a convenient form, where the remaining four unknown entries
are clustered in a2 × 2 block sub-matrix. This will ease further steps of the analysis. The
similarity transformation ofN can now be performed, utilizing (4.15) and (4.16)
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Ñ = P−1NP =

[
I −X

0 I

]

·
[
N11 N12

N21 N22

]

·
[

I X

0 I

]

⇒

Ñ =

[
N11 −XN21 N11X−XN21X+N12 −XN22

N21 N21X+N22

]

=

[
Y11 Y12

Y21 Y22

]

(4.18)

The condition expressed by (4.13) needs to be fulfilled, thusthe 2 × 2 sub-matrixY12 must
suffice the following

N11X−XN21X+N12 −XN22 =

[
y13 y14
y23 y24

]

= 0 (4.19)

If (4.19) can be solved, resulting in an analytical definition of the entriesx13, x14, x23 andx24,
the eigenvalues of the system can be determined by the following 2×2 block matrices of (4.18)

Y11 = N11 −XN21 (4.20)

Y22 = N21X+N22 (4.21)

Each ofY11 andY22 will provide two eigenvalues in the general form of (4.7). Provided that
x13, x14, x23 andx24 have been defined analytically and matrixN is maintained in symbolic
form, the previous eigenvalues will be completely analytical expressions.

It is important to notice that the closed form solution of (4.19) cannot be guaranteed and even
if it is possible to be defined, the derived expressions can beso large that offer no practical
advantage in trying to describe the system’s eigenvalues symbolically. It is possible however to
apply simplifications which allow the approximate solutionof (4.19). In this case, variablesx13,
x14, x23 andx24 are still derived in analytical form but are not completely accurate, compared
to the solution provided by a numerical solution of (4.19) when all variables are replaced with
numerical values. The amount of deviation between the corresponding approximate symbolic
matrixP and its accurate numerical counterpart defines the accuracyof the analytical model.

4.2.2 The LR algorithm

The LR algorithm belongs to an extended family of related algorithms, called ”Algorithms of
decomposition type” [69], that calculate eigenvalues and eigenvectors of matrices. The two best
known members of this family are the LR andQRalgorithms [70]. Other related, but less used,
algorithms in the same family are theSRalgorithm [71] and theHRalgorithm [72]. The authors
in [69] develop a general convergence theory for the previous algorithms of decomposition
type, while an effort to answer to the question of how such algorithms can be implemented in
practical problems is performed in [73].

The common principle in the attempt of all these algorithms to calculate the eigenvalues of a
matrixA, is the use of an iterative action which bears the following generic characteristics

1. In iterationm, a matrixAm whose eigenvalues are expected to be calculated, is provided
as an input to the algorithm.

47



Chapter 4. Stability in two-terminal VSC-HVDC systems: analytical approach

2. MatrixAm is decomposed into a number of matrices of special form.

3. These matrices are used to construct a matrixAm+1 which issimilar to Am, thus having
the same eigenvalues.

4. The matrices produced by the decomposition ofAm, are appropriately created such that
Am+1 approaches in form a triangular or quasi-triangular matrixas in (4.6) i.e. the numer-
ical value of the elements of its upper or lower triangular approach zero.

5. MatrixAm+1 serves as the input of iterationm+ 1.

6. The iterations are terminated when the form of the final matrix outputAm is sufficiently
close to a triangular or quasi-triangular form. The approximate eigenvalues can then be
extracted from the diagonal elements ofAm.

7. MatrixA is the input to the first iteration of the algorithm.

LR algorithm

The LR algorithm is a major representative of the ”Algorithms of decomposition type” and
was first introduced by Rutishauser [74] [75]. The main idea behind it is the application of a
form of theLU decompositionof a matrix during each iteration of the algorithm. In numerical
analysis, LU decomposition (where ”LU” stands for ”Lower Upper”) factorizes a matrix as the
product of a lower triangular matrix and an upper triangularmatrix. The LU decomposition can
be regarded as the matrix form of Gaussian elimination.

The algorithm follows the typical iterative steps described earlier. Let ann×n non-singular ma-
trix A be the subject of investigation. This matrix will serve as the initial input to the algorithm.
In the mth repetition of the algorithm, matrixAm (calculated in the previous iteration and is the
input of the current iteration) is factorized to a lower triangular matrix and an upper triangular
matrix as below

Am =















a1,1 · · · a1,n
a2,2

. . .
... ak,k

...
. . .

an−1,n−1

an,1 · · · an,n















= Lm ·Um (4.22)
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Lm =














1
1 0

. . .
1

. . .
li,j 1

1














,Um =














u1,1

u2,2 ui,j

. . .
uk,k

. . .
0 un−1,n−1

un,n














(4.23)

Notice thatLm in (4.23) is not just a lower triangular matrix but has a unitary diagonal. The
formulation of theLm andUm matrix in each iteration is performed via the following algorithm

Initialization

{
Lm = Identity matrix of size n

Um = Am

}

for (i = 1, i ≤ n− 1, i = i + 1)
for (j = i + 1, j ≤ n, j = j + 1)
{
(Row j of Um) = (Row j of Um)−

uj,i

ui,i
· (Row i of Um)

lj,i =
uj,i

ui,i

}
end

end

(4.24)

As described above, during the formulation ofLm andUm, a division by the elementsui,i is
performed. This could cause problems if anyui,i is equal to zero (something not uncommon in
sparse matrices). In order to avoid this issue, a partial pivoting of matrixAm must be performed
in principle, ensuring that the elements in the diagonal of the initialUm are non-zero. However,
a zero element in the diagonal does not automatically imply asingularity. As shown in (4.24),
a row ofUm will appropriately update its successive row, altering itsvalues and possibly turn
a zero diagonal entry into a non-zero entity; thus eliminating the problem. In practice, pivoting
matrixA so thata1,1 6= 0 is sufficient to avoid subsequent singularities.

Following the previous decomposition, a new matrixAm+1 is constructed such that

Am+1 = Um · Lm =















b1,1 · · · b1,n
b2,2

. . .
... bk,k

...
. . .

bn−1,n−1

bn,1 · · · bn,n















(4.25)
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This new matrix bears the feature of

Am+1 = UmLm = L−1
m LmUmLm = L−1

m AmLm

which is a similarity transformation, proving that all theAm matrices aresimilar and have the
same eigenvalues. Therefore, in the end of every iteration,all resulting matricesAm+1 retain
the same eigenvalues as the original matrixA. The result of performing the action described
in (4.25) is that whenAm+1 is compared toAm, the elements in the lower triangular portion of
Am+1 have smaller values than the same elements inAm. The rest of the entries ofAm+1 have
also been altered during the transformation in (4.25) but this has had no effect on the eigenvalues
which are the same as those ofAm.

If the starting matrixA has strictly real eigenvalues then after a certain number ofiterations
(e.g.v iterations), the resulting matrixAv+1 has acquired the following general form.

Av+1 =
















d1,1
d2,2 di,j

. . .
dk,k

small

values
dn−1,n−1

dn,n
















(4.26)

If the elements below the diagonal are sufficiently close to zero, it is possible to extract the
approximate eigenvalues of the matrix from the diagonal elements ofAv+1 as the set of{d1,1,
d2,2, . . ., dk,k, . . ., dn−1,n−1, dn,n} and will all be real. If matrixA is known to have pairs of
complex-conjugate eigenvalues, then for each eigenvalue pair, a2× 2 sub-matrix will be found
along the diagonal ofAv+1 as below

Av+1 =


















d1,1
d2,2 di,j

. . .
dk,k dk,k+1

dk+1,k dk+1,k+1

small

values

.. .

dn−1,n−1

dn,n


















(4.27)

where the elementdk+1,k has not necessarily been forced to approach zero. In this case, the ap-

proximate eigenvalues will be the set{d1,1, d2,2, . . ., eig
([

dk,k dk,k+1

dk+1,k dk+1,k+1

])

, . . ., dn−1,n−1,

dn,n}. As mentioned in Section (4.2.1), the existence of such a2 × 2 sub-matrix in a resulting
Av+1 matrix does not necessarily imply the existence of a complex-conjugate eigenvalue pair.
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The existence of a non-zero2 × 2 sub-matrix along the diagonal of a quasi-triangular matrix
corresponds to the existence of two eigenvalues which can beeither a complex-conjugate eigen-
value pair or two real eigenvalues. Regardless of their nature, the eigenvalues of this2×2 block
of Av+1 will be described by the general expression

λ1,2 =
dk,k + dk+1,k+1

2
±

√

d2k,k + 4dk,k+1dk+1,k − 2dk,kdk+1,k+1 + d2k+1,k+1

2
(4.28)

If the expression under the square root is positive or zero, (4.28) will represent two real eigen-
values. Otherwise, if the same expression is negative, the two solutions in (4.28) represent a pair
of complex-conjugate eigenvalues. If matrixA is known to havey pairs of complex-conjugate
eigenvalues, there will bey 2 × 2 sub-matrices along the diagonal ofAv+1, with all remaining
elements below its diagonal and outside the boundaries of these2× 2 sub-matrices, being close
to zero in value.

The QR algorithm, closely related to the LR algorithm, is currently the most popular method
for calculating the eigenvalues of a matrix [76]. Even though theQR algorithm converges in
much fewer iterations than the LR algorithm, the matrices involved in the iterative process can
be very intricate in form, starting with the very first iteration. As a result, theQR algorithm
is not deemed the best approach for symbolic calculations but is still the best solution for the
numerical calculation of the eigenvalues of a matrix. Furthermore, the main advantage of the LR
algorithm is that it only uses the actions and symbols ”+”, ”-”, ” ∗” and ”/” (as well as ”√ ” for
complex eigenvalues) compared to theQRalgorithm, which due to orthogonal transformations
during the iterations, uses more complicated expressions.

Convergence and computational issues of the LR algorithm

As an iterative process, there should be a criterion according to which the iterations can be
interrupted. This criterion is the proximity in value, between the final approximated eigenvalues
and their exact counterparts, based on a predetermined threshold errorǫ. The convergence and
stability of the LR algorithm is investigated in [77–79] as well as in other sources in the literature
and depends on several factors with the most important beingthe following

1. The sparseness of matrixA. An abundance of zero elements in the matrix at the beginning
of the iterations greatly reduces the amount of iterations to achieve sufficiently approxi-
mated eigenvalues

2. The proximity of the eigenvalues. Clustered eigenvaluesresult in a slower convergence.

3. The arrangement of the elements inA. The authors in [21, 22, 67] suggest that a pre-
liminary ordering ofA satisfying|a1,1|≥|a2,2|≥. . .≥|an,n| can reduce the computational
complexity. This ordering can be achieved by changing simultaneously a pair of rows be-
tween them and the same pair of columns between them. Such an action does not alter the
eigenvalues of the matrix. This practice is however contested in [23] where the authors
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claim that a re-ordering of the diagonal elements ofA in decreasing order can lead to
supplementary iterations.

4. The threshold errorǫ. The choice of a very small errorǫ can lead to an increased number
of iterations.

5. The ordern of the system does not seem to affect the convergence speed ofthe algorithm
but significantly increasing the complexity of the entries of matricesAm+1.

The implementation of the LR algorithm with a numerical input matrix A should not normally
cause computational time issues, even for large matrices. However, when symbols are intro-
duced in the entries ofA, and especially whenA is fully symbolic, the computational capa-
bilities of a modern computer can be quickly overwhelmed. Even for small symbolic matrices
(e.g.6 × 6), achieving convergence may be impossible. It is thereforenecessary to implement
techniques that can reduce the computational effort, if possible, and lead the algorithm into a
quicker convergence.

An important information is the fact that different eigenvalues converge at different speeds. It
can be common that an eigenvalue converges after only a limited number of iterations while an-
other needs considerably more (even orders of magnitude) further iterations to achieve that. This
can cause problems because every additional iteration of the algorithm significantly increases
the size of the entries ofAm+1. If the algorithm manages to converge, the final expressionsof
the eigenvalues could be prohibitively large to be of any practical use. In this case, a technique
is used such that, every time a diagonal elementbk,k of Am+1 converges to a real eigenvalue of
A, a new matrixĀm + 1 will be used instead, in the subsequent iteration.Ām + 1 is equal to the
version ofAm+1 with thekth row andkth column removed as in (4.29), reducing the size of the
matrix to(n− 1)× (n− 1).

Am+1 =
















b1,1 · · · b1,k · · · b1,n
... b2,2

...
...

. . . bk−1,k . . .

bk,1 · · · bk,k−1 bk,k bk,k+1 · · · bk,n

. . . bk+1,k
. . .

...
... bn−1,n−1

...
bn,1 · · · bn,k · · · bn,n
















(4.29)

Similarly, if a 2× 2 block matrix

[
bk,k bk,k+1

bk+1,k bk+1,k+1

]

on the diagonal ofAm+1 has eigenvalues

which converge to a complex-conjugate eigenvalue pair ofA, thenAm+1 will be replaced by
Ām + 1. The latter is equal toAm+1 whosek andk + 1 rows and columns have been removed as
in (4.30), reducing the size of the matrix to(n− 2)× (n− 2).
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Am+1 =


















b1,1 · · · b1,k b1,k+1 · · · b1,n
...

...
...

...
. . . bk−1,k bk−1,k+1 . ..

bk,1 · · · bk,k−1 bk,k bk,k+1 bk,k+2 · · · bk,n
bk+1,1 · · · bk+1,k−1 bk+1,k bk+1,k+1 bk+1,k+2 · · · bk+1,n

. . . bk+2,k bk+2,k+1
. . .

...
...

...
...

bn,1 · · · bn,k bn,k+1 · · · bn,n


















(4.30)

Nevertheless, the expressionsbk,k (for the real eigenvalue case) oreig

([
bk,k bk,k+1

bk+1,k bk+1,k+1

])

(for the complex-conjugate eigenvalue pair case), are now reserved as the approximations of
their respective eigenvalues while the algorithm continues iterating using thēAm + 1 matrix.

Another technique to reduce the computational cost and the size of the final expressions of the
approximated eigenvalues is the elimination of terms within the matrices during every iteration.
There is a possibility that certain terms in some entries (oreven complete entries) of matricesA,
Am, Lm andUm may have insignificant effect on the final convergence of the eigenvalues and
can thus be replaced by zero. This has to be checked at every iteration by replacing all symbols
with their numerical values, apart from the selected term which is set to 0, and executing an
intermediate numerical LR algorithm [21]. If the algorithmconverges, then the selected term
can be eliminated and the symbolic execution of the LR can resume. It is possible that only
certain eigenvalues ofA are desired to be approximated. In this case the previous method can
be applied with regard to only those selected eigenvalues.

A final technique is derived from experimental results. It ispossible that in the case of complex-
conjugate eigenvalues, either the real or the imaginary part of the approximated eigenvalue
expressions seem to converge at a different speed. The final expression of these eigenvalues can
then be formed by the combination of the real and imaginary part expressions at the iteration
where each of them converged. This does not affect the overall speed of the algorithm but can
reduce the size of the final approximated eigenvalues.

4.3 Application of approximating methods on a two-terminal
VSC-HVDC system

In a two-terminal VSC-HVDC link, at least one of the converter stations controls the direct
voltage, while the other station has the duty to control the active power. Consequently, the active
power is automatically balanced between the two converter stations. This balancing is achieved
by the action of the local control system of the DVC-converter, trying to stabilize the naturally
unstable dc-transmission link. The properties of the latter affect the design of the control. As
described in [14], the RHP pole of a process, described by thetransfer functionGd(s), imposes
a fundamental lower limit on the speed of response of the controller. The closed-loop system of
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the direct-voltage control has to achieve a bandwidth that is higher than the location of the RHP
pole ofGd(s) to stabilize the process. It is thus useful to know in depth the dynamics of the dc-
transmission link and then proceed into describing the dynamics of the complete VSC-HVDC
link.

4.3.1 Investigated system

The system under consideration is a two-terminal symmetrical monopole VSC-HVDC link, as
in Fig. 4.1(a). The connection is comprised of two VSC stations, as well as ac- and dc-side
components. Assuming a strong ac grid, the arrangement consisting of the ac grid, the trans-
former and the ac-harmonic filters is represented by a voltage source. Furthermore, the phase
reactor is assumed to be lossless and is represented by a single inductor. The dc terminals of
each station are connected to a dc capacitor with a capacitanceCconv. Each dc cable is mod-
eled as aΠ-model, in the way described in Section (2.2.1). Given the physical characteristics
of the symmetrical monopole configuration and considering balanced conditions, the model in
Fig. 4.1(a) can be equated to the asymmetrical monopole model in Fig. 4.1(b). This model re-
tains the same power and voltage ratings as the one in Fig. 4.1(a) and has the same dynamics.
It is however simplified in form, assisting the later description of the model through equations.
The transmission link values are defined as

Station 1 Station 2

Direct-voltage 
controlled converter

Active-power 
controlled converter

Cpole/2

Rpole Lpole

Cpole/2

Cpole/2

Rpole Lpole

Cpole/2

Cconv

Cable pole

Cable pole

Power flow direction

Cconv

(a) Two-terminal VSC-HVDC system with detailed dc-transmission link.

Cdc

Rdc Ldc

Cdc

Cable poles
Cconv

Station 2Station 1

Direct-voltage 
controlled converter

Cconv

Active-power 
controlled converter

Power flow direction

dc-transmission system

(b) Final form of VSC-HVDC model with minimized form of dc-transmission link.

Fig. 4.1 Model of the two-terminal VSC-HVDC system investigated in this chapter.
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Rdc = 2 ·Rpole, Ldc = 2 · Lpole, Cdc = Cpole/4 (4.31)

This model will be used further on in this chapter. Regardingthe dynamic description of the
system, the closed-loop response of the current control is typically much faster (at least an
order of magnitude) than the closed-loop response of the outer (direct-voltage and active-power)
controllers [52]. Therefore, a valid simplification is to consider an infinitely fast current control,
causing the ac side dynamics to be effectively ignored.

Direct-Voltage Control

The portion of the complete model that describes the dynamics of the DVC is presented in
Fig. 4.2. A difference in the treatment of the DVC compared tothe design approach of Chapter
2 is the fact that the dynamics of the converter capacitorCconv cannot be considered separately
from the capacitorCdc of the equivalent dc-linkΠ-model. The dynamics of the two capacitors
are restricted by their common voltageυdc1. The combined energy stored in these dc-capacitors
is (Cconv+Cdc)υ

2
dc1/2, with the valueW = υ2

dc1 being proportional to this energy. The dynamics
of the combined capacitors become

1

2
(Cconv + Cdc)

dW

dt
= Pin − Pline

L {·}−−−→ W =
2

s(Cconv + Cdc)
(Pin − Pline) (4.32)

with Pin andPline the active power drawn from the ac side and the propagated dc power beyond
the capacitorCdc of the dc-linkΠ-model, respectively.

The DVC used here is the same as described in Section (2.3.3),featuring a power-feedforward
term. Assuming no losses on the phase reactor, the converterand the dc-side capacitors, the
controller integral gainKi can be equalized to zero. Thus, as earlier described, the expression
of the DVC can then be written as

P ⋆
in = F (s) (W ⋆ −W ) + Pf = Kp (W

⋆ −W ) + Pf ⇒

P ⋆
in = Kp (W

⋆ −W ) +H (s)Pm (4.33)

The transmitted dc-side power is measured after the converter capacitorCconv, as also shown
in [53]. This corresponds to powerPm in Fig. 4.2(a). PowerPline is not a measurable quantity be-
cause it exists only in the equivalent dc-linkΠ-model. Therefore,Pf is equal to the filtered value

Station 1

Pin
Pin Pm

Cconv υdc1

Pline

Cdc

(a)

*W +
+

++
-

-

Pm

Kp W( )dcconv

2

CCs +

)(sH

Pline

in
*
in PP =

(b)

Fig. 4.2 (a) VSC rectifier (b) Closed-loop rectifier control process.
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of Pm, by means of a first-order low-pass filter with a transfer function H (s) = af/(s + af),
whereaf is the bandwidth of the filter.

Assuming perfect knowledge of the grid-voltage angle and aninfinitely fast current-control
loop, the requested active powerP ⋆

in can be immediately applied, thusPin=P ⋆
in. Substituting

(4.32) to (4.33) gives

W =
2Kp

2Kp + s (Cconv + Cdc)
W ⋆+

2H (s)

2Kp + s (Cconv + Cdc)
Pm−

2

2Kp + s (Cconv + Cdc)
Pline ⇒

W = Gcp ·W ⋆ + Ycp1 · Pm − Ycp2 · Pline (4.34)

whereGcp is the closed-loop transfer function of the voltage controller for Pdc=0. If the com-
bined value of(Cconv+Cdc) is known, then as suggested in [52], the proportional gain isselected
asKp = ad(Cconv + Cdc)/2. Considering the previous,Gcp is now equal toad/(s+ ad) which
is a first-order low pass filter with bandwidthad. However,Cdc is not easily measured, or even
the equivalentΠ-model is not exactly valid in reality. As a result, the only available value is
Cconv which can be measured on the real dc-side capacitors of the VSC station. Therefore, the
proportional gain is selected asKp = adCconv/2.

Based on the arrangement of Fig. 4.2, powersPin, Pm andPline are connected in the following
way

Pm =
Cdc

Ctot
Pin +

Cconv

Ctot
Pline (4.35)

whereCtot is equal to the added capacitancesCconv + Cdc.

Using (4.33) and (4.35), and considering thatW ⋆ is equal to(υ⋆
dc)

2 (whereυ⋆
dc is the corre-

sponding voltage reference forυdc1), the dynamics of the power-feedforward term become

Pf = H (s)Pm = af
s+af

Pm ⇒ sPf = −afPf + afPm
L −1{·}−−−−→

dPf

dt
= −afPf + afPm ⇒ d

dt
Pf = −afPf + af

Cdc

Ctot
Pin + af

Cconv

Ctot
Pline ⇒

dPf

dt
= −afPf + af

Cdc

Ctot
[Kp (W

⋆ −W ) + Pf ] + af
Cconv

Ctot
υdc1idc ⇒

dPf

dt
= −afPf + af

Cdc

Ctot

[
Kp

[
(υ⋆

dc)
2 − υ2

dc1

]
+ Pf

]
+ af

Cconv

Ctot
υdc1idc ⇒

dPf

dt
= −af

(

1− Cdc

Ctot

)

Pf + af
Cdc

Ctot
Kp (υ

⋆
dc)

2 − af
Cdc

Ctot
Kpυ

2
dc1 + af

Cconv

Ctot
υdc1idc ⇒

d∆Pf

dt
= −af

Cconv

Ctot
∆Pf + af

Cdc

Ctot
adCconvυdc1,0∆υ

⋆
dc − af

Cdc

Ctot
adCconvυdc1,0∆υdc1 + af

Cconv

Ctot
υdc1,0∆idc + af

Cconv

Ctot
idc,0∆υdc1 ⇒
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d∆Pf

dt
= −af

Cconv

Ctot
∆Pf − af

adCdcCconvυdc1,0 − Cconvidc,0

Ctot
∆υdc1 + af

Cconvυdc1,0

Ctot
∆idc + afad

CdcCconvυdc1,0

Ctot
∆υ

⋆
dc

(4.36)

Furthermore, the dynamics of the dc-voltage capacitor at the terminals of the voltage controlled
station become

1
2
Ctot

dW
dt

= Pin − Pline = P ⋆
in − Pline ⇒

1
2
Ctot

dW
dt

= Kp (W
⋆ −W ) + Pf − Pline ⇒

1
2
Ctot

dW
dt

= Kp

[
(υ⋆

dc)
2 − υ2

dc1

]
+ Pf − υdc1idc ⇒

dυ2
dc1

dt
= adCconv

Ctot
(υ⋆

dc)
2 − adCconv

Ctot
υ2
dc1 +

2
Ctot

Pf − 2
Ctot

υdc1idc ⇒

d∆υdc1
dt

=
adCconv

2Ctotυdc1,0
∆(υ⋆

dc)
2 − adCconv

Ctot

∆υdc1 +
1

Ctotυdc1,0
∆Pf −

1

Ctot

∆idc −
idc,0

Ctotυdc1,0
∆υdc1 ⇒

d∆υdc1
dt

=
adCconv

Ctot
∆υ⋆dc −

(
adCconv

Ctot
+

idc,0
Ctotυdc1,0

)

∆υdc1 +
1

Ctotυdc1,0
∆Pf −

1

Ctot
∆idc (4.37)

Modeling of the dc system

Figure 4.3 shows the related dc system and VSC Station 2. Froma general perspective and
assuming that the dynamics of the current control of Station2 were not neglected, the dynamics
of the active-power transfer in Station 2 are independent from the dynamics of the DVC and the
dc circuit. This happens because, with regards to this station

1. the CC beneath the APC does not use any properties or measured signals from the dc-side
to impose the currentidf that tries to follow the current referenceid⋆f .

2. The PCC voltage for the considered strong grid is considered constant. Even if a weak grid
is considered, the change of the PCC voltage is related to theac side physical properties
and the current flow caused by the CC. Therefore, the PCC voltage dynamics are not
related to the dc-side.

3. The APC uses a feedback ofPout to produce a current referenceid⋆f . HoweverPout is the
product ofidf andυd

g . As referred above, neither of these are related to the properties on
the dc-side of Station 2.

Therefore, the flow ofPout is related only to properties of the APC, the CC and the associated
ac-grid structure. Additionally, assuming linear operation of the VSC, the CC’s operation is
not affected by the level ofυdc,2. Therefore, the active-power controlled VSC acts as an ideal
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Rdc Ldc

Cdc Cconv

Station 2

υdc1

Pline

υdc2

Pout
Poutidc

Fig. 4.3 DC cable and inverter station of the VSC-HVDC link.

power source, transferring powerPout between its dc and ac side, withPout seen as an externally
provided input by the rest of the system.

The dc-cable dynamics are provided as

Ldc
didc
dt

= −Rdcidc − υdc2 + υdc1 ⇒
d∆idc
dt

=
1

Ldc

∆υdc1 −
Rdc

Ldc

∆idc −
1

Ldc

∆υdc2 (4.38)

while the dynamics of the dc capacitor located at the terminals of the power controlled station
will be

(Cconv + Cdc)
dυdc2
dt

= idc +
Pout

υdc2
⇒ Ctot

d∆υdc2
dt

= ∆idc − P2,0

υ2
dc2,0

∆υdc2 +
1

υdc2,0
∆Pout ⇒

d∆υdc2
dt

=
1

Ctot
∆idc −

P2,0

Ctotυ2
dc2,0

∆υdc2 +
1

Ctotυdc2,0
∆Pout (4.39)

whereP2,0 is the steady-state value ofPout.

State-space representation

The state space model of the considered two-terminal VSC-HVDC is created by considering
(4.36)-(4.39). The states of the system arex1 = ∆Pf , x2 = ∆υdc1, x3 = ∆idc andx4 = ∆υdc2.
The inputs areu1 = υ⋆

dc andu2 = ∆Pout, while y1 = υdc1 andy2 = ∆Pin serve as the outputs
of the system. The output∆Pin is derived using (4.33) and the earlier assumption thatPin = P ⋆

in

as follows

Pin = Kp (W
⋆ −W ) + Pf ⇒ Pin =

adCconv

2

[
(υ⋆

dc)
2 − υ2

dc1

]
+ Pf ⇒

∆Pin =
adCconv

2
[2υdc1,0∆υ⋆

dc − 2υdc1,0∆υdc1] + ∆Pf ⇒

∆Pin = adCconvυdc1,0∆υ⋆
dc − adCconvυdc1,0∆υdc1 +∆Pf (4.40)

Regarding the steady-state of the system, the steady-statevalue ofPin is P1,0. As a result,idc,0
can be expressed asidc,0 = P1,0

/
υ2
dc1,0 = −P2,0

/
υ2
dc2,0. Under these conditions, the state-space

representation of the system features the following state matrix
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AHVDC =










−af
Cconv

Ctot
af

(

−adCconvCdcυdc1,0
Ctot

− CconvP2,0

Ctotυdc2,0

)

af
Cconvυdc1,0

Ctot
0

1
Ctotυdc1,0

−adCconv

Ctot
− P1,0

Ctotυ
2
dc1,0

− 1
Ctot

0

0 1
Ldc

−Rdc

Ldc
− 1

Ldc

0 0 1
Ctot

− P2,0

Ctotυ2
dc2,0










(4.41)

4.3.2 Application of the Similarity Matrix Transformation

In this section, the SMT method is applied in an effort to demonstrate its potential in determining
the analytical eigenvalue expressions of a two-terminal VSC-HVDC connection. The simplified
4th order model described in section Section (4.3.1) is selected as the object of the investigation.

The SMT method utilizes the state matrix of a linear or linearized dynamic system. As such, a
4 × 4 state-matrixAs is set equal to the state matrix provided in Section (4.41), containing all
the necessary information for the estimation of the system’s eigenvalues.

As =










−af
Cconv

Ctot
af

(

−adCconvCdcυdc1,0
Ctot

− CconvP2,0

Ctotυdc2,0

)

af
Cconvυdc1,0

Ctot
0

1
Ctotυdc1,0

−adCconv

Ctot
− P1,0

Ctotυ
2
dc1,0

− 1
Ctot

0

0 1
Ldc

−Rdc

Ldc
− 1

Ldc

0 0 1
Ctot

− P2,0

Ctotυ
2
dc2,0










(4.42)

In order to proceed further, an appropriate similarity transformation matrixP needs to be de-
fined, which will transformAs into a similar4 × 4 matrix Ã whose form is a lower quasi-
triangular block matrix as in (4.10). Given the descriptionof the suggested method presented in
Section (4.2.1), if a 4th order system is considered, the optimum choice of a similarity transfor-
mation matrix should have the form of (4.16). Reaching a finalexpression for the 4 eigenvalues
of the system requires a number of simplifications to be performed. The validity of these sim-
plifications is greatly dependent on the numerical values ofthe system’s unknown parameters
and their range of variation. Specific symbolic terms in intermediate stages of the analysis may
have negligible impact on the final results, when replaced with their numerical values and can
thus be neglected. This approach will simplify further steps in the analysis and will allow final
closed formed expressions to be derived.

Parameter values

The state matrixAs described in (4.42) contains ten unknowns, i.e. four steady-state valuesP1,0,
P2,0, υ1,0 andυdc1,0; four dc-circuit parametersRdc, Ldc, Cdc andCconv; two controller design
parametersad andaf . The rated parameters of the VSC-HVDC link are presented in Table 4.1.
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In steady-state, the voltage controller stabilizesυdc1 so that its reference value isVdc,b, thus
υdc1,0= Vdc,b. The steady-state power transfer with a direction from the power controlled station
to its ac grid is represented byPout,0 and is considered to be equal to the rated active power,
Pout,0 = Pb. Therefore the steady-state value ofP2 is P2,0 = −Pout,0. For a negative power
transferP2 (exported from the power controlled station to its ac grid),voltageυdc2 will have a
value slightly lower thanυdc1. However, in steady-state the difference between the two voltages
is only dependent on the cable resistance and is therefore extremely small (no more than 0.5%
at maximum power transfer). As a result, it is valid to considerυdc2,0 = υdc1,0, without the loss
of significant accuracy in terms of system dynamics. Considering low losses on the resistance
Rdc leads to a further simplification of|P1,0| = |P2,0|; thusP1,0 = Pout,0. Matrix As now takes
the form

As =










−af
Cconv

Ctot
af

(

−adCconvCdcυdc1,0
Ctot

+
CconvPout,0

Ctotυdc1,0

)

af
Cconvυdc1,0

Ctot
0

1
Ctotυdc1,0

−adCconv

Ctot
− Pout,0

Ctotυ
2
dc1,0

− 1
Ctot

0

0 1
Ldc

−Rdc

Ldc
− 1

Ldc

0 0 1
Ctot

Pout,0

Ctotυ
2
dc1,0










(4.43)

Matrix simplification

Before performing the formal similarity transformation ofmatrixAs, it is possible to re-model
its entries in an appropriate way, for easier further calculations. Having entries that are simple
in form and possibly appear multiple times within the matrixthat will be subjected to similarity
transformation, is desirable because they ease the task of reaching compact final expressions for
the eigenvalues.

By definition, asimilar matrix has the same eigenvalues as the original matrix to which it is
similar. Consequently,As may be subjected to an abstract number of consecutive similarity
transformations, with the resulting matrix still maintaining the same eigenvalues asAs. An
initial objective is therefore to find a similar matrix ofAs which will have simplified entries. A
corresponding similarity transformation matrixM must be defined to achieve this. The form of
M is chosen as the diagonal matrix

M = diag (m11, m22, m33, m44) (4.44)

TABLE 4.1. RATED VALUES OF THE MODELED VSC-HVDC LINK

Pb rated active power 1000 MW
Vdc,b rated direct voltage 640 kV
Cconv shunt converter capacitor 20µF
ad bandwidth of the closed-loop direct-voltage control 300 rad/s
af bandwidth of the power-feedforward filter 300 rad/s
acc bandwidth of the closed-loop current control 3000 rad/s
Lc phase reactor inductance 50.0 mH

length cable line length 100 km
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UsingM to perform a similarity transformation of matrixAs produces a similar matrixA0 as

A0 = M−1AsM =







1
m1

0 0 0

0 1
m2

0 0

0 0 1
m3

0

0 0 0 1
m4






·







a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44






·







m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4






⇒

A0 =







a11
m2

m1
a12

m3

m1
a13

m4

m1
a14

m1

m2
a21 a22

m3

m2
a23

m4

m2
a24

m1

m3
a31

m2

m3
a32 a33

m4

m3
a34

m1

m4
a41

m2

m4
a42

m3

m4
a43 a44







(4.45)

The choice ofm1, m2, m3 andm4 for optimum simplification of the entries ofA0 is such that
M becomes

M = diag (υdc1,0, 1, 1, 1) (4.46)

with the resultingA0 matrix becoming

A0 = M−1AsM =










−af
Cconv

Ctot
af

(

−adCconvCdc

Ctot
+

CconvPout,0

Ctotυ
2
dc1,0

)

af
Cconv

Ctot
0

1
Ctot

−adCconv

Ctot
− Pout,0

Ctotυ
2
dc1,0

− 1
Ctot

0

0 1
Ldc

−Rdc

Ldc
− 1

Ldc

0 0 1
Ctot

Pout,0

Ctotυ
2
dc1,0










(4.47)

The immediate benefit of using (4.46) is the fact thatυdc1,0 has been eliminated from the matrix
elementsAs,21 andAs,13 in (4.43) if they are compared with the corresponding elementsA0,21

andA0,13 in (4.47). This not only simplified some of the original entries but allowed them to
now appear multiple times in the same matrix. Aiming at reducing the visual complexity,A0 is
re-written as

A0 =







−a b a 0
c −d −c 0
0 e −R · e −e
0 0 c f






=

[
A11 A12

A21 A22

]

(4.48)

Substituting the nominal values of Table 4.1, the previous matrix elements becomeR = 2.92,
a = 223.26, b = 0.0846, c = 37209.3, d = 314.1, e = 31.65 andf = 90.84. In terms of
magnitude comparison, the former translates intoc ≫ a, d, e, f ≫ b, R. This relation is critical
for simplification steps that will follow.

Similarity transformation

At this stage, matrixA0 is subjected to a similarity transformation that will produce asimilar
matrix Ã, in the form of (4.10). A similarity matrixP identical to the one in (4.16) is thus used,
giving

Ã = P−1A0P =

[
I −X

0 I

]

·
[
A11 A12

A21 A22

]

·
[

I X

0 I

]

⇒
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Ã =

[
A11 −XA21 A11X−XA21X+A12 −XA22

A21 A21X+A22

]

=

[
Y11 Y12

Y21 Y22

]

(4.49)

As mentioned earlier in the method description in Section (4.2.1), the condition that needs to
be fulfilled in order to giveÃ a quasi-lower triangular form is that the upper right2 × 2 block
matrixY12 in (4.49) is a zero matrix:

Y12 = A11X−XA21X+A12 −XA22 =

[
y13 y14
y23 y24

]

= 0 (4.50)

which when broken down to its 4 individual elements, provides the following relations that must
be fulfilled at the same time

y11 = a− a · x11 + e · R · x11 − c · x12 + (b− e · x11)x21 = 0 (4.51)

y12 = e · x11 − a · x12 − f · x12 + (b− e · x11) x22 = 0 (4.52)

y21 = −c + c · x11 + e · R · x21 − (d+ e · x21) x21 − c · x22 = 0 (4.53)

y22 = c · x12 + e · x21 − f · x22 − (d+ e · x21) x22 = 0 (4.54)

Eigenvalue analysis

Directly solving the non-linear equations (4.51)-(4.54) leads to large symbolic expressions of
no practical use. Furthermore, when the values of the different unknowns are replaced and a
certain parameter is swept, the pole movement is not continuous, leading to an undesirable type
of closed form solution similar to what a numerical solver would derive for a 4th order system,
as demonstrated earlier in Chapter 5. Reaching compact expressions that describe the poles of
the system, requires further simplifications to be applied.In order to achieve this, it is necessary
to observe the numerical behavior of the transformation matrix entries for different parameter
sweeps. The numerical study ofx11, x12, x21 andx22 is given in Fig. 4.4.

The solutions ofx11, x12, x21 andx22 are calculated by fixing three out of the four parameters
ad=300 rad/s,af=300 rad/s,length=100km andPout=1000MW, and studying the transformation
matrix variables with respect to the remaining parameter. Parametersad andaf are each swept
from 10-1000 [rad/s], the cable length is varied from 10-1000 [km] and the power transferPout

can vary from 10-1000 [MW]. Consequently, the graphs can have a common horizontal axis in
the range of 10-1000 units.

Figure 4.4 shows that for a wide variation of all the parameters under consideration,x11 has a
value between -1.5 and 0.25,x22 is negative with an absolute value between 0.9 and 1.5,x12

takes very small positive values below 0.02, whilex21 is negative and exhibits large variations
for the different system parameters. It is interesting to notice that sweepingad andaf results in
the same graph pattern for both cases ofx21 andx22.

Relations (4.51) and (4.52) can be expressed as

[
x11

x12

]

=

[
a− eR + ex21 c
−e+ ex22 a+ f

]−1

·
[
a+ bx21

bx22

]

⇒
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Fig. 4.4 Numerical study ofx11, x12, x21 andx22 for sweeping parametersaf, ad, cable length andPout.

[
x11

x12

]

=

[
a2+af+abx21+bfx21−bcx22

a2+a[f+e(−R+x21)]+e[c+f(−R+x21)−cx22]
a(e+bx22−ex22)+be(x21−Rx22)

a2+a[f+e(−R+x21)]+e[c+f(−R+x21)−cx22]

]

⇒

[
x11

x12

]

∼=
[

a2+af−bcx22

a2+ec(1−x22)
ae(1−x22)

a2+ec(1−x22)

]

(4.55)

The last approximation is based on the fact thatc ≫ a, d, e, f ≫ b, R and that the value ofx21

is much smaller thana. Sincec is much larger than the other parametersa, b, d, e, f andR, the
termΦ = eRx21 − (d+ ex21) x21 in (4.53) is negligible if|x21| is small enough. Consequently
(4.53) becomes

−c+ cx11 + Φ− cx11 = 0 ⇒ −1 + x11 +
Φ

c
− x22 = 0 ⇒ −1 + x11 − x22 ≈ 0 ⇒

x22 ≈ x11 − 1 (4.56)

An early positive assessment on the validity of (4.56) can bemade by observing the graphs of
x11 andx22 in Fig. 4.4, for the sweeping of the same parameter. Combining (4.55) and (4.56)
provides the approximate solution forx11 as

x11 ≈ 1 +
b

2e
+

a2

2ce
−
√

a4 + 2a2bc + b2c2 + 4c2e2 − 4acef

2ce
(4.57)

which can be further simplified to

x11 ≈ 1 +
b

2e
+

a2

2ce
−
√

a4 + 2a2bc+ 4c2e2 − 4acef

2ce
(4.58)
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Finally, utilizing (4.54), (4.55), (4.56) and (4.58) provides the approximate solutions forx12,
x21 andx22 as follows

x12 ≈ −
a
(

a2 + bc− 2ce−
√

a4 + 2a2bc+ 4c2e2 − 4acef
)

c
(

a2 − bc+ 2ce+
√

a4 + 2a2bc + 4c2e2 − 4acef
) (4.59)

x22 ≈
b

2e
+

a2

2ce
−
√

a4 + 2a2bc + 4c2e2 − 4acef

2ce
(4.60)

x21 =
cx12 − (d+ f)x22

e(x22 − 1)
(4.61)

After the proper selection of the entries of transformationmatrix P, the eigenvalues of the
original state matrixAs are determined by the following2× 2 block matrices of̃A in (4.49)

Ã1 = A11 −XA21 =

[
−a b− e · x11

c −d− e · x21

]

(4.62)

Ã2 = A21X+A22 =

[
−e · R + e · x21 −e + e · x22

c f

]

(4.63)

Simulations considering a wide variation of the unknown parameters of the system, show that
Ã2 almost always provides the solution for a poorly damped complex-conjugate pole pair whose
frequency is closely associated with the resonant frequency of the R-L-C dc-circuit of the sys-
tem, comprising of the dc-cables and the capacitors of the stations. Further in the analysis, these
poles will be referred to as ”Poorly-damped poles”. Taking into account relations (4.7)-(4.9)
and (4.62), the analytical expression for the stated complex-conjugate eigenvalue pair will be

λ1,2 =
f − eR + ex21

2
± j

√
∣
∣(f + eR − ex21)

2 + 4ce (x22 − 1)
∣
∣

2
(4.64)

Ã1 will then provide the other two poles of the system, which according to the different choice
of parameters are either a well-damped (compared to the previous pole pair) complex-conjugate
pole pair or two real poles. Both of these forms are expressedby (4.65), where the sign of the
expression under the square root defines the complex or real form of the solution.

λ3,4 =
−a− d− ex21

2
±

√

(a+ d+ ex21)
2 − 4 (−bc + ad+ cex11 + aex21)

2
(4.65)

Further in the analysis, these poles will be referred to as ”Well-damped poles”.

4.3.3 Application of the LR algorithm

In this section, the LR algorithm is applied to a two-terminal VSC-HVDC connection. The ob-
jective is to demonstrate the potential of this method in analytically determining the eigenvalues
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of this system, investigate the complexities involved as well as the advantages, disadvantages
and limitations of the LR method compared to the earlier suggested SMT technique. In an
attempt to perform a comparison with the SMT technique, the simplified 4th order model de-
scribed in Section (4.3.1) is again selected here as the object of the investigation. The state
matrix of the complete model in (4.42) was further simplifiedto the one in (4.43). The refined
version of the latter is provided in (4.47), whose visually simplified version is given in (4.48)
and repeated below.

A1 =







−a b a 0
c −d −c 0
0 e −R · e −e
0 0 c f







The nominal values of the VSC-HVDC link are the same as in Table 4.1 and the LR algo-
rithm will investigate the eigenvalue movement ofA1 for a perturbation of the system’s val-
ues around the nominal quantities. As described in Section (4.3.1), the convergence of the
algorithm is assisted if the diagonal elements are rearranged in a descending order, as far as
their absolute values are concerned. For the nominal valuesof Table 4.1, it is observed that
|−d|>|−a|>|−R · e|>|f |. Matrix A1 is thus pivoted to the expression (4.66), having its diago-
nal elements in descending order.

A1 =







−d c −c 0
b −a −a 0
0 e −R · e −e
0 0 c f







(4.66)

The authors in [21–23], have used the LR method in sparse state matrices of analogue electronic
circuits using at most four symbolic variables. MatrixA1 is however not sparse and it is desired
to acquire eigenvalue expressions which reflect the effect of all the parameters of the system.
As such, the entries of (4.66) are going to be treated fully symbolically, as well as the variables
each of these entries represent.

General expression of eigenvalues

Using the steps described in Section (4.2.2), a similar matrix Am+1 is produced at the end of the
mth iteration of the algorithm, whose general form is given in (4.25). Given the characteristic
form of the initial matrixA1 in (4.66), matrixAm+1 is observed to have the following form

Am+1 =







b11 b12 −c 0
b21 b22 b23 0
b31 b32 b33 −e
0 0 b43 b44






=

[
A11 A12

A21 A22

]

(4.67)

where the elementsbi,j are different in every iteration. Just as in the case of the SMT, the four
approximated eigenvalues ofA1 are found from the diagonal block matricesA11 andA22 in
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(4.67). MatrixA11 provides two eigenvaluesλ1,2 as below

λ1,2 =
b1,1 + b2,2

2
︸ ︷︷ ︸

Part A

±

√

b21,1 + 4 · b1,2 · b2,1 − 2 · b1,1 · b2,2 + b22,2

2
︸ ︷︷ ︸

Part B

(4.68)

In all the examined cases in this chapter, the expression under the square root is negative and
the above expression represents a pair of poorly-damped complex-conjugate poles with a real
part equal toPart A and an imaginary part equal to|Part B|, as these are defined in (4.68).
Likewise, matrixA22 provides two eigenvaluesλ1,2 as below

λ3,4 =
b3,3 + b4,4

2
︸ ︷︷ ︸

Part A

±

√

b23,3 + 4 · (−e) · b4,3 − 2 · b3,3 · b4,4 + b24,4

2
︸ ︷︷ ︸

Part B

(4.69)

In most of examined cases in this chapter, the expression under the square root is negative, with
the above expression representing a pair of usually well- orat least better-damped complex-
conjugate poles with a real part equal toPart A and an imaginary part equal to|Part B|, as
these are defined in (4.69). However, in some cases the expression under the square root is
positive, leading to two real poles a) (Part A + Part B) and b) (Part A - Part B).

The same nomenclature as in Section (4.2.1) is going to be used, thus referring to eigenvalues
λ1,2 as ”Poorly-damped poles” and to the eigenvaluesλ3,4 as ”Well-damped poles”.

Convergence of eigenvalue expressions

The accuracy of the results provided by the expressions (4.68)-(4.69) increases with every iter-
ation of the algorithm. However, each additional iterationadds further complexity to the sym-
bolic form of thebi,j terms in the same expressions. A compromise needs to be made between
the accuracy of the solutions and the size of the final eigenvalue expressions.

An investigation of the convergence of the LR algorithm is performed by using the data of
Table 4.1 but sweeping the cable length from 20-600 km. The system will have two a pair of
complex-conjugate poorly-damped poles and a pair of complex-conjugate well-damped poles;
Part AandPart B in (4.68)-(4.69) are expected to express the real and the imaginary part of their
eigenvalues, respectively. Fig. 4.5 presents the results for separately considering the real and
imaginary parts of both eigenvalue pairs, as obtained by different iterations of the LR algorithm.
Their values are then compared to the exact values, corresponding to the numerical solution of
the eigenvalue problem.

Figure 4.5(a) and Fig. 4.5(c) show that after the 3rd iteration of the algorithm, the real parts of
both eigenvalue pairs quickly converge to their exact numerical values, with the 5th iteration
resulting in an almost perfect matching with the exact solutions. The imaginary part of the
poorly-damped poles has started to successfully converge even earlier, by the 3rd iteration as
seen in Fig. 4.5(b). However, Fig. 4.5(d) shows that the imaginary part of the well-damped
poles needs more iterations to converge. After the 2nd iteration, the approximated expression

66



4.3. Application of approximating methods on a two-terminal VSC-HVDC system

0 200 400 600
−200

−150

−100

−50

cable length (km)

R
ea

l p
ar

t

 

 

Exact value

5 th iteration solution

4 th iteration solution

3 rd iteration solution

(a)

0 200 400 600
0

500

1000

1500

2000

2500

3000

3500

4000

cable length (km)
Im

ag
in

ar
y 

pa
rt

 

 
Exact value

4 th iteration solution

3 rd iteration solution

2 nd iteration solution

(b)

0 200 400 600
−300

−250

−200

−150

−100

−50

0

cable length (km)

R
ea

l p
ar

t

 

 

Exact value

5 th iteration solution

4 th iteration solution

3 rd iteration solution

(c)

0 200 400 600
50

100

150

200

250

300

cable length (km)

Im
ag

in
ar

y 
pa

rt

 

 
Exact value

4 th iteration solution

3 rd iteration solution

2 nd iteration solution

(d)

Fig. 4.5 Convergence of the different parts of the eigenvalues for different iterations of the LR algorithm,
compared to the exact numerical solution. The cable length is swept from 20-600 km. (a) Real
part ofλ1,2, (b) Imaginary part ofλ1,2, (c) Real part ofλ3,4, (d) Imaginary part ofλ3,4

starts approaching the exact solution but will need more than five iterations to get close to
matching conditions. The previous observations are consistent with relevant scenarios where
other values of the system are swept.

The results of this investigation demonstrate that the LR algorithm can provide reliable results
within few repetitions of the algorithm, as well as the fact that the convergence rate of the real
and imaginary parts, or to be more precisePart A andPart B (to include the eigenvalues that
become real), of complex poles may vary. This conclusion must be properly utilized, combined
with the fact that the symbolic expressions may become overwhelmingly large after only a few
iterations.
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Analytical eigenvalues expressions

As a reasonable compromise between accuracy and size of the final expressions, the 4 eigen-
values of the system are chosen to be represented by theirPart A from the 3rd iteration and their
Part B from the 2nd iteration. Any higher iterations provide expressions so large in size that
have no practical value when it comes to symbolic description of eigenvalues. Nevertheless, the
chosen iteration results are still large. A simplification procedure must take place during the LR
procedure, erasing any terms that have small effect on the final results.

Within the previous context, the final symbolic expressionsfor the poles of the system will be
as described below.

Part A of Poorly-damped poles

The expression forPart Aof the poorly-damped polesλ1,2 is

K1 +K2

4eR(a + d)(ad− bc+ ce)− 2c [a(6bd− 2de) + e (4bc− 2ce+ d2)]
(4.70)

where

K1 = a3ce+ a2 [6bcd− cef − d(d+ eR)(3d+ 2eR)]− e2
[
c2(−4bR+ d+ 2eR− f) + 2cdeR2 + d2eR3

]

(4.71)

K2 = 3abc [ce+ 2d(d+ eR)]− ea
[
c2e+ c

(
4deR + df + 2e2R2

)
+ dR(d+ eR)(2d + eR)

]

(4.72)

Part A of Well-damped poles

The expression forPart Aof the well-damped polesλ3,4 is

f(ad+ ce)2 − c2e2(a + d)

4c2e2
(4.73)

Part B of Poorly-damped poles

The expression of Part B cannot be easily simplified to a single term but can be represented in
the format of (4.68), replacing

b1,1 =
c [a2(e− b) + ae(2d+ eR) + e (2bc− 2ce+ 3d2 + 2deR)]

−ce(a + eR)− 2cde+ d3
(4.74)

b1,2 =
c2e [a2 (ce− 3d2)− 2ace(d+ eR) + ce (4bc− 2e(c+ dR) + d2)]

(bc− ad) [(ad− bc+ ce)2 + ce2R(a+ d)]
(4.75)
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b1,3 =
ce2(bc− ad)(2ad+ aeR − 4bc + 2ce)

(ac(b− e) + 2bcd− 2cde− ce2R + d3)2
(4.76)

b1,4 =
c3e (3b2 − 4be+ 2e2) (d2 − ce)

(ad− bc + ce)2 [ce(a + eR) + 2cde− d3]
(4.77)

Part B of Well-damped poles

Similarly, the expression of Part B cannot be easily simplified to a single term but can be repre-
sented in the format of (4.69), replacing

b3,3 = c

[
a(d+ f)− bc + df

c(a+ d− f)
− ce2 (a2 + ad+ bc + d2)

(a+ d)(ad+ ce)2

]

(4.78)

b4,3 =
c4e3(bc− ad)2

[c2e2(a + d)− f(ad+ ce)2]2
(4.79)

b4,4 =
bc− ad

a+ d
(4.80)

Practically, all of the terms (4.70)-(4.80) can be further simplified in such a way that sufficient
or even improved level of accuracy can be guaranteed in a narrow area of variation of all or
selected variables of the system. However, a more general approach is considered for the rest of
the analysis, using expressions that are sufficiently accurate in a wide range of variable variation.
Thus, the previous terms are going to be used in the complete format that they have been given.

4.4 Comparative results of the approximating methods

In this section, the exact eigenvalues of the two-terminal VSC-HVDC system, found by numer-
ically extracting them fromAs, are compared to the analytical eigenvalues derived via theSMT
method and expressed by (4.64) and (4.65), as well the analytical eigenvalues derived by the LR
algorithm using the expressions in Section (4.3.3) . Different scenarios are investigated where
the values of all the system’s parameters and steady-state entries are set to be constantly equal
to the values of Table 4.1, with the exception of a parameter that is allowed to vary. The interest
in doing so is to observe the accuracy of the analytical expressions compared to the exact eigen-
values, for different values of the selected parameter. It should be further noted that the values
of Table 4.1 are considered typical for actual installations, based on the references provided in
Chapter 2 and any variations around them define deviations from the norm. Five scenarios are
considered

1. Variation ofaf between 10-600 rad/s

2. Variation ofad between 10-600 rad/s

3. Variation ofad = af between 10-600 rad/s
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4. Variation of the cable length between 20-600 km

5. Variation ofPout,0 within the interval 0-1000 MW

Each scenario is assessed based on a common figure pattern. Initially, the movement of the exact
and approximated poles of the system for the variation of thedesired parameter (or parameters)
is presented. All poles, both thePoorly-damped polesand Well-damped polesare originally
presented in a common graph, highlighting their relative location in the complex plain. Given
the fact that thePoorly-damped polestypically have much higher characteristic frequency than
the Well-damped poles(approximately 1 order of magnitude larger), the depictionof all the
poles in the same graph could obscure the differences between the exact and approximated
poles, especially if the level of approximation is very high. A closer view of each of the two
type of poles is thus provided, ensuring a better visual inspection of the fine differences between
the exact and approximate solutions.

A separate figure shows the nominal algebraic magnitude error εN,nom for each of the poorly
and well-damped conjugate pole pairs that normally appear.Let p represent a nominal set
(design point) of then unknown parameters that describe a given condition of the system
(p ⊂ R

n), g(p) the expression for the exact solution of a pole atp andh(p) the approxi-
mation ofg(p). Then the nominal algebraic magnitude errorεN,nom of this pole is here defined
as

εN,nom =
‖g (p)− h (p)‖

‖g (p)‖ (4.81)

This expression considers not only the magnitude difference between the exact and approxi-
mated pole solutions, but also their angle differences.

It was observed that in some cases, while varying the selected system parameter, two poles con-
stituting a well-damped pole pair would eventually become real poles of unequal magnitudes.
Furthermore, this did not occur for the same values of the selected parameter in the exact and
approximated systems. This causes complications since thecomparison between a pole pair
and two distinct real poles does not provide useful information. For this reason, the pole mag-
nitude error of the well-damped pole pair is shown only when both the exact and approximated
expressions are complex-conjugate in form.

Since the poorly-damped poles are of greater importance forthe investigation of a system’s
stability than the well-damped poles, more information arepresented for the former. Thus, a
separate figure is used to present the error of the poorly damped pole pair approximation, split
into real part errorεN,real and imaginary part errorεN,imag and defined as

εN,real =

∣
∣
∣
∣

Re [g (p)]− Re [h (p)]

Re [g (p)]

∣
∣
∣
∣

(4.82)

εN,imag =

∣
∣
∣
∣

Im [g (p)]− Im [h (p)]

Im [g (p)]

∣
∣
∣
∣

(4.83)

At this point it should be mentioned that expressions (4.81)-(4.83) may take large values if the
location ofg(p) is quite close to the origin of the axes of the complex plain, even if the absolute
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error difference is not large. The fact thatg(p) is in the denominator of the prevous expressions
implies that the division with a small value could lead to large errorsεN,nom, εN,real andεN,imag,
which may not reflect fairly the quality of the approximation.

Variation of af

The bandwidthaf is usually chosen to be close or equal to the direct-voltage closed-loop band-
width ad [53]. The current scenario examines the impact of a varied difference between the two
bandwidths, while keepingad constant. Fig. 4.6 presents the results of the parametric sweep of
af .

SMT method: Regarding the SMT method, the poorly-damped poles appear to be stiff in terms
of frequency variation, as observed by the relatedεN,imag error which does not exceed 2.2%. The
well-damped poles start as two real poles and at aroundaf=35 rad/s, split into two complex-
conjugate poles with increasing frequency and almost constant damping. ErrorsεN,nom and
εN,imag of the poorly-damped poles increase almost linearly for an increase ofaf but remain
below 1.82% and 1.7% respectively. ErrorεN,real of the poorly-damped poles follows the same
increasing trend and is limited to 4.97% for the maximum value of af . The match of exact and
approximate values is quite close for the well-damped poleswith their errorεN,nom starting
at around 3.6% foraf=35 rad/s, then quickly dropping below 0.77% and gradually increasing
up to 4.48%. The initial relatively high error followed by a rapid decrease happens because in
that region, the absolute value of the exact pole is relatively small and as explained earlier, its
use in the division withinεN,nom leads to a numerically high error as a percentage that is not
representative of the overall sufficient approximation. However, this error is fairly small.

LR algorithm : The LR-approximated poorly-damped poles appear to followin general the
track path of their exact counterparts. The associated error εN,real reaches a maximum of 10.54%
for the maximum value ofaf but constantly lies below 3.7% in the regionaf ∈[10-400] rad/s.
A smaller error is observed for the imaginary part of the poorly-damped poles which never
exceeds 5.05%. It is interesting to notice that all the characteristic errors of these poles are
minimized in the area around the nominal value ofaf , with an increasing trend asaf deviates
sharply from 300 rad/s. A slightly different behavior is observed for the well-damped poles
which, even though follow correctly the movement of the exact poles, appear to have a non-
negligible magnitude errorεN,nom for af <100 rad/s. In that region, the absolute value of the
exact poles is relatively small and its use in the division within εN,nom leads to a numerically
high error as a percentage. However, for the greatest part ofthe variation region ofaf , the well-
damped poles have a small magnitude error (constantly below3.6% foraf ∈[115-600] rad/s),
in fact achieving a better approximation than the SMT-derived expressions for great values of
af .

Variation of ad

This scenario examines the impact of a varied difference between the two bandwidthsad and
af , while keeping the main bandwidth of the DVCad constant. In Fig. 4.7, the movement and
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relative position of the poles for a variation ofad is very similar to the one observed earlier in
Fig. 4.6 for a variation ofaf.

SMT method: Once again, the approximated poles follow closely the numerical values and
movement trend of the exact poles for the whole variation region of ad, both for poorly- and
well-damped poles. ErrorsεN,nom andεN,imag of the poorly-damped poles are constantly below
1% while the corresponding errorεN,real has a peak value of 2.2% aroundad=442 rad/s. The
errorεN,nom of the well-damped poles starts just below 6.5% forad=36 rad/s, but quickly drops
and stabilizes below 2.8% throughout the range of [42-600] rad/s. Similarly as in the previous
simulation scenario, the proximity of the accurate pole to the origin of the axes for small values
of ad, causesεN,nom to be relatively high in that region.

LR algorithm : As far as the poorly-damped poles are concerned, their errorsεN,real andεN,imag

never exceed 3.2% and 2.7% respectively, while the combinederror εN,nom takes a maximum
value of 2.69% for the maximum value ofad. The errorεN,nom of the well-damped poles takes,
once again, high values for very low values ofad, but quickly drops and stabilizes below 3.62%
throughout the range of [42-600] rad/s. Similarly as in the previous investigation scenario ofaf ,
the proximity of the accurate pole to the origin of the axes for small values ofad, causesεN,nom

to be relatively high in that region. Overall though, the SMT-derived poles seem to converge
slightly better to the exact values.

Concurrent variation of ad and af

As mentioned earlier, the bandwidthaf of the power-feedforward filter and the bandwidthad

of the DVC are normally chosen to be approximately or even precisely the same in value. This
scenario examines the case wheread=af and vary from 10-600 rad/s. As observed in Fig. 4.8,
increasing the value of parametersad=af causes the real part of both pole pairs to drastically re-
duce. The poorly-damped poles maintain their characteristic frequency quite close to 1500 rad/s
all the time, while the well-damped poles seems to feature a virtually constant damping through-
out the sweeping range ofad=af.

SMT method: The approximation achieved by the SMT method is exceptionally well for all
the values of the swept bandwidths. Regarding the poorly-damped poles, their errorεN,imag

has a peak value of 0.74% atad=af=505 rad/s,εN,nom is constantly increasing from 0.2% until
1.44% in the available region of bandwidth variation while error εN,real follows the same pattern
of constantly increasing value from 0.38-6.82% in the same region. The errorεN,nom of the
well-damped poles starts just below 3.54% forad=10 rad/s, but quickly drops and then keeps
increasing to a maximum value of 5.97% at the maximum value ofad=af=600 rad/s.

LR algorithm : Regarding the poorly-damped poles, the LR-approximated eigenvalues are rela-
tively close to their exact counterparts, even though the corresponding SMT-derived eigenvalues
appear to have a better convergence. Especially at high and low values ofad=af , the LR-derived
poorly-damped poles show a non-negligible variation in their imaginary part as reflected by
their errorεN,imag. However, the same error becomes very small for a great rangearound the
nominal value ofad=af=300 rad/s. Conversely, errorεN,real of the same poles remains low for
most of the area of parameter variation, with an increasing trend for increasingad=af, reaching
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the highest value of 5.37% forad=af=600 rad/s. Regarding the well-damped poles, the detailed
view of Fig. 4.8 shows a very good tracking of the exact pole movement for the LR method;
even better than the one achieved by the SMT-method results.In fact the LR-approximated poles
seem to retain a damping value closer to the one of the exact solutions. The level of approxima-
tion in terms of magnitude errorεN,nom is also acceptable with the latter lying below 3.7% in
the regionad=af ∈[85-600] rad/s.

The deviation in the poorly-damped pole approximation accuracy of the imaginary part between
the LR and SMT method, is attributed to the necessary simplification that had to be performed
on the terms ofPart B of these eigenvalues, as these are finally expressed in (4.74)-(4.77).
These simplifications were carried out considering an overall good approximation level, without
focusing on a specific variable. As shown here, the behavior of the LR-approximations is not
the optimal for large or very small values ofad=af , compared to the Nevertheless, they are still
acceptable with a maximum errorεN,imag of 15.2% for the poorly-damped poles at the lowest
value ofad=af=10 rad/s.

Variation of cable length

The analysis of the results shown in Fig. 4.9 show that the approximated eigenvalues follow the
movement trend of the exact eigenvalues, for both pole pairs, but the relative errors are a bit
higher compared to the previous scenarios, especially whenthe cable length is at its maximum
value. A general comment is that for increasing cable length, the real part of both poorly- and
well-damped poles increases algebraically while the imaginary part of both pole pairs decreases.
The rate of imaginary part decrease is large in the case of thepoorly-damped poles, hinting a
close relation between the frequency of this pole pair and the physical properties of the dc-
cables, unlike the other pole pair whose rate of imaginary part (i.e. frequency) decrease is much
more limited.

In order to relate the range of length variation used in this section with actual values, it can be
mentioned that typical transmission-lengths for VSC-HVDCsystems of existing and planned
sites are in the range of 100 up to 400 km [3,80], with the notable exception of Caprivi-link that
measures 950 km [81].

SMT method: All the measured errors of the poles have a constantly increasing trend for an in-
crease of the cable length. Regarding the poorly-damped poles, errorsεN,nom, εN,real andεN,imag

reach a peak value of 4.67%, 8.84% and 4.27% respectively fora cable length of 600 km, while
the errorεN,nom of the well-damped poles has a peak of 8.72% at the same cable length.

LR algorithm : The results shown in Fig. 4.9 show that the LR-approximatedeigenvalues
closely follow the movement trend of the exact eigenvalues,for both pole pairs. The nomi-
nal magnitude errorεN,nom of the well-damped poles is relatively low within the variation range
of the cable length, remaining below 6.1%, with the LR methodachieving even better results
than the SMT for large cable lengths. A good level of approximation is also achieved for the
poorly-damped poles whose real part is approximated with anerrorεN,real which starts at a very
low value of 0.17% and keeps increasing until 7.13% for the maximum length of the cable.
However, the error of the LR-method on the imaginary part of the same poles is not in the
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Fig. 4.6 Pole movement and approximation error studies on scenario #1 whereaf is varied.
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Fig. 4.7 Pole movement and approximation error studies on scenario #2 wheread is varied.
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Fig. 4.8 Pole movement and approximation error studies on scenario #3 wheread andaf vary.
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Fig. 4.9 Pole movement and approximation error studies on scenario #4 where the cable length is varied.
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Fig. 4.10 Pole movement and approximation error studies on scenario #5 wherePout,0 is varied.
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same level. The related errorεN,imag lies below 5.78% for the first 200 km and then constantly
increasing until 21.2% at 600 km. This consequently affectsthe total nominal magnitude er-
ror of the poorly-damped poles considers both the real and imaginary parts of the poles. The
description of these poles is better using the SMT-method.

Variation of transferred power

SMT method: The results for varying transfer power in Fig. 4.10 show a good approxima-
tion of the exact poles. It is interesting to notice that the pole movement for the entire power
variation interval is quite minimal, implying a poor correlation between transferred power and
system eigenvalue, for the selected properties of the givenHVDC. Just as in the cable length
variation scenario, all the measured errors of the poles have a constantly increasing trend for
an increase of the cable length. Regarding the poorly-damped poles, errorsεN,nom, εN,real and
εN,imag reach a peak value of 0.63%, 1.91% and 0.60% respectively fora maximum power
transfer of 1000 MW, while the errorεN,nom of the well-damped poles has a peak of 1.88% at
the same power transfer level.

LR algorithm : The results show a relatively good approximation of the exact poles while using
the LR-method. It should be noted that even though the pole movement is quite minimal for
the exact numerical system, the LR algorithm tends to deriveapproximate poles with a slightly
wider range of variation, unlike the SMT-method which presents a minimal pole movement.
Observing the poorly-damped poles, the LR-method achievesan approximation with constantly
declining errorsεN,nom, εN,real andεN,imag, contrary to the SMT-method. All of these errors are
no larger than 5.1% for the LR-method at the worst case of zerotransferred power. As far
as the well-damped poles are concerned, the LR-method approximates the exact poles with a
consistently smaller real-part divergence than the SMT-method, but a greater imaginary-part
divergence. Nevertheless, it correctly shows the increasing trend of its imaginary part for in-
creasing power transfer, unlike the SMT-method. The nominal magnitude errorεN,nom of the
well-damped poles for the LR-method starts at 2.13% and reaches 3.58% for the maximum
amount of power transfer.

4.5 Investigation on the accuracy of the approximating me-
thods

4.5.1 Accuracy of the Similarity Matrix Transformation

The accuracy of the analytical expressions in closed form for the eigenvalues of the system
is directly related to the level of accuracy in approximating (4.56). As mentioned earlier in
Section (4.3.2), the factor which determines the level of accuracy in this approximation is the
term Φ

c
= eRx21−(d+ex21)x21

c
which should be the closest possible to a zero value. The morethe

factor Φ
c

deviates from zero and becomes comparable tox11 andx22, the worse the accuracy of
the final eigenvalue expressions.
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All the unknown parameters of the system contribute to the final expression ofΦ
c
, thus affecting

the quality of the final symbolic eigenvalue solutions. However, the degree to which each of
these parameters affect the resulting expressions varies.The majority of the system unknowns
does not seem to have great impact on the approximation accuracy. It was observed that the
only unknown which had a significant impact on the final results is the inductance of the dc-
transmission link, where the greater its value, the less accuracy in the resulting expressions
compared to their numerically extracted values.

A series of parametric scenarios display the effect of an increased inductance in Fig. 4.10, where
scenarios 2, 3, 4 and 5 from Section (4.4) are repeated with the only difference being that the
cable is replaced by an overhead line. Overhead lines typically have much greater inductance
per kilometer and much lower capacitance per kilometer thancables of equivalent power and
voltage ratings. The overhead line used in this section has values defined in Table 2.1.

Figure 4.11(a) shows the results from the modified scenario #2 wheread is varied. The approx-
imated poles closely follow the numerical values and movement trend of the exact poles for
small values ofad but when the latter becomes greater than 300 rad/s, the approximated poles
start to deviate, especially considering the real part of the poorly-damped poles. This is because
the approximation in (4.56) does no longer hold for large values ofad. This is however of not
significant importance sincead normally lies close to 4 pu or 300 rad/s [82], [53]. The error
εN,nom of the poorly- and well-damped poles atad=300 rad/s is 9.84% and 19.41% respectively.

Figure 4.11(b) presents the results from the modified scenario #3 whereaf andaf vary. The
approximation achieved is sufficiently well for values of the bandwidths up to nominal, map-
ping the exact eigenvalues in a correct way. However, for larger than nominal values of the band-
widths, the tracking of the poorly-damped poles starts to deteriorate. A representative example
of this is when the bandwidths are set to their maximum value of 600 rad/s. The numerically
exact solution shows a system which has a pair of unstable complex-conjugate poles, while the
approximating algorithm presents the same poles as stable but poorly-damped. Still, this is not
an important issue because in practice the related bandwidths do not reach such high values.

Figure 4.11(c) presents the results from the modified scenario #4 where, in this case, the length
of the transmission line length varies. As reflected in the figure, the approximated poles manage
to follow the movement path of the exact poles most of the range of the transmission line length
but the well-damped pole pair fails to split into two real poles for high values of the length.
The errorεN,nom of the poorly-damped poles reaches a maximum of 30.14% at around 250 km
of line length while the same error reaches a local maximum of23.47% at 140 km, managing
to stay below that level until 466 km of line length. For the nominal length of 100 km, the
same error for the poorly- and well-damped poles is however much lower at 9.84% and 19.41%
respectively.

Finally, Fig. 4.11(d) presents the results from the modifiedscenario #5 where the amount of the
transferred powerPout,0 varies. Comparing the results to those in Fig. 4.10, a first observation is
that the pole movement, when alteringPout,0, is quite significant in the presence of transmission
lines instead of cables, where the poles are almost indifferent to the transmitted power level.
The results for varying transfer power in Fig. 4.11(d) show arelatively good approximation of
the exact poles with a magnitude error for both the well and poorly damped poles below 20%.
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(a) Pole movement and approximation errors whenad is swept from 10-600 rad/s.
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(b) Pole movement and approximation errors whenad=af is swept from 10-600 rad/s.
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(c) Pole movement and approximation errors when the the transmission line length is swept from 20-600 km.
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Fig. 4.11 Approximation studies of the system for a change ofthe cable to overhead transmission lines.
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The poorly-damped poles are in fact approximated with an error εN,nom which reaches a maxi-
mum of 9.84% for the rated power transfer and keeps dropping for decreasingPout,0.

Overall, the SMT method seems to be able to provide reliable results for a wide range of vari-
ation of the system’s unknown parameters around their nominal values. The greatest impact on
the accuracy of the method is caused by the inductance of the transmission medium between
the stations (cable or transmission line), where it was shown that a large but realistic value of
the inductance can raise the approximation errors from the range of 1-5% (in the case of cable)
to 10-30% (in the case of transmission line).

4.5.2 Accuracy of the convergence of the LR algorithm

By definition, the derived symbolic expressions for the description of the system’s poles us-
ing the LR-method are created without taking into consideration the numerical values of the
symbolic entries. This cannot guarantee, however, the validity or level of accuracy of the same
expressions for different values of the system’s unknowns.The LR-algorithm will usually con-
verge within the first few iterations but it is often the case that for a different parameter-setup of
the same system, the method will require a considerable number of additional iterations to con-
verge on specific problematic eigenvalues. It should be reminded that every additional iteration
adds further complexity to the symbolic expression of the poles.

A possible solution in these cases is to significantly limit the perturbation margins of the desired
unknowns of the system. This implies that the final symbolic expressions are expected to be
valid in a very confined area of parameter variation. If this convention is respected, it is possible
to attempt a drastic simplification of the intricate eigenvalue expressions into simpler forms,
still without any guarantee that the final expressions will be compact enough to be considered
useful or presentable.

Some considerations on the accuracy of the algorithm are however risen when the complete
VSC-HVDC model is regarded. The parameters of the VSC-HVDC model examined in this
chapter were varied in an attempt to assess the accuracy and convergence of the algorithm. Just
as in the SMT method, it was found that the value of the inductance of the dc-transmission link
has the greatest impact on the convergence of the LR-algorithm. In fact, the greater the value of
the inductance, the less accurate the approximation becomes and more iterations are necessary
to achieve reliable results.

To demonstrate the effect of an increased inductance, scenario # 4 of Section (4.4) here the trans-
mission link length is varied from 20-600 km is repeated. Only now, just as applied in Section
(4.5.1), the cable is replaced by an overhead line. Overheadlines typically have much greater
inductance per kilometer and much lower capacitance per kilometre than cables of equivalent
power and voltage ratings. The overhead line used in this section has the same characteristics
as the one used in Section (4.5.1).

As mentioned earlier, Part A and Part B of an LR-derived eigenvalue expression converge at
a different iteration rate. Fig. 4.12 shows a series of results with a combination of Part A and
Part B, calculated at different iterations of the algorithm. Each row of figures features Parts B
stemming from the same iteration, whereas each column of figures features Parts A of the same
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Fig. 4.12 LR-algorithm convergence for a high inductance dc-link whose length is swept from 20-
600 km. Different iteration results of Part A and B of the poles are combined. The black line
represents the exact poles and the gray line represents the approximated poles. The ’∗’ and ’�’
markers correspond to the starting and ending position of a pole, respectively.
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iteration. It should be noted that

• the approximated results are based on expressions that havenot been subjected to any
symbolic simplification.

• the earlier results in Section (4.4) are based on the simplified expressions of Parts A of 4th

iteration and Parts B of 3rd iteration, as presented in Section (4.3.3).

It is interesting to observe that in all of the Figures 4.12(a)-(i), the approximated poorly- and
well-damped poles do not manage to keep a consistent movement trend from their starting point
until the ending point. On the contrary, the expression representing the poorly-damped poles
shows a good level of approximation for small values of the dc-link length, then diverges and
for large length values converges to the location of the exact well-damped poles. The opposite
happens for the approximated well-damped poles. There is sufficient approximation for low
cable lengths but then follows a great divergence until theystart converging to the exact poorly-
damped poles for high length values.

Figure 4.12(a) presents the results for a 4th iteration Part A and 3rd iteration Part B of the eigen-
values. Any expression of higher iteration will be difficultto be presented symbolically. Both
well- and poorly-damped poles feature the convergence behavior described earlier with nomi-
nal magnitude errorsεN,nom below 20% only for approximately 0-100 km and 450-600 km (the
latter regards convergence to the opposite type of pole though).

Higher iterations of Part A and Part B show that the convergence improves for both poorly-
and well-damped poles but there is always a cable length region where an approximated pole
starts to diverge and then follow the path of the other type ofpole. This behavior persists even
after 100 iterations of the algorithm, but the previously described ’swapping’ between poles
occurs abruptly at a single dc-link length value. This proves that the LR-method, in this case,
will finally follow accurately the true eigenvalues of the system, but a single expression in terms
of (4.68) or (4.69) is not consistent enough to describe exclusively a single type of pole (either
poorly- or well-damped). This is an aspect that did not occurin the SMT method, where the
consistency is respected but the accuracy of approximationcannot be further improved.

4.6 Summary

This section has highlighted the value of an analytical approach in the analysis of dynamic
systems, with emphasis given on two-terminal VSC-HVDC transmission systems. Initially, the
problems encountered in a conventional approach to the analytical solution of a higher than
2nd order characteristic polynomial were discussed. As part ofalternative processes to solve
these problems, the SMT method has been introduced as a powerful tool to derive the analytical
eigenvalues of a 4th order system. Its concept and algorithmic process have beenthoroughly
presented, followed by an overview of the already established LR method, whose value in the
field of analytical eigenvalue derivation has been proven.

In order to demonstrate the effectiveness and compare thesetwo methods, an advanced two-
terminal VSC-HVDC system has been sufficiently approximated by a simplified 4th order state-
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space model that is suitable for use by both methods. The SMT and LR methods were then
implemented in the calculation of the analytical eigenvalues expressions of the aforementioned
model.

Regarding the SMT method, a number of valid conventions havebeen used to simplify the state-
space VSC-HVDC model from its original form, in such a way that several of the state-matrix
entries could become identical. This provided more compactfinal expressions. The solution
of the eigenvalue problem requires the solution of non-linear equations, which under a certain
convention can be simplified and solved. The accuracy of thissimplification was shown to be
the key factor determining the accuracy of the derived eigenvalue expressions.

As far as the LR method is concerned, the entries of the original state-space models were mod-
ified in a similar manner as in the SMT method, to possess a plurality of identical terms and
provide compact final eigenvalue expressions. Additionally, the order according to which the
states are positioned in the state-matrix were re-arrangedto facilitate a faster convergence of
the iterative algorithm. It has been observed that the real and imaginary part of complex con-
jugate eigenvalues, achieve sufficient accuracy at different convergence rates. This behavior,
along with the fact that every additional iteration of the algorithm increases the complexity of
the final solutions, led to the practice of separately deriving the analytical real and imaginary
part of complex poles from those iterations that provided sufficient accuracy.

Both methods have demonstrated satisfactory results, withgreat accuracy in the expression of
the eigenvalues of the examined system, for a wide variationof control and physical parame-
ters. Nevertheless, the SMT method appeared to provide consistently increased accuracy than
the LR method, especially for the poorly-damped complex poles, which are of great concern
during the designing of such systems. This implies that in relevant studies on two-terminal con-
figurations, the SMT method should be preferred to be used as the tool of choice. The chapter
was finalized by an investigation in the convergence of the two methods, showing that the use
of dc-transmission lines with large inductance per kilometer (i.e. overhead lines) in the two-
terminal VSC-HVDC model, may affect the accuracy of the analytical solutions, with the SMT
results being less affected than those derived by the LR.

From an overall perspective, once the desired analytical eigenvalue expressions are obtained
by one of the previous methods, it is possible to simplify them to a great extent, in a way that
the resulting expressions are valid in a relatively small range of parameter variation around a
nominal set of parameter values. Such an analysis may be further extended to a degree that only
one critical parameter is allowed to vary, making the simplifications even more drastic. As a
result, it may be possible to acquire such simplified forms that design criteria for an HVDC
system can be derived. This objective can be part of a future study on the subject.
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Chapter 5

Stability in two-terminal VSC-HVDC
systems: frequency-domain analysis

In this chapter, a two-terminal VSC-HVDC system is modeled in detail and its stability charac-
teristics are examined from a frequency analysis perspective. The aim is to develop a method-
ology pattern, which can describe and possibly predict the occurrence of poorly-damped phe-
nomena or instances of instability. For analysis purposes,the system is divided into two subsys-
tems: one describing the dc-transmission link receiving power from the rectifier station and the
other describing the dynamics of the VSC rectifier station, which injects a controlled amount
of power to the dc grid in an effort to stabilize the direct voltage. The two subsystems are ini-
tially examined from apassivitypoint of view with relevant comments being drawn for the
overall stability using the Nyquist criterion. However, the conditions under which the passivity
approach is applicable can be limited. A different frequency analysis tool is thus later applied,
using thenet-dampingapproach. Finally, an initially unstable system is stabilized by altering the
control structure of the VSC rectifier and an explanation is provided from a frequency-domain
perspective.

5.1 Stability analysis based on a frequency-domain approach

If a system can be represented by a closed-loop SISO feedbacksystem, as in Fig. 5.1, its stability
can be evaluated by examining the frequency response of the distinct transfer functionsF (s)
andG (s). Two main methods are considered in this chapter: the passivity approach and the
net-damping stability criterion.

5.1.1 Passivity of closed-loop transfer function

A linear, continuous-time system described by a transfer functionR(s) is defined aspassiveif
and only if, the following conditions apply at the same time [83]

1. R(s) is stable;
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in +
-

out)(sF

)(sG

Fig. 5.1 SISO system with negative feedback.

2. Re {R (jω)} ≥ 0, ∀ω ≥ 0.

From a complex-vector point of view, the latter is equivalent to the condition of−π/2 ≤
arg {R (jω)} ≤ π/2, implying that the real part of the transfer function is non-negative. Addi-
tionally, if R(s) is stable andRe {R (jω)} > 0, ∀ω ≥ 0, the corresponding system is defined
asdissipative. As an example, the typical second-order low-pass filter function

R (s) =
ω2
n

s2 + 2ζωns+ ω2
n

(5.1)

represents a dissipative system forζ > 0, with a step response that contains either no oscillations
(ζ ≥ 1), or a damped oscillation (0 > ζ > 1). However, ifζ = 0, the represented system is
only passive with a step response that contains a sustained oscillation of constant magnitude
and frequencyωn, without ever being damped.

The passivity concept can be expanded to closed-loop systems, as the SISO in Fig. 5.1. If both
the open-loop transfer functionF (s) and the feedback transfer functionG (s) are passive, then
the closed-loop transfer function of the complete system

Rc (s) =
F (s)

1 + F (s)G (s)
(5.2)

is stable and passive [84]. The opposite is however not true.If eitherF (s), orG (s), or both of
them, are non-passive thenRc (s) is not necessarily non-passive or unstable.

The previous statements are very important from a control point of view. If a controlled process
can be represented by the SISO form of Fig. 5.1, the passivitycharacteristic of the subsystems
F (s) andG (s) can either guarantee the stability of the closed loop, or provide a hint for in-
stability and there is a need for further investigation using alternative tools, e.g. the Nyquist
criterion, which can provide a definite answer.

5.1.2 Net-damping stability criterion

A useful tool in the frequency analysis of the stability of a system is theNet-Dampingstability
criterion. Its applicability can be investigated on SISO systems, identical to the one depicted in
Fig. 5.1, where the frequency functions of the open-loop andfeedback dynamics are expressed
as

1

F (jω)
= DF (ω) + jKF (ω) (5.3)
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and
G (jω) = DG (ω) + jKG (ω) (5.4)

Canay in [27] and [28] used such a SISO representation in order to introduce the complex torque
coefficients method for subsynchronous torsional interaction analysis of turbine -generator sets.
In that case,F (s) represented the turbine’s mechanical dynamics andG(s) the generator’s
electrical dynamics. AddressingDF (ω) andDG (ω) as damping coefficients andKF (ω) and
KG (ω) as spring coefficients, the introduced method involves the evaluation of the net damp-
ing D(ω) = DF (ω) +DG (ω). If at each resonance of the closed-loop system applies

D (ω) = DF (ω) +DG (ω) > 0 (5.5)

then according to [27], there is no risk for detrimental torsional interaction. Several examples
where provided as proof of the statement but no strict mathematical proof. The method was
shown in [29] not to correctly predict closed-loop oscillatory modes and instabilities. However,
a mathematical proof of the positive-net-damping criterion (5.5) was provided in [30], using the
Nyquist criterion. There, in agreement with [29], it was clarified that the net damping should be
evaluated for the open-loop (not closed-loop) resonances,as well as for low frequencies where
the loop gain exceeds unity.

As part of the proof process in [30], the Nyquist criterion isapplied to the transfer function
F (s)G(s) with

F (jω)G (jω) =
DF (ω)DG (ω) +KF (ω)KG (ω)

D2
F (ω) +K2

F (ω)
+ j

DF (ω)KG (ω)−DG (ω)KF (ω)

D2
F (ω) +K2

F (ω)
(5.6)

To determine whether the Nyquist curve encircles -1, the imaginary part of (5.6) is set to zero,
yielding

F (jωN)G (jωN) =
DG (ωN)

DF (ωN)
(5.7)

whereωN is the frequency where the Nyquist curve intersects with thereal axis. Usually, reso-
nant frequencies are very close to events of intersections with the real axis and therefore con-
stitute points where an encirclement of -1 could occur (thusinstability of the closed loop) [30].
If (5.7) is larger than -1 thenDF (ωN) +DG (ωN) > 0, giving (5.5) in the vicinity of a potential
resonant frequency. However, this accounts only forDF (ωN) > 0, as examined in the previ-
ous references. IfDF (ωN) < 0, relation (5.7) would give the following in order to avoid an
instability

DG (ωN)

DF (ωN)
> −1

DF(ωN)<0−−−−−−→ DG (ωN) < −DF (ωN) ⇒

D(ωN) = DF (ωN) +DG (ωN) < 0 (5.8)

showing that extra attention should be given when applying the net-damping criterion, taking
into account the nature ofDF (ω) close to the resonant frequencies.

Compared to the passivity analysis, a benefit of analyzing the stability of a SISO system via the
positive-net-damping criterion is that there is no need foreach of theF (s) andG(s) to be pas-
sive or even stable. In fact it is not uncommon that one or bothof the two transfer functions are
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(a) Two-terminal VSC-HVDC system with detailed dc-transmission link.
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f1i
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(b) Final form of VSC-HVDC model with minimized form of dc-transmission link.

Fig. 5.2 Two-terminal VSC-HVDC model.

individually unstable, but closing the loop through the negative feedback stabilizes the system.
In such cases, the passivity analysis cannot be used, unlikethe positive-net-damping criterion,
which can still be applied.

5.2 System representation

The objective of this section is to derive a SISO representation of the two-terminal VSC-HVDC
model, compatible to the depiction of Fig. 5.1. This will allow a further investigation of the
system in terms of passivity and net damping. The model underconsideration is shown in
Fig. 5.2(a). The ac grids are assumed to be infinitely strong and are thus modeled as voltage
sources, to which each VSC station is connected via a filter inductor (with inductanceLf and re-
sistanceRf). The dc terminals of each station are connected to a dc capacitor with a capacitance
Cconv. Each dc cable is modeled as aΠ-model, in the way described in Section (2.2.1). Given
the physical characteristics of the symmetrical monopole configuration and considering balan-
ced conditions, the model in Fig. 5.2(a) can be equated to theasymmetrical monopole model
in Fig. 5.2(b). This model retains the same power and voltageratings as the one in Fig. 5.2(a)
and has the same dynamics. It is however simplified in form, assisting the later description of
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Active-power 
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Ctot
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dc1υ∆

dc1,0

1

υ
P∆
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Ctot R20R10 dc2υ∆

(b)

Fig. 5.3 DC-side consideration of the system: (a) detailed current-source equivalent model, (b) linearized
model.

the model through equations. The dc-transmission system properties linking Fig. 5.2(a) and
Fig. 5.2(b) are defined as in (4.31).

This model will be used further on in this chapter. Choosing the correct type of input and
output for the SISO representation of the system is not straightforward. It will be shown in the
following section that the choice of the small signal deviation∆W ⋆ as input and∆P1 as output,
allows a SISO formulation of the considered model, similar to the closed-loop form of Fig. 5.1.

5.2.1 DC-grid transfer function

The part of the model to the right of the dc terminals of VSC Station 1 in Fig. 5.2, can be treated
separately for dynamic purposes. For this analysis, the twoVSC stations can be represented as
controllable current sources with the rectifier injecting current i1 = P1/υdc1 and the inverter
injectingi2 = P2/υdc2, as depicted in Fig. 5.3(a). The capacitorsCconv andCdc in Fig. 5.2 have
been replaced with their lumped valueCtot.

Considering the capacitor at the rectifier side, the direct-voltage dynamics are

Ctot
dυdc1
dt

=
P1

υdc1
− idc ⇒ Ctot

d∆υdc1
dt

=
1

υdc1,0
∆P1 −

P1,0

υ2
dc1,0

∆υdc1 −∆idc ⇒

Ctot
d∆υdc1

dt
=

1

υdc1,0
∆P1 −

1

R10
∆υdc1 −∆idc (5.9)

where the termυ2
dc1,0/P1,0 has been replaced withR10, since it acts as a fictive resistance which

under a voltage drop of∆υdc1 causes a current∆υdc1/R10. The subscript ”0” denotes the steady-
state value of an electrical entity, around which the latteris linearized, and is consistently used
in the rest of the analysis in the thesis.
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As mentioned earlier, the power-controlled station is set to a fixed power reference and therefore
P2 is assumed to be constant. In this case, the dynamics of the capacitor voltage on the inverter
side become

Ctot
dυdc2
dt

= idc +
P2

υdc2
⇒ Ctot

d∆υdc2
dt

= ∆idc −
P2,0

υ2
dc2,0

∆υdc2 ⇒

Ctot
d∆υdc2

dt
= ∆idc −

1

R20
∆υdc2 (5.10)

Similarly as earlier, the termυ2
dc2,0/P2,0 has been replaced withR20, since it acts as a fictive re-

sistance which under a voltage drop of∆υdc2 causes a current∆υdc2/R20. Finally, the dynamics
of the currentidc are

Ldc
didc
dt

= −Rdcidc − υdc2 + υdc1 ⇒ Ldc
d∆idc
dt

= ∆υdc1 −Rdc∆idc −∆υdc2 (5.11)

The differential equations (5.9)-(5.11) constitute the linearized model of the dc-transmission
link and are represented in Fig. 5.3(b) as an equivalent small-signal electrical circuit. The phys-
ical meaning of the termsR10 andR20 can now become clear. It is interesting to notice that due
to the steady-state properties of the circuit

idc,0 =
P1,0

υdc1,0
= − P2,0

υdc2,0
(5.12)

and then

Rdc =
υdc1,0 − υdc2,0

idc,0
=

υdc1,0
idc,0

− υdc2,0
idc,0

=
υdc1,0

P1,0/υdc1,0

− υdc2,0
−P2,0/υdc2,0

=
υ2
dc1,0

P1,0
+

υ2
dc2,0

P2,0
⇒

Rdc = R10 +R20 (5.13)

The state-space model of the considered dc-transmission system is created by considering (5.9)-
(5.11). The states of the system arex1 = ∆υdc1, x2 = ∆idc andx3 = ∆υdc2. The only input is
u1 = ∆P1. ForW = υ2

dc1, the output of the system isy = ∆W = 2υdc1,0∆υdc1. The resulting
state-space model is

Adc−link =





− 1
CtotR10

− 1
Ctot

0
1

Ldc
−Rdc

Ldc
− 1

Ldc

0 1
Ctot

− 1
CtotR20





Bdc−link =





1
Ctotυdc1,0

0
0



 , Cdc−link =
[
2υdc1,0 0 0

]
, Ddc−link = 0

(5.14)

denoting as

ω1 =
1

CtotR10
, ω2 =

1

CtotR20
, ω3 =

1

LdcCtot
, ω4 =

Rdc

Ldc
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and taking into account (5.13), the transfer function of thesystem from∆P1 to ∆W is

G (s) =
∆W (s)

∆P1 (s)
=
[
Cdc−link (sI−Adc−link)

−1
Bdc−link +Ddc−link

]
⇒

G (s) =
2C−1

tot [s
2 + s(ω2 + ω4) + ω3 + ω2ω4]

s3 + s2(ω1 + ω2 + ω4) + s[2ω3 + ω2ω4 + ω1(ω2 + ω4)] + 2ω3(ω1 + ω2)
(5.15)

In a conventional sense, the flow of currenti across an impedanceZ causes a voltage drop
u = Z · i. In a similar manner and observing (5.15), the flow of power∆P1(s) into the dc grid
causes an ”energy” change∆W = G(s) · ∆P1(s). Thereby,G(s) is addressed to as theinput
impedanceof the dc grid.

5.2.2 AC-side transfer function

This section concerns the ac-side dynamics of Station 1 in Fig. 5.2 and its interaction with
the dc-transmission link. With reference to the signal notation given in Fig. 5.3(b), assuming
a lossless converter and power-invariant space-vector scaling [85] (or p.u. representation), the
conservation of power on the dc- and ac-side of the converterimplies

P1 = υd
c1i

d
f1 + υq

c1i
q
f1 (5.16)

which in terms of small deviations becomes

∆P1 = υd
c1,0∆idf1 + idf1,0∆υd

c1 + υq
c1,0∆iqf1 + iqf1,0∆υq

c1 (5.17)

As mentioned earlier, the ac grid at the PCC is assumed to be infinitely strong and is represented
by a voltage source with a fixed frequencyωg1 and vector representationυd

g1 + jυq
g1 on the

converterdq-frame. Once the PLL has estimated the correct angle of itsdq-frame, any changes
in the system will not affect the measured angle and the dynamics of the PLL itself will have
no influence on the system. Consequently, theq-component of the ac-grid voltage has become
υq
g1 = 0, thed-component of the ac-grid voltageυd

g1 is constant over time. The ac-side dynamics
are then the following, expressed on the converterdq-frame

υd
c1 = υd

g1 − (Rf1 + sLf1) i
d
f1 + ωg1Lf1i

q
f1

υq
c1 = − (Rf1 + sLf1) i

q
f1 − ωg1Lf1i

d
f1

(5.18)

which can then be linearized in the following form

∆υd
c1 = − (Rf1 + sLf1)∆idf1 + ωg1Lf1∆iqf1

∆υq
c1 = − (Rf1 + sLf1)∆iqf1 − ωg1Lf1∆idf1

(5.19)

The steady-state valuesυd
c1,0 andυq

c1,0 can be derived from (5.19) as

υd
c1,0 = υd

g1,0 −Rf1i
d
f1,0 + ωg1Lf1i

q
f1,0

υq
c1,0 = −Rf1i

q
f1,0 − ωg1Lf1i

d
f1,0

(5.20)

93



Chapter 5. Stability in two-terminal VSC-HVDC systems: frequency-domain analysis

Inserting (5.19) and (5.20) into (5.17), provides the following expression for∆P1

∆P1 =
[
−idf1,0 (2Rf1 + sLf1) + υd

g1,0

]
∆idf1 +

[
−iqf1,0 (2Rf1 + sLf1)

]
∆iqf1 ⇒

∆P1 = −idf1,0Lf1

(
s + bd1

)
∆idf1 − iqf1,0Lf1 (s+ bq1)∆iqf1 (5.21)

where

bd1 = 2
Rf1

Lf1
−

υd
g1,0

Lf1i
d
f1,0

, bq1 = 2
Rf1

Lf1
(5.22)

For a CC designed as in Section (2.3.1), with closed-loop dynamics of a low-pass filter with
bandwidthacc and perfect cancellation of the cross-coupling term, the relation betweendqcur-
rent references and filter currents acquire the following linearized form

∆idf1 =
acc

s+ acc
∆id⋆f1 , ∆iqf1 =

acc
s + acc

∆iq⋆f1 (5.23)

It is assumed thatiq⋆f1 is constant and therefore∆iq⋆f1 = 0. Thus, inserting (5.23) into (5.21)
provides

∆P1 = −acci
d
f1,0Lf1

s+ bd1
s+ acc

∆id⋆f1 (5.24)

The DVC of the station is designed in the same way as in Section(2.3.3)

P ⋆
in = Kp (W

⋆ −W ) + Pf (5.25)

wherePf is the filtered feedforward power

Pf = H(s)Pm (5.26)

and
H(s) =

af
s + af

(5.27)

is a low-pass filter of bandwidthaf . The actual powerPin will follow its referenceP ⋆
in with a time

constant defined by the selected control parameters. This power is different fromP1 because of
the reactor resistanceRf1 and the associated power loss. Given the fact that the steady-state value
of the feedforward termPf is equal toP1, it is understood that there is a need for an integrator
with a very low gainKi to compensate for the small steady-state deviation betweenPin andP1.
For very low values ofKi, the integrator has negligible effect on the overall dynamics and can,
at this point, be assumed to be zero [53].

The reference powerP ⋆
in in terms of PCC properties is

P ⋆
in = υd

g1i
d⋆
f1 (5.28)

which when inserted to (5.25) gives

υd
g1i

d⋆
f1 = Kp (W

⋆ −W ) + Pf ⇒ υd
g1,0∆id⋆f1 = Kp (∆W ⋆ −∆W ) + ∆Pf ⇒

∆id⋆f1 =
Kp (∆W ⋆ −∆W ) + ∆Pf

υd
g1,0

(5.29)

94



5.2. System representation

Relations (5.24) and (5.29) provide the final expression forthe injected power to the dc-transmission
link

∆P1 = K(s) [Kp (∆W ⋆ −∆W ) + ∆Pf ] (5.30)

with

K(s) = −
acci

d
f1,0Lf1

υd
g1,0

s+ bd1
s+ acc

(5.31)

Given relation (5.26), the filtered power∆Pf can be expressed as

∆Pf = H(s)∆Pm (5.32)

The challenge at this stage is to relate∆Pm directly to ∆P1. In order to achieve this, it is
necessary to resort back to the analysis of the dc-grid transfer function in Section (5.2.1) and its
state-space description in (5.14).

Based on the arrangement of Fig. 5.2, as well as the fact that capacitorsCconv andCdc share the
same voltage at all times, the dc-side powers measured at different points of the transmission-
link model are connected in the following way

1
2
Cconv

dW
dt

= P1 − Pm

1
2
Cdc

dW
dt

= Pm − υdc1idc






⇒ P1−Pm

Cconv
= Pm−υdc1idc

Cdc
⇒

Pm = Cdc

Cconv+Cdc
P1 +

Cconv

Cconv+Cdc
υdc1idc ⇒

Pm =
Cdc

Ctot

P1 +
Cconv

Ctot

υdc1idc (5.33)

Relation (5.33) can then be linearized into

Pm =
Cdc

Ctot
P1 +

Cconv

Ctot
υdc1idc ⇒ ∆Pm =

Cdc

Ctot
∆P1 +

Cconv

Ctot
υdc1,0∆idc +

Cconv

Ctot
idc,0∆υdc1 ⇒

∆Pm =
Cdc

Ctot
∆P1 +

Cconvυdc1,0
Ctot

∆idc +
CconvP1,0

Ctotυdc1,0
∆υdc1 (5.34)

At this point considering the same system as in Section (5.2.1) with the same single input∆P1,
but new output of∆Pm as in (5.34), the new state-space representation becomes

Adc =





− 1
CtotR10

− 1
Ctot

0
1

Ldc
−Rdc

Ldc
− 1

Ldc

0 1
Ctot

− 1
CtotR20





Bdc =





1
Ctotυdc1,0

0
0



 , Cdc =
[

CconvP1,0

Ctotυdc1,0

Cconvυdc1,0
Ctot

0
]

, Ddc =
Cdc

Ctot

(5.35)
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Fig. 5.4 SISO representation of two-terminal VSC-HVDC model: (a) detailed representation, (b) con-
densed representation.

with the only difference compared to (5.14), being found in matricesCdc andDdc. The transfer
function from∆P1 to ∆Pm is now

M (s) =
∆Pm (s)

∆P1 (s)
=
[
Cdc (sI−Adc)

−1
Bdc +Ddc

]
⇒

M (s) =
Cconv

C2
totυ

2

dc1,0

·
Ctotυ

2

dc1,0
(s+ ω2)ω3 + P1,0[s

2 + s(ω2 + ω4) + ω3 + ω2ω4]

s3 + s2(ω1 + ω2 + ω4) + s[2ω3 + ω2ω4 + ω1(ω2 + ω4)] + 2ω3(ω1 + ω2)
+

Cdc

Ctot

(5.36)

5.2.3 Closed-loop SISO feedback representation

Following the previous segmental investigation, the individual transfer functions can be com-
bined in order to obtain a representation of the system’s dynamics, relating the single input
∆W ⋆ to the single output∆P1. The equations of interest are (5.15), (5.30), (5.31), (5.27) and
(5.36) whose proper linking leads to the graphical representation of Fig. 5.4(a).

The feedback-loop transfer functionG(s) in Fig. 5.4(a) already complies with the SISO form
of Fig. 5.1 but the path from the input to the output, appears more complicated. The latter can
be merged into a single transfer function

F (s) = Kp
K (s)

1−K (s)H (s)M (s)
(5.37)

with the system taking the final desired form of Fig. 5.4(b). This form will be used in the later
parts of this chapter.
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It is interesting to observe that if the DVC was only a basic PI-controller with transfer function
Kp +Ki/s, the input-admittance transfer function would simply become

F (s) =
Kps+Ki

s
·K(s) (5.38)

The dynamics of this expression are completely decoupled from those of the dc-transmission
link. Conversely, the presence of the power feedforward term in the considered control intro-
ducesM(s) into the final expression ofF (s) in (5.37), implying that the latter is now coupled
to the dc-transmission system and inherits its dynamics.

From an electrical point of view, a voltage dropu across an admittanceY causes a current
i = Y ·u. In a similar manner and with a reference of Fig. 5.4(b), the appearance of an ”energy”
drop e = ∆W ⋆ − ∆W causes the converter to respond with a power flow∆P1 = F (s) · e.
Thereby,F (s) is addressed to as theinput admittanceof the VSC converter.

5.3 Frequency-domain analysis: Passivity approach

It this section the stability of a two-terminal VSC-HVDC, asshown in Fig. 5.2, is investigated
using a frequency-domain approach. The investigation intends to utilize the passivity properties
of the system and the Nyquist criterion. As such, a SISO representation of Fig. 5.4(b) is consid-
ered, where the transfer functionsF (s) andG(s) must be stable. The investigation begins by
considering a simple form of direct-voltage control. Thereby, a commonly used PI-controller
is chosen in the beginning, with a later consideration for a proportional controller with power-
feedforward.

5.3.1 DC-grid subsystem for passivity studies

The dc-grid transfer functionG(s) in (5.15) has three poles, one of which is real. As shown
in [86], this real pole is always positive for a non-zero power transfer, renderingG(s) unstable
and therefore non-passive. This implies that the analysis of the SISO system in terms of passivity
cannot be performed. However, in a related analysis in [25],if

Ldc

Ctot
<< 2 (5.39)

it is possible to approximateG(s) with the transfer functionG′(s), where the real pole is fixed
at zero

G′ (s) =
2C−1

tot [s
2 + s(ω2 + ω4) + ω3 + ω2ω4]

s(s2 + ω4s+ 2ω3)
(5.40)

Condition (5.39) is usually fulfilled in cable-type of lines, where the real pole is sufficiently
close to zero due to the low inductance of the transmission link is, but not necessarily in case of
overhead lines.

As demonstrated in [25], the replacement ofG(s) with G′(s) has practically negligible effects
in the closed-loop poles of the SISO system and is therefore valid to be considered as the
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feedback transfer function. However, the main benefit of consideringG′(s) is that, unlikeG(s),
it is stable. This is a precondition for the passivity analysis.

5.3.2 VSC subsystem

The input-admittance transfer functionF (s) is determined by the ac-side characteristics of the
rectifier VSC Station 1 and its control. Following the analysis of Section (5.2.3), a PI-controller
is at this stage chosen (instead of a proportional controller with power-feedforward) for the
direct-voltage control. This is because, in order to perform a passivity analysis, transfer function
F (s)must be at least stable. Expression (5.38) corresponding tothe use of a simple PI-controller
is always stable, but not (5.37), which is related to the proportional controller with power-
feedforward. For a selection ofKp = adCconv andKi = a2dCconv/2 as in [14], the ideal closed-
loop direct-voltage control of the rectifier (assuming no dc-transmission link), would have two
real poles ats = ad. As such, the input-admittance transfer function of the SISO system has the
general form of (5.38), providing the final expression

F (s) =
Kps+Ki

s
·K(s) = −

adacci
d
f1,0Lf1Cconv

υd
g1,0

(s+ ad/2)

s

(s+ bd1)

(s+ acc)
(5.41)

As it can be observed,F (s) is always stable. This, combined with the fact thatG′(s) is stable,
indicates that a passivity approach of the system can be considered to investigate the stability
of the closed-loop system.

5.3.3 Analysis

The complete VSC-HVDC link is here evaluated and for scalingpurposes the system is exam-
ined in per-unit. The passivity properties of the system mayalter according to the operational
conditions and choice of control parameters and passive elements. Their values are the same
as in Table 3.1, with nominal power transfer and direct voltage, with the difference that the
bandwidthad of the closed-loop direct-voltage control is allowed to vary. A cable-type of the
transmission line is chosen with physical characteristicsprovided in Table 2.1. The cable length
is here set to 50 km.

The frequency response ofG′(s) is presented in Fig. 5.5. A resonance peak is observed at
ω = 7.42 pu, which is very close to the resonance frequency of the transmission link, having
ωres = 7.40 pu, as defined by (3.15). It can also be seen that the phase angle of the transfer
function is always between -90◦ and 90◦ and since it is also marginally stable,G′(s) is passive
for all frequencies. Therefore, withF (s) being already stable, the passivity analysis dictates
that if there is a chance of instability in the closed-loop SISO system thenF (s) will necessarily
be non-passive.

The system is now tested for three different bandwidths of the close-loop direct-voltage control:
(a) ad = 0.4 pu, (b)ad = 1.4 pu and (c)ad = 2.4 pu. Figure 5.6 shows the real and imagi-
nary parts ofG′(jω) andF (jω) for each of the cases. Observe that for the investigated cases,
Re[F] is negative over a large part of the frequency domain, indicating thatF (s) is non-passive
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Fig. 5.5 Frequency response ofG′(s).

and therefore provides a hint for possible instability. Observe thatF (s) is non-passive for any
amount of positive power transfer.

In this case, the Nyquist criterion should be applied. For a certain frequencyω, the transfer
functionsF (s) andG′(jω) can be regarded in terms of their real and imaginary parts as

F (jω) = Fr (ω) + jFi (ω) (5.42)

G′ (jω) = G′
r (ω) + jG′

i (ω) (5.43)

At a frequencyωN the Nyquist curveF (jω)G′ (jω) crosses the real axis. There could be mul-
tiple such frequencies but if there is a poorly-damped potential resonance, then aωN will exist
close to that resonant frequency withF (jωN)G

′ (jωN) being close to the -1 value [87]. If the
closed-loop SISO system is to remain stable, then

F (jωN)G
′ (jωN) > −1 ⇒ Fr (ωN)G

′
r (ωN)− Fi (ωN)G

′
i (ωN) > −1 (5.44)

Such a resonant frequencyωN is found to exist for each of the examinedad cases, with it
being always close to theωpeak = 7.39 pu ofRe[G′], which is itself very close to the resonant
frequencyωres = 7.4 pu of the dc-transmission link. As it can be observed in Fig. 5.6(b), the
value ofIm[G’] (equal toG′

i (ω)) aroundωpeak (and thereforeωN as well) is very close to zero.
A consequence of this is that the termFi (ωN)G

′
i (ωN) in (5.44) becomes much smaller than

Fr (ωN)G
′
r (ωN) and can thereby be neglected. Expression (5.44) can now be approximated by

Fr (ωN)G
′
r (ωN) > −1 (5.45)
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Fig. 5.7 Pole movement of the closed-loop SISO system forad = 0.4 pu (×), ad = 1.4 pu (♦), ad =
2.4 pu (+). The fifth pole associated with the current-controller bandwidth acc is far to the left
and is not shown here.
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and sinceωN is close toωpeak, (5.45) becomes

Fr (ωpeak)G
′
r (ωpeak) > −1 (5.46)

SinceG′
r (ωpeak) = 0.44 pu, (5.46) provides the information that for an increasingly negative

value ofFr (ωpeak), the value ofFr (ωpeak)G
′
r (ωpeak) decreases with the possibility of surpass-

ing -1 and the closed-loop system becoming unstable. This behavior is observed in Fig. 5.6(a)
where for an increasingad, the value ofFr (ωpeak) is initially positive but gradually turns neg-
ative and keeps decreasing. This indicates that the increase of ad decreases the damping of the
resonant poles of the system and, eventually, leads to the instability of the system.

This can be visually demonstrated in Fig. 5.7 where the closed-loop poles of the system are
plotted for the three different cases ofad. Indeed, an increase ofad causes the poorly-damped
resonant poles of the system, with a natural frequency closeto ωpeak, to become increasingly
under-damped until they become unstable forad = 2.4 pu.

5.3.4 Altered system configuration

At this stage, the same dc-transmission link as before is considered but the direct-voltage con-
trol is changed to a proportional controller with power-feedforward. This means that the input-
admittance transfer functionF (s) is the one described by (5.37). As mentioned in Section
(5.2.3), the transfer functionH(s), which exists within the expression ofF (s), inherits the
dynamics of the dc-transmission system and is unstable. Furthermore, the fact thatH(s) is lo-
cated on a positive feedback loop that forms the finalF (s), as seen in Fig. 5.4(a), causes the
completeF (s) function to be permanently unstable. This means that the passivity approach
cannot be used for the frequency analysis of the closed-loopstability.

One natural way to still use the passivity approach is to approximateG(s) with G′(s) when
deriving the feedforward term forF (s). However, as it will be shown in Chapter 5 and 6, this
approximation does not always hold. For this reason, an alternative frequency-domain method
to assess the system stability will be described in the following section.

5.4 Frequency-domain analysis: Net-damping approach

The net-damping approach in evaluating the stability of a SISO system has no regards on the
passivity of its subsystemsF (s) andG(s). Additionally, it was shown that when possible, the
passivity approach along with the Nyquist curve can provideinformation on the risk of stability
but not strict information on the stability status of a system. This section demonstrates applica-
tions of the net-damping criterion in a two-terminal VSC-HVDC system. In all cases, the DVC
features the power-feedforward term.
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5.4.1 Open-loop resonances

The system under investigation in this part is identical to the two-terminal VSC-HVDC model
whose performance has been examined in Section 3.3.2. That system featured long overhead
dc-transmission lines and the transferred power was rampedup in stages, from 0 MW (0 pu) to
500 MW (0.5 pu) and finally to 1000 MW (1 pu). While the model appeared to be stable in the
beginning, as shown in Fig. 3.11, when the power reached 900 MW (0.9 pu), it became unstable
with a resonance of 31.74 Hz. Once the power started decreasing until 500 MW, the stability
was restored.

The SISO representation of the system considers the input-admittance transfer functionF (s)
and the feedback transfer functionG(s) as defined in (5.37) and (5.15), respectively. The investi-
gation starts by locating potential open-loop resonances of |F (jω)| and|G(jω)|1. The frequency
domain plots of those transfer functions are shown in Fig. 5.8(a)) and Fig. 5.8(b)), respectively,
for the three different power transfers of interest; 0 pu, 0.5 pu and 0.9 pu. Observing|G(jω)|,
it is immediately apparent that there is always a single resonance at a frequency that is almost
independent on the transmitted power and is very close to theresonant frequency of the dc grid,
defined in (3.15). On the other hand,|F (jω)| seems to exhibit no resonances for powers of 0 pu
and 0.5 pu, but does have one for a power of 0.9 pu with a frequency of 0.72 pu. Table 5.1
displays the characteristic frequency of these resonances.

The value of the dampingDF(ω) at the point of all the observed resonances is positive. Thereby,
the positive-net-damping criterion of (5.5) will be evaluated. As it can be seen in Table 5.1, the
total dampingD(ω) is always positive at the open-loop resonant frequencies for powers of
0 pu and 0.5 pu. This means that the system should be stable, asdemonstrated through the
time-domain simulation of Fig. 3.11. However, once the system has a transferred power of
0.9 pu,|F (jω)| develops a resonance at 0.72 pu as mentioned before, whereD(ω) is negative
with a value of -0.32 pu. This indicates an unstable system, confirming the unstable conditions
displayed in Fig. 3.11.

This behavior can be observed in terms of the pole movement ofthe system for the different
power transfers, as displayed in Fig. 5.9. The poles are calculated for the closed-loop trans-
fer functionF (s) / (1 + F (s)G (s)). As demonstrated, the system exhibits a pair of poorly-
damped complex conjugate poles which are of concern due to their proximity to the imaginary
axis. For a power transfer of 0 pu and 0.5 pu, these poles are stable. However, when the power
increases to 0.9 pu, the already poorly-damped poles becomeunstable with a predicted resonant
frequency of 0.623 pu, or 31.15 Hz, which is very close to the 31.74 Hz oscillation observed in
the time-domain simulation.

1F (s) andG(s) are both unstable. An attempt to locate their resonant points by plotting the bode plot in a
way that a sinusoidal input signal is provided and the amplitude and phase of the output signal are measured, is
not useful as the response of such systems for any input wouldbe a signal that reaches infinity. However, plotting
|F (jω)| and|G(jω)| still allows the identification of the local peaks that serveas the open-loop resonances and
can be further used in the net-damping analysis.
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Fig. 5.8 Frequency analysis of subsystems and total dampingfor transferred power equal to 0 pu (solid),
0.5 pu (dashed) and 0.9 pu (dotted).

TABLE 5.1. LOCATION OF OPEN-LOOP RESONANCES AND TOTAL DAMPING

Power (pu) |F (jω)| resonant |G(jω)| resonant D(ω) at |F (jω)| D(ω) at |G(jω)|
frequency (pu) frequency (pu) resonance (pu) resonance (pu)

0 - 1.07 - 15.3
0.5 - 1.05 - 13.46
0.9 0.72 1.01 -0.32 10.48

103



Chapter 5. Stability in two-terminal VSC-HVDC systems: frequency-domain analysis

-2 -1.5 -1 -0.5 0 0.5
-1

-0.5

0

0.5

1

Real part (pu)

Im
a

g
in

a
ry

 p
a

rt
 (

p
u

)

Fig. 5.9 Pole movement of the closed-loop SISO system for transferred power equal to 0 pu (×), 0.5 pu
(♦) and 0.9 pu (+). The fifth pole associated with the current-controller bandwidth acc is far to
the left and is not shown here.

5.4.2 Non-apparent cases

In the vast majority of the examined cases, a straightforward commenting for the stability of the
system could be provided by focusing only on the open-loop resonances, as in Section (5.4.1).
However there are some rare and unusual scenarios where thisapproach could not give an
explanation for the instability of the system. One of these cases is investigated here. The model
used is the same as in Section (5.4.1) with the differences being

1. the overhead line length is reduced to 50 km;

2. the power transfer is set to 1 pu;

3. the closed-loop bandwidthsad andaf are both increased from 1 pu to 3.5 pu.

Under these conditions, the closed-loop system is unstablewith a pair of unstable complex
conjugate poles at0.0044 ± 1.541 (pu). The frequency domain results of|F (jω)| and|G(jω)|
are presented in Fig. 5.10(a); as it can be observed, there isonly one open-loop resonance which
is found on|G(jω)| atω = 2.63 pu; |F (jω)| appears to have no resonances. At that frequency,
dampingDF(ω) is positive, meaning that the total dampingD(ω) should be positive as well.
Indeed, measuring the latter at the resonant frequency gives a positive value ofD(ω) = 11.68 pu
(as seen in Fig. 5.10(b)), suggesting that the system shouldbe stable. This creates a controversy
since the system is already known to be unstable.

It should be reminded here that, as mentioned in Section (5.1.2), the net-damping criterion
should be evaluated not only for the open-loop resonances, but for low frequencies as well where
the loop gain exceeds unity. Following this statement, the Nyquist curve of the system showed
that theF (jω)G(jω) curve crosses the real axis with a value of -1.02 pu (enclosing point -1
and causing instability) at a frequencyωN = 1.54 pu. This frequency is below the open-loop
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Fig. 5.10 Frequency analysis of subsystems, total damping and Nyquist curve of the system.

105



Chapter 5. Stability in two-terminal VSC-HVDC systems: frequency-domain analysis

resonance of 2.63 pu. At this frequency,DF(ω) is positive and the total dampingD(ω) is equal
to -0.0012 pu, indicating that there is instability, even though barely. As mentioned in [30],
negative total damping at low frequencies is a strong indication of instability, even though the
open-loop resonances may have positive damping. This has been demonstrated here, proving
that the net-damping criterion still provides an answer in the rare occasions when the system is
unstable, despite a good damping of the apparent open-loop resonances.

5.5 Correlation between net-damping and damping factor

In the previous section, it was shown how the net-damping criterion can provide direct infor-
mation on whether a SISO system is stable or unstable. However there has been no information
relating the criterion to poorly-damped or near-instability conditions.

5.5.1 Damping in a multi-pole system

As mentioned in Section (3.1), the damping of a system can be strictly defined only for 2nd order
systems as the one described in (3.1). When it comes to multi-pole systems, it is not possible
to provide a similarly strict definition of the system’s damping. A step-wise excitation of the
system excites all of its eigenmodes (given the fact the unitstep contains the full frequency
spectrum) and the total system response consists of their superposition.

However, the behavior of a multi-pole system is normally dominated by its dominant poles (if
these exist), which dictate the main properties of its response to a perturbation. Furthermore,
poles with very low damping have, by definition, a very small absolute real part, becoming
potentially dominant as they find themselves very close to the imaginary axis. In such cases, the
final response of the system will be mostly dictated by those poorly-damped poles and it is here
suggested, in a non-strict manner, that their damping factor can be regarded as the damping of
the complete system.

5.5.2 Net-damping in poorly-damped configurations

Typically, the encirclement by the Nyquist plot of -1 occursat low frequencies and in the neigh-
borhood of resonances [87]. These resonances are usually identified with poorly-damped poles
that move towards the RHP of the complex plane due to a change of a critical parameter (e.g.
transferred power). When the system is on the verge of instability, the Nyquist curve intersects
with the point -1. This occurs at a frequencyωcrit with the corresponding closed-loop system
having either a real pole at the origin of thes−plane or a pair of marginally-stable complex-
conjugate poles with a damped natural frequencyωd = ωcrit. If these poles have not yet become
unstable but are close enough to the imaginary axis, the Nyquist curve will cross the real axis on
the right of -1 but in close proximity to it. This occurs at a frequencyωN that is closely related
to the damped natural frequency of the related poorly-damped poles.
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If the system is marginally stable, its net-damping at the frequencyωN = ωcrit = ωd is equal to
zero

D(ωN) = D(ωcrit) = DF (ωcrit) +DG (ωcrit) = 0 (5.47)

Based on the previous analysis, it is here suggested that it is possible to correlate the level of net
damping of a system measured atωN, with the existence of poorly-damped poles that are close
to instability. The closer these poles approach the imaginary axis, the more the net damping
D(ωN) should approach zero until the poles become marginally stable andD(ωN) = 0. The
value that quantifies the level of damping for these poles is their damping factor. The closer the
latter is to zero, the less damped the poles and the system is closer to instability.

The objective of this analysis, is to provide a way though solely a frequency analysis of the sys-
tem to determine whether there are poorly-damped poles critically close to the imaginary axis,
without actually finding the poles of the system and the frequency characteristics of the poorly-
damped poles. For this reason, four different scenarios areexamined where the two-terminal
VSC-HVDC system appears to have poorly-damped poles whose damping decreases with the
change of a system parameter or operational condition, until they almost become marginally
stable. In all cases, the damping of these poles is plotted inconjunction with the measurement
of the net damping at the frequencyωN where the Nyquist curve crosses the real axis closest
to -1. As for the previous sections, the DVC is at all times considered to feature the power-
feedforward term.

The four different cases use the basic values as defined in Table 3.1 with the custom differences
being identified in the following way

- Case 1: The system features overhead dc-transmission lines with their properties defined
in Table 2.1 and their length is varied from 50-230 km.

- Case 2: The system features overhead dc-transmission lines and the controller bandwidths
ad andaf are equal and varied from 200-630 rad/s.

- Case 3: The system features overhead dc-transmission lines of 230km in length and the
transferred power at the inverter Station 2 is varied from 0-1000 MW.

- Case 4: The system features cable dc-transmission lines with their properties defined in
Table 2.1 and their length is varied from 26-43 km.

Each of the graphs in Fig. 5.11 shows the pole movement of the system for an increasing trend
of the chosen variable, with the concerned poles being encircled. In the first three cases, the
dampingDF(ωN) of the VSC input admittance is positive atωN and therefore for the system
to be stable, the net-damping should be positive. This is confirmed in Figures 5.11(a)-5.11(c)
where the systems are already known to be stable and the measured net damping is indeed

107



Chapter 5. Stability in two-terminal VSC-HVDC systems: frequency-domain analysis

−1.5 −1 −0.5 0

−2

0

2

Real part (pu)

Im
ag

in
ar

y 
pa

rt
 (

pu
)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

D
(ω

) 
at

 ω
N
 [p

u]

Damping of concerned poles

concerned poles  

(a) Results forCase 1scenario.

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−4

−2

0

2

4

Real part (pu)

Im
ag

in
ar

y 
pa

rt
 (

pu
)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8
D

(ω
) 

at
 ω

N
 [p

u]

Damping of concerned poles

concerned poles  

(b) Results forCase 2scenario.
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(c) Results forCase 3scenario.
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(d) Results forCase 4scenario.

Fig. 5.11 Frequency analysis of poorly-damped systems. Four scenarios are examined with a different
variable of the system changing in each of them. In the pole movement, ”∗” corresponds to
the starting value and ”�” to the final value of the variable. The fifth pole associated with the
current-controller bandwidthacc is far to the left and is not shown here.
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positive. On the contrary, in Case 4 the dampingDF(ωN) is negative and according to (5.8), the
net damping should be negative to ensure stability. This is verified in Fig. 5.11(d) where the
stable system exhibits negative net damping atωN.

At this stage it is interesting to notice that for all the investigated scenarios there is a consis-
tency in a sense that there is a monotonous relationship between the net damping of the system
and the damping factor of the poorly-damped poles, providedthat the latter are sufficiently
close to the imaginary axis. The pattern that is exhibited inthe right graphs of Fig. 5.11 dic-
tates that a net damping value|D(ωN)| that is moving consistently towards zero, implies the
existence of poorly-damped poles whose damping factor decreases consistently, until they be-
come marginally stable. In this case, the system would be on the verge of stability. In fact, for
poorly-damped poles which are quite close to the imaginary axis, the relation between|D(ωN)|
and damping factor becomes almost linear. This provides theinformation that a certain rate
of change in the net damping implies a similar rate of change in the damping factor of the
concerned complex poles.

It is important to notice that the previous analysis reachesconclusions regarding

1. the stability of the system

2. the existence of poorly-damped poles

3. the progression of the damping factor of the poorly-damped poles, for a change of a
critical variable

by only using information from the frequency analysis of thesystem, without explicitly solving
the characteristic polynomial to identify specific poles and define which of them are possibly
poorly damped. Another comment on the results is that a relatively large absolute value of the
net-damping measured at the frequencyωN, suggests that even if there are poorly-damped poles,
they are sufficiently far away from the imaginary axis and therisk of instability is minimized.

5.6 Stability improvement

At this stage, an intervention is made to the control of the rectifier station by adding a fil-
tering stage in an attempt to improve the closed-loop stability. The effects of this action are
demonstrated and explained from a net-damping point of view, showing how each subsystem is
individually affected and finally contributes to the overall stability improvement.

5.6.1 Notch filter in the control structure

A notch filter is essentially a 2nd order band-stop filter, centered at a selected frequencyωn and
having a dc-gain equal to unity. It is defined as

Hnotch (s) =
s2 + 2ξ1ωns+ ω2

n

s2 + 2ξ2ωns+ ω2
n

(5.48)
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Fig. 5.12 SISO representation of the two-terminal VSC-HVDCmodel with a notch filter on the power-
feedforward term.

where the three positive and adjustable parameters areξ1, ξ2 andωn. A mitigating behavior of
the filter requiresξ1 < ξ2. The ratio ofξ2/ξ1 determines the depth of the notch centered at
the selected frequencyωn, where the larger the ratio, the deeper the notch. Additionally, the
absolute values ofξ1, ξ2 determine theQ-factor of the filter. The higher theQ, the narrower and
deeper the notch is, leading on one hand to a more intense attenuation of an oscillating signal,
which on the other hand should happen to be in a more narrow band of frequencies aroundωn,
where the filter can be effective.

In the direct-voltage control structure of the rectifier, ifthere is a poorly damped resonance
on the dc-side, the measured powerPm will contain an oscillation at the resonant frequency.
This signal will pass through the power-feedforward term into the control process and affect the
generated power reference signal. If this frequency appears in the frequency range where the
DVC is active, it is possible to mitigate it by introducing a notch filter centered at the resonant
frequency. The ideal location is to add it in series with the pre-existing low-pass filter of the
power-feedforward control branch. Considering the earlier control version shown in Fig. 5.4(a),
the addition of the notch filter transforms the control path as in Fig. 5.12.

Under this modification, the input-admittance transfer function of the rectifier station becomes

F (s) = Kp
K (s)

1−K (s)Hnotch(s)H (s)M (s)
(5.49)

5.6.2 Damping effect of the notch filter

The effectiveness of the notch filter in enhancing the stability of the system is here demonstrated
by using the examples described in Section (3.3.2) and in Section (5.4.1). The considered two-
terminal VSC-HVDC link, featuring overhead dc-lines of 300km in length, is found to be
unstable for a power transfer of 0.9 pu. The poles of this configuration can be observed in
Fig. 5.9 (indicated with ”+”) and it is obvious that there is a pair of unstable complex conjugate
poles with a resonant frequency of 0.623 pu. The bandwidth ofthe DVC is 0.955 pu. Therefore,
the observed resonant frequency is within the limits of the controller’s action and as stated
earlier, the addition of a notch filter could offer some improvement.

It is here assumed that the properties of the system and the dclines are not precisely known (as in
reality) and the resonant frequency can not be calculated exactly at 0.623 pu. However, for a fair
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Fig. 5.13 Frequency analysis of the system in the presence orwithout a notch filter.
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TABLE 5.2. DAMPING ANALYSIS IN SYSTEM AFFECTED BY THE NOTCH FILTER

Without notch filter With notch filter
|F (jω)| resonant frequency (pu) 0.72 0.98
|G(jω)| resonant frequency (pu) 1.01 1.01
DF(ω) at |F (jω)| resonance (pu) 0.15 0.44
DF(ω) at |G(jω)| resonance (pu) 2.15 0.60
DG(ω) at |F (jω)| resonance (pu) -0.47 -0.36
DG(ω) at |G(jω)| resonance (pu) 8.33 8.33
D(ω) at |F (jω)| resonance (pu) -0.32 0.09
D(ω) at |G(jω)| resonance (pu) 10.48 8.93

deviation of the considered system’s parameters from the actual ones, the resonant frequency
is not expected to deviate significantly. A certain experimental convention is thus considered.
Since the expected resonance is not too far from the bandwidth ad of the direct-voltage control
(at least the same order of magnitude), the notch filter is tuned to have a center frequencyωn

equal toad. Theξ1 andξ2 parameters are also chosen so that the depth of the filter’s notch is
-20 dB and theQ-factor is not too high, so that relatively neighboring frequencies toωn can be
sufficiently attenuated (including the resonant frequencyof 0.623 pu).

It should also be mentioned that for too deep notches and frequencies close toωn, the phase
of Hnotch(jω) starts reaching values close to -90◦ and 90◦, instead of remaining close to 0◦, as
is the case for smaller notch depths. This is not desirable assignals could be introduced to the
control with a severe distortion of their phase, deteriorating the closed-loop stability.

Figure 5.13 presents a frequency analysis of the system withand without a notch filter included.
Specifically, in Fig. 5.13(a) it is possible to observe the|F (jω)| and|G(jω)| curves where, as
expected, there is a single curve for the grid impedance since it is not affected by the presence
of the notch filter. This also means that the dampingDG(ω) of G(jω) in Fig. 5.13(b), as well as
the open-loop resonance of the dc grid at a frequency of 1.01 pu, remains unaffected. Focusing
on |F (jω)|, it is possible to notice that the addition of the notch filterhas caused the open-
loop resonance to move from 0.72 pu to 0.98 pu in frequency. The resonance spine has become
sharper but the absolute value of|F (jω)| at that frequency has decreased, indicating a smaller
intensity in the related time domain oscillations.

The value ofDF(ω) at all open-loop resonances is always positive, as seen in Table 5.2. This
means that to achieve stability, the net-dampingD(ω) at those frequencies should be positive
with a higher value implying an improved damping factor on the poorly-damped poles. As
observed in Section (5.4.1) and repeated in Table 5.2, the system without a notch filter has a
negative net-damping at the VSC input-admittance resonance, making the system unstable.

SinceD(ω) = DF(ω) + DG(ω) and theDG(ω) does not change, an improvement of stabi-
lity by introducing the notch filter should translate into anupwards movement of theDF(ω).
An increase in the value ofDF(ω) in the open-loop resonant frequencies would increase the
total D(ω) there, making it positive; thus ensuring stability. This can indeed be displayed in
Fig. 5.13(b) where the introduction of the notch filter has causedDF(ω) to raise in general and
in fact be constantly positive in a wide spectrum around the critical resonant frequencies. As a
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Fig. 5.14 Stability effect of notch filtering. (a) Pole placement for the system with (♦) and without (×)
a notch filter. An additional pole associated with the current-controller bandwidthacc is far
to the left and is not shown here. (b) Unit-step response of the system with (solid line) and
without (dashed line) a notch filter.

result, the completeD(ω) curve has been raised as well in Fig. 5.13(c), in the same spectrum
of frequencies with only a small negative notch close to the input admittance resonance. From
a pole-movement perspective in Fig. 5.14(a), the addition of the notch filter has managed to

1. increase the damping of the already well-damped complex poles on the left side of the
plot;

2. stabilize the previously unstable complex poles;

3. introduce a new pair of complex poles close to the now stabilized poles, but with better
damping than them, without significantly affecting the finalresponse of the system.

The effect of the last attribute can be visualized in a time-domain investigation of the system in
Fig. 5.14(b). There, it is observed that the initial stage ofthe unit-step response of the system
is only slightly slower when a notch filter is used. This is attributed to the newly introduced
complex pole pair, whose relatively small real part impliesa contribution with slow dynamics.
However, the major comment is that the system is now stable with a quick damping of the
oscillation which has been excited, only after approximately 2 periods.

Observe that the dynamics of the system, and thereby the location of the new poles, depend
on the tuning of the notch filter. A higherQ-factor of the latter will lead to a faster unit-step
response but the damping of the oscillation observed in Fig.5.14(b) will worsen.

A conventional pole-movement approach cannot directly explain the improvement in the stabi-
lity of the system with the introduction of the notch filter, but merely depict the updated pole
location. Nevertheless, the net-damping approach offers an explanation of the phenomenon.
While the grid impedance and its damping remained unaltered, the notch filter incurred an in-
crease solely in the damping of the VSC input admittance causing the total dampingD(ω) of
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the system to be high enough and positive at all of the open-loop resonances, thereby stabilizing
it. Concluding, any intervention, either in the dc-transmission or the control of the rectifier sta-
tion (or both), that can increaseD(ω) in the critical resonant points will provide better damping
characteristics for the overall system and possibly stabilize an unstable configuration.

5.7 Summary

In this chapter, the dynamics of the generic two-terminal VSC-HVDC system has been studied,
using a frequency domain approach. To assist this type of analysis, the system has been modeled
as a SISO feedback system. This comprised of two subsystem:

1. An input-admittance transfer functionF (s), describing the way the DVC-VSC subsystem
reacts to a given change of direct voltage at its terminals, by injecting a controlled amount
of active power to the dc grid.

2. A feedback transfer functionG(s), describing the way the passive dc-grid subsystem
reacts to an injection of power from the DVC-VSC, by alteringthe voltage at the dc-side
capacitor of the latter.

Initially, the passivity approach has been utilized. If both subsystems are passive, the SISO is
stable as well but at least one non-passive subsystem servesas an indication that the system
could be unstable. The dc-grid transfer functionG(s) is naturally unstable but for low values
of transmission line inductance (cable-type of line), it can be approximated by the marginally
stableG′(s), which is also passive. This means that the latter cannot be the source of instability
in the system. IfF (s) is stable, the closed-loop SISO system stability can then beassessed by
the passivity properties ofF (s). For this reason, a conventional PI voltage control structure
without power-feedforward has been chosen, renderingF (s) stable. It has been shown that high
values in the bandwidthad renderedF (s) non-passive and the SISO was indeed unstable. This
has demonstrated the usefulness of the passivity approach on providing a good indication on
the closed-loop stability in the frequency domain.

However, for other types of DVC or different types of transmission lines e.g. overhead lines,
F (s) can be unstable andG(s) may no longer be approximated by a marginally stableG′(s).
Hence, the passivity approach cannot be used. The net-damping criterion has, thus, been al-
ternatively considered, because it does not require passive or even stable subsystem transfer
functions to provide answers regarding the stability of theclosed-loop SISO system. In systems
with a DVC with power-feedforward and overhead lines in the dc grid, the net-damping crite-
rion has demonstrated very accurate predictions on the closed-loop stability and a relation has
been derived, correlating the absolute net-damping value and the actual damping factor of the
poorly-damped poles of the system. Finally, the stabilizing effect of adding a notch filter in the
DVC of an unstable system has been observed and assessed through a net-damping approach.

Having utilized a frequency-domain approach in the analysis of the closed-loop stability of
two-terminal VSC-HVDC systems using converters without internal dynamics, the following
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chapter has the same goal but attempts to investigate systems using MMC technology at the
VSC stations.
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Chapter 6

Frequency-domain analysis in
two-terminal MMC-based VSC-HVDC
systems

The use of the MMC in VSC-HVDC applications can have significant effect on the behavior
of the overall system. Compared to the 2LC, the MMC has a completely different structure
that introduces internal dynamics and requires added control levels in order for the converter
to operate properly. It is, therefore, of great importance to have a thorough knowledge of the
MMC behavior when performing stability analysis in HVDC systems that feature this type of
converter.

The focus in this chapter is concentrated on the dc-side dynamics of the MMC, with the aim
of deriving the analytical dc-side input admittance of the DVC- or APC-MMC. The derived
expression can then constitute a tool to investigate, usinga frequency-domain analysis approach
in a similar manner as in Chapter 5, the impact of the MMC connected to VSC-HVDC systems,
but also to compare the dynamic behavior between systems using MMC or 2LC technologies.

6.1 Introduction

The MMC technology is today an established power-electronics solution in high-voltage appli-
cations, e.g., VSC-HVDC transmission systems [31–33], with increased consideration for use
in other areas as well, e.g., large electric motor drives [88–90]. The advantages of the MMC
over other converter topologies include the modularity of the design, production of high quality
voltage/current waveforms with a subsequent limited need for filters, high efficiency with the
possibility of reduced switching losses in the semiconductors and lower voltage rating of the
basic building block (module or cell) for a fraction of the total dc-link voltage. However, the
advanced topology and presence of internal dynamics, compared to the typical 2LC, as well as
the need for additional control to balance the capacitors ofthe modules and control the circu-
lating current, introduce challenges to the controllability and dynamic behavior of the systems
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that use the MMC.

The dynamics and asymptotic stability of the MMC have been extensively investigated in [91–
94] in a per-phase approach, assuming the absence of any typeof control loop, apart from the
circulating-current control (CCC). There, connection to astrong alternating-voltage source is
considered, while the direct voltage on the dc side of the converter is treated as a time-invariant
quantity. A further step of including the current controller in the stability assessment of the
MMC has been taken in [95].

If a converter behaves as a passive system [83], i.e., its input admittance has non-negative real
part (conductance) for all frequencies, then it cannot negatively contribute to the stability of the
system in which it is embedded. Even though this condition israrely fulfilled, if the conductance
is positive in the neighborhood of each critical resonance,the risk for instabilities appearing is
significantly reduced [53]. The use of the ac-side input admittance of a two-level three-phase
VSC to investigate the converter–grid interaction and stability is first used in [53], whereas the
dc-side input admittance of the same type of converter is used to investigate dc-side resonances
in [26, 96]. Nevertheless, the use of the MMC introduces complications in the calculation of
the converter’s input admittance, mainly due to the converter’s internal dynamics and additional
levels of control, e.g., CCC and cell-capacitor voltage balancing control.

A first attempt to describe the MMC in the form of a dc-side impedance has been made in [34]
and re-assessed in [35]. However, the analysis entirely limited the control consideration to the
CCC, regarded the direct voltage as fixed over time for most ofthe derivations and disregarded
the type of ac grid the MMC is connected to. These issues are vital in the stability investiga-
tion of VSC-HVDC transmission systems where MMC stations are used and such assumptions
cannot be made without severely affecting the validity of the investigation. The main focus
in this chapter is concentrated on the derivation of the dc-side input admittance of the MMC,
whether it is in DVC- or APC-mode. Unlike the existing literature [34, 35], a highly detailed
MMC model with all needed control loops of control loops is considered, as in realistic MMC
applications. The operating principles of the DVC-MMC are here described, along with the in-
ternal dynamics of the converter, resulting in a form that considers the accumulated effect of the
converter’s three-phase legs. The relations acquired are then used to derive the dc-side input ad-
mittance of the MMC. The derived dc-side input admittance isthen utilized as a tool to perform
a frequency-domain analysis of two-terminal MMC-based VSC-HVDC systems and compare
the MMC and 2LC in terms of their passivity properties.

6.2 Main structure and operating principles of the MMC

The system under investigation is presented in Fig. 6.1. On the ac side, the MMC is connected to
a generic ac grid that is described by an equivalent voltageυ

s
s and an equivalent grid impedance

Z(s). The connection between each leg of the converter and the ac grid is performed via a phase
reactor ofLf inductance andRf parasitic resistance. Any impedance attributed to the presence of
a transformer, ac-side filters or generally any component present to the left of phase reactor are
included in theZ(s) expression. On the dc side, the MMC provides powerP0 to a fixed-power
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Figure 6.1: a) Per-phase schematic of an MMC withN submodules per arm and designation of
the converter’s dc-side input admittanceYMMC(s), b) Schematic of theith submodule in an arm
of the MMC.

load, having voltageυdc at its terminals.

Each of the six arms of the MMC comprises ofN submodules connected in series. The internal
structure of theith submodule of an arm is presented in Fig. 6.1(b). For the present investigation,
it is assumed that the submodules are of the half-bridge type(presented earlier in Fig. 2.7(a)),
even though this is not compulsory for the validity of the final conclusions. The capacitance
of each cell isC and the voltage measured across it, for theith submodule, isυi

cu,l with ’u, l’
indicating the location of the submodule (or generally a component or a quantity) on the upper,
u, or lower, l, arm of a leg. Each converter arm is connected to its adjacentac phase via a
coupling inductor ofLc inductance andRc parasitic resistance.
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A converter phase has an ac output current designated asif , while a feature characteristic of
the MMC is the fact that there is a current component that flowsinside a converter leg with-
out propagating to the ac side, designated as circulating current ic. The output current and the
circulating current can be related with the upper arm current iu and lower arm currentil in the
following way

if = iu − il (6.1)

ic = (iu + il)/2 (6.2)

iu = if/2 + ic (6.3)

il = − if/2 + ic (6.4)

It should be noted thatic should ideally be a dc type of current but if left uncontrolled, it will
contain undesired harmonic components that will negatively affect the charging/discharging
cycle of the submodule capacitors causing them to demonstrate a larger voltage ripple than
normally designed for.

On one arm of the converter, the sum of the capacitor voltagesfrom the cells is

υΣ
cu,l =

N∑

i=1

υi
cu,l (6.5)

while on an entire leg, two quantities can be defined; the total capacitor voltage per legυΣ
c and

the imbalance capacitor voltage per legυ∆
c :

υΣ
c = υΣ

cu + υΣ
cl (6.6)

υ∆
c = υΣ

cu − υΣ
cl (6.7)

At any given time, the control of the converter decides how many cells should separately be
inserted in the upper and lower arm of a leg, so that the resulting voltageυc at the ac terminal of
the leg becomes equal to an expected quantity. The control initially determines necessary levels
of inserted arm voltagesυcu,l in the upper and lower arm. The state of charge of each arm will
then determine the necessary number of cells that need to be connected to imposeυcu,l. The
latter can also be defined as

υcu,l = nu,lυ
Σ
cu,l (6.8)

wherenu,l is the insertion index per arm, which should be taking valuesbetween 0 and 1.

6.3 Circuit relations

In this section, as well as those that follow, any time delay between the reference and the actual
value of an electrical quantity is neglected. Furthermore,the overall investigation is carried out
in the converter’s rotatingdq frame. For simplicity of the notation, any quantity expressed in this
frame bears no superscript, whereas the expression of the same quantity in any other reference
frame is indicated appropriately.
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Circuit Per Phase

With reference to the notations in Fig. 6.1(a), the following relations apply in each of the phases:

υg = Lf
dif
dt

+Rfif + Lc
diu
dt

+Rciu − υu +
υd
2

(6.9)

υg = Lf
dif
dt

+Rfif − Lc
dil
dt

− Rcil + υl −
υd
2

(6.10)

Respectively adding and subtracting (6.9) and (6.10), and using the definitions given earlier, the
dynamic relations for the output current,if , and circulating current,ic, are provided as

(

Lf +
Lc

2

)

︸ ︷︷ ︸

Lt

dif
dt

= −
(

Rf +
Rc

2

)

︸ ︷︷ ︸

Rt

if + υg − υc (6.11)

Lc
dic
dt

= −Rcic − υcc (6.12)

where
υc =

υcl − υcu
2

(6.13)

is the effective output voltage that drivesif and

υcc =
υdc − υcu − υcl

2
(6.14)

is the internal voltage that drivesic.

AC-Side Dynamics

In the stationaryαβ frame, the dynamics of the portion of the system between the ac grid and
the MMC, as described in per phase by (6.11), are1

υ
s
c = υ

s
g − sLti

s
f − Rti

s
f , υ

s
c = e−sTd

υ
s⋆
c (6.15)

whereυs
g is the voltage at the connection point of the phase reactor tothe ac grid andυs⋆

c is
the reference vector to the PWM, by which the converter voltageυ

s
c is generated. The time

delayTd includes half a switching period plus any additional delay introduced intentionally by
the control (usually one full switching period). Thedq-frame correspondence is obtained by
substitutings → s+ jω1

υc = υg − (sLt +Rt) if − jω1Ltif , υc = e−(s+jω1)Td
υ

⋆
c (6.16)

The grid impedanceZ(s), which is assumed to be balanced, adds the following relations in the
αβ anddq frames, respectively:

υ
s
g = υ

s
s − Z (s) isf , υg = υs − Zdq (s) if (6.17)

whereZdq(s) = Z(s+ jω1).

1The Laplace variables shall be interpreted as the derivative operators = d/dt, where appropriate.
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Current Controller

The CC is designed to operate in thedq frame and it is given as

υ
⋆
c = ejω1Td [−Fc (s) (i

⋆
f − if)− jω1Ltif +Hcc(s)υg] (6.18)

whereFc (s) is a proportional-integral (PI) controller with proportional gainKp,cc and integral
gainKi,cc, whereasHcc(s) = accv/(s+ accv) is a first-order low-pass filter. The angle displace-
ment factorejω1Td compensates the angle displacemente−jω1Td in (6.16). Combining (6.16) and
(6.18) yields

[
sLt +Rt + e−sTdFc (s) −ω1Lt

(
1− e−sTd

)

ω1Lt

(
1− e−sTd

)
sLt +Rt + e−sTdFc (s)

]

īf =

e−sTdFc (s) ī
⋆
f +

[
1− e−sTdHcc (s)

]
ῡg ⇒

īf = Gci (s) ī
⋆
f + Yi (s) ῡg ⇒

∆īf = Gci (s)∆ī⋆f + Yi (s)∆ῡg (6.19)

where the inner closed-loop transfer matrix and the inner input admittance transfer matrix, re-
spectively, are given by

Gci (s) =
e−sTdFc (s)

c (s)

[
a (s) b (s)
−b (s) a (s)

]

(6.20)

Yi (s) =
1− e−sTdHcc (s)

c (s)

[
a (s) b (s)
−b (s) a (s)

]

(6.21)

with
a (s) = sLt +Rt + e−sTdFc (s)
b (s) = ω1Lt

(
1− e−sTd

)

c (s) = a (s) a (s) + b (s) b (s)
(6.22)

The gains ofFc (s) are chosen in the same way as demonstrated earlier in Section2.3.1, taking
the values ofKp,cc = accLt andKi,cc = accRt, considering the accumulated values ofLt and
Rt, with acc being the current-control-loop bandwidth.

Synchronization Loop

The PLL, as described earlier in Section 2.3.2, comprises a PI controller operating on the error
signalυq

g (normalized byυd
g,0), producing an angular frequency correction∆ω1, in the form of

∆ω1 =
sKp,pll +Ki,pll

s
· 1

υd
g,0

υq
g = Fpll (s) υ

q
g (6.23)

The gainsKp,pll andKi,pll are selected as in (2.20). The nominal angular synchronous frequency
ω1,0 is added to∆ω1 and integrated into the transformation angle

dθ

dt
= ω1,0 +∆ω1 = ω1,0 + Fpll (s) υ

q
g ⇒

d∆θ

dt
= Fpll (s)∆υq

g
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6.3. Circuit relations

∆θ =
Fpll (s)

s
∆υq

g ⇒ ∆θ =
[

0
Fpll(s)

s

]

∆ῡg (6.24)

In steady-state conditions, the converterdq frame rotates with an angleθ and angular speedω1,0.
The grid voltage vector rotates with the same speedω1,0, regardless of the transient operation of
the converter. Its representation in a griddq frame, which coincides with the converterdq frame
in the steady state, isυgrid

s . If the PLL angleθ is momentarily disturbed due to, for example, a
sudden change of power flow, the two frames would be displacedby an angle∆θ. In this case

υs = e−j∆θ
υ

grid
s ⇒ ∆υs = ∆υ

grid
s − jυs,0∆θ (6.25)

However, the voltage vector is, by default, constantly following the griddq frame; hence,
∆υ

grid
s = 0. Relation (6.25) then becomes

∆υs = −jυs,0∆θ ⇒ ∆ῡs =

[
υq
s,0

−υd
s,0

]

∆θ (6.26)

Phase-Reactor Dynamics

The equivalent impedance of the connecting gridZdq(s) in the converterdq frame is generally a
complex transfer function. This impedance can be expressedin the equivalent form ofZdq(s) =
ZR(s) + jZI(s), where bothZR(s) andZI(s) are real transfer functions. The grid dynamics,
described in (6.17), can then be linearized using (6.26) as

υg = υs − Zdq(s)if ⇒ ∆υg = ∆υs − Zdq(s)∆if ⇒

∆ῡg =

[
υq
s,0

−υd
s,0

]

∆θ −
[
ZR(s) −ZI(s)
ZI(s) ZR(s)

]

∆īf (6.27)

At the same time, combining (6.16), (6.17), and (6.26) yields

υc = υs − Zdq(s)if − (sLt +Rt) if − jω1Ltif ⇒

∆ῡc =

[
υq
s,0

−υd
s,0

]

∆θ −
[
ZR(s) + sLt +Rt −ZI(s)− ω1Lt

ZI(s) + ω1Lt ZR(s) + sLt +Rt

]

∆īf (6.28)

The combination of (6.24) and (6.27) can provide a direct relation between the angle displace-
ment and the phase-reactor currents as

∆θ =
[

− Fpll(s)ZI(s)

s+Fpll(s)υ
d
s,0

− Fpll(s)ZR(s)

s+Fpll(s)υ
d
s,0

]

∆īf (6.29)

Substituting (6.29) back to (6.27) yields

∆ῡg = Zg (s)∆īf (6.30)

with

Zg (s) =





−υ
q
s,0Fpll(s)ZI (s)

s+Fpll(s)υ
d
s,0

− ZR (s) −υ
q
s,0Fpll(s)ZR(s)

s+Fpll(s)υ
d
s,0

+ ZI (s)

υd
s,0Fpll(s)ZI(s)

s+Fpll(s)υ
d
s,0

− ZI (s)
υd
s,0Fpll(s)ZR(s)

s+Fpll(s)υ
d
s,0

− ZR (s)
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Furthermore, substituting (6.29) in (6.28) yields

∆ῡc = Zs (s)∆īf (6.31)

with

Zs (s) =




−υ

q
s,0Fpll(s)ZI (s)

s+Fpll(s)υ
d
s,0

− ZR (s)− (sLt +Rt) −υ
q
s,0Fpll(s)ZR(s)

s+Fpll(s)υ
d
s,0

+ ZI (s) + ω1Lt

+
υd
s,0Fpll(s)ZI(s)

s+Fpll(s)υ
d
s,0

− ZI (s)− ω1Lt +
υd
s,0Fpll(s)ZR(s)

s+Fpll(s)υ
d
s,0

− ZR (s)− (sLt +Rt)





(6.32)

A direct relation between∆īf and∆ī⋆f is now possible if (6.30) is substituted in (6.19) as

∆īf = Gci (s)∆ī⋆f + Yi (s)Zg (s)∆īf ⇒

∆īf = [I − Yi (s)Zg (s)]
−1Gci (s)

︸ ︷︷ ︸

Gcc(s)

∆ī⋆f (6.33)

Consequently,∆ῡg and∆ῡc are directly related to∆ī⋆f by substituting (6.33) in (6.30) and
(6.31)

∆ῡg = Zg (s)Gcc (s)
︸ ︷︷ ︸

Kg(s)

∆ī⋆f (6.34)

∆ῡc = Zs (s)Gcc (s)
︸ ︷︷ ︸

Ks(s)

∆ī⋆f (6.35)

Direct-Voltage Controller

The DVC of the station is chosen to be a PI-based controller inthe form of:

P ⋆ = Fdc (s) (Wref −W ) (6.36)

Observe that a power feedforward term, as in Fig. 2.15(b), isnot included in this case. This
particular control choice has been made because, as demonstrated in Chapter 5, the use of a
power feedforward term introduces the dc-grid dynamics into the input admittance of the con-
verter. Therefore, the input admittance would vary, depending on the grid where the converter
is connected to. It is here desirable to implement a control structure that allows the converter
to be observed independently from its dc grid and, thus, a direct-voltage control without power
feedforward is chosen.

In order to provide the reference valueid⋆f to the CC,P ⋆ is divided by the measured modulus of
υg, filtered through a first-order low-pass filterHdc(s) = adc/(s+adc) (to reject high-frequency
disturbances) as

id⋆f =
P ⋆

υg,filt
, υg,filt = Hdc (s) |υg| (6.37)
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6.4. Internal dynamics of the MMC

Assuming a fixed direct voltage referenceυ⋆
dc = υdc,0 and fixed load powerP0 (also conforming

to P0 = υd
c,0i

d
f,0 + υq

c,0i
q
f,0), (6.36) is linearized as

∆P ⋆ = −2Fdc (s) υdc,0∆υdc (6.38)

Linearizing (6.37) and using (6.38) and (6.34) yields

∆id⋆f =
∆P ⋆

υd
g,0

− P ⋆
0

(
υd
g,0

)2Hdc (s)∆υd
g

= −2υdc,0
υd
g,0

Fdc (s)∆υdc −
P ⋆
0

(
υd
g,0

)2Hdc (s)∆υd
g

= −2υdc,0
υd
g,0

Fdc (s)∆υdc −
P ⋆
0

(
υd
g,0

)2Hdc (s)Kg,11 (s)∆id⋆f ⇒

∆id⋆f = − 2υdc,0Fdc (s)

υd
g,0 +

P ⋆
0

υd
g,0
Hdc (s)Kg,11 (s)

︸ ︷︷ ︸

M(s)

∆υdc (6.39)

where

P ⋆
0 = P0 +Rt

[(
idf,0
)2

+
(
iqf,0
)2
]

+
2

3
Rci

2
dc,0 (6.40)

for rectifier operation and

P ⋆
0 = P0 − Rt

[(
idf,0
)2

+
(
iqf,0
)2
]

− 2

3
Rci

2
dc,0 (6.41)

for inverter operation.

6.4 Internal dynamics of the MMC

In this section, the internal dynamics of the MMC are initially described in a per-phase approach
and then in an accumulated form, considering all three phases of the converter.

The stored energy in the capacitors of each arm is

Wu,l =

N∑

i=1

C
(
υi
cu,l

)2

2
=

C

2

N∑

i=1

(
υi
cu,l

)2
(6.42)

However, the stored energy per arm must equal the instantaneous input power to that arm,
yielding

dWu,l

dt
= C

N∑

i=1

(

υi
cu,l

dυi
cu,l

dt

)

= −υcu,liu,l (6.43)

where the minus sign accounts for the definition of positive arm current direction as shown in
Fig. 6.1(a).
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Based on the approximating analysis performed in [94], the following approximation holds

dWu,l

dt
= C

N∑

i=1

(

υi
cu,l

dυi
cu,l

dt

)

≈ C
N∑

i=1

(

υΣ
cu,l

N
·
dυi

cu,l

dt

)

=
C

N
υΣ
cu,l

N∑

i=1

dυi
cu,l

dt

=
C

N
υΣ
cu,l

d

(
N∑

i=1

υi
cu,l

)

dt
=

C

N
υΣ
cu,l

dυΣ
cu,l

dt
=

C

2N

d
(
υΣ
cu,l

)2

dt

(6.44)

Equating (6.43) and (6.44) gives

C

2N

d
(
υΣ
cu,l

)2

dt
= −υcu,liu,l ⇒

C

2N
2υΣ

cu,l

dυΣ
cu,l

dt
= −nu,lυ

Σ
cu,liu,l ⇒

C

N

dυΣ
cu,l

dt
= −nu,liu,l ⇒

C

N

dυΣk
cu,l

dt
= −nk

u,li
k
u,l (6.45)

wherek denotes a specific converter leg. Assumingυk
c = υ⋆k

c andυk
cc = υ⋆k

cc , an insertion-index
selection can be directly obtained by solving fornu andnl among the expressions forυk

c , υk
cc

andυk
cu,l given earlier

nk
u =

υdc/2− υ⋆k
c − υ⋆k

cc

υΣk
cu

, nk
l =

υdc/2 + υ⋆k
c − υ⋆k

cc

υΣk
cl

(6.46)

However, given a number of drawbacks associated with such a selection of indices (including
the cause of instability in the converter [94]) and the fact thatC is large enough to safely assume
∣
∣∆υΣk

cu,l

∣
∣≪ υdc, it is suggested in [94] that the following indices can be used instead

nk
u ≈ υdc/2− υ⋆k

c − υ⋆k
cc

υdc
, nk

l ≈
υdc/2 + υ⋆k

c − υ⋆k
cc

υdc
(6.47)

The indices in (6.47) are utilized for the operation of the converter in this chapter and all of the
subsequent analysis that follows.

By substituting (6.47) in (6.45), the dynamics of the upper arm are expressed as

C

N

dυΣk
cu

dt
= −

(
υdc/2− υ⋆k

c − υ⋆k
cc

υdc

)(
ikf
2
+ ikc

)

= −ikf
4
+

υ⋆k
c ikf
2υdc

+
υ⋆k
cc i

k
f

2υdc
− ikc

2
+

υ⋆k
c ikc
υdc

+
υ⋆k
cc i

k
c

υdc
.

(6.48)

whereas for the lower arm

C

N

dυΣk
cl

dt
= −

(
υdc/2 + υ⋆k

c − υ⋆k
cc

υdc

)(

−ikf
2
+ ikc

)

=
ikf
4
+

υ⋆k
c ikf
2υdc

− υ⋆k
cc i

k
f

2υdc
− ikc

2
− υ⋆k

c ikc
υdc

+
υ⋆k
cc i

k
c

υdc
.

(6.49)
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6.4. Internal dynamics of the MMC

Utilizing (6.12), (6.48), and (6.49) (using the expressionfor υcc given earlier) and introducing
the total and imbalance capacitor voltages, the following system in the state variablesυΣ

c , υ∆
c ,

andic is obtained:

C

N

dυΣk
c

dt
=

υ⋆k
c ikf
υdc

+

(
2υ⋆k

cc

υdc
− 1

)

ikc (6.50)

C

N

dυ∆k
c

dt
=

(
2υ⋆k

cc

υdc
− 1

)
ikf
2
+

2υ⋆k
c ikc
υdc

(6.51)

Lc
dikc
dt

= − Rci
k
c −

υdc
2

+
υΣk
c

4
− υ⋆k

c υ∆k
c

2υdc
− υ⋆k

cc υ
Σk
c

2υdc
(6.52)

If (6.12) is expanded for legk, using the definition ofυcc, then

2Lc
dikc
dt

+ 2Rci
k
c − υk

u − υk
l + υdc = 0 (6.53)

At the same time, the definition ofυu andυl, along with (6.47), provide

υk
u + υk

l =
υdc/2− υ⋆k

c − υ⋆k
cc

υdc
υΣk
cu +

υdc/2 + υ⋆k
c − υ⋆k

cc

υdc
υΣk
cl =

=
υΣk
c

2
− υ⋆k

cc

υdc
υΣk
c − υ⋆k

c

υdc
υ∆k
c

(6.54)

Substituting (6.54) in (6.53) and adding the three phase equations together yields

2Lc
d

dt

3∑

k=1

ikc +2Rc

3∑

k=1

ikc −
1

2

3∑

k=1

υΣk
c +

1

υdc

3∑

k=1

υ⋆k
cc υ

Σk
c +

1

υdc

3∑

k=1

υ⋆k
c υ∆k

c +3υdc = 0 (6.55)

However, given the fact that the converter is operating under balanced conditions, the summa-
tion of all three phase currentsiku or ikl is equal toidc. As such,

3∑

k=1

ikc =
3∑

k=1

(
iku + ikl

2

)

=
1

2

(
3∑

k=1

iku +
3∑

k=1

ikl

)

=
idc + idc

2
= idc (6.56)

According to [34] and [35], it is considered that

3∑

k=1

υ⋆k
c υ∆k

c = 0 (6.57)

directly leading to

∆

3∑

k=1

υ⋆k
c υ∆k

c = 0 (6.58)

However, in the steady state, both termsυ⋆k
c andυ∆k

c are fundamental-frequency quantities,
whose multiplication produces a constant term (among otherharmonic components), rendering
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(6.57) not true. Nevertheless, simulation results demonstrated a very limited dynamic variation

of the term∆
3∑

k=1

υ⋆k
c υ∆k

c , leading to the conclusion that its impact on the overall dynamics is

limited. As a result, (6.58) is assumed to be valid in the analysis that follows. Substituting (6.56)
in (6.55) provides the expression

2Lc
d

dt
idc + 2Rcidc −

1

2

3∑

k=1

υΣk
c +

3∑

k=1

υ⋆k
cc υ

Σk
c

υdc
+

1

υdc

3∑

k=1

υ⋆k
c υ∆k

c + 3υdc = 0 (6.59)

The CCC is chosen to be in the form of

υ⋆
cc = −Ra [1 +Hc (s)] (i

⋆
c − ic)− Rci

⋆
c (6.60)

wherei⋆c is a common circulating-current reference provided to all three phases.Hc(s) is a
generalized resonator centered at a selected frequency. Insteady-state operation of the converter
and assuming the CCC is effective, the presence ofHc(s) ensures that there is no component of
its selected frequency present in the circulating current.

6.5 Derivation of the dc-side input admittance of the DVC-
MMC

The dc-side input admittance of the converter can be derivedby linearizing (6.59) and using
(6.58)

2Lc
d
dt
∆idc + 2Rc∆idc − 1

2
∆

3∑

k=1

υΣk
c +∆

(
3∑

k=1

υ⋆k
cc υ

Σk
c

υdc

)

+ 3∆υdc = 0 (6.61)

The aim is to expand the expression above, exclusively in terms of∆idc and∆υdc. Even though
this is obvious for the first, second, and fifth terms of (6.61), this is not the case for the third and
fourth terms. The following tasks concern the proper expansion of these terms, in such way that
the derivation of the dc-side input admittance is possible.

In order to calculate the linearized third term of (6.61), itis useful to utilize (6.50), which when
linearized and summed, provides

d

dt
∆

3∑

k=1

υΣk
c =

N

C

[

∆
3∑

k=1

(
υ⋆k
c ikf
υdc

)

+∆
3∑

k=1

(
2υ⋆k

cc

υdc
− 1

)

ikc

]

(6.62)

Assuming thatυc ≈ υ⋆
c ,

∆
3∑

k=1

(
υ⋆k
c ikf
υdc

)

≈ ∆
3∑

k=1

(
υk
c i

k
f

υdc

)

= ∆

(
υd
c i

d
f + υq

ci
q
f

υdc

)

=
idf,0
υdc,0

∆υd
c +

υd
s,0

υdc,0
∆idf +

iqf,0
υdc,0

∆υq
c +

υq
s,0

υdc,0
∆iqf −

P0

υ2
dc,0

∆υdc

(6.63)
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6.5. Derivation of the dc-side input admittance of the DVC-MMC

Likewise

∆

[(
2υ⋆k

cc

υdc
− 1

)

ikc

]

=∆

[

2
(
−Ra (1 +Hc (s))

(
i⋆c − ikc

)
−Rci

⋆
c

)

υdc
ikc

]

−∆ikc

=
2 (Ra − Rc) ic,0

υdc,0
∆ikc −

2 (Ra +Rc) ic,0
υdc,0

∆i⋆c +
2Rci

2
c,0

υ2
dc,0

∆υdc

− 2Raic,0
υdc,0

Hc (s)∆i⋆c +
2Raic,0
υdc,0

Hc (s)∆ikc −∆ikc ⇒

∆

3∑

k=1

[(
2υ⋆k

cc

υdc
− 1

)

ikc

]

=
2 (Ra − Rc) ic,0

υdc,0
∆idc −

6 (Ra +Rc) ic,0
υdc,0

∆i⋆c +
6Rci

2
c,0

υ2
dc,0

∆υdc

− 6Raic,0
υdc,0

Hc (s)∆i⋆c +
2Raic,0
υdc,0

Hc (s)∆idc −∆idc

(6.64)

Substituting (6.63) and (6.64) in (6.62) yields

d

dt
∆

3∑

k=1

υΣk
c =

N

C

[

idf,0
υdc,0

∆υd
c +

υd
s,0

υdc,0
∆idf +

iqf,0
υdc,0

∆υq
c +

υq
s,0

υdc,0
∆iqf

− P0

υ2
dc,0

∆υdc −
2 (Ra − Rc) ic,0

υdc,0
∆idc −

6 (Ra +Rc) ic,0
υdc,0

∆i⋆c

+
6Rci

2
c,0

υ2
dc,0

∆υdc −
6Raic,0
υdc,0

Hc (s)∆i⋆c +
2Raic,0
υdc,0

Hc (s)∆idc −∆idc

]

⇒

∆

3∑

k=1

υΣk
c =

N

sC

[

idf,0
υdc,0

∆υd
c +

υd
s,0

υdc,0
∆idf +

iqf,0
υdc,0

∆υq
c +

υq
s,0

υdc,0
∆iqf

− P0

υ2
dc,0

∆υdc −
2 (Ra −Rc) ic,0

υdc,0
∆idc −

6 (Ra +Rc) ic,0
υdc,0

∆i⋆c

+
6Rci

2
c,0

υ2
dc,0

∆υdc −
6Raic,0
υdc,0

Hc (s)∆i⋆c +
2Raic,0
υdc,0

Hc (s)∆idc −∆idc

]

(6.65)

This relation shows dependency on the ac-side quantities∆υd
c , ∆idf , ∆υq

c , and∆iqf , which is not
desirable. Using (6.33), (6.35), (6.39), and assuming that∆iq⋆f = 0, can give (6.65) only dc-side
variable dependency as
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∆

3∑

k=1

υΣk
c =

N

sC

[

idf,0
υdc,0

Ks11 (s)M (s)∆υdc +
υd
s,0

υdc,0
Gcc11 (s)M (s)∆υdc

+
iqf,0
υdc,0

Ks21 (s)M (s)∆υdc +
υq
s,0

υdc,0
Gcc21 (s)M (s)∆υdc

− P0

υ2
dc,0

∆υdc −
2 (Ra − Rc) ic,0

υdc,0
∆idc −

6 (Ra +Rc) ic,0
υdc,0

∆i⋆c

+
6Rci

2
c,0

υ2
dc,0

∆υdc −
6Raic,0
υdc,0

Hc (s)∆i⋆c +
2Raic,0
υdc,0

Hc (s)∆idc −∆idc

]

(6.66)

The fourth term in (6.61) can be expanded in the following way:

∆

(
υ⋆k
cc υ

Σk
c

υdc

)

=∆

[(
−Ra (1 +Hc (s))

(
i⋆c − ikc

)
− Rci

⋆
c

)
υΣk
c

υdc

]

=

− Rcic,0
υdc,0

∆υΣk
c − 2 (Ra +Rc)∆i⋆c +

2Rcic,0
υdc,0

∆υdc

− 2RaHc (s)∆i⋆c + 2RaHc (s)∆ikc + 2Ra∆ikc

which, when summed for all phases gives

∆

3∑

k=1

(
υ⋆k
cc υ

Σk
c

υdc

)

=− Rcic,0
υdc,0

∆

3∑

k=1

υΣk
c − 6 (Ra +Rc)∆i⋆c +

6Rcic,0
υdc,0

∆υdc

− 6RaHc (s)∆i⋆c + 2RaHc (s)∆idc + 2Ra∆idc

(6.67)

The first term on the right-hand side of (6.67) can be directlyused from (6.66).

Remark

If i⋆c is chosen to be equal to the directly measuredidc/3, it is evident that the effect ofRa dis-
appears in both equations (6.66) and (6.67), and therefore from the complete expression (6.61)
that determines the calculation of the dc-input admittanceof the converter. As a consequence,
it is decided to use

i⋆c = Hg (s)
idc
3

⇒ ∆i⋆c = Hg (s)
∆idc
3

(6.68)

whereHg (s) is a first-order low-pass filter with bandwidthag.

DC-Side Input Admittance

Relations (6.66), (6.67), and (6.68) can now be substitutedback in (6.61) and provide the dc-side
input admittance of the DVC-MMC rectifier in the form of

YDVC−MMC (s) =
−∆idc (s)

∆υdc (s)
=

Y1 (s)

Y2 (s)
(6.69)
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where

Y1 (s) =− N

sC

(
1

2
+

Rcic,0
υdc,0

)[

idf,0
υdc,0

Ks11 (s)M (s) +
υd
s,0

υdc,0
Gcc11 (s)M (s)

+
iqf,0
υdc,0

Ks21 (s)M (s) +
υq
s,0

υdc,0
Gcc21 (s)M (s) − P0

υ2
dc,0

+
6Rci

2
c,0

υ2
dc,0

]

+ 3 +
6Rcic,0
υdc,0

(6.70)

Y2 (s) =2Lcs+ 2Rc −
N

sC

(
1

2
+

Rcic,0
υdc,0

)[
2 (Ra −Rc) ic,0

υdc,0
− 2 (Ra +Rc) ic,0

υdc,0
Hg (s)

− 2Raic,0
υdc,0

Hg (s)Hc (s) +
2Raic,0
υdc,0

Hc (s)− 1]− 2 (Ra +Rc)Hg (s)

− 2RaHg (s)Hc (s) + 2RaHc (s) + 2Ra

(6.71)

6.6 Validation of the dc-side input admittance of the DVC-
MMC

In this section, the derivation of the dc-side input admittance of a DVC-MMC is verified using
time-domain PSCAD simulations. The time-domain model replicates the setup in Fig. 6.1 and
utilizes discrete controllers with a sampling frequency of5 kHz. At the lowest level of control,
a sorting algorithm is used to select the submodules that need to be inserted at a given switching
event. The main parameter values used in the model are presented in Table 6.1. A 320 kV,
1000 MVA, 50 Hz system is used, the nominal dc-link voltage is640 kV and there areN = 4
submodules per arm in the MMC2.

The choice of the submodule capacitanceC is made under the consideration that under rated
power-transfer conditions, the peak-to-peak deviation inthe submodule voltageυi

cu,l is equal
to 10% of the latter’s nominal value. For a given selection ofpower transfer, a steady-state
calculation provides the values forυd

s,0, υ
q
s,0, υ

d
g,0, υ

d
c,0, υ

q
c,0, andidf,0, whereasiqf,0 is always set to

0. A controllable current source is connected at the dc terminals of the converter in Fig. 6.1(a)
and a perturbation current at various frequencies is injected. The resulting∆idc and∆υdc are
measured and the input admittance is extracted using DFT calculations.

The DVC transfer functionFdc(s) is a PI controller. For a DVC-converter without internal
dynamics (e.g. 2LC) and with a lumped capacitanceCconv connected on its dc side, the choice
of the controller’s gains are selected as in [14]. There, theproportional gain isKp,dvc = adCconv

and the integral gain isKi,dvc = a2dCconv/2, with ad being the bandwidth of the closed-loop
direct-voltage control. This collection of gains places two real poles of the closed-loop system

2The chosen numberN of submodules per arm is dictated by the limitation in the number of electrical nodes
present in the educational version of PSCAD. However,N is considered in (6.69)-(6.71), and its value does not
affect the validity of the analytical expression.
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TABLE 6.1. PROPERTIES OF THEMMC UNDER VALIDATION

SR rated power of system 1000 MVA
υs ac-grid voltage 320 kV
υdc,0 rated dc-bus voltage 640 kV
ω1,0 nominal frequency of the ac grid 50 Hz
N number of submodules per arm 4
C capacitance per submodule 325.52µF
Lc arm inductance 0.096 mH
Rc arm resistance 2.4Ω
Lf inductance of phase reactor 0.048 mH
Rf resistance of phase reactor 1.2Ω
Lg ac-grid inductance 1 mH
apll PLL bandwidth 10π rad/s
acc bandwidth of the closed-loop current control 1000π rad/s
accv bandwidth of CC filterHcc(s) 100π rad/s
accc bandwidth of the closed-loop circulating-current control600π rad/s
ag bandwidth of direct-current measurement filterHg(s) 60π rad/s
ad bandwidth of the closed-loop direct-voltage control 2.5π rad/s
adc bandwidth of alternating-voltage modulus filterHdc(s) 100π rad/s
Td converter time delay 0.3 ms

at s = −ad. The MMC in Fig. 6.1(a) features no lumped capacitance on itsdc side but the
converter’s submodules contribute to an equivalent dc-side capacitance, which can be regarded
as a lumped capacitor. The capacitance of the latter has a time-varying value around an average
of Ceq, given in [94] as

Ceq =
6C

N
(6.72)

Under the assumption that the time-varying equivalent dc-side capacitance of the MMC can be
assumed equal to the constantCeq, the closed-loop dynamic response of the direct voltage can
be approximately shaped as in the 2LC case, where an actual dc-side capacitor of fixed value
exists. The controller gains of the DVC are then modified to

Kp,dvc = adCeq, Ki,dvc = a2dCeq/2 (6.73)

for use in a DVC-MMC.

Regarding the design of the CCC and assuming that in steady-state conditions the oscillating
part of the circulating current has been essentially suppressed, the controller described by (6.60)
operates almost as a proportional controller with proportional gainRa and a feedforward term
Rci

⋆
c . Further assuming thatυcc ≈ υ⋆

cc andRa ≪ Rc, the closed-loop circulating current control
transfer function, derived from (6.12), has the form of a first-order low-pass filter with band-
width accc, for a choice of

Ra = acccLc (6.74)
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The transfer functionHc(s) is chosen as

Hc (s) =
Ki,ccc

Ra

2s

s2 + (2ω1)
2 (6.75)

which is a resonator centered at twice the grid frequencyω1. This ensures that in the steady
state, the major oscillating component in the circulating current, which is at2ω1, is suppressed.
Even thoughKi,ccc can be chosen arbitrarily, the similarities in the description of the circulating-
current dynamics with the ac-side current dynamics indicate thatKi,ccc can be chosen similarly
toKi,cc in the form ofKi,ccc = acccRc. The grid impedanceZ(s) is represented by an inductance
Lg = 0.048 mH, corresponding to weak-grid conditions.

6.6.1 Operation of the DVC-MMC as an inverter

The system parameters are chosen as in Table 6.1 and the poweris P0=–1000 MW (direction
from the dc to the ac side of the MMC). Such type of operation istypical in a VSC-HVDC
connection between an offshore wind farm and an onshore ac grid, or (at reduced power/voltage
ratings) in the back-to-back full-power converter used in wind turbines.

The resonant gain is initially chosen asKi,ccc = acccRc (relatively rapid attenuation of the
2ω1 component in the circulating current). The results from thesimulation and the analytical
input-admittance transfer function are presented in Fig. 6.2. It can be concluded that both the
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Figure 6.2: Analytical (solid line) and simulation (dots) results forYDVC−MMC(jω) in inverter
operation withKi,ccc = acccRc. Upper subfigure: Real part ofYDVC−MMC. Lower subfigure:
Imaginary part ofYDVC−MMC.
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Figure 6.3: Analytical (solid line) and simulation (dots) results forYDVC−MMC(jω) in inverter
operation withKi,ccc = 0.01acccRc. Upper subfigure: Real part ofYDVC−MMC. Lower subfigure:
Imaginary part ofYDVC−MMC.

real and imaginary parts of the input admittance feature an overall good match between the sim-
ulation and analytical results. The system appears to have aprominent resonance in the vicinity
of 11 Hz and 100 Hz, which the analytical transfer function manages to capture successfully.
The latter resonance is directly associated with the presence of the resonatorHc(s) in the CCC
and its prominence is proportional to the gainKi,ccc, which in this scenario has a relatively high
value. Two small resonances appear in the simulation results but not in the transfer function
plot; a 50 Hz resonance and a practically negligible resonance at 150 Hz. The latter seems to
appear at that specific frequency only (nothing appears in the neighborhood of 150 Hz) and
can effectively be neglected; the same cannot be said for the50Hz. The discrepancy at 50 Hz
is associated with the earlier assumption on the validity of(6.58). The linearization of the re-

lated term 1
υd

3∑

k=1

υ⋆k
s υ∆k

c in (6.55) provides a number of resonant expressions at 50 Hz but is

cumbersome and leads to a very extensive expression of the dc-side input admittance of the
MMC. Furthermore, the frequency characteristics at this frequency were found to be relatively
independent of the selected controller parameters. For these reasons, and also considering that
the real part of the input admittance associated with these terms is always positive and thereby
does not provide additional risk for instabilities, it is considered that neglecting these terms by
assuming (6.58) valid, provides a fair compromise between the obtained input admittance and
a relative simplicity of the final expression.

The dependency of the resonance at 100 Hz on the resonant gainKi,ccc can be assessed by
decreasing its value toKi,ccc = 0.01acccRc (relatively low attenuation of the2ω1 component in
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the circulating current). The subsequent input-admittance results are presented in Fig. 6.3. The
earlier prominent resonance at 100 Hz has been greatly diminished while the curves maintain
the characteristics observed earlier for a largerKi,ccc.

6.6.2 Operation of the DVC-MMC as a rectifier

The analytical calculation of the input admittance is here validated for the operation of the MMC
as a rectifier, where the change in power direction compared to the inverter case is expected to
modify the input admittance features. The system parameters are chosen as in Table 3.1 and the
load power isP0=1000 MW. Such an operation is characteristic in typical two-terminal VSC-
HVDC connection of two ac grids, or the back-to-back full-power converter in electric-motor
drives when power is usually provided to drive a load. There,the converter in direct-voltage
control mode normally transfers power from the converter’simmediate ac grid to the dc link.

The resonant gain is chosen asKi,ccc = 0.01acccRc (relatively slow attenuation of the2ω1

component in the circulating current). The results from thesimulation and the analytical input-
admittance transfer function are presented in Fig. 6.4. Once again, there is an overall good
agreement between the simulation and the analytical input admittance. The latter successfully
tracks the first prominent resonance, just as in the invertercase, at 11 Hz. The simulation model
still presents the resonance at 50 Hz but apparently not at 150 Hz. However, the severity of the
50 Hz resonance is negligible compared to the main resonanceat 11 Hz. It is interesting
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Figure 6.4: Analytical (solid line) and simulation (dots) results forYDVC−MMC(jω) in recti-
fier operation. Upper subfigure: Real part ofYDVC−MMC. Lower subfigure: Imaginary part of
YDVC−MMC.
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to notice that the earlier prominent resonance at 100 Hz in inverter operation, has now been
greatly reduced and is barely visible in the simulation results. This is also demonstrated by the
analytical input admittance results and is related to the fact that the impact of the resonator in
the CCC has been almost diminished by the choice of a small value forKi,ccc.

6.7 Derivation of the dc-side input impedance of the APC-
MMC

The active-power control of the HVDC station performs the regulation ofPg. This is usually
performed via the use of a PI controller acting on the errorP ⋆

g − Pg, producing the reference
id⋆f , as also shown in Fig. 2.16(b). Considering the PI-controller transfer functionFAP (s) and
iqf,0 = 0, the following relation is derived

id⋆f = FAP (s)
(
P ⋆
g − Pg

)
⇒ id⋆f = FAP (s)

(
P ⋆
g − υd

gi
d
f − υq

gi
q
f

)
⇒

∆id⋆f = FAP (s)
(
∆P ⋆

g − idf,0∆υd
g − υd

g,0∆idf − iqf,0∆υq
g − υq

g,0∆iqf
)
⇒

∆id⋆f = FAP (s)∆P ⋆
g − idf,0FAP (s)∆υd

g − υd
g,0FAP (s)∆idf (6.76)

Relation (6.33), considering∆id⋆f = 0, yields

∆if = Gcc (s)∆i⋆f

= Gcc (s)

[
FAP (s)∆P ⋆

g − idf,0FAP (s)∆υd
g − υd

g,0FAP (s)∆idf
0

]
(6.77)

which can be split into the separate components∆idf and∆iqf as follows

∆idf = Gcc11 (s)FAP (s)∆P ⋆
g − idf,0Gcc11 (s)FAP (s)Zg11 (s)∆idf

− idf,0Gcc11 (s)FAP (s)Zg12 (s)∆iqf − υd
g,0Gcc11 (s)FAP (s)∆idf ⇒

[
1 + idf,0Gcc11 (s)FAP (s)Zg11 (s) + υd

g,0Gcc11 (s)FAP (s)
]

︸ ︷︷ ︸

A(s)

∆idf =

Gcc11 (s)FAP (s)
︸ ︷︷ ︸

B(s)

∆P ⋆
g − idf,0Gcc11 (s)FAP (s)Zg12 (s)

︸ ︷︷ ︸

C(s)

∆iqf ⇒ (6.78)

∆iqf = Gcc21 (s)FAP (s)∆P ⋆
g − idf,0Gcc21 (s)FAP (s)Zg11 (s)∆idf

− idf,0Gcc21 (s)FAP (s)Zg12 (s)∆iqf − υd
g,0Gcc21 (s)FAP (s)∆idf ⇒

[
1 + idf,0Gcc21 (s)FAP (s)Zg12 (s)

]

︸ ︷︷ ︸

D(s)

∆iqf = Gcc21 (s)FAP (s)
︸ ︷︷ ︸

E(s)

∆P ⋆
g

−
[
idf,0Gcc21 (s)FAP (s)Zg11 (s) + υd

g,0Gcc21 (s)FAP (s)
]

︸ ︷︷ ︸

F (s)

∆idf
(6.79)
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A (s)∆idf = B (s)∆P ⋆
g − C (s)∆iqf

D (s)∆iqf = E (s)∆P ⋆
g − F (s)∆idf

}

⇒
∆idf = B(s)D(s)−C(s)E(s)

A(s)D(s)−C(s)F (s)
∆P ⋆

g

∆iqf = E(s)A(s)−F (s)B(s)
A(s)D(s)−C(s)F (s)

∆P ⋆
g

(6.80)

This relation proves that∆idf and∆iqf , and consequently∆υd
c and∆υq

c because of (6.31), rely
exclusively on externally chosen inputs (in this case∆P ⋆

g ) and no other variable or state of
the MMC. The same conclusion would have been made even ifiqf,0 6= 0 and∆id⋆f 6= 0 were
considered earlier. As a result, and assuming that the active-power controlled station operates

with constant referencesP ⋆
g andQ⋆

g, ∆idf = ∆iqf = ∆υd
c = ∆υq

c = 0 and∆
3∑

k=1

υΣk
c in (6.65)

loses its dependency on∆idf , ∆iqf , ∆υd
c and∆υq

c , yielding

∆
3∑

k=1

υΣk
c =

N

sC

[

− P0

υ2
dc,0

∆υdc −
2 (Ra − Rc) ic,0

υdc,0
∆idc −

6 (Ra +Rc) ic,0
υdc,0

∆i⋆c

+
6Rci

2
c,0

υ2
dc,0

∆υdc −
6Raic,0
υdc,0

Hc (s)∆i⋆c +
2Raic,0
υdc,0

Hc (s)∆idc −∆idc

] (6.81)

The dc-side input impedance of the APC-MMCZMMC APC(s) is derived by substituting (6.81),
(6.67), and (6.68) back in (6.61), providing

ZAPC−MMC (s) =
∆υdc (s)

−∆idc (s)
=

Z1 (s)

Z2 (s)
(6.82)

where

Z1 (s) = 2Lcs+ 2Rc −
N

sC

(
1

2
+

Rcic,0
υdc,0

)[
2 (Ra −Rc) ic,0

υdc,0
− 2 (Ra +Rc) ic,0

υdc,0
Hg (s)

− 2Raic,0
υdc,0

Hg (s)Hc (s) +
2Raic,0
υdc,0

Hc (s)− 1]− 2 (Ra +Rc)Hg (s)

− 2RaHg (s)Hc (s) + 2RaHc (s) + 2Ra

(6.83)

Z2 (s) = − N

sC

(
1

2
+

Rcic,0
υdc,0

)
6Rci

2
c,0 − P0

υ2
dc,0

+
6Rcic,0
υdc,0

+ 3 (6.84)

6.8 Frequency-domain analysis in two-terminal MMC-based
HVDC systems

The information on the input admittance and input impedanceof the MMC is at this stage uti-
lized to perform a frequency-domain analysis of MMC-based two-terminal HVDC systems.
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This is a natural continuation of the investigation performed in Chapter 5, with the main dif-
ference that the latter considered converters without internal dynamics. The internal dynamics
and added levels of control present in MMCs are expected to have a significant impact on the
dynamics and stability of HVDC systems. Given the fact that the input-impedance transfer func-
tion G(s) of the dc-transmission system is naturally unstable (as examined in Chapter 5), the
passivity approach for a frequency-domain analysis cannotbe used. However, the net-damping
criterion can still be useful and will be the tool of choice inthis section.

6.8.1 Considerations in MMC-based HVDC systems

TheF (s) andG(s) transfer functions, presented earlier in Chapter 5, represent the input admit-
tance of the direct-voltage controlled station and the input impedance of the dc grid in a two
terminal VSC-HVDC connection, respectively. The frequency-domain analysis methods used
in the previous chapter, perform in the best possible way when the open-loop resonances of
F (s) andG(s) are preserved to some adequate degree in the closed-loop system, in terms of
frequency location.

The portions of the system contained in the expressions ofF (s) andG(s), as implemented so far
in this thesis, are shown in Fig. 6.5(a). Observe that the converters used in this figure do not have
any internal dynamics. The circuit is decided to be split at the dc terminals of the DVC station.
This choice is made because the input admittanceF (s) of the DVC station does not contain
any dc-side equivalent elements (e.g. a capacitance or inductance) that would directly affect
the natural frequency of the dc-link (given in (3.15)). The latter is supposed to be exclusively
described withinG(s) and also appear as a closed-loop resonance.

An MMC, whether it is direct-voltage controlled or active-power controlled, presents a dc-side
equivalent capacitanceCeq [94]. Furthermore, if the MMC control elements are temporarily
ignored and zero-power transfer is considered, the input impedance of the MMC can be derived
from (6.82) as

ZMMC−simplified (s) =
2Lcs

3
+

2Rc

3
+

N

6Cs
(6.85)

Observe that this expression contains not only the previously mentioned equivalent dc-side ca-
pacitanceCeq =

6C
N

, but also an equivalent inductance and resistance, coming in agreement with
similar simplified dc-side representations of MMCs [97, 98]. The presence of the elements of
ZMMC−simplified (s) on the dc side of the MMCs implies that the natural frequency of the dc-link
connecting the two stations would most probably be affectedby the converters. It is therefore
potentially useful to consider the elements ofZMMC−simplified (s) from both two stations as part
of the dc link.

A first step to approach the problem in an optimum manner is to consider that the MMC, nor-
mally represented by its input admittanceYMMC(s), can be equally represented by the elements
of the simplified dc-representation of the MMC in (6.85), where an input admittanceY ′

MMC(s)
is placed in parallel withCeq. The defintion ofY ′

MMC(s) is

Y
′

MMC (s) =
1

1
/
YMMC (s)− 2

3
Lcs− 2

3
Rc

− sCeq (6.86)
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(a) Typical definition ofF (s) andG(s) in a two terminal VSC-HVDC system, using converters withoutinternal
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(c) Definition ofF (s) andG(s) in an MMC-based two-terminal VSC-HVDC system.

Fig. 6.5 Definition ofF (s) andG(s) transfer functions to be used in the frequency-domain analysis of
two-terminal VSC-HVDC systems, depending on the type of converter used at the stations.

This is visualized in Fig. 6.5(b). The elements ofZMMC−simplified (s) can then be directly in-
cluded as part of the dc grid, which the MMC is connected to. Using this type of modeling, the
transfer functionF (s) in an MMC-based two-terminal HVDC system as in Fig. 6.5(c), can be
represented as

F (s) = Y
′

DVC−MMC (s) (6.87)

whereYDVC−MMC(s) is the input admittance of the DVC-MMC station.G(s), representing the
dc-transmission system and the active-power controlled station, will now include the equiva-
lent elements ofZMMC−simplified (s) of the DVC-MMC, denoting that the any dc-link resonance
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Fig. 6.6 Definition ofFMMC(s) andGMMC(s) transfer functions to be used in the frequency-domain
analysis of the two-terminal MMC-based VSC-HVDC systems ofthis chapter.

is properly described withinG(s). Notice that the representation of the APC-MMC does not
need to be broken down into equivalent elements derived fromits combined input-impedance
representation, sinceG(s) already considers the effect of the latter to the dc-link cables and the
dc-link natural frequency.

6.8.2 System representation and modeling

The two-terminal system used in the present investigation is shown in Fig. 6.6. The dc trans-
mission system is modeled in an identical manner as earlier in Fig. 4.1(b) or Fig. 5.2(b). Each
of the MMCs and the connections to their associated ac grids is identical to the one presented
in Fig. 6.1(a). Notice that when MMCs are used, the presence of physical converter capacitors
Cconv is optional and can be omitted from the combined dc-link capacitanceCtot, in contrast
with systems using 2LC, where physical converter capacitors are necessary.

Considering the relevant discussion in Section 6.8.1, and usingZAPC−MMC (s) as the dc-side
input impedance of the APC-MMC in (6.82), it is possible to derive a compact form of the
dc-grid input impedanceGMMC(s) as

GMMC (s) =
∆υdc eq (s)

∆idc eq (s)
=

1

sCeq +
1

2
3
Lcs+

2
3
Rc+

1

sCtot+
1

Rdc+sLdc+
ZMMC−APC(s)

1+sCtotZMMC−APC(s)

(6.88)

As mentioned in 6.8.1, the dc-side input admittance of the direct-voltage controlled MMC is
properly manipulated to subtract the elements ofZMMC−simplified (s) from it and finally yield

FMMC (s) = Y
′

MMC−DVC (s) =
1

1
/
YMMC−DVC (s)− 2

3
Lcs− 2

3
Rc

− sCeq (6.89)

whereYMMC−DVC (s) is directly retrieved from (6.69).

6.8.3 Frequency-domain stability assessment

The system under investigation utilizes MMCs that operate as those described in the previous
sections of this chapter. Their nominal parameters are presented in Table 6.2 and are identical
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TABLE 6.2: Properties of the MMC for use in the HVDC system
SR rated power of system 1000 MVA
υs ac-grid voltage 320 kV
υdc,0 rated dc-bus voltage 640 kV
ω1,0 nominal frequency of the ac grid 50 Hz
N number of submodules per arm 4
C capacitance per submodule 325.52µF
Lc arm inductance 50 mH
Rc arm resistance 1.57Ω
Lf inductance of phase reactor 25 mH
Rf resistance of phase reactor 0.783Ω
Lg ac-grid inductance 0.001 mH
apll PLL bandwidth 10π rad/s
acc bandwidth of the closed-loop current control 1000π rad/s
accv bandwidth of CC filterHcc(s) 100π rad/s
accc bandwidth of the closed-loop circulating-current control600π rad/s
ag bandwidth of direct-current measurement filterHg(s) 60π rad/s
ad bandwidth of the closed-loop direct-voltage control 2.5π rad/s
adc bandwidth of alternating-voltage modulus filterHdc(s) 100π rad/s
Td converter time delay 0.3 ms

to those in Table 6.1. The only difference lies in the arm and coupling reactor, which has been
adjusted to provide a combined inductanceLt = Lf +

Lc

2
and resistanceRt = Rf +

Rc

2
equal

to the properties of the phase reactor used by the 2LC of the same power/voltage ratings in
(Table 3.1). This is beneficial for a later proper comparisonof the two converters.

The dc-transmission link consists of 100 km cable-type lines (parameters found in Table 2.1),
while physical dc-side capacitors are added to the dc-side terminals of each MMC with a value
of Cconv = 6.51 µF . The size of this capacitor is negligible compared to the equivalent dc-side
capacitance of each MMC in the system, equal toCeq = 488.3 µF .

Variation of Ki,ccc−DVC

Both of the MMC stations employ a CCC. The related gain of the resonator at the active-power
controlled station is selected asKi,ccc−APC = acccRc. The corresponding gain of the direct-
voltage controlled station is, here, allowed to vary in the form of Ki,ccc−DVC = m · acccRc,
wherem is a multiplier. Figure 6.7 depicts|FMMC(jω)| , |GMMC(jω)| and the total damping of
the systemDMMC(ω), for m taking the values of 0.01, 0.1 and 1 inKi,ccc−DVC. The plots appear
to be insensitive to the variation ofKi,ccc−DVC. Nevertheless, in all cases,|FMMC(jω)| appears
to present a prominent resonance at 13 Hz, followed by a smallresonance at 100 Hz due to the
the presence of the resonator of the rectifier station, centered at that frequency. Similarly, for all
values ofm, |GMMC(jω)| has a prominent resonance around 17 Hz and two smaller ones,
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Fig. 6.7 Frequency analysis of subsystems and total dampingfor a varyingKi,ccc−DVC = m · acccRc

of the rectifier, usingm = 0 (dotted),m = 0.01 (dashed),m = 0.1 (dash-dotted) andm = 1
(solid).

around 411 Hz and 100 Hz, respectively. The latter is relatedto the resonator of the inverter
station, which is also centered at 100 Hz. It is generally observed that for a variety of parameter-
ariation scenarios, the system would become unstable in thetime domain with a growing oscil-
lation of around 100 Hz. It is, therefore, important to focusthe attention at the behaviour of the
system close to this frequency.
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Fig. 6.8 Enhanced view around 100 Hz for the frequency analysis of subsystems and total damping, for
a varyingKi,ccc−DVC = m · acccRc of the rectifier, usingm = 0 (dotted),m = 0.01 (dashed),
m = 0.1 (dash-dotted) andm = 1 (solid).

The net damping of the system in Fig. 6.7(c) appears to be generally positive for any frequency
above 0.8 Hz, an indication of low risk of instability related to open-loop resonant frequencies.
However, the effect of alteringKi,ccc−DVC becomes apparent if the previous plots are enhanced
around 100 Hz. This is shown in Fig. 6.8. The observation of|FMMC(jω)| leads to the conclu-
sion that asKi,ccc−DVC increases in value, the associated resonant peak starts drifting to slightly
lower frequencies than 100 Hz. At the same time, no change is observed in the resonant peak of
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|GMMC(jω)|, as expected sinceKi,ccc−DVC is not a part ofGMMC(s).

An increase ofm causes a noticeable alteration in the shape of the total damping curve in
Fig. 6.8(c). Form = 0.01, DMMC(ω) demonstrates a narrow notch at 100 Hz, which has not
yet taken negative values; an indication of low risk for instability. However, whenm increases
in value, the observed notch widens with its center shiftingto frequencies slightly lower than
100 Hz. At the same time the lowest point of the net-damping notch takes smaller values until
it barely becomes negative form = 1. The general conclusion is that an increase inKi,ccc−DVC

causes a subsequent increase in the risk of instability, with a high probability of having a grow-
ing oscillation at a frequency below but still very close to 100 Hz.

Variation of bandwidth ad

The system in the previous scenario remained stable even forthe highest investigated value
of Ki,ccc−DVC. At this stage, the latter is maintained atKi,ccc−DVC = acccRc (the value that
increased the instability risk the most), and the bandwidthof the closed-loop direct-voltage
control is treated asad = k · ad,nom, wheread,nom is the value found in Table 6.2. Related
investigation from previous chapters has already shown that an increase inad, increases the risk
of instability in VSC-HVDC systems.

Figure 6.9 presents the frequency-domain behavior of the system fork = 1, 10, 20 and 30, fo-
cused around 100 Hz. Similarly to the trend observed for increasingKi,ccc−DVC, the increase
of ad causes the associated resonant peak of|FMMC(jω)| to start drifting to slightly lower fre-
quencies than 100 Hz. The curve of|GMMC(jω)| remains unaltered, asad does not constitute
a part of its expression. The effect of alteringad can be best observed in the net-damping of
the system in Fig. 6.9(c). The increase ofad does not alter the shape of the notch inDMMC(ω)
above 100 Hz but causes it to widen considerably below that frequency, decreases its center
frequency and its minimum value becomes increasingly negative.

Noticeable negative values ofDMMC(ω) at the open-loop resonant frequencies close to 100 Hz
imply that there is high risk of the system actually being unstable. This can be viewed from a
Nyquist curve perspective of the system in Fig. 6.9(d), fork = 1, 10, 20 and 30. From the figure
it can be seen that for relatively high values ofk, the point (-1,0) in the complex plane will
actually experience a clock-wise encirclement, causing the closed-loop system to be unstable.
Observe that the frequency at which the Nyquist curve crosses the imaginary axis closest to
(-1,0) is decreasing from 100 Hz, asad increases.

The previous behavior can be observed and verified in the timedomain as seen in Fig. 6.10.
The previously described system is initially allowed to reach the steady state fork = 14 in
the direct-voltage control of the rectifier. At t=40 s, the multiplier k is slowly ramped to the
value of 15 within one second and maintained there ever after. The direct voltageυdc1 at the
dc terminals of the rectifier, even though normally stable, starts increasingly oscillating after
approximately 46 s. The system behaves in an unstable manneruntil it is barely sustained in
operation due to the limiters used by the controllers. A closer focus onυdc1 between 51 and
52 s can be observed in Fig. 6.11. There, it is revealed that there is a dominant frequency in the
increasingly oscillating voltage, with an FFT of the related signal providing its peak close to
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97 Hz. The value ofk at which the system becames unstable and the frequency of theobserved
unstable oscillation is in good agreement with the values expected from the net-damping analy-
sis.

Recovery from instability

The resonance in the proximity of 97 Hz is related to the resonator of both the rectifier and
the inverter stations and is highly dependent on the associated integral gainKi,ccc. As observed
earlier in Fig. 6.8, ifKi,ccc−DVC = 0 then the net-damping notch at 100 Hz with a minimum
value very close or even below zero, disappears.

Consequently, the net damping remains sufficiently higher than zero in the vicinity of 100 Hz
and the risk of instability is greatly reduced. A relativelylarge increase in the multiplierk of
ad would be further required to force this net-damping minimumto values below zero, in the
manner displayed in Fig. 6.9. This information is, now, usedin the previous example as a means
to recover from the observed instability.

Repeating the previous scenario and for a multiplierk = 15, the system is unstable as seen ear-
lier in Fig. 6.10. At t = 50 s, and while the 97 Hz oscillation keeps growing, it is decided to switch
off the resonator of the rectifier station. Observe that thisis achieved by completely disconnect-
ing the output of the resonator from the control process and not by settingKi,ccc−DVC = 0. The
result can be observed in Fig. 6.12. The system becomes quickly stable again and the growing
oscillation diminishes. The same result can be observed if the resonator in the inverter station
would be switched off. This indicates that the resonators ofboth stations have a joint effect
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on the closed-loop system stability and it is sufficient to switch-off any of them in order to
re-stabilize the system.

6.9 Dynamic comparison of the MMC and the 2LC

This section focuses on the comparison of the frequency-domain behavior of the MMC and
the 2LC, from a dc-side input-admittance perspective and especially from a passivity point of
view. As already discussed in Chapter 5, the passivity properties of the direct-voltage controlled
converter can greatly affect the stability of the closed-loop system. The analysis is performed
both for the DVC and APC mode of operation of each station.

6.9.1 Detailed dc-side input admittance of the 2LC

Even though the dc-side input admittance of the DVC-2LC has already been investigated in
Chapter 5, the derived expressions were lacking the impact of the type and strength of the ac
grid to which the HVDC station is connected, the PLL (having considered connection to strong
grid), various filters in the control, as well as the computational time delayTd. In order to prop-
erly compare the dynamic behavior of the MMC with that of the 2LC, it is necessary to have
a description of the latter that is compatible with the description of the MMC, as investigated
earlier in this chapter. Therefore the impact of the previous factors needs to be taken into ac-
count and the same type of CC and DVC are to be implemented. Under these circumstances, the
relations already presented in Section 6.3 can be used to derive the detailed input admittance
YDVC−2LC of the DVC-2LC for the purposes of this analysis. As far as theAPC-2LC is con-
cerned, the dc-side dynamics are still decoupled from thoseof the ac side, despite the increase
in description complexity. The converter is thus still represented as a constant power source
from its dc side, just as performed earlier in Chapter 5.

The equivalent 2LC is connected to a phase reactor of inductanceLt and resistanceRt, combin-
ing the phase reactor and arm impedance of the MMC as described in (6.11), and create voltage
υc at its ac terminals. For ease of calculations, it is considered that∆iq⋆f = 0. The equality of
instantaneous active power at the dc and ac terminals of the converter, respectively defined as
Pc andPdc,in in Fig. 2.15(a), combined with (6.35) and (6.39) provide

Pdc,in = Pc ⇒
υdcidc = υd

c i
d
f + υq

c i
q
f ⇒

idc,0∆υdc + υdc,0∆idc = idf,0∆υd
s + υd

c,0∆idf + iqf,0∆υq
c + υq

c,0∆iqf ⇒
idc,0∆υdc + υdc,0∆idc = idf,0Ks11 (s)M (s)∆υdc + iqf,0Ks21 (s)M (s)∆υdc

+ υd
c,0Gcc11 (s)M (s)∆υdc + υq

c,0Gcc21 (s)M (s)∆υdc ⇒

YDVC−2LC(s) =
−∆idc
∆υdc

=
idc,0
υdc,0

−M (s)

υdc,0
[idf,0Ks11 (s)+iqf,0Ks21 (s)+υd

c,0Gcc11 (s)+υq
c,0Gcc21 (s)]

(6.90)
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Figure 6.13: Analytical (solid line) and simulation (dots)results for the dc-side input admittance
of the DVC-2LC in rectifier operation. Upper subfigure: Real part of YDVC−2LC(jω). Lower
subfigure: Imaginary part ofYDVC−2LC(jω).

A validation of the previous expression has been performed via a non-linear full-switching
model in PSCAD, using the data from Table 6.1, nominal power transfer as a rectifier,ad =
0.1acc, Lg = 0.01 mH and a6.51µF capacitor connected to the dc side of the converter (as
also used earlier in the MMCs of Section 6.8.3). The capacitor itself does not comprise a part
of the input admittance but its value affects the gains of thedirect-voltage controller. The re-
sults in Fig. 6.13 reveal that the agreement between the full-switching model and the analytical
expression in (6.90) appears to be quite satisfactory.

The dc-side input admittance of the APC-2LC is not affected by the consideration of higher
detail in the control structures and can, once again, be represented by a negative resistance as
already shown earlier in previous chapters.

6.9.2 Passivity properties of the converters in direct-voltage control mode

The dc-side input admittance of the DVC-MMC in (6.69) and theDVC-2LC in (6.90) are sta-
ble transfer functions. Consequently, it is possible to characterize them in terms of passivity
properties, depending on the sign of their real part in the frequency domain.

The objects of comparison are a DVC-MMC and a DVC-2LC, using the ratings of Table 6.2 and
operation in rectifier mode. The latter converter uses phasereactors with a combined inductance
Lt = Lf +

Lc

2
and resistanceRt = Rf +

Rc

2
, allowing for a fair comparison with an equivalent

MMC, as explained in 6.8.3. The 2LC is also connected to a dc-side capacitor of20µF , just as
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Figure 6.14: Real and imaginary parts ofYDVC−MMC(jω) andYDVC−2LC(jω) for variation in
ad = k · ad,nom with k = 1 (black),k = 10 (blue),k = 20 (red),k = 30 (green),k = 40 (gray).
The resonant gain is kept atKi,ccc−DVC = acccRc.
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Figure 6.15: Enhanced depiction of the real part ofYDVC−MMC(jω) andYDVC−2LC(jω) around
100 Hz, for variation inad = k · ad,nom with k = 1 (black),k = 10 (blue),k = 20 (red),k = 30
(green),k = 40 (gray).Ki,ccc−DVC is kept atKi,ccc−DVC = acccRc.

150



6.9. Dynamic comparison of the MMC and the 2LC

0 10 20 30 40 50 60 70
0

0.5

1

1.5

R
e[

 Y
 D

V
C

−
M

M
C
 (

jω
)]

Frequency (Hz)

Figure 6.16: Real part ofYDVC−MMC(jω) for varyingRa = m · αcccLc, usingm = 0 (dotted),
m = 0.01 (dashed),m = 0.1 (dash-dotted) andm = 1 (solid).ad = ad,nom andKi,ccc−DVC = 0.

optimally designed earlier in Table 3.1.

The real and imaginary part of the dc-side input admittancesfor the DVC-MMC and the DVC-
2LC are presented in Fig. 6.14. There, the bandwidth of the closed-loop direct-voltage control
ad, is varied according to the relationad = k · ad,nom for k ∈ (1, 10, 20, 30, 40). The resonant
gain in the CCC of the MMC is kept atKi,ccc−DVC = acccRc.

The results for the DVC-2LC show that for the lowest bandwidth ad, the converter is not only
passive but dissipative. However, a slight further increase inad causes the converter to be non-
passive, as it starts displaying repeated notches of negative values forRe[YDVC−2LC(jω)]. The
first notch appears to be consistently located approximately at 665 Hz, with its value becoming
increasingly negative asad increases.

This implies a degradation in the passivity properties of the DVC-2LC and increases the risk
of closed-loop system instability, if there are resonant frequencies within the frequency range
whereRe[YDVC−2LC(jω)] < 0. A second negative notch inRe[YDVC−2LC(jω)] starts appearing
at around 2500 Hz, but it is already out of the range of the bandwidth of the converter’s closed-
loop current control.

The behavior of the DVC-MMC for the same scenario appears to have similarities with the
DVC-2LC, but noticeable differences as well. For the lowestvalue of ad, the MMC seems
(incorrectly as shown later) to be passive but for the slightfurther increase of the bandwidth,
Re[YDVC−MMC(jω)] appears to develop a negative notch and the DVC-MMC becomes non-
passive. This notch becomes wider for increasingad, but its centre is consistently located around
13 Hz. The frequency of this notch is highly dependent on the proportional gainRa of the CCC,
as can be observed in Fig. 6.16, where an increase in the valueof Ra shifts the resonance to
lower frequencies.

It is interesting to notice that in Fig. 6.14, there is at least an order of magnitude of difference
in the scaling of the y-axis for the values of the DVC-MMC and the DVC-2LC. The absolute
values of the negative notch of the DVC-MMC are much larger than those of the DVC-2LC for
the samead, indicating that systems using DVC-MMC risk becoming unstable for lower values
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Figure 6.17: Real part ofYDVC−MMC(jω) for variation inKi,ccc−DVC asKi,ccc−DVC = m ·acccRc

with m = 0 (dotted),m = 0.01 (dashed),m = 0.1 (dash-dotted) andm = 1 (solid). The
bandwidth of the closed-loop direct voltage control is constant atad = ad,nom.

of bandwidth, compared to equivalent systems with DVC-2LC.Additionally, the location of the
negative notch inRe[YDVC−MMC(jω)] reveals that there is a high probability that low-frequency
resonances could contribute to a system with MMC convertersbecoming unstable. This comes
in contrast with the location of the first negative notch in the DVC-2LC that was located at
much higher frequencies and indicates a higher risk for low-frequency resonances becoming
responsible for instability in systems with DVC-2LC.

A closer observation ofRe[YDVC−MMC(jω)] around 100 Hz, shown in Fig. 6.15, reveals that
the DVC-MMC is actually non-passive for all the investigated values ofad. A further investi-
gation on this issue is performed, with the system keeping a constant value ofad = ad,nom and
Ki,ccc−DVC being varied asKi,ccc−DVC = m · acccRc with m ∈ (0, 0.01, 0.1, 1). The results for
Re[YDVC−MMC(jω)] are shown in Fig. 6.17. It is evident that onceKi,ccc−DVC takes any value
other than 0, then the DVC-MMC becomes non-passive with a constant risk of closed-loop
instability around 100 Hz, regardless of the existence or intensity of the low-frequency notch
mentioned earlier.

Based on the last observation, the earlier scenario with thevariation ofad = k · ad,nom for
k ∈ (1, 10, 20, 30, 40) is now repeated for the DVC-MMC, but usingKi,ccc−DVC = 0, effectively
deactivating the resonator of the CCC. The latest results are superimposed on those acquired
earlier forKi,ccc−DVC = acccRc and presented in Fig. 6.18. It can be noted that forKi,ccc−DVC =
0,Re[YDVC−MMC(jω)] remains above zero for much larger values ofad than whenKi,ccc−DVC =
acccRc. This means that even if the converter is, anyway, non-passive due to the negative notch
around 13 Hz, a closed-loop system instability due to resonances around 100 Hz will remain
highly unlikely.

As demonstrated, the mere presence of the resonator centered at 100 Hz causes the DVC-MMC
to be non-passive for any other choice of converter parameter. A way to retain the resonator and
possibly keep the converter passive, can be achieved by considering a damping action at the
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Figure 6.18: Enhanced depiction of the real part ofYDVC−MMC(jω) around 100 Hz, for variation
in ad = k·ad,nom with k = 1 (black),k = 10 (blue),k = 20 (red),k = 30 (green),k = 40 (gray).
The investigation considers resonant gainKi,ccc−DVC = 0 (dashed) andKi,ccc−DVC = acccRc

(solid).

denominator of the integrator function. Relation (6.75) can then be transformed to

Hc (s) =
Ki,ccc

Ra

2s

s2 + ζs+ (2ω1)
2 (6.91)

Figure 6.19 comparesRe[YDVC−MMC(jω)] for the scenario already shown in Fig. 6.14, with
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Figure 6.19: Enhanced depiction of the real part ofYDVC−MMC(jω) around 100 Hz, for variation
in ad = k · ad,nom with k = 1 (black),k = 10 (blue),k = 20 (red),k = 30 (green),k = 40
(gray). The investigation considersKi,ccc−DVC = 1 for the typical resonator of (6.75) (solid)
and the damped resonator of (6.91) (dashed).
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Figure 6.20: Results for the dc-side input admittance of theAPC-MMC (blue) and APC-2LC
(red) in inverter operation. Upper subfigure: Real part ofYAPC(jω). Lower subfigure: Imaginary
part ofYAPC(jω).

the results achieved under the same conditions but using theresonator of (6.91) and a damping
coefficient ofζ = 0.1 (2ω1). The introduction of the damping coefficient contributes toa notice-
able lift of Re[YDVC−MMC(jω)] around 100 Hz, similar to the one achieved forKi,ccc−DVC = 0
in Fig. 6.18 but still keeping the resonator actively operating.

6.9.3 Passivity properties of the converters in active-power control mode

Similarly to the DVC-converters, the dc-side input admittances of the APC-MMC and APC-
2LC are stable and it is possible to characterize them in terms of passivity properties.YAPC−MMC(s)
can be acquired directly from the inverse ofZAPC−MMC(s) in (6.82), while the its counterpart
YAPC−2LC(s) is the resistanceR20, as defined in Section 5.2.1. Both of them are here considered
for inverter operation of the converters.

The two converters are set-up according to the data of Table 6.2, with Ki,ccc−APC = 1 for
the MMC, and the resulting dc-side input admittances is displayed in Fig. 6.20. It can be im-
mediately concluded that both converters are non-passive.As far as the 2LC is concerned,
Re[YAPC−2LC(jω)] maintains a constant negative value throughout the frequency domain. It
is interesting to notice that for frequencies below 5 Hz,Re[YAPC−MMC(jω)] converges with
Re[YAPC−2LC(jω)]. However, at higher frequencies, the real and imaginary parts ofYAPC−2LC(jω)
behave similarly to those ofYDVC−2LC(jω) for the lowest value ofad, indicating almost iden-
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tical resonances at around 13 Hz and 100 Hz. Once again,Re[YAPC−MMC(jω)] is slightly neg-
ative around 100 Hz, as expected due to the non-zero value ofKi,ccc−APC, indicating a risk of
instability in the closed-loop system due to poles in the vicinity of that frequency.

6.10 Summary

This chapter has attempted to provide an insight to MMC-based VSC-HVDC systems, consid-
ering the complexity of the MMC as a controllable device and the implications it introduces to
the systems it is used in. The analytical dc-side input admittance of the MMC, both in DVC
and APC mode, has been derived, taking into account all the available levels of control and
component configuration of an actual system. It has been shown that the results from the an-
alytical expression match accurately those acquired from the full-switching, nonlinear, time-
domain model of the same system. This has been observed despite the complexity incurred by
the consideration of all needed control loops of control processes and overall system setup in
the derivation of the final expression.

The validated dc-side input-admittance expressions have been used in stability studies of a
two-terminal MMC-based VSC-HVDC system, using the net-damping criterion as a frequency-
domain tool to provide explanations on the expected behavior of the system. The results have
been validated by time-domain simulations of the considered non-linear model. The bandwidth
of the closed-loop direct voltage control and the CCC of an MMC have been shown to have
a great impact on the dynamic behavior of the overall systems, and especially the use of a
resonator in the CCC for the reduction of the harmonic current at 2ω1 frequency, normally
superimposed over the circulating current of the converter’s phases.

The MMC and the 2LC have been compared in terms of their passivity properties, when used
in HVDC systems that are of the same ratings and optimally designed for the use of each con-
verter. Both the DVC-MMC and the DVC-2LC can be passive only for relatively slow direct-
voltage control. For relatively fast direct-voltage control, the DVC-MMC becomes non-passive
due toRe[YDVC−MMC(jω)] becoming negative at low frequencies (∼ 13 Hz), while the DVC-
MMC becomes non-passive due toRe[YDVC−2LC(jω)] becoming negative at high frequencies
(∼ 665 Hz). However, when a typical resonator is used in the CCC,the DVC-MMC is always
non-passive. At the same time, both APC-2LC and APC-MMC are always non-passive, regard-
less if the latter utilizes a resonator in the CCC.
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Chapter 7

Control investigation in Multiterminal
VSC-HVDC grids

The expansion of the point-to-point HVDC transmission concept into a multi-terminal arrange-
ment, broadens the possibilities for a more flexible power transfer between ac grids and pro-
vides the means for a reliable integration of dispersed, high-capacity renewable power sources
to highly interconnected power systems. However, moving from a two-terminal to a multiter-
minal scale, increases the technical requirements and addscomplexity to the control strategies
that can be applied.

This chapter functions as an introduction to the ideas, visions and challenges behind the multi-
terminal concept, focusing on VSC-based MTDC grids. Existing control strategies are presented
and new types of controllers are proposed, aiming to enhancethe performance of the system or
accommodate new power-flow needs that current solutions have difficulty in handling. Exam-
ples utilizing four- and five-terminal MTDC grids, demonstrate the effectiveness of the proposed
controllers by comparing their performance to that of conventional control concepts, both in
steady-state and in cases of large disturbances.

7.1 Multiterminal HVDC grids

The use of HVDC technology has traditionally been restricted to point-to-point interconnec-
tions. However in recent years, there has been an increase inthe interest for MTDC systems,
given the technological advances in power electronics and VSC technology, as well as the chal-
lenges that rise from the need for the interconnection of large power systems and the intercon-
nection of remotely located generation sites. An MTDC system can be defined as the connection
of more than two HVDC stations via a common dc-transmission network. Just as the concept of
a conventional ac grid relies on the connection of multiple generation and consumption sites to
a common ac transmission system, the MTDC comprises of stations that inject or absorb power
from a dc-transmission system.
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Fig. 7.1 ABB’s HVDC grid vision in the 1990’s [100].

7.1.1 Technologies and initial projects

Since there are two types of HVDC converters (LCC and VSC), two types of MTDC grids
can be realized: an LCC-HVDC based and a VSC-HVDC based MTDC grid. Hybrid versions
combining the two technologies have also been introduced asconcepts [99], but the operational
and protection challenges appear to be hindering factors for a practical realization. The first
multi-terminal HVDC was an LCC-based system that was established in Quebec-New England,
Canada, in 1990. The existing HVDC line of 690 MW was extendedtowards north, over a
distance of 1100 km to connect a new 2250 MW terminal and also to the south, over a distance
of 214 km to connect a 1800 MW terminal. In 1992 a new 2138 MW terminal was added to the
already operational multi-terminal system. Nevertheless, despite the potential of transferring
large amounts of power compared to the VSC technology, experience has shown that LCC-
based MTDC grids appear to have important difficulties from acontrollability and flexibility
point of view.

The first time that an MTDC was installed using the VSC technology was in 1999 at the Shin-
Shinano substation in Japan. The system comprised of three VSC-HVDC terminals in back-to-
back connection and has been used for power exchange betweenthe two isolated 50 Hz and
60 Hz ac grids of Japan [38]. However, the lack of dc-transmission lines in the system, do not
render it an MTDC grid, in the conventional sense. Even though there is no ”true” VSC-based
MTDC grid commissioned yet, the VSC technology has been extensively used in point-to-point
connections, overcoming the technological limitations and disadvantages of LCC-HVDC and
proving that it can constitute the cornerstone of future MTDC grids.
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7.1. Multiterminal HVDC grids

(a) (b)

Fig. 7.2 (a) ABB vision for a European DC grid [101], (b) DESERTEC vision from 2009 [102].

7.1.2 Visions

The potential presented by the HVDC technology in bulk energy transfer over long distances,
triggered an early interest by the academic and industrial community for highly interconnected,
continental-wide, power systems. This was aided by an increased deregulation of the European
electricity market and the development and planning of remotely-located renewable power-
plants, as different visions started rising regarding the future of power systems. In this context,
there is a requirement of a flexible system that is able to transfer a large amount of power ”across
the continent” and ”across the continents”.

Inspired by the early advances in multi-terminal HVDC, ABB already in the 1990s presented its
vision of the future highly interconnected, European-widepower system as shown in Fig. 7.1.
As observed, this plan considered the reliance of the European energy needs on a bulk import
of renewable energy (from wind, solar and hydro power plantsdispersed around the continent)
over a large mainland MTDC grid. The latter would constitutean overlying layer on top of
the existing ac-system. However, the available LCC-HVDC technology of the time proved to
be a weakening agent, since it could not offer the power-flow and grid flexibility required for
the realization of such an ambitious vision. The advances inthe VSC-HVDC technology to-
wards the end of the decade, revived the ideas for large MTDC grids. Consequently, similar
plans have been re-assessed and further developed by other parties, e.g. the DESERTEC foun-
dation in Fig. 7.2(b), while ABB presented its detailed concept of a European MTDC grid, as
in Fig. 7.2(a).

As a step towards the realization of large scale grids, smallDC grids are expected to be initially
developed and connected to the main ac system. This will testthe concept and determine future
requirements for an expansion of the grids. Such a proposal has been presented for a three-
terminal HVDC grid in Shetland, UK, as shown in Fig. 7.3(a). The North Sea is a location shared
by many nations and featuring high wind power potential. These properties make it an ideal
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(a) (b)

Fig. 7.3 (a) Example of possible three-terminal HVDC grid inUK [101], (b) EWEA vision from 2009
[103].

area to develop small-scale multi-terminal connections with offshore wind power integration.
Several relative proposals have been made, as in Fig. 7.3(b).

7.2 Key components for future large scale Multiterminal con-
nections

The realization of MTDC grids presupposes the use of a numberof components that are neces-
sary for the operational and safety integrity of the grids. Such devices are either not developed
yet, are in the final stages of their development or are newly available in the market, with more
development still needed or expected to be observed soon.

7.2.1 DC-breaker

Devices for switching and protection of dc grids are vital torealize MTDC grids, especially for
meshed grids. A dc-fault affects the complete dc-transmission grid and if the faulty segment
of the lines is not isolated, the entire MTDC system would have to be taken out of operation.
Circuit breakers are widely used in transmission and distribution grids to interrupt short-circuit
currents.

Figure 7.4(a) shows a schematic representation of a dc grid under where a dc-fault occurs as a
short circuit between the dc cables. Due to the terminal capacitor of the VSC station, which is
charged atυdc in steady-state operation, the system on the left of the fault can be described by
a constant voltage source ofυdc voltage, together with the impedance of the cable pair between
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Fig. 7.4 DC-fault conditions: (a) Schematic representation of dc grid under short circuit condition, (b)
Equivalent circuit of a dc grid under short circuit condition.

the converter and the fault location. The latter consists ofan equivalent resistanceRcable and an
equivalent inductanceLcable, as shown in Fig. 7.4(b). Upon occurrence of short-circuit,the full
grid voltage appears across the equivalent impedance. Considering a very small value ofRcable,
this voltage is approximately applied entirely acrossLcable causing a fault currentifault with a
constant rise ratedifault/dt = υdc/Lcable. The grid inductance does not limit the fault current
which will keep increasing as long asυdc is sustained. For very low values ofLcable (which
is the case for dc-transmission lines),difault/dt may reach values of hundreds of kA/s [104].
Therefore the fault current would rise to a very high value ina short amount of time and needs
to be interrupted quickly.

The important fact for interrupting off short-circuit currents in ac system is the natural zero
crossing. Since the natural zero crossing of current does not occur in a dc system, one important
question is how to interrupt short-circuit current or load current. In [104], a brief overview of the
concept of dc-circuit breakers is provided but no actual designs. The only HVDC breaker whose
operational effectiveness has been verified, was presentedby ABB [105] and is already available
in the market. The principle of operation of this breaker is shown in Fig. 7.5. The hybrid HVDC
breaker consists of three essential components: a load commutation switch (LCS), an ultra fast
mechanical disconnector (UFD) and a main breaker with surgearresters in parallel.

In normal operation, the load current flows through the closed UFD and the LCS. When the
dc-fault occurs and the control of the system detects it, themain breaker is switched on and
the LCS is switched off (with this sequence). As a result, thehigh fault current can now keep
flowing through the main breaker and UFD can be opened safely under virtually zero current
and without the fear of an arc across it. Finally, the main breaker is switched off and the fault
current flows through the highly resistive surge arresters that quickly limit and finally extinguish
it. The complete fault clearing time is in the range of ms ( [105] mentions 2 ms).

7.2.2 DC-DC converter

The interconnection of ac systems with different magnitudes of operating voltages is easily
performed through the use of transformers. In the future, MTDC grids may be developed with-
out necessarily following the same direct-voltage specifications. Given the benefits of having
interconnected power systems, from a power stability and power market perspective, the pos-
sibility of interconnecting such grids would prove invaluable. A lack of adequate concepts for
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Fig. 7.5 Hybrid HVDC breaker operation principle: (a) normal load current path, (b) fault initiates oper-
ation, (c) LCS interrupts and commutates the current to the main breaker, (d) the main breaker
interrupts and commutates the current to the arrester.

transforming direct voltages in high-power dc grids is one of the major challenges for the real-
ization of interconnected MTDC grids of different voltage ratings. This requirement has been
highlighted in [106] where a benchmark for future MTDC gridshas been suggested.

DC/DC converters have extensively been used in various low-voltage/low-power applications
such as switched power supplies for electronic appliances.Very simple topologies are usually
considered like the classic buck or boost converters. For relatively higher power applications,
different topologies have been developed using DC/AC/DC topologies with a medium or high-
frequency ac-link as discussed in [107] and [108]. The general structure of these converters is
shown in Fig. 7.6. A medium/high frequency ac link includes atransformer to step up or step
down the voltage between the dc-input and the dc-output side, resulting in an advantageous
galvanic isolation, especially for high power applications. The frequency of the ac link depends
on the power level and varies between a few kHz to several MHz.

The galvanic isolated DC/DC converter consists of an inverter at the input side, transforming

υdc1 υdc2

Fig. 7.6 General topology of a galvanic isolated DC/DC converter.
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the direct voltage into an alternating voltage of a certain frequency. In contrast to conventional
converter applications for grid connections or drives, a sinusoidal output is not needed in this
kind of devices. Consequently, the frequency of the output ac voltage is equal to the switching
frequency resulting in a rectangular waveform applied to the transformer [109]. This makes
filter elements unnecessary. The high operating frequency leads to a significant reduction in
the volume of the transformer. Finally at the output side, a rectifier is connected to change the
alternating voltage at the output of the transformer into a direct voltage. For a bi-directional
power transfer, both converters should have the form of an active rectifier.

Presently, DC/DC converters are available for power levelsbetween a few kW up to 1 or 2
MW [32]. It should be mentioned that although in the work of [32], a total output power of
1.5 MW has been realized, the converter has a modular structure where each module has an
output power of only 0.19 MW. This power level of a single module is significantly lower than
the requirements in HVDC grids, where the nominal power ranges from several hundreds of
MWs up to GWs. Three-phase topologies offer significant advantages for high-power appli-
cations [110]. Furthermore, standard three-phase transformer cores are available with various
materials, reducing the total volume of the system. Summarizing these aspects, three-phase
topologies seem to be the most advantageous concepts when being used in a multi-megawatt
DC/DC converter [104].

7.3 MTDC-grid topologies

Several types of MTDC connection concepts are possible to beestablished in practice, each
presenting a number of advantages and drawbacks. The most important of these designs and
probable to be actually implemented are summarized below.

Independent HVDC links

This grid configuration, presented in Fig. 7.7(a), follows the concept of having a grid with
independent two-terminal HVDC links where a cluster of stations are located in the same geo-
graphical area, sharing the same ac busbar. In this case, allthe connections are fully controllable
without the need of a centralized control to coordinate the stations. It may consist of a mix of
LCC- and VSC-HVDC links, operating at potentially different voltages. This setup is ideal to
incorporate existing HVDC lines into an MTDC grid and has no need of dc-breakers.

Radial grid

Owing to the simplicity of the design and the possibility to offer a sufficient level of power-flow
flexibility between multiple stations, the radial grid topology presented in Fig. 7.7(b), will most
likely be applied to the majority of the first MTDC grids. It isdesigned like a star without closed
paths forming. The reliability of this configuration is lower than the other type of connections
and in case of a station disconnection, portions of the dc grid could be ”islanded”.
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Fig. 7.7 MTDC topologies: (a) independent HVDC links, (b) radial connection, (c) ring connection, (d)
meshed connection.

Ring grid

The ring topology, shown in Fig. 7.7(c), connects all converter stations in a closed serial cir-
cuit, with each converter featuring two dc-connections to other stations. The advantages of this
connection type lie on the simplicity of the construction and operation. However, this type of
connection suffers from low reliability and high losses dueto the long transmission lines (if the
geographical location of the stations is big), which are necessary to close the grid loop. The
impact of the latter is intensified in the presence of remote stations which need to be connected
to the rest of the grid with two separate dc links.

Meshed grid

The meshed grid topology is presented in Fig. 7.7(d). As it can be observed, this type of grid
constitutes a ”dc” replica of an ”ac” transmission system, introducing redundant paths between
dc nodes. An additional advantage of this connection schemeis that a station may be added on
certain point of an HVDC link with a separate cable connection, without the need to interrupt
the initial HVDC link and introduce the station at the interruption point. The meshed MTDC
grid allows multiple power paths between dc nodes, increases the flexibility of power exchange
between the respective ac nodes, increases the overall reliability and reduces the shortest con-
nection distance between two nodes in the grid. However, a consequence of these features is the
need for advanced power flow controllers and an increase in the cable cost since more (and po-
tentially long) connections need to be established. Furthermore, the use of dc-breakers at every
station is considered necessary to ensure the viability of the grid in case of dc-faults.
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Fig. 7.8 Voltage-margin control in a three-station MTDC grid. The desired operating point is indicated
with ’×’.

7.4 Control of MTDC grids

The voltage and power control within a VSC-MTDC grid has beena challenge, given the task
of coordinating a large number of stations with the final objective of establishing a desired
power flow in the grid. A limited number of solutions have beenproposed so far, with the most
important of those being theVoltage-margincontrol and theVoltage-droopcontrol. Altered
versions of these fundamental control strategies are frequently found in the literature, but the
core of their philosophy remains the same.

7.4.1 Voltage-margin control

The voltage-margin method presented in [38,39] suggests that each converter follows a voltage-
power pattern where, according to the dc-grid voltage level, the converter can be automatically
assigned duties of either direct voltage or constant power control. There can only be one direct-
voltage controlled station operating in the complete MTDC grid.

An example of the method can be demonstrated in Fig. 7.8, where a grid of three converters is
considered. The direct voltage of the grid in steady-state conditions can vary betweenυdc,min

and υdc,max. Assume that a power flow plan requires Station 1 to inject 100MW to its ac-
side, Station 2 to inject 300 MW to its ac-side and Station 3 toinject 400 MW to the dc grid
(guaranteeing the power balance), while the voltage of the grid is maintained at a level ofυdc,1
(assuming very small voltage deviations around this value per station terminal to allow dc power
flow). Once the stations have been started-up and brought thegrid voltage to an initialυdc,min,
each of them follows their custom voltage-power pattern indicated in Fig. 7.8. The system then
reacts in the following steps.

1. Stations 1, 2 and 3 are dictated to inject +300 MW, +200 MW and +500 MW of power
to the dc grid, respectively. This gives a net power of 1000 MWtransfered to the dc grid,
causing the direct voltage to start increasing.

2. When the direct voltage reachesυdc,3, Station 1 becomes direct-voltage controlled while
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Stations 2 and 3 keep injecting +200 MW and +500 MW to the dc grid, respectively.

3. Station 1 changes its power to maintain the direct voltageand power balance until it
reaches -100 MW which is not enough to compensate for the +700MW injected by the
other stations. This causes the direct voltage in the grid toincrease, exceedingυdc,3, and
Station 1 becomes again power controlled injecting 100 MW toits ac side. The net power
in the dc grid is now constant at +600 MW and the direct voltagein the grid increases
constantly.

4. When the direct voltage reachesυdc,2, Station 2 becomes direct-voltage controlled, being
able to support a dc power from +200 MW up to -300 MW. This is notenough to com-
pensate for the combined power of +400 MW, injected to the dc grid by Stations 1 and
3. This causes the direct voltage in the grid to increase, exceedingυdc,2, and Station 2
becomes again power controlled injecting 300 MW to its ac side. The net power in the dc
grid is now constant at +100 MW and the grid voltage increasesconstantly.

5. When the direct voltage reachesυdc,1, Station 3 becomes direct-voltage controlled, being
able to support a dc power from +500 MW up to -500 MW. This is enough to compensate
for the combined power of -400 MW, injected to the dc grid by Stations 1 and 2.

6. The system stabilizes with Station 1 exporting 100 MW to its ac side, Station 2 injecting
300 MW to its ac side and Station 3 keeping the direct voltage at υdc,1 while injecting
400 MW to the dc grid. This matches the desired power flow scenario.

If Station 3 is lost, Stations 1 and 2 keep injecting powers -100 MW and -300 MW, respectively,
to the dc grid. This gives a net power of -400 MW, which causes the direct voltage to start
decreasing. Once the latter reachesυdc,2, Station 2 becomes direct voltage controlled while
Station 1 is still in power control mode, injecting -100 MW. Station 2 can provide a power of
+100 MW to bring a power balance while maintaining the voltage atυdc,2. The system thus
stabilizes.

Concluding, the voltage-power curves of the stations can bedesigned in such a way that in
case a station is lost, another station will automatically resume the control of the direct voltage,
which is vital for the survival of the MTDC grid. The inherentdisadvantage of the method is
that the single station which is in direct-voltage control mode, has to bear the possibly large
changes of net power that could occur following the loss of a station.

7.4.2 Voltage-droop control

A method sharing some common traits with the voltage-margincontrol but overcoming its dis-
advantage of having a single station bear the changes of net power following the loss of a station,
is the voltage-droop control. This method follows a similarconcept with the frequency-droop
control of synchronous generators being simultaneously connected to an ac grid. In this case,
the change of grid frequency causes all generators to react in terms of power, with the indi-
vidual contribution being decided by their frequency-power droop characteristic. In the voltage
droop control, the change in the direct voltage in the dc gridcauses the MTDC stations to react
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with a change of their power transfer. The method was initially demonstrated in LCC-MTDC
grids [40] and later adapted for VSC-MTDC grids for offshorewind power integration [41,42].

An example of the applicability of the method is shown in Fig.7.9. The scenario is the same
as in Section (7.4.1). Once the stations are started up and the direct voltage of the grid reaches
υdc,min, all three stations inject power into the dc grid, raising the voltage. At a voltageυdc,1,
Station 1 exports 100 MW to its ac side, Station 2 injects 300 MW to its ac side and Station
3 injects 400 MW to the dc grid. This means that the net power import to the dc grid is zero
and the direct voltage is stabilized. Assume now that the voltage momentarily decreases. The
stations will then follow their droop curves and as a result,Stations 1 and 2 will decrease their
export of power to their ac sides while Station 3 will inject more power to the dc grid. This
implies a positive net power injection to the dc grid, causing the voltage to increase. In the same
manner, if the direct voltage exceedsυdc,1, Stations 1 and 2 will increase their export of power
to the ac grid, while Station 3 will decrease its injection ofpower to the dc grid. This will cause
a deficit of net power to the dc grid, causing its voltage to decrease back to its original position.

Assuming for example that Station 3 is lost, Stations 1 and 2 are still extracting power from
the dc grid. This implies that the grid voltage will start dropping until a valueυdc,new where
P1(υdc,new)+P2(υdc,new) = 0. It is obvious that such a point exists aboveυdc,min because at that
voltage level both surviving stations are already injecting power to the dc grid, stopping any
further decrease inυdc and start raising it again. It is evident that in cases of power changes in
the grid (such as the loss of a station), all surviving droop controlled stations contribute to the
new power distribution instead of just one station as in the voltage margin control.

Voltage-droop controller

The steady-state droop curves illustrated in Fig. 7.9 require a certain type of control in the
MTDC stations, with two possible options presented in Fig. 7.10. As it can be seen, the core
of each controller can be either a conventional DVC or an active power controller (APC). In
Fig. 7.10(a), the droop control can operate in a way that an error between a power setpoint
P setpoint and the actual power flowP actual of the converter (corresponding toPg that is measured

-100MW -300MW

υdc1

υdc,max

υdc,min

υdc

P

υdc

P

υdc

P

Station 1 Station 2 Station 3

× 

400MW

× × 

P1,rated-P1,rated P2,rated-P2,rated P3,rated-P3,rated

Fig. 7.9 Voltage-droop control in a three-station MTDC grid. The desired operating point is indicated
with ’×’.
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at the phase reactor as defined in Chapter 2) provides a corrective droop signal, weighed by the
droop constantk, to a DVC which without the added droop signal tries to followa direct-voltage
setpoint ofυsetpoint

dc as reference. In steady-state, and assuming that the limiter at the output of
the DVC has not been saturated, the total input error to the DVC will be zero, or

υactual
dc =

(
P setpoint − P ∗) k + υsetpoint

dc =⇒

υactual
dc =

(
P setpoint − P actual

)
k + υsetpoint

dc (7.1)

This relation expresses the angled droop line in Fig. 7.10(c), where the point{P setpoint, υsetpoint
dc }

is a point along the droop line and the pair{P actual, υactual
dc } are the actual power and direct

voltage conditions at the specific station. At the same time,the tangent of the droop line will be
equal to−k. What this implies is that once the setpoint pair and the droop constant are defined,
if the actual powerP actual, the VSC will regulate the voltage at its dc terminals to be equal
to υactual

dc , which is found by the intersection of the defined droop curveandP actual. From a
different perspective, if the power flow is different thanP setpoint, the DVC tries to follow the
voltage referenceυsetpoint

dc modified by a value of
(
P setpoint − P ∗) k, which is added to the latter.

This acts like loosening the action of the integrator in the DVC and instructs the controller
to follow a slightly different voltage reference thanυactual

dc with the choice ofk affecting the
magnitude of the deviation.

In a similar manner, the same droop action can be achieved by an APC which is trying to follow
a referenceP setpoint modified by the weighted error (υsetpoint

dc − υactual
dc ) /k. This controller is

shown in Fig. 7.10(b) and the steady-state relation betweenvoltages and powers is given again
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by (7.1). This means that the DVC- and APC-based droop controllers operate on the same droop
curve and produce the same steady-state results.

In an MTDC with a number of droop-controlled stations, the choice of setpoints for each con-
verter dictates how the steady-state power flow will be established. If the desired power flow
and the direct-voltage at the terminals of a selected converter are known, it is possible to execute
a power flow calculation in the MTDC grid so that all the necessary actual powers and direct
voltages at the terminals of each station are evaluated. This calculation should take into account
losses on the dc lines, the filter inductor, added harmonic filters and the converter itself. If the
resulting power and voltage pairs are provided as setpointsto the MTDC converters, the grid
will settle with actual power and voltage values being identical to the given setpoints, regardless
of the choice of droop constant for each station. This is a powerful tool in the accurate control
of the MTDC grid.

Contingencies and secondary control

Once a scheduled power flow has been established in the droop controlled MTDC grid, any
unplanned changes to the grid structure and operational conditions will set a new power and
direct-voltage balance. As an example, the loss of a stationor the unpredictable influx of power
by a station which is connected to a wind-farm will cause an initial change in the net injected
power to the dc grid. The direct voltage of the grid will thus change and all droop controlled
stations will follow their voltage-power droop curves, altering their power outputs until the
system reaches a state where the net injected power is zero and the voltage settles. The reaction,
in terms of power, of each station to a given voltage change isdefined by the slope of its droop
curve and therefore its droop constantk. The steeper the curve (largek), the stiffer the station
will be in terms of power change. This is an important information regarding the prioritization
of stations in the system during contingencies, in case there is a demand for selected stations to
preserve their power transfer as much as possible.

Following such unexpected events, it is obvious that the system operator would desire to restore
part of the initial power scheduling or establish a totally new planned power pattern. Conse-
quently, there is a need for a secondary, higher level control. This will monitor the conditions
of the grid, communicate with all the stations, take into account the needs of the system oper-
ator and give localized orders to the stations to adjust their voltage-power curve settings until
the complete grid reaches the desired steady-state. Ideally, this controller should solve a new
power flow problem in the MTDC grid and provide the stations with new setpoints. The authors
in [111, 112] suggest similar types of secondary controllers without the need for an accurate
solution of the power flow problem, with sufficiently good results nonetheless.

7.4.3 Control strategy for connections to renewable power plants

An important area of application for MTDC grids includes theconnection of distributed and
remote renewable power sources to the ac grid. The role of theMTDC grid would consider the
collection of power from the power plants and a planned redistribution of the latter to selected ac
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grids. However, the power in-feed from intermittent sources, e.g. offshore wind-farms, cannot
be accurately predicted. Therefore, it is not possible to set a preselected power flow and an
MTDC grid relying entirely on voltage-margin or droop control cannot be established.

An MTDC station that is connected to a cluster of such power sources would have to be ope-
rating as a fixed ac voltage source to which the power plants would connect and inject all
their available power. This control strategy is exactly thesame as the one used in existing two-
terminal VSC-HVDC connections to offshore wind-farms [41]. If the amount of neighboring
power plants is large, it could be desired to have more than one MTDC converters connected
to it. This would provide the MTDC operator with the flexibility to select how the power is
going to be shared among the converters for a more efficient power distribution, but also offers
redundancy in case a connected converter is lost. In this case, the power plant cluster would
not necessarily have to shed its power and shut down but its power could be absorbed by the
remaining stations, if the power rating of the latter allowsit. If the produced power exceeds the
capacity of the remaining connected stations, a portion of the power sources could be shut down
but the rest can remain connected.

For such a power flow scenario, the MTDC stations connected tothe power source cluster
should follow a control strategy similar to the one employedin a conventional ac grid. There,
multiple synchronous generators are connected to a common ac grid and each of them is
frequency-droop controlled via a governor, sharing the load variations according to their droop
setting. In the same manner, the connected MTDC stations would be acting as virtual syn-
chronous machines [113], with a droop setting to control theway the stations share power
during variations from the cluster or when an MTDC station islost.

On the other hand, the stations connecting such an MTDC grid to the external ac networks
should operate under the assumption that there is an unpredictable amount of power injected to
the MTDC grid. A solution to the problem is suggested in [114], where all these stations are
featuring direct-voltage droop control with power setpoints equal to zero and common voltage
setpoints. As a result, when there is no influx of power from the power sources, the affected
MTDC stations establish a common voltage to the nodes of the dc grid, ensuring zero power
flow between the dc lines. When there is power influx, the same stations will react based on
their droop curves, sharing the power according to the choice of the droop characteristic at each
station.

7.5 Controller offering direct-voltage support in MTDC gri ds

Within the droop-control context in MTDC grids, a modified droop controller is proposed at
this stage that can be utilized by any voltage controlled butalso constant-power controlled
stations connected to the grid. The benefit of such a controller lies in the fact that contrary to
a conventional constant-power controlled station, the useof the proposed controller offers the
possibility of controlling the grid voltage during contingencies while ensuring the transfer of the
requested power in steady-state conditions. The principles of operation and simulation scenarios
proving the effectiveness of the proposed controller are presented in the following sections.
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7.5.1 Direct-voltage support in MTDC grids

Abrupt and unscheduled power changes may occurs in an MTDC grid. In these cases, the
MTDC stations that are droop-controlled will react according to their droop curves, in an effort
to support the stiffness of the direct voltage in the grid by altering their power transfer. It is there-
fore deduced that a plurality of droop controlled stations in the grid increases the direct-voltage
support.

Some of the stations in the grid may however operate under constant power control, without the
provision for a droop functionality. These stations will try to sustain their power transfer before
and after an unexpected power change in the grid. While this is beneficial from the scope of an
uninterrupted power transfer, it reduces the ability to quickly support the direct-voltage stiffness
of the grid. It is essential that as many stations as possiblechange their power during such events
so that large direct-voltage fluctuations with dangerouslyhigh peaks, which could damage the
grid equipment, are avoided or quickly damped. The power controlled stations cannot provide
such an assistance to the grid.

7.5.2 Controller for direct-voltage support in MTDC grids

A controller, which can be used to solve the problem of providing additional voltage support
to an MTDC with droop-controlled and constant-power controlled stations, is proposed in this
section. The same type of controller can be used in all stations. Its main design features are
shown in Fig. 7.11. It constitutes a cascaded structure which can be divided in two main parts.
”Part 1” is a PI-based constant-power controller while ”Part 2” is a Droop-based Direct-Voltage
Controller (D-DVC). A selector is used to activate or deactivate Part 1, setting the operation
of the complete controller to a constant-power or droop-control mode, respectively. When Part
1 is activated, the controller is in its complete form and is addressed to as ”Power-Dependent
Direct-Voltage Controller” (PD-DVC).

Voltage-droop control mode

In the Voltage-droop control mode, the controller reduces itself to the D-DVC Part 2 of the
complete controller of Fig. 7.11. This structure is similarto the standard droop controller as
depicted in Fig. 7.10(a), but encapsulates a number of changes. The voltage control is not per-
formed on the direct voltage but rather on the square of the latter. This is in accordance with
the description of the DVC described in Section (2.3.3) and suggested in [53]. Following the
same controller design, a power-feedforward term is included where the dc powerPdc of the
converter is fed-forward through a low-pass filterHf(s) = af/(s+ af) of bandwidthaf .

The DVC in Section (2.3.3), which here acts as the core of the complete droop controller, was
designed to have only a proportional gainKp. A key feature in the present controller is the
manner in which the droop mechanism is incorporated. Similar to the frequency-droop in syn-
chronous generators connected to ac grids, the droop is heredesired to have an impact only on
the integral part of the DVC, affecting its steady-state output. Therefore, unlike the conventional
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Fig. 7.11 Power-Dependent Direct-Voltage Controller: (a)Complete structure of the controller, (b)
Droop mechanism for linear relation between power and square of the voltage, (c) Droop
mechanism for linear relation between power and voltage.

design in Fig. 7.10(a), the droop signal in the D-DVC is not affecting the proportional part of the
PI but operates exclusively on the integral part. In this waya great part of the closed-loop dy-
namics represented by the proportional part (as the controller without the droop was originally
designed) remains unaffected.

Regarding the droop mechanism block, there are two options that can be selected. The first is
shown in Fig. 7.11(b), with the value amplifying the errorP setpoint−P actual being a droop con-
stantk, exactly in the same way as in the conventional droop of Fig. 7.10(a). However, if this
is applied the controller would impose a linear connection between the steady-state power and
the square of the voltage, rather than the power and the voltage as is observed in the conven-
tional droop controller. Instead, the relation between power and the voltage will now be cubic.
Nevertheless, given the small deviation region of the direct-voltage in operational conditions,
the cubic curve is still close enough to the linear curve and is monotonous. The latter is more
important than the linearity for the droop concept to function in a grid application. As such, the
droop mechanism can be still designed with a droop constant.
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If the linearity between steady-state direct voltage and active power are to be respected, the
droop mechanism should be modified. Starting from the lineardroop curve described in (7.1),
it is possible to derive the following relation

υactual
dc = −

(
P setpoint − P actual

)
k − υsetpoint

dc ⇒
(
υactual
dc

)2
=
[

−
(
P setpoint − P actual

)
k − υsetpoint

dc

]2

⇒
(
υactual
dc

)2
=
(

υsetpoint
dc

)2

+ 2υsetpoint
dc

(
P setpoint − P actual

)
k +

(
P setpoint − P actual

)2
k2 ⇒

(

υsetpoint
dc

)2

−
(
υactual
dc

)2
+2υsetpoint

dc

(
P setpoint − P actual

)
k+
(
P setpoint − P actual

)2
k2 = 0 (7.2)

This form is now compatible to be used in the droop controllerof Fig. 7.11(a) and the droop
mechanism is modified to the one presented in Fig. 7.11(c).

Constant-power mode

During this mode, the PD-DVC controller of Fig. 7.11(a) operates in its complete form including
Part 1 and Part 2. This is a composite structure consisting ofthe D-DVC, with the addition of
a standard active-power PI controller adding its output signal to the voltage error of the D-
DVC. Actively adding a constant to the voltage error is equivalent to manipulating the setpoint
υsetpoint
dc . As a result, the voltage-droop characteristic curve wouldmove in a parallel motion to

a new position.

Assume that a power-flow solver has calculated the necessarysetpoints for the stations of a dc
grid, including a constant-power controlled station. Focusing on the latter, its power setpoint
P setpoint is set equal to its desired constant power referenceP ∗, with its direct-voltage setpoint
υsetpoint
dc being provided by the power-flow solution. These values are given to the controller

of Fig. 7.11(a) and the station will ideally settle to a steady-state ofP actual = P setpoint and
υactual
dc = υsetpoint

dc (if all the other stations are provided with setpoints from the power-flow
solver). This point is indicated with ”×” in Fig. 7.12, located on the droop curve of the station.
It is noticed that Part 1 of the controller has not contributed at all in reaching this steady-state
and its output is equal to zero.

If a contingency occurs in the MTDC grid (i.e. a station is lost), the droop-controlled stations
react by following their droop curves in order to support thevoltage stiffness of the grid and,
as a result, re-adjust their steady-state power transfers.The station with the PD-DVC would
react as well due to its droop characteristics, altering itspower momentarily. However, in the
new condition of the grid, the setpoint pair{P setpoint, υsetpoint

dc } cannot be followed anymore.
Nevertheless, there is a request to respect the power setpoint in order to ensure constant steady-
state power transfer. At this stage, Part 1 of the controllercalculates a necessary corrective
signal, which is added to the error at the input of the droop controller in Part 2. This operation is
equivalent to the active calculation of a new voltage setpoint by an external master-level control,
with the added advantage that it is performed locally. Consequently, the change in setpoints
caused by the PI controller of Part 1 moves the entire droop characteristic along the voltage axis,
as illustrated in Fig. 7.12, until the pair ofP setpoint and an adequate voltage setpoint, which will
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Fig. 7.12 Operation of the PD-DVC before and after a contingency in the MTDC grid. ”×” indicates the
pre-contingency steady-state point while ”•” indicates the post-contingency steady-state point.

allow the flow ofP setpoint in the grid, can be found on it. This new point is indicated with ”•” in
Fig. 7.12. From the previous analysis it is also clear that the controller will operate seamlessly
in pre- and post-contingency conditions, even if a randomυsetpoint

dc is originally provided.

7.5.3 Comments on the PD-DVC

Based on the description above, when the selector is set at position ”1”, the controller is able to

1. accurately maintain a given power reference without the need of communication with
other stations;

2. retain the ability to provide voltage support during contingencies, in a way dictated by its
droop constant.

To achieve such characteristics, it is necessary to design the PI-based power controller of Part 1
so that the active power dynamics are slower than the direct-voltage dynamics, corresponding to
the design of Part 2. This allows the droop function to act quickly during a contingency without
being in conflict with the slower active-power control, which will restore the correct power flow
at a slightly later stage. This is compatible with the conventional design of a two-terminal VSC-
HVDC link where the direct-voltage control is designed to bemuch faster than the active-power
control.

Another comment regards the measurement of the actual powerP actual input to the controller.
It is possible to measure this power either asPdc at the dc-side of the station or asPg at the ac-
side of the station, as shown in Fig. 2.11. These quantities will differ due to the system losses.
Therefore, depending on the location of measuringP actual, the power setpointP setpoint should
be calculated accordingly, to account for these losses. In this Chapter, it is chosen to identify
P actual with Pg.
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Fig. 7.13 Testing configuration of a five-terminal VSC-MTDC grid.

7.5.4 MTDC model-setup

The effectiveness of the PD-DVC will be verified through scheduled power-flow and contingency-
event simulations. For this purpose, a five-terminal MTDC grid is considered. This is an ideal
testing platform since it offers the possibility to simultaneously set a plurality of stations in
pure droop control and constant-power mode. For simplicity, in all of the simulations the HVDC
converters as well as their supplementary components (coupling inductor, transformer, ac-filters
and dc-side capacitor) are considered identical in terms ofratings and physical values and their
properties are described in Table 3.1. Any converter employing a droop functionality features
the same droop characteristick, equal to 2.5%. The layout of the five-terminal VSC-MTDC
grid is presented in Fig. 7.13, where for visual reasons a dc-line pair is shown as a single con-
ductor. The grid is divided into distinct sectionsL1-L7 of overhead lines with assigned lengths
of L1=25 km,L2=50 km,L3=100 km,L4=50 km,L5=100 km,L6=70 km andL7=30 km.

7.5.5 Power-flow studies

At this stage, the functionality of the PD-DVC in establishing a desired power flow to the
previously described MTDC grid is demonstrated. The controller of Fig. 7.11(a) is applied
to all the stations. Among them, Stations 1, 3 and 4 are selected to operate with the selector
in position ”0”, effectively turning them into pure droop-controlled stations while Stations 2
and 4 have the selector in position ”1”, being constant-power controlled. The gain values of the
PI controller in ”Part 1” of the PD-DVC are chosen appropriately to provide a setting time of
approximately 1 s for a power-step reference. The droop mechanism is chosen to be the one in
Fig. 7.11(c) ensuring a linear relation between voltage andpower change. For the purpose of
this example, all stations are connected to infinitely strong grids, which are thus represented by
400 kV voltage sources.

A selected power-flow schedule dictates that the active power measured at the PCC of Stations
2, 3, 4 and 5 should be equal to -400 MW, 400 MW, -300 MW and -200 MW, respectively.
The direct voltage at the terminals of Station 1 is chosen equal to the rated value of 640 kV.
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The reactive-power contribution from the stations is set to0. Based on these requirements and
using performing a dc-power flow calculation, it is possibleto calculate the necessary setpoints
P setpoint andυsetpoint

dc provided to the stations, such that the desired power flow will be estab-
lished. These values are presented in Table 7.1.

The performance of the complete system is here evaluated in conditions when there is a prede-
fined power schedule and when unexpected power changes occurdue to changes in the demands
of constant-power controlled stations. A related power flowpattern is implemented in stages as
described below

1. Initially, all stations are provided withP setpoint=0 MW andυsetpoint
dc =640 kV so that there

is no power flow and the direct voltage of the MTDC is 640 kV at every measured point.

2. Between t=2 s and t=2.3 s, the setpoints of the stations arelinearly ramped from their
previous values to the ones in Table 7.1.

3. At t=4 s, the power setpoint of the constant-power controlled Station 2 is changed step-
wise toP setpoint=-600 MW.

4. At t=5.5 s, the power setpoint of the constant-power controlled Station 2 is changed step-
wise toP setpoint=0 MW.

The results of the simulation are shown in Fig. 7.14 where theP setpoint references of Stations 2
and 4 are depicted as well.

As expected, when all stations are provided with the calculated setpoints (until t=4 s), the steady-
state power and voltage match the given setpoints. At t=4 s, Station 2 is given a power-setpoint
step-change, which follows accurately. At the same time, Station 4 reacts slightly due to the
droop functionality within its DVC because there is a momentary change in the grid voltage
conditions, but quickly settles back to its unchanged powersetpointP setpoint=-300 MW, as dic-
tated by the constant-power setting of its overall controller. The pure droop controlled stations
however react based on their droop curves and since there is an unexpected increase in the
exported power from the grid, they have to compensate to restore a power balance.

TABLE 7.1. SETPOINTS TO THE STATIONS

Station P setpoint[MW] υsetpoint
dc [kV]

Station 1 515.472 640
Station 2 -400 638.166
Station 3 400 639.794
Station 4 -300 634.691
Station 5 -200 635.537
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Fig. 7.14 Active-power and direct-voltage response of a five-terminal MTDC grid using the PD-DVC. A
preselected power scheduling is applied, followed by consecutive power steps at the constant-
power controlled stations.

As a result, Station 5 reduces the power it exports and Stations 1 and 3 increase the power they
import to the dc-side.

In the same manner, the power setpoint of Station 4 is changedto zero at t=5.5 s and it promptly
follows it, with Station 2 briefly reacting to the sudden risein voltage in the grid (as there was
an unexpected reduction in exported power) but quickly settles back to its unchangedP setpoint=-
600 MW. The droop controlled stations once again react basedon their droop curves to resore
the power balance.

Overall, the simulation verifies the functionality of the PD-DVC in an MTDC grid, achieving
simultaneous operation of three droop-controlled stations and two constant-power controlled
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stations.

7.5.6 Dynamic performance under fault conditions

The performance and direct-voltage supporting propertiesof the PD-DVC are demonstrated
through fault studies on the ac- as well as the dc-side. Thesestudies are performed on the same
five-terminal MTDC grid as described in the previous section, featuring three droop-controlled
and two constant-power controlled stations. The objectiveof the fault study is to compare the
performance of the PD-DVC to that of an active-power PI controller that would conventionally
be used to ensure constant power flow. As such, two types of MTDC-grid control strategies are
tested:

• ”Control Strategy 1”: All stations feature the PD-DVC of Fig. 7.11(a).

• ”Control Strategy 2”: The constant-power controlled stations feature regular PI control
with a rise time that is chosen to be close to the one achieved by the PD-DVC in ”Control
Strategy 1”. The other stations are chosen to operate with the proposed PD-DVC in D-
DVC mode (selector in position ”0”).

For consistency purposes in both the ac- and dc-side fault scenarios, the following common
settings are chosen:

1. The stations are set-up exactly as in Section (7.5.5), with Stations 2 and 4 being in
constant-power control mode and the setpoints to all the stations provided as in Table 7.1.

2. The ac-sides of all VSC stations are connected to infinite buses apart from the stations
close to which the faults occur. These are connected to an ac grid of Short Circuit Ratio
(SCR) equal to 2.

3. DC-choppers have been omitted in order to observe the puredynamics of the fault phe-
nomena.

4. The vector of the reference currents(i
(dq)
f )∗max to the CC of all stations is limited to 1.0 pu.

5. The reactive power reference is set to zero for all stations.

AC-side fault scenario

The distance of the fault location from the VSC station terminals has a large effect on the
response of the station. The closer the fault is placed to theVSC station, the more fault current
contribution is bound to come from the station rather than the connected ac-network. In the
present simulation scenario, the fault is chosen to be located close to Station 2. Namely, the
equivalent grid impedance of the associated ac-network (which has been calculated for SCR=2)
is split into two parts in series connection. The first one is equal to the 80% of the grid impedance
and is connected to the infinite ac-source while the other part is equated to the rest 20% of the
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Fig. 7.15 Active-power and direct-voltage response of the five-terminal MTDC grid using the ”Control
Strategy 1” and ”Control Strategy 2” schemes. An ac-side fault is applied close to Station 2 at
t=3 s.
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impedance and is finally connected to the VSC station terminals. A small resistor is connected
between the connection point of the two impedances and the earth, through a breaker.

While being in steady-state conditions, the breaker closesat t=3 s and then opens after 50 ms.
This causes the voltage at the fault location to drop to approximately 22% of the original 400kV.
The power and direct-voltage response of the system for the two different types of control strate-
gies is presented in Fig. 7.15. For the ”Control Strategy 2” control mode, the power references
of the inverters are closely followed throughout the event,apart from the immediately affected
Station 2 which experiences a great power change. The response of the droop-controlled sta-
tions is fast and the initial power flow is quickly restored after the fault is cleared. On the other
hand, the direct-voltage, at the beginning and the clearingof the fault, exhibits large magnitude
deviations followed by relatively poorly-damped high frequency components.

When the ”Control Strategy 1” scheme is used, the power response of all stations is affected.
During the fault, the power of the stations seems to change with less severity than in the ”Control
Strategy 2” scheme. In fact, the immediately affected Station 2 seems to be able to still export
almost 200 MW to its ac-side (rather than only 50 MW in the ”Control Strategy 2”), implying
that the droop controlled stations don’t have to significantly alter their contribution. After the
fault clearing there is a low-frequency power oscillation until the systems quickly settles again
at t=4.2s. This low frequency oscillation is identified to most systems that feature a wide use of
direct-voltage droop and reflects the effort of the system tofind a new power-voltage settling
point, based on the distributed droop curves. Its frequencyand magnitude deviation is mostly
affected by the droop constantk.

In general, the direct-voltage response is less abrupt and better controlled compared to the one
achieved with the ”Control Strategy 2” control. The poorly-damped oscillations experienced
previously are now slightly better damped but the major difference is identified at the voltage
overshoot at the beginning and the duration of the fault, which is significantly reduced. In the
same manner, the voltage overshoot at the moment of fault-clearing is generally reduced with
the only exception of Station 3 where the ”Control Strategy 1” scheme features just slightly
higher overshoot than the ”Control Strategy 2” control.

Nevertheless, the post-fault power response of the system employing the ”Control Strategy 1”
scheme exhibits relatively large oscillations, compared to the system with the ”Control Strategy
2” scheme. It was further found that their frequency is related to the value of the droop con-
stantk. Despite the fact that these oscillations are quickly damped (approximately 1 s after the
clearing of the fault), their magnitude is large enough to consider such a power flow behavior
as undesired in an actual MTDC. This calls for modifications in the control algorithms.

DC-side fault and disconnection of a station

In this scenario, a fault is applied at t=1.5 s at the point between the upper dc-side capacitor
and the positive dc-pole at Station 1, which is connected to earth through a small resistance.
The station is provisioned to be equipped with DC-breakers on both of its dc terminals which
manage to forcefully interrupt the fault current after 5ms and disconnect the station from the
dc grid. For simulation purposes, after the disconnection of the station, the fault location is
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Fig. 7.16 Active-power and direct-voltage response of the five-terminal MTDC grid using the ”Con-
trol Strategy 1” and ”Control Strategy 2” control schemes. Adc-side fault is applied close to
Station 1 at t=1.5s, followed by the disconnection of the station.
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also isolated but the station is kept in operating mode. Thishas no effect on the system, whose
response is the main focus of the fault scenario.

The simulation results are presented in Fig. 7.16. During the fault, the surviving droop-controlled
Stations 3 and 5 experience a large inrush of active power when the ”Control Strategy 2” is
used, which quickly reaches and slightly exceeds the rated 1000 MW for Station 3. At the same
time, the constant-power Station 3 provides a very stiff power control while Station 5 exhibits
a poorly-damped power oscillation. In contrast, the power response under ”Control Strategy
1”, features contribution from all stations to the voltage support. Station 3 quickly increases
its power but never exceed the rated 1000 MW. Station 2 reduces its power extraction from
the grid and imports almost the rated power to the MTDC grid. At the same time, the pre-
viously stiff power-controlled Station 4 responds by decreasing its power extraction from the
grid. This prevents the converter capacitors of the dc grid to quickly discharge and is evident in
all the monitored direct-voltages, which are not allowed todip excessively right after the fault,
compared to ”Control Strategy 2”. This is occurring becausethe D-DVC part of the proposed
controller is operating in all surviving stations (rather than just the pure droop-controlled) and
reacts immediately to the change of the direct voltage.

Nonetheless, the long-term direct-voltage response is very similar for both control strategies
and in all the remaining stations, mainly characterized by apoorly-damped 53.2 Hz oscillation
which is eventually damped after 0.5 s. However for the plurality of the Stations (2, 3 and 4), the
direct-voltage overshoot occurring just after the beginning of the fault is always smaller when
the ”Control Strategy 1” scheme is used. This becomes important in the cases of Stations 2 and 4
that feature the largest voltage peak and the ”Control Strategy 1”. The sole exception of Station 5
where the ”Control Strategy 1” surpasses ”Control Strategy2”, in the highest monitored voltage
overshoot.

7.6 Control strategy for increased power-flow handling

The control aspect in VSC-MTDC grids is of great importance,with voltage droop based me-
thods considered as the most attractive solutions. This kind of existing strategies are normally
designed to maintain the level of voltage in the MTDC grid almost constant during unexpected
events, thus sacrificing the power flow. The aim of this section is to introduce a new droop-
controller structure which maintains the dc-grid voltage close to the nominal values and at the
same time tries to preserve the power flow, following such events as faults or disconnection of
stations.

7.6.1 Comparison with standard strategies

In principle, droop-based strategies are designed in a way to secure that the direct voltage of
the grid lies within strict boundaries under normal operation. However, in a post-fault scenario
where there is a change in the dc-grid layout (i.e. an HVDC station is disconnected), this strategy
would sacrifice the accuracy of the power flow.
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Considering a conventional D-DVC in the form of Fig. 7.10(a), a relatively small value of the
droop constantk implies that the controller is restrictive towards voltageand will not allow a
large variation of the direct voltage for a large variation of the power. In contrast, a relatively
large value ofk renders the controller restrictive towards power, allowing a small variation
of power in case of large changes of the dc-link voltage. In anMTDC grid, it is necessary to
maintain the voltage within a strict margin for proper operation of the system; at the same time it
is important to maintain the desired power flow in the different stations not only in steady-state,
but also in case of unexpected events such as faults or unplanned disconnection of a station.
Droop-controlled converters that are expected to maintaintheir the power flow to a large extent,
require large values ofk while converters that are mainly responsible for maintaining the direct
voltage and are expected to contribute the most power duringunexpected events require low
values ofk.

However, as investigated in [16], in a MTDC where there are stations using conventional droop
control with high values ofk (in the range of 60-100% instead of the more conventional 2%)
the chances of reaching instability in the grid are very high. Therefore a new controller is here
proposed to accommodate the use of large droop constants in order to offer better dynamic
response during fault events or power scheduling changes.

7.6.2 Proposed Controller

The proposed controller is presented in Fig. 7.17 and is a modified version of a conventional
D-DVC depicted in Fig. 7.17(a), which in turn is practicallyidentical to the one in Fig. 7.11(a)
(with the selector in position ”0”). The branch that provides the droop-based correcting signal to
the voltage controller consists of a PI-based droop controller that operates on the error between
the reference powerP setpoint for the station of interest and the actual transferred powerP actual.
The controller’s corrective signal is added to the referenceυsetpoint

dc of the standard DVC.

The version in Fig. 7.17(b) achieves a linear steady-state relation between the actual power and
the square of the voltage (or ”energy stored in the dc-capacitor”) while the version in Fig. 7.17(c)
achieves a linear steady-state relation between the actualpower and the voltage. This is respec-
tively equivalent to the droop choices in the previously proposed controller of Fig. 7.11(b) and
Fig. 7.11(c).

Steady-state properties

The steady-state behavior of the proposed controller can beanalyzed in the simpler case of the
version in Fig. 7.17(b). Observing the branch generating the droop signal, it is possible to derive
the closed-loop transfer function of the combined PI controller with the negative feedback of
gain1/k. This will be equal to

G (s) =
Kp +

Ki

s

1 +
(
Kp +

Ki

s

)
1
k

=
sKp+Ki

s
sk+sKp+Ki

sk

=
sKpk +Kik

sk + sKp +Ki
=

sKpk +Kik

s(k +Kp) +Ki
(7.3)
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Fig. 7.17 (a) Conventional D-DVC with linear relation between power and square of the voltage, (b)
Proposed controller with droop mechanism for linear relation between power and square of
the voltage, (c) Proposed controller with droop mechanism for linear relation between power
and voltage.

The steady-state gain, ordc-gain, of this transfer function is

G (s)|s=0 =
sKpk +Kik

s(k +Kp) +Ki

∣
∣
∣
∣
s=0

=
Kik

Ki
= k (7.4)

This means that in steady-state, the investigated controller behaves exactly like the conven-
tional D-DVC with droop constantk of Fig. 7.17(a). Analyzing in a similar way, the suggested
controller in Fig. 7.17(c) behaves exactly as the conventional droop controller, portrayed in
Fig. 7.11 with the selector at positions ”0” and the droop selection of Fig. 7.11(c). Therefore,
the use of the conventional or the suggested controller has no effect on the final power flow that
will be established in the MTDC grid, as long as the same setpoints and droop constants are
provided to the respective stations.
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Dynamic properties

In the conventional droop controller of Fig. 7.17(a), the droop signal is created by comparing the
given power setpointP setpoint of a station to the actual transferred powerP actual, amplified by
the droop constantk and then added to the voltage setpointυsetpoint

dc . This means that whenever
there is a difference between the power setpoint and its actual value, the voltage controller
will try to set the direct voltage equal to the voltage represented by the predetermined voltage
setpoint, corrected by the value of the droop signal. Whenk is relatively large, rapid and large
power flow changes in the system could lead to a large droop signal passing directly to the
voltage controller. This explains from a macroscopic pointof view the instabilities observed
in [16].

Conversely, the proposed controller features a PI-based droop signal mechanism. Even if in
steady-state the droop part of the controller reduces to a proportional gaink (in the case of
Fig. 7.17(b)), during transients it provides a filtering action, preventing large and rapid droop
signals from reaching the voltage controller. This allows improved dynamic performance when
changing setpoints, as well as in fault or station disconnection events.

Controller design

The branch generating the droop signal in the proposed controller, processes the measured sys-
tem power and generates an output signal that is proportional to the desired active power flow
for the specific station, acting on the voltage-error input to the DVC. It is therefore a form of
a local APC, with the droop feedback providing a relaxed action on its integrator. Its design
depends on the short-circuit impedance of the connecting grid and its parameters are often se-
lected by trial-and-error. As described earlier, this portion of the overall controller is designed to
provide a smoothing action on the produced droop signal and have a dc-gain ofk. This implies
that the gainsKp andKi can be chosen in such a way that its closed-loop transfer function in
(7.3) behaves like a low-pass filter, while (7.4) is respected. It is evident that as long asKi 6= 0,
(7.4) is satisfied. In a two-terminal VSC-HVDC connection, the proportional gain in the APC is
typically chosen much smaller than the integral gain [114].Considering this property, a design
approximation can be made whereKp = 0, transforming (7.3) into

G (s) =
Kik

Ki + sk
=

k

1 + sTr
(7.5)

with Tr = k/Ki. Therefore,G(s) has the same structure as a first-order low-pass filter with time
constantTr and gaink. While the gaink will set the static gain of the system and thereby the
final steady-state error, the time constantTr will indicate the time needed for the droop-signal
branch to adjust the voltage error in case of a power-reference variation. Concluding, a desired
Tr can be chosen, and given the selection of a droop constantk (a choice made regardless of the
stations dynamic performance), the proportional gain can be selected as

Ki =
k

Tr
(7.6)
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This implies that the choice of droop constant should not necessarily affect the dynamic re-
sponse of the converter, sinceKi can be adjusted accordingly to maintain the desired time
constantTr. As an added degree of freedom, the proportional gainKp is maintained in the con-
troller as a means of further shaping the dynamic response ofthe converter. However, its value
should be much smaller thanKi, in order for the behaviour described by (7.5) to be essentially
maintained. While the choice ofKp is customized based on a certain MTDC arrangement and
its dynamic properties, simulation results showed that values ofKp < Ki/1000 provide a well-
controlled system in a wide range of examined study cases andgrid configurations. As a worst
case scenario, in the analysis that follows in this chapter,Ki is not adjusted for differentk and
is kept constant atKi = 90×103 andKp = 50.

7.6.3 Application of the proposed controller

The properties of the proposed controller are verified through power-flow and contingency-
event simulations. A four-terminal MTDC grid is consideredas shown in Fig. 7.18. This choice
instead of the five-terminal grid of Section (7.5.4) is performed because it was found that dy-
namic phenomena involving poor damping, can be better observed in this configuration. The
design of this grid follows the pattern used in Section (7.5.4), where for simplicity purposes, the
HVDC converters as well as their supplementary components (coupling inductor, transformer,
ac-filters and dc-side capacitor) are considered identicalin terms of ratings and physical values
and are the same as in Table 3.1. The grid is divided into distinct sectionsL1-L5 of overhead
lines with assigned lengths ofL1=100 km,L2=100 km,L3=100 km,L4=160 km andL5=40 km.
All stations are connected to infinitely strong grids, whichare represented by 400 kV voltage
sources.

Two different types of droop controllers will be utilized inthe simulations: the conventional
D-DVC of Fig. 7.17(a) (addressed to as ”Classic”) and the proposed controller in its version of
Fig. 7.17(b) (addressed to as ”Proposed”). In a conventional D-DVC as the one in Fig. 7.10(a),
where the voltage controller acts onυdc, the droop constantk is defined by a percentage value
e.g. 3%. This implies that if for zero power transfer the controlled station has a direct voltage at
its terminals equal toυdc,0, for rated power transfer the same voltage will drop by 3%. Addition-
ally the connection between transferred power and direct voltage at the terminals of the station
is linear. When the voltage controller, instead, acts onυ2

dc, there is no longer linear correlation
between power and voltage butk can still be defined as earlier, corresponding to the percentage
of dc-voltage change between zero and rated power transfer conditions.

Post-fault performance

After unexpected events in the system, such as faults, changes in the layout of the grid may occur
e.g. disconnection of certain portions of the dc grid. In this case, the new physical characteristics
of the grid will no longer be able to support the pre-fault scheduled power flow and all droop
controlled stations will have to re-adjust their power outputs according to their droop curves
and hencek values. High values ofk cause the associated station to be very restrictive on power
variations for any voltage variations in the dc grid. This means that the affected station will try
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Fig. 7.18 Testing configuration of a four-terminal VSC-MTDCgrid.

to retain its power exchange very close to its power setpointat all times and try to maintain its
assigned power flow.

The four-terminal MTDC grid shown in Fig. 7.18 is simulated with all stations operating with
the same type of controller at the same time (either ”Proposed” or ”Classic”). The selected
strategy dictates that

• When the ”Classic” control is used, all stations have the same droop constantk=2.5%.

• When the ”Proposed” control is applied, Stations 1, 2, 3 and 4have droop constants
k1=2.5%,k2=20%,k3=20% andk4=80%, respectively. This indicates that Station 1 is
expected to maintain the direct voltage at its terminals close to its setpoint under most
conditions, while the rest of the stations exhibit stiffness on the change of their power
transfer, with the highest degree of stiffness observed in Station 4.

A selected power-flow schedule dictates that the active power measured at the PCC of Stations
2, 3 and 4 should be equal to -600 MW, -700 MW and 700 MW, respectively. The direct voltage
at the terminals of Station 1 is chosen equal to the rated value of 640 kV. The reactive-power
contribution from the stations is set to 0. Based on these requirements and performing a dc-
power flow calculation, it is possible to calculate the necessary setpointsP setpoint andυsetpoint

dc

provided to the stations, such that the desired power flow will be established. These values are
presented in Table 7.2.

A sequence of events is implemented in consecutive stages, as described below

TABLE 7.2. SETPOINTS TO THE STATIONS

Station P setpoint[MW] υsetpoint
dc [kV]

Station 1 615.245 640
Station 2 -600 633.204
Station 3 -700 630.202
Station 4 700 638.166
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1. Initially, all stations are provided withP setpoint=0 MW andυsetpoint
dc =640 kV so that there

is no power flow and the direct voltage of the MTDC is 640 kV at every measured point.

2. Between t=1 s and t=1.4 s, the setpoints of the stations arelinearly ramped form their
previous values to the ones in Table 7.2.

3. At t=2.0 s, a fault is applied at the point between the upperdc-side capacitor and the
positive dc-pole at Station 3, which is connected to earth through a small resistance.
The station is provisioned to be equipped with DC-breakers on both of its dc-terminals
which manage to forcefully interrupt the fault current after 5 ms and disconnect the station
from the dc grid. For simulation purposes, after the disconnection of the station, the fault
location is also isolated but the station is kept in operating mode.

The results of the simulation are shown in Fig. 7.19. After the disconnection of Station 3, the
”Proposed” controller manages to restrain the power at Station 4 at 655 MW, from the pre-fault
700 MW, while under the ”Classic” control it reaches 366 MW insteady-state. Additionally,
Station 2 transmits a power of -693 MW under the ”Proposed” control, instead of the pre-fault
-600 MW, but deviates to -781 MW under ”Classic” control. Given that only Station 1 was
provided with a low droop constant in the ”Proposed” controlstrategy, it now bears the total
power that needs to be injected to the grid to restore a power balance. On the contrary, in the
”Classic” control strategy, all the remaining stations share equally the burden of changing their
power to restore a power balance, causing a significant deviation in the power transfer of them
all. Consequently, Station 1 decreases its power, under ”Proposed” control, from 615.2 MW to
49.6 MW, unlike the ”Classic” control scenario where it onlydecreases to 425.2 MW.

The changes in steady-state direct voltage are in any case relatively limited and are formulated
according to the droop gains of the remaining stations and the new power flow. The results
show that under the ”Proposed” control with a combination ofdroop constant values according
to which station is needed to preserve its power transfer after contingencies, the power flow is
better preserved while keeping the voltages in the MTDC gridclose to the nominal value.

Dynamic performance during power-flow changes

Poorly-damped conditions might appear in droop controlledMTDC grids [43]. Such events may
appear when high values ofk are applied [16], as will be demonstrated in the current simula-
tion scenario. The four-terminal MTDC grid used in the previous section, is simulated with all
stations operating with the same type of controller at the same time (either ”Proposed” or ”Clas-
sic”). In both cases, the controllers of Stations 1, 2, 3 and 4havek1=2.5%,k2=20%,k3=20%
andk4=80%, respectively. This is exactly the same as in the strategy for the ”Proposed” control
strategy of the previous section, but now the same droop constants are applied to conventional
droop controllers as well.

A sequence of events is implemented in consecutive stages, as described below

1. Initially, all stations are in steady-state, following the setpoints of Table 7.2.
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Fig. 7.19 Power and direct voltage of all stations in the four-terminal MTDC, after the disconnection
of Station 3. Blue color represents ”Proposed” control while red color represents ”Classic”
control.
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TABLE 7.3. UPDATED SETPOINTS TO THE STATIONS

Station P setpoint[MW] υsetpoint
dc [kV]

Station 1 364.948 640
Station 2 -600 634.604
Station 3 -700 633.007
Station 4 950 641.415

2. At t=2 s, new values of setpoints are provided to the stations. These are calculated based
on a demand for an increase in power at Station 4 from the initial 700 MW to 950 MW,
while Stations 2 and 3 maintain their power and Station 1 should still regulate the direct
voltage at its terminals at 640 kV. The new setpoints are provided in Table 7.3.

The effect of the application of a new set of set-points to thestations is presented in Fig. 7.20
where the power and direct voltage of each station is provided over time. Even though both
types of control manage to establish the requested power flowchanges in steady-state, the con-
figuration using the ”Classic” control appears to suffer from poorly-damped oscillations. This
oscillation appears in the voltage and power of Station 4 andis located at approximately 298 Hz.
It should be reminded that this station features the highestvalue of droop constant. The perfor-
mance on the other stations, which feature a smaller value ofk, does not seem to be affected by
the oscillation.

On the other hand, when the ”Proposed” type of control is applied, there is no issue with the
298 Hz voltage and power oscillation, which does not appear at all. Additionally, all stations
(including Stations 2, 3 and 4 that feature relatively high values ofk), demonstrate a smooth
power and voltage response, ensuring the dynamic integrityof the system. Furthermore, all
stations exhibited a high overshoot peak when the ”Classic”control was chosen. This type of
control appears to have a fast response, which in turn leads to high overshoots in the voltage
response during the application of the new setpoints. On thecontrary, the ”Proposed” type
of control seems to perform in a smoother manner, maintaining the voltage very close to the
nominal values with insignificant overshoots and no poor damping issues.

7.6.4 Stability analysis

The advantages of the proposed controller compared to the conventional droop controller, in
terms of the overall dynamic response, can be observed by thelocation of the poles of the
investigated system. The four-terminal grid described in Fig. 7.13(a) is utilized for this purpose.
The modelling of the system includes all levels of control inall stations, including the CC. The
same grid arrangement is considered with all stations featuring either ”Classic” or ”Proposed”
controllers. Regardless the choice of control, the same droop constants and setpoints are used at
each station. Accordingly, the poles of the system are plotted to visualize the impact of a droop
constant change and a power flow change in the dynamics.
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Fig. 7.20 Power and direct voltage response in the four-terminal MTDC during a change of setpoints at
t=2 s. Blue color represents ”Proposed” control while red color represents ”Classic” control
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Change in power flow

The four stations are initially provided with the setpointsindicated within the ”Low-Power Sce-
nario” of Table 2. In a following step, the power references of stations 3 and 4 is maintained
while the power reference of Station 2 is modified from -300 to-800 MW. The power reference
of Station 1 is modified accordingly to sustain the power balance in the grid and the voltage
setpoints are calculated accordingly. The droop constantsof the stations are fixed and equal
to k1=2.5%,k2=120%,k3=80% andk4=80%. The results in terms of pole movement for this
power-flow change, when the ”Classic” or ”Proposed” type of control is shown in Fig. 7.21(a),
where only the dominant poles of the much larger system are shown. In the ”Low-Power” sce-
nario, the ”Proposed” scheme presents two pairs of complex-conjugate poles that are closer
to the imaginary axis, compared to the single complex-conjugate pole pair of the ”Classic”
scheme. However, their damping factor is smaller or almost equal to the latter pair’s. This im-
plies that the step response of the ”Proposed” scheme will require more time to reach the steady
state but with similar or better oscillation damping than the ”Classic” scheme.

When the power exported by Station 2 to its ac side is increased, it is observed that the dominant
pole pair of the ”Classic” scheme performs a relatively large leap towards the imaginary axis,
while maintaining its frequency characteristics. This means that the damping of the associated
poles was decreased to a great extent. On the contrary, both pole pairs of the ”Proposed” scheme
present a much more restricted movement towards the imaginary axis. Even though the damping
of these poles worsens, it is still higher than that of the pole-pair observed in the ”Classic”
scheme. It is, therefore, shown that for a large power-flow change in Station 2, the ”Proposed”
control offers better damping characteristics and increased robustness than the ”Classic” type of
droop control. Similar behaviour was observed for large power-flow changes in other stations as
well, but the impact on pole movement was maximized when the power change affected Station
2.

Droop-constant change

In this scenario, the power flow is maintained equal to the ”High-Power Scenario” of Table 2
and the droop constant of Station 2 is increased from 120% to 200%. The pole movement of
the two control schemes is depicted in Fig. 7.21(b). The combination of a relatively high power
transfer in the MTDC grid and the increase ofk2 causes a large decrease in the damping of the

TABLE 7.4. SETPOINTS FOR DYNAMIC ASSESSMENT SCENARIO

Low-Power Scenario High-Power Scenario
Station P setpoint (MW) υsetpoint

dc (kV) P setpoint (MW) υsetpoint
dc (kV)

Station 1 406.926 640 918.332 640
Station 2 -300 636.057 -800 630.37
Station 3 -500 632.649 -500 629.781
Station 4 400 638.045 400 635.201
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Fig. 7.21 (a) Pole movement for an increase in the power flow ofStation 2 for the ”Proposed” (◦) or
the ”Classic” (∗) control scheme, (b) Pole movement for an increase in the droop constant of
Station 2 for the ”Proposed” (◦) or the ”Classic” (∗) control scheme.

complex-conjugate pole pair of the ”Classic” scheme, whichis now located very close to the
imaginary axis and a further increase ink2 would lead to an unstable system. On the contrary,
both dominant complex-conjugate pairs of the ”Proposed” scheme seem to be more robust to the
increase of and their movement is quite limited, allowing for a much greater margin of increase
in k2 until the system stability is compromised.

7.6.5 Dynamic performance during ac-faults

The behavior of the PD-DVC controller in Section (7.5.6) demonstrated satisfactory results,
restricting the deviations in the direct voltage of the dc grid after an ac-fault, but at the expense
of relatively large power fluctuation in all stations. The ”Proposed” controller is here tested in
exactly the same conditions as those in Section (7.5.6), in an attempt to evaluate whether the
performance of the system can be improved in the case of ac-faults.

In this sense, the power flow scenario of Section (7.5.6) is repeated on the same five-terminal
MTDC grid, with the same setpoints given to the converters. Two types of MTDC-grid control
strategies are tested:

• ”Proposed” control: Identical to the ”Control Strategy 1” control of Section (7.5.6) but
Stations 2 and 4 feature the ”Proposed” controller proposedin this section with a droop
constant equal tok=80%. Even though this strategy does not provide constant-power
control to Stations 2 and 4, the selected value of their droopconstants imply that any
deviations from the power setpoints, in case of station disconnection in the grid, would
be minimal. The other stations of the grid keep using the PD-DVC controller of Section
(7.5.2) in its standard-droop mode (or D-DVC mode), with droop constants equal to 2.5%.

• ”Control Strategy 2” control scheme: Same as the strategy ofthe same name in Section
(7.5.6).
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Fig. 7.22 Active-power and direct-voltage response of the five-terminal MTDC grid using the ”Pro-
posed” controller and ”Control Strategy 2” scheme. An ac-side fault is applied close to Station
2 at t=3s.
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The results of the ac-fault simulation are presented in Fig.7.22. As it can be observed, the use
of ”Proposed” control has improved the power response of thestations not only compared to
the ”Control Strategy 1” control of Section (7.5.6) but alsocompared to the ”Control Strategy
2” control. In the duration of the fault, all stations seem torestrict the deviation of their pre-fault
power, with the exception of Station 4, which nonetheless presents only as minor oscillation in
the power transfer. Furthermore, after the fault is clearedand the stations try to restore the orig-
inal power flow, the power response with the ”Proposed” control appears to be faster and more
accurate with minimal overshoots, compared to the ”ControlStrategy 2” scheme. In particular,
the power at Stations 1 and 2 never exceed 564 MW and -472 MW under ”Proposed” control,
respectively. The same quantities for the ”Control Strategy 2” have values of 598 MW and -529
MW.

As far as the voltage response is concerned, the ”Proposed” control shows impressive results
compared to the ”Control Strategy 2” scheme, very similar tothose obtained by the ”Control
Strategy 1” in Fig. 7.15. Despite the fact that Stations 2 and4 are controlled so that their power
transfer is maintained as close to the designated power setpoint, the droop characteristics of
their ”Proposed” controllers still allows them to support the dc-grid voltage.

Concluding, the ”Proposed” controller offers the similar benefits as the PD-DVC control in
terms of direct-voltage support to the grid, but with the advantage of a great improvement in its
power response during system disturbances, while providing almost constant power control to
selected stations.

7.7 Summary

The concept of VSC-MTDC grids has been presented in this chapter, with focus given on their
structural and control features. Having provided a brief description of the history and visions in
the MTDC area, the possible future topologies and key components have been described, along
with the main types of control that are considered for implementation. Among the latter, the
voltage-droop control appeared to be the dominant solutionand the main objective of the chapter
is the introduction of new droop-based controllers that offer improved power-flow handling
capabilities and provide voltage support to the dc grid under disturbances.

An initial proposal involved the PD-DVC controller, capable of proving constant power control
to stations that require it, under all circumstances, including a change in the dc grid e.g. station
disconnection. Simulation results in a five-terminal MTDC grid have shown that the controller
provides improved voltage support compared to a conventional active-power PI controller, but at
the cost of relatively high power-fluctuations in the grid. Asecond type of controller, addressed
to as ”Proposed”, was later introduced, designed specifically for cases where a station is required
to be in droop-control mode but also retain its power flow as much as possible during grid
contingencies. The results in a four-terminal MTDC grid have demonstrated improved power-
handling capabilities and increase in the damping of the system, compared to a conventional
droop controller. Furthermore, its voltage support capabilities are almost identical to those of
the PD-DVC controller, but with the added benefit that previously observed acute power-flow
fluctuations during fault conditions have now been greatly diminished.
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Chapter 8

Conclusions and future work

8.1 Conclusions

In this thesis, the dc-side network dynamics of VSC-HVDC systems have been thoroughly
investigated in two-terminal connections and new suggestions were made to improve the control
of VSC-MTDC grids. An important initial step into answeringthe questions that motivated
the related work, has been performed by setting the background on the origin of the poorly-
damped conditions and instability in VSC-HVDC systems. It has been shown in an explicit way
that a VSC station operating as a constant-power provider, introduces the effect of a negative
resistance. This has a degrading effect on the system’s damping and increases the risk for system
instabilities.

One of the two major approaches that have been chosen to perform stability studies in VSC-
HVDC systems is the analytical approach. In this context, the SMT analytical method has been
developed and presented in conjunction with the already known LR method, which has never-
theless never been implemented in the analysis of power systems or control related processes.
A benefit of the SMT focuses on the fact that is not iterative, meaning that the form and com-
plexity of the final analytical eigenvalue expressions is known from the beginning, in contrast
to the iterative LR, where each additional iteration theoretically improves the accuracy but dra-
matically worsens the compactness of the expressions. Bothmethods operate optimally on min-
imized models of systems. Consequently, it has been shown how a two-terminal VSC-HVDC
system can be successfully minimized to a 4th order state-space representation. Both methods
performed adequately in approximating the actual eigenvalues of the VSC-HVDC model, but
the SMT has shown a consistent increase in accuracy comparedto the LR.

The analytical methods, even though beneficial in understanding the behavior of the investigated
systems, have been shown to be relatively complicated to useand are effectively applicable to
radically reduced model representations. A frequency-domain approach has been shown to be
ideal in conducting stability analysis when an increase in modeling accuracy of a system is
desired. In accordance to this, a detailed two-terminal, 2LC-based VSC-HVDC system has
been modeled as a SISO feedback system, where the VSC-transfer functionF (s) and the dc-
grid transfer functionG(s) have been defined and derived. It has been shown that the structure
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of the DVC used in the DVC-VSC station has a direct impact onF (s). In fact

• a purely PI-based DVC rendersF (s), and thereby the input admittance of the DVC-VSC
station, stable and potentially passive;

• the use of a power-feedforward term in the DVC introduces dynamics of the dc-transmission
link into F (s), making it permanently unstable and thereby non-passive.

For a PI-based DVC, it has been shown that as long asG(s), which is naturally unstable, can
be successfully replaced by a marginally stable and passivetransfer functionG′(s), a passivity
analysis can take place and demonstrate how the passivity characteristics of the DVC-VSC via
its transfer functionF (s), determine, to a certain degree, the stability of the closed-loop system.
Indeed, it has been shown that when the DVC-VSC station imports power to the dc grid, the
dc-grid resonant peak might coincide with a negativeRe[F (jω)], meaning that instead of being
damped, the resonance is amplified; the more negativeRe[F (jω)] is, the greater the risk of
instability.

For a DVC with power-feedforward,F (s) is unstable and a passivity analysis cannot properly
take place. Instead, the net-damping criterion has been utilized as an alternative frequency-
domain approach. It has been shown that the criterion can explain most conditions of potential
instability, simply by focusing on the open-loop resonant frequencies of the VSC and dc-grid
transfer functions and determining whether the cumulativedamping of these functions is po-
sitive at the resonant points (and therefore ensuring low risk of instability). Additionally, the
open-loop resonances can be defined in unstable-subsystem transfer functions, showing that
unstable subsystems do not prohibit the application of the criterion to derive conclusions for the
closed-loop stability. Within this context it has been found that factor degrading the damping
and may finally lead to the instability of the investigated VSC-HVDC system have been the

• increase in the amount of transferred power;

• increase in the controller closed-loop direct voltage control bandwidthad;

• increase in the length of overhead-line based dc-link;

• decrease in the length of cable-type of dc-link.

It has been further shown that an almost linear correlation exists between the net-damping of a
system and the damping factor of the poorly-damped closed-loop dominant poles.

The effect of using MMC in VSC-HVDC systems has thoroughly been investigated, starting
by the the derivation of the analytical dc-side input admittance of the MMC, both in DVC and
APC mode, taking into account all the available levels of control and component configura-
tion of an actual system. The validated expressions have been used in stability studies of a
two-terminal VSC-HVDC system, using the net-damping criterion. The bandwidthad and the
choice of CCC parameters have been shown to have a great impact on the dynamic behavior
of the overall systems, and especially the use of a resonatorin the CCC centered at2ω1. The
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MMC and the 2LC have been, additionally, compared in terms oftheir passivity characteris-
tics. Both the DVC-MMC and the DVC-2LC can be passive only forrelatively slow direct-
voltage control. For relatively fast direct-voltage control, the DVC-MMC becomes non-passive
due toRe[YDVC−MMC(jω)] becoming negative at low frequencies (∼ 13 Hz), while the DVC-
MMC becomes non-passive due toRe[YDVC−2LC(jω)] becoming negative at high frequencies
(∼ 665 Hz). However, when a typical resonator is used in the CCC,the DVC-MMC is always
non-passive. At the same time, both APC-2LC and APC-MMC are always non-passive, regard-
less if the latter utilizes a resonant integrator in the CCC.

The closing part of the thesis has focused on the developmentof droop-based controllers for the
use in MTDC grids. Initially, the PD-DVC controller has beenproposed for use in cases where
a VSC station required to maintain its designated power flow after unexpected contingencies in
the grid, such as the loss of a station following a dc-side fault, while maintaining voltage-droop
characteristics during transients in the grid. It has been shown that, compared to a conventional
PI-based power controller, the use of the proposed controller caused a smaller direct-voltage
variation in a five-terminal MTDC grid during and after ac faults, but at the expense of sig-
nificant but quickly damped power oscillations at all the stations. A second droop-controller
variation has been proposed for use in MTDC grids where a station requires a high droop con-
stant, meaning that it should maintain its power flow almost constant under all grid conditions,
but still provide direct-voltage support during grid contingencies. The proposed controller has
been tested in a four-terminal MTDC and compared to the performance of conventional droop-
controllers. It has been shown that following a rapid changeof power and voltage setpoints,
the two controllers have no difference in steady-state performance (as desired), but the pro-
posed control provides a smooth power and direct-voltage reaction from the stations that use
it, compared to the conventional droop control. The controller has also been tested in the five-
terminal MTDC of the earlier scenario and has demonstrated satisfying results for the ac-side
fault scenario with almost negligible power oscillations compared to the PD-DVC controller.

8.2 Future work

The main focus of this thesis has been on the stability and control studies in the area of VSC-
HVDC, with most of the effort being concentrated around the two-terminal arrangement but
later expanded to MTDC as well. Several future steps can be considered for the improvement
of the acquired results and the investigation of related butunexplored areas of interest.

The analytical expressions that were derived by the SMT and LR methods, constitute a leap
in acquiring useful and relatively compact eigenvalue descriptions. However, if it is desired to
established design specifications from these expressions,their final form should be further sim-
plified. A future step could therefore consider studies on minimizing the analytical expressions,
to the extent that their validity is sufficient for a small variations of only some, or preferably
just one of the system’s parameters.

Additionally, in this thesis, the SMT and LR methods were applied to system models up to the
4th order. Systems of higher order could either increase the complexity of the final eigenvalue
expressions (at least in the case of the LR), or may not even besolvable (considering the SMT).
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It could be useful to modify the LR method so that the maximum possible simplifications could
be performed while creating the assisting matrices at each iteration step. In this way, it could
be possible to produce final expressions for higher-order models, that are valid within a small
variation margin of a nominal set of system parameters. Similarly, it could be useful to investi-
gate whether it is theoretically possible to apply the SMT method on 5th or 6th order models, or
whether a specific structure of the model’s state-matrix canassist the solution of the eigenvalue
problem.

In the frequency-domain analysis of the two-terminal VSC-HVDC model, it was shown that the
passivity approach can be applied only within specific boundaries. In particular, the unstable
pole of the dc-grid transfer functionG(s) must be sufficiently close to the origin, so thatG(s)
can be replaced by the marginally stableG′(s), as shown in Chapter 4. Furthermore, the VSC-
transfer functionF (s) must also be stable, limiting the choices on the direct-voltage control
strategy. In general, a higher complexity of the model increases the chances of having unstable
subsystem transfer functions. Contrary to the passivity approach, the net-damping approach not
only does not seem to suffer from such restrictions but can also give far more consistent and
direct information on the system’s stability and the system’s poorly-damped poles. As such, a
future consideration is to apply the net-damping criterionmethodology to higher complexity
models and MTDC grids that can be represented by SISO models.

The use of MMC in VSC-HVDC was shown to have a great effect on the dynamic behavior
of a complete two-terminal VSC-HVDC system. It would be, therefore, valuable to utilize the
derived dc-side input admittance expressions of the MMC forstability studies in MMC-based
MTDC grids. Another useful investigation could consider the dynamics of a system that utilizes
both MMC and 2LC stations. This could be observed in cases where, e.g., a third MMC-based
terminal is added to an existing two-terminal 2LC-based HVDC system, with no intention of
upgrading the 2LC stations to MMC. A further topic of interest would be the modification
of the dc-side input admittance of the MMC based on differentcontrol choices. These could
concern, e.g., the consideration of a power feedforward term (introducing dc-grid dynamics to
the converter dynamics) or active-damping in the direct-voltage controller of the MMC, or the
utilization of direct-voltage droop control for use in MTDCgrids.

Regarding the higher-level MTDC grid investigation, it could be desirable to develop a proce-
dure to fine-tune the proposed controllers, based on a strictdynamic description of the system’s
model. This step, as well as improvements to the functionality of the controllers, could certainly
be considered for future research.

A further future consideration would be the conduction of stability studies in MTDC systems
that are created in a multi-vendor environment. An MTDC gridis most likely originally de-
veloped using converters from a single supplier. In this case, their structure and control of the
converters is consistent between the stations and taken into consideration for the optimal design
of the system. However, a future expansion or maintenance ofthe MTDC grid could involve
the addition or replacement of existing stations with converters from different vendors, whose
structure and control is not confined to the properties of theoriginal converters. It would, there-
fore, be interesting to use the methods presented in this thesis to perform stability studies in
such systems and investigate potential interactions between converters of different technologies
and specifications.
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Appendix A

Transformations for three-phase systems

A.1 Introduction

In this appendix, the necessary transformations from three-phase quantities into vectors in sta-
tionaryαβ and rotatingdq reference frames and vice versa will be described.

A.2 Transformation of three-phase quantities to vectors

A three phase system constituted by three quantitiesυa (t), υb (t) andυc (t) can be transformed
into a vectorυ(αβ) (t) in a stationary complex reference frame, usually calledαβ-frame, by
applying the following transformation

υ(αβ) (t) = υα (t) + jυβ (t) = Ktran

(

υa (t) + υb (t) e
j 2
3
π + υc (t) e

j 4
3
π
)

(A.1)

The transformation constantKtran can be chosen to be
√

2/3 or 2/3 to ensure power invariant or
amplitude invariant transformation respectively betweenthe two systems. This thesis considers
a power invariant transformation. Equation (A.1) can be expressed in matrix form as

[
υα (t)
υβ (t)

]

= T32





υa (t)
υb (t)
υc (t)



 (A.2)

where the matrixT32 is given by

T32 = Ktran

[
1 −1

2
−1

2

0
√
3
2

−
√
3
2

]

The inverse transformation, assuming no zero-sequence, i.e.υa (t)+υb (t)+υc (t) = 0, is given
by the relation





υa (t)
υb (t)
υc (t)



 = T23

[
υα (t)
υβ (t)

]

(A.3)
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where the matrixT23 is given by

T23 =
1

Ktran





2
3

0
−1

3
1√
3

−1
3

− 1√
3





A.2.1 Transformation between fixed and rotating coordinatesystems

For the vectorυ(αβ) (t) rotating in theαβ-frame with the angular frequencyω(t) in the posi-
tive (counter-clockwise direction), adq-frame that rotates in the same direction with the same
angular frequencyω(t) can be defined. The vectorυ(αβ) (t) will appear as fixed vectors in this
rotating reference frame. A projection of the vectorυ(αβ) (t) on thed-axis andq-axis of the
dq-frame gives the components of the vector on thedq-frame as illustrated in Fig. A.1.

d

q

( )tθ

( )( )tαβυ

( )tdυ

β

α

ω(t)

( )tqυ

( )tαυ

( )tβυ

Fig. A.1 Relation betweenαβ-frame anddq-frame.

The transformation can be written in vector form as follows

υ(dq) (t) = υd (t) + jυq (t) = υ(αβ) (t) e−jθ(t) (A.4)

with the angleθ(t) in Fig. A.1 given by

θ (t) = θ0 +

t∫

0

ω (τ)dτ

The inverse transformation, from the rotatingdq-frame to the fixedαβ-frame, is provided as

υ(αβ) (t) = υ(dq) (t) ejθ(t) (A.5)
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In matrix form, the transformation between the fixedαβ-frame and the rotatingdq-frame can
be written as [

υd (t)
υq (t)

]

= R (−θ (t))

[
υα (t)
υβ (t)

]

(A.6)

[
υα (t)
υβ (t)

]

= R (θ (t))

[
υd (t)
υq (t)

]

(A.7)

where the projection matrix is

R (θ (t)) =

[
cos (θ (t)) − sin (θ (t))
sin (θ (t)) cos (θ (t))

]
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Appendix B

Per-unit Conversion

The use of the per-unit system in the analysis of Chapter 2, requires the establishment of base
values for the conversion of entities from natural to per-unit values. This section provides the
definition of all the necessary base values for both ac- and dc-side quantities.

B.1 Per-unit conversion of quantities

The base values for the electrical variables (current and voltage), as well as entities that corre-
spond to electrical properties (impedance, inductance, capacitance, frequency) are provided in
Table B.1, for both ac- and dc-side quantities. As, an example, Table B.2 presents the numerical
form of the derived base values for the system with characteristics described in Table 3.1.

TABLE B.1. BASE VALUES

Base value Definition
Base frequency (ωbase) 2πfnominal

Base time (tbase) (2πfnominal)
−1

Base power (Sac−base) SVSC−rated

ac side - Base voltage (υac−base) uac−rated

ac side - Base current (iac−base)
Sac−base√
3υac−base

ac side - Base impedance (Zac−base)
υ2
ac−base

Sac−base

ac side - Base inductance (Lac−base)
Zac−base

ωbase

ac side - Base capacitance (Cac−base) (Zac−baseωbase)
−1

dc side - Base power (Sdc−base) SVSC−rated

dc side - Base voltage (υdc−base) udc−rated

dc side - Base current (idc−base)
Sdc−base

υdc−base

dc side - Base impedance (Zdc−base)
υdc−base

idc−base

dc side - Base inductance (Ldc−base)
Zdc−base

ωbase

dc side - Base capacitance (Cdc−base) (Zdc−baseωbase)
−1

215



Chapter B. Per-unit Conversion

TABLE B.2. BASE VALUES

Base value Numerical value
ωbase 314.16 rad/s

Sac−base 1000 MVA
υac−base 320 kV
iac−base 1.8 kA
Zac−base 102.4Ω
Lac−base 325.9 mH
Cac−base 31.08µF
Sdc−base 1000 MW
υdc−base 640 kV
idc−base 1.563 kA
Zdc−base 409.6Ω
Ldc−base 1304 mH
Cdc−base 7.77µF
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