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Recycling of cotton textiles: Characterization, 
pretreatment, and purification 

ANNA PALME 

Forest Products and Chemical Engineering 

Department of Chemistry and Chemical Engineering 

CHALMERS UNIVERSITY OF TECHNOLOGY 

Abstract 

In many parts of the world, there are well-established systems for material recycling of metal, 
glass, and paper. However, no large-scale chemical recycling of textiles currently exists. Since 
the collection of second hand textiles is established on a large-scale, one of the main barriers to 
obtaining chemical textile recycling is the development of recycling technology. Recently, it has 
been proposed that recycling cotton may be accomplished using post-consumer cotton to 
produce regenerated cellulose fibers, such as viscose and lyocell. These fibers are, today, made 
either from wood-derived dissolving pulp or cotton linters, both of which contain almost pure 
cellulose. The incorporation of used cotton fibers from textiles is an interesting possibility since 
cotton also contains almost pure cellulose. The most common textile material on the market 
contains a mix of polyester, i.e. poly(ethylene terephthalate) (PET), and cotton, referred to as 
polycotton, and the separation of the two components is necessary before recycling. This thesis 
investigates some important aspects of the chemical recycling of textiles. The focus is on four 
areas; property changes during laundering and use of cotton, acid pretreatment of cotton, 
swelling properties of cotton, and separation of cotton from polycotton textiles. 

The first part is based on that during the service life of cotton textiles, laundering is performed 
many times, and this may change the properties of cotton. When new cotton fibers are compared 
to cotton fibers from sheets that have been used in hospitals for a long period of time, findings 
show that laundering and use do not have a large impact on the supramolecular structure of 
cotton cellulose. However, the cellulose the degree of polymerization decrease greatly after 
long-term use. 

The second and third parts of the thesis investigate the pretreatment of cotton. Pretreatments of 
cellulose fibers are used to enhance susceptibility to dissolution before the production of 
regenerated fibers. Three different pretreatments were investigated, acid hydrolysis in water, 
acid hydrolysis in ethanol and hydrothermal treatment. Findings show that the degradation 
pattern is similar in cotton and dissolving pulp for all pretreatments. 

The last part of the thesis investigates the separation of the components in polycotton. In the 
process, polyester is hydrolyzed by the action of alkali while cotton is maintained. The process 
yields three product streams; two containing the two different monomers obtained when 
hydrolyzing the PET, and one with residual cotton. The yield of the process is high, and the 
fractions showed high purity.  
Keywords: Textile recycling, Cotton, Cellulose, Pretreatment, Polycotton, Hydrolysis 
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1. Introduction 

Material recycling of consumer products such as paper, glass and metal is well developed 

today in many parts of the world. The reasons for developing material recycling are 

many, such as reducing the need for landfills as well as contributing to a decrease in the 

use of virgin materials. When discussing recycling alternatives, the most preferred 

alternative is always reuse. However, textiles that are not suited for reuse could be 

recycled into textiles, so called fiber-to-fiber recycling, and this is considered in this 

thesis.  

1.1 Recycling of textiles 

Fiber-to-fiber recycling of textiles has not been implemented on a large-scale. Since 

collection of second-hand textiles is well developed, one of the major barriers to 

accomplishing the chemical recycling of textiles is development of recycling technology 

(Elander & Ljungkvist, 2016). The aim of this thesis is to contribute to the development 

of chemical recycling of textiles. 

Fiber-to-fiber recycling of textiles may be performed chemically or mechanically. The 

mechanical approach has conventionally been used to defibrate textiles into fibers, 
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which can be spun with or without the addition of virgin fibers into recycled yarn and 

textiles. Mechanical recycling is possible to achieve with good results for wool and 

cashmere, however for most other fibers, mechanical recycling lead to recycled fibers of 

inferior quality. For this reason, mechanical recycling tends to be regarded as down 

cycling (Morley, Slater, Russell, Tipper, & Ward, 2006). Chemical fiber-to-fiber 

recycling comprises different processes where changes on the molecular level are made 

to textile fibers through chemical processing to form recycled fibers, yarn, and textiles. 

No commercial-scale chemical fiber-to-fiber recycling of textiles exists today, however 

small-scale projects are ongoing, such as Eco Circle (Teijin), Worn Again, Evrnu, 

Re:newcell, and Ioncell (Asaadi, Hummel, & Sixta, 2015; Elander & Ljungkvist, 2016).  

Textile recycling is complicated since textiles include a broad number of different 

materials, however, the scope of this thesis is limited to recycling of cotton and polyester. 

The overall idea is to use old cotton to produce regenerated cellulosic fibers, such as 

viscose or lyocell. These fibers are made mainly from cellulose extracted from wood 

today, however, cotton linters are also used as raw material in the production. Since 

cotton fibers from textiles are an almost pure cellulose source, worn out cotton textiles 

could possibly be included in this already existing industry and be recycled into new 

textile fibers, Figure 1. This approach has also been investigated by other researchers 

(Asaadi et al., 2015; Haule, Carr, & Rigout, 2016; Negulescu, Kwon, Collier, Collier, & 

Pendse, 1998).  

  

Figure 1: Recycling of cotton through production of regenerated cellulose fibers.  
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One area of particular interest for textile recycling is the service sector, which handles 

large amounts of textiles for hotels and hospitals. In a report from 2014, an enquiry was 

sent out to all Swedish laundering companies, about the amount of textiles they discard 

each year. Only a few companies responded, but these companies discarded between 

379 and 729 tons of textiles per year together (Brismar, 2014). The majority of these 

textiles are mixed polyester and cotton textiles, so called polycotton. 

The focus of this thesis is on the characterization of the starting material, the 

pretreatment and dissolution of cotton, and the separation of cotton and polyester. Fiber 

spinning from old cotton has not been included. 

1.1.1 Mistra Future Fashion 

The Mistra Future Fashion program is a cross-disciplinary research program that holds 

uniquely a system perspective on the fashion industry. Its vision is to close the loop in 

fashion and clothing – enabling a systemic change in the Swedish fashion industry, 

leading to a sustainable development of the industry and society. 

The program aims to deliver insights and solutions that will be used by the Swedish 

fashion industry and by other stakeholders to significantly improve the environmental 

performance and strengthen the global competitiveness. 

This thesis have been performed within Project 5 (Reuse, recycling and end of life issues) 

in Phase 1 and Theme 4 (Recycling) in Phase 2 of the research program. 

1.2 Objectives and overview of papers 

The main objective of this thesis was to investigate the preconditions for chemical fiber-

to-fiber recycling of cotton textiles. Four main research questions were investigated, and 

the related papers are indicated in brackets: 

1) How do important material properties of cotton fiber change during long-term 

laundering and use? (Paper I) 

2) How are new and used cotton fibers affected by acid pretreatment in comparison 

to dissolving pulp? (Paper II, IV) 

3) How is the susceptibility of cotton fibers and dissolving pulps to swelling changed 

after acid pretreatment? (Paper III) 
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4) How can the separation of mixed textiles that contain polyester and cotton be 

accomplished? (Paper V) 

1.3 Outline of thesis 

The findings from the research questions posed above will be presented and discussed 

in this thesis. After a short introduction to the subject, some general background to 

textile materials will be presented, followed by more specific background on previous 

literature connected to the four areas; the properties of cotton fibers, acid pretreatment 

of cellulose fibers, swelling and dissolution of cellulose fibers and separation of cotton 

and polyester from mixed textiles. Then the materials and methods used in the thesis 

will be presented, and, in the following sections results, from the four areas will be 

presented and discussed. The main conclusions will be highlighted, followed by an 

outline for possible future work within the field of chemical recycling of cotton. 



 

2. Textiles and Fibers 

The aim of this thesis is to provide a better understanding of the first process steps in 

textile recycling. To obtain this, it is important to understand the different size levels in 

textiles (from the molecular level to the actual fabrics), as well as the main steps in the 

production processes of the materials. This chapter provides a background to the 

important terminology of textiles and properties of textile fibers. 

Textile fabrics are made from yarns, which are made from textile fibers or filaments. 

Fabrics may be constructed in many ways, but the most common techniques are weaving 

and knitting of yarn. All fabrics in this thesis are made from spun yarn, i.e. yarn that has 

been made through the spinning of staple fibers. Staple fibers are short fibers, either due 

to their biological origin or because they were cut from longer fibers, so called filaments 

(Hatch, 1993). 

Fibers may either be natural, such as cotton and wool, or man-made. Man-made fibers 

are mainly petroleum based fibers, such as polyester and nylon. However, a small part 

of the man-made fibers are made from cellulose, so called regenerated cellulosic fibers. 

The world production of fibers is increasing, however, cotton production is moving to 

“peak cotton”, and since around 1995 the main increase occurs in the production of man-

made fibers (CIRFS European Man-Made Fibres Association, 2016). In 2014, the 
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production of synthetic fibers was more than twice as large as the production of cotton, 

see Figure 2. 

Figure 2: World production of fibers 2014. The numbers indicate the number of million tons fibers produced 

(CIRFS European Man-Made Fibres Association, 2016). 

The research has been centered on cotton, however, since cotton mainly exists in textile 

mixes with other materials, and since the most common mix is with polyester, the Paper 

V investigates mixes of polyester and cotton, so called polycotton. 

2.1 Cotton 

Cotton fibers are the most common natural textile fiber. Cotton is a staple fiber, and 

normally the length of the fibers range between 22 and 32 mm, and generally, longer 

cotton fibers are considered to be of higher quality (Kljun et al., 2014). The fibers are 

seed hair, similar to the seed hairs of the dandelion, which grow as single cells from the 

cotton seed. Each cotton seed can produced 5000 to 20000 fibers (Sczostak, 2009). 

During growth, the lint fibers develops first, as long fibers. Lint fibers are the fibers used 

in textile production. This is followed by the development of shorter fibers, called fuzz 

fibers or cotton linters. Linters are shorter fibers only 1.5 - 10 mm long with a thicker 

fiber wall, and they adhere stronger to the seed (Lewin, 2007). After the harvest of the 

cotton plants, the lint fibers are removed from the seed and sent for yarn production. 

The seeds, with the linters on, are treated further. The main purpose is to produce seed 

oil, however, the first step is to cut the linters from the seeds. The cotton linters are then 

bleached, to remove non-cellulosic compounds, and reduce the DP. The resulting cotton 

linters are used both as fibers (in applications such as paper and as reinforcement in 

Cotton

Wool

Synthetics (man-made)

Cellulosics (man-made)
60

26

1

6
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composites) and in chemical conversion (such as regenerated fibers, cellulose acetate, 

cellulose nitrate and cellulose ethers) (Sczostak, 2009). 

Since cotton linters are a pure cellulosic source, they are commonly used as a reference 

in cellulose research, many times only denoted as cotton fibers. However, as the 

properties of lint and linters may differ on many levels, it is important to consider which 

fiber type is being analyzed before comparing results. When referring to cotton fibers in 

this thesis, cotton lint is intended. 

The growth of the fiber starts with the elongation of the primary wall, which is followed 

by the deposition of cellulose inside the primary wall tube. When the major part of the 

deposition has taken place, no further elongation occurs. During growth, the lumen of 

the fiber is filled with water, and the fibers grow inside a closed boll. After about 50 days 

of growth, the fibers are mature, and the bolls open, which causes the fibers to dry and 

form the characteristic shape of a flat twisted ribbon fiber structure. Cotton fibers 

contain 88-97% cellulose, and the non-cellulosic compounds are mainly located on the 

outer layers and in the lumen of the fibers. The primary wall is composed of less than 

30% cellulose and the cellulose chains are relatively short, with a DP (degree of 

polymerization) between 2000 and 6000. The other 70% of the primary wall is composed 

of proteins, amino acids, other nitrogen-containing compounds, wax, pectic substances, 

organic acids, sugars, inorganic salts, and a very small amount of pigments (Phillip J . 

Wakelyn et al., 2006). The secondary wall on the other hand, is composed of virtually 

100% cellulose, and the cellulose in the primary wall has a more narrow molecular mass 

distribution, with a DP around 14000 (Marx-Figini, 1969). 

The sustainability of cotton production has recently been questioned due to major 

environmental problems, caused by both high water use and the extensive use of 

pesticide. The production of cotton also requires arable land, which could be used for 

food production (Chapagain, Hoekstra, Savenije, & Gautam, 2006; Tariq, Afzal, 

Hussain, & Sultana, 2007). 

2.2 Regenerated cellulose fibers 

Regenerated cellulose fibers are mainly made from wood pulp, but also other cellulosic 

fibers may be used, such as cotton linters. The special grade of wood pulp that is used to 

produce regenerated cellulose fibers is referred to as dissolving pulp (since it is dissolved 
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in fiber production). Dissolving pulp has a high cellulose content, around 97%. There 

are two main production methods for dissolving pulp; the acid sulfite process and the 

pre-hydrolysis Kraft process.  

The most well-known regenerated cellulose fibers are viscose (also known as rayon) and 

lyocell. The main steps in fiber production can be summarized as (pretreatment), 

dissolution, fiber spinning and regeneration. In viscose production, the cellulose is first 

pretreated in a pre-ageing process, then reacted to form cellulose xanthate, before 

dissolution in sodium hydroxide (NaOH), which is followed by a ripening of the spin 

dope. Viscose fibers are produced through wet spinning, a process in which the spin 

dope, with the dissolved cellulose xanthate, is extruded into a regeneration bath where 

xanthate groups are split off. In the production of lyocell fibers, the cellulose is directly 

dissolved in N-methylmorpholine-N-oxide (NMMO). The fibers are produced through 

air-gap spinning where the spin dope is extruded at a short distance above the surface of 

the regeneration bath. The resulting viscose and lyocell fibers are both almost pure 

cellulose fibers (Woodings, 2001). 

2.3 Polyester fibers 

Polyester (poly(ethylene terephthalate), PET) is a man-made fiber, which, according to 

BISFA, the International Bureau for the Standardization of Man-Made Fibres, 

polyester is defined as: 

“Fibre composed of linear macromolecules having in the chain at least 85% 

by mass of an ester of a diol and terephthalic acid. (The international bureau 

for the standardization of man-made fibres BISFA, 2009)” 

This means that there may be some difference between different polyester fibers, 

however, the material is most commonly made from the two monomers terephthalic acid 

(TPA) and ethylene glycol (EG), see Figure 3. In textile applications, PET is also 

referred to as PES (polyesters). PET was previously produced through the 

polymerization of dimethyl terephthalate (DMT) and EG, however after polymer-grade 

TPA was made available on the commercial market in the 1960s, the dominant route has 

been the TPA route (Gupta, Mukherjee, & Cameotra, 1997; Köpnick, Schmidt, 

Brügging, Rüter, & Kaminsky, 2000).  
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Figure 3: Molecular structure of PET (poly(ethylene terephthalate)) 

PET polymers are produced through a step-growth polymerization with a 1:1 molar ratio 

of the monomers followed by fiber formation through melt spinning. In the melt 

spinning process, the polymers are melted in a screw extruder and then extruded through 

a spinneret out into cold air, which causes the fibers to solidify. PET may both be 

produced as staple fibers and as continuous filament fibers (Hatch, 1993). During the 

production of polyester, different modifications of the polymer chain may be performed, 

such as crosslinking, to make the fibers more resistant towards wash and wear 

(Venkatachalam et al., 2012). 

PET plastic is also used in many other applications, where the main use is drinking 

bottles. The PET used in drinking bottles has an intrinsic viscosity around 0.8 dL/g, 

corresponding to a molecular mass of 48 kDa.  PET used to produce fibers, has an 

intrinsic viscosity around 0.6 dL/g, corresponding to 30 kDa (Upasani, Jain, Save, 

Agarwal, & Kelkar, 2012; Venkatachalam et al., 2012). Today, there are textiles on the 

market labelled as “recycled polyester” however, these are currently made by recycling 

PET bottles into fibers. Due to the difference in intrinsic viscosity, PET fibers cannot be 

re-melted into bottles, without prior repolymerization.  



 

3. Cellulose 

Cellulose is available nearly pure in cotton, as described in Section 2.1, but it is also a 

major component of wood and other plant materials. Together with hemicellulose, 

pectic material, and lignin, cellulose forms a biopolymer composite material, which 

brings strength to the fiber cell walls of plants (Young & Rowell, 1986). Cellulose is also 

a minor component of mammalian connective tissue, and may be found in the test of 

ascidians (Endean, 1961). Moreover, cellulose may be synthesized by specialized 

bacteria, a method that produces very pure cellulose (Iguchi, Yamanaka, & Budhiono, 

2000).  

The cellulose polymer is a linear polysaccharide, consisting of β-D-glucopyranose units, 

linked by (1→4)-glucosidic bonds, see Figure 4. The number of linked glucose units is 

called the degree of polymerization (DP), however the repeating unit consists of a 

cellobiose unit, with two glucose units, as shown in Figure 4.  
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Figure 4: Cellulose polymer 

The structure of cellulose is characterized by a number of structural levels, each with a 

different arrangement and complexity. Due to intramolecular bonding, a cellulose chain 

is relatively stiff and rigid. The cellulose polymers build up sheets through the formation 

of hydrogen bonds between the chains. The sheets are stacked into crystals, which are 

held together by hydrophobic interactions. The cellulose crystals form microfibrils, 

which are organized into larger fibril aggregates, and the fibril aggregates build up the 

cell walls that form the cellulose fiber (Krässig, 1993). The fibrillar structure of cellulose 

not only includes crystalline material, but also regions with less order, referred to as 

amorphous regions. The term amorphous is somewhat confusing, since the definition of 

amorphous, according to the Oxford English Dictionary is “having no determinate 

shape”. However, the parts of cellulose that are said to be amorphous, remain in a highly 

ordered structure, although not in perfect crystals (O'Sullivan, 1997). For instance, the 

chains on the surface of the crystals are not completely crystalline due to interactions 

with surrounding non-cellulose material, such as water, hemicelluloses, or lignin.  

Based on the existence of amorphous and crystalline cellulose in cellulosic fibers, the 

fringed fibril model was constructed (Frey-Wyssling, 1954; Hearle, 1958; Scallan, 1971). 

In this model, the crystalline parts and the amorphous parts are linked without any 

distinctive boundary, which allows a single polymer to pass though several crystalline 

and amorphous areas. However, this model is somewhat outdated today. Based on the 

biosynthesis of cellulose, a model with long periods of order regions, which are 

interrupted by disordered zones, has been proposed, based on the simultaneous 

polymerization and crystallization (Stöckmann, 1972). 

The size and the degree of aggregation of microfibrils govern the accessibility of a 

cellulose sample, and this is an important factor when producing new materials from 
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cellulose. Different methods are available to quantify the degree of crystallinity. The 

most common methods are X-ray diffraction and solid state 13C-NMR spectroscopy. In 

both methods, different signal peaks, or areas, originating from crystalline parts are 

compared to ditto from amorphous parts (Klemm, Philipp, Heinze, Heinze, & 

Wagenknect, 1998).  

In total, six different crystalline forms of cellulose (Iα, Iβ, II, III, IVI, IVII), also called 

polymorphs, have been identified, and they may be interconverted through chemical 

treatments or heat (O'Sullivan, 1997). Cellulose I and II are the most common 

polymorphs: The others will not be discussed in this thesis. Cellulose I has been shown 

to be a composite of two crystalline forms, Cellulose Iα and Cellulose Iβ, which give rise 

to different chemical shifts in solid-state 13C NMR spectroscopy (Atalla & VanderHart, 

1984). The two allomorphs give rise to different hydrogen bonding patterns, and the 

ratio is dependent on the species (Sugiyama, Persson, & Chanzy, 1991). Cotton 

predominantly contains the more stable Cellulose Iβ (E.-L. Hult, 2001). In the native 

cell wall, the cellulose chains are synthesized directly to microfibrils by groups of 

synthesizing units called “terminal complexes” or “rosettes” (Brown, Saxena, & 

Kudlicka, 1996). 

Cellulose I is said to be meta-stable since it is thermodynamically less stable than the 

cellulose II polymorph. If the polymers were formed individually, and not 

simultaneously, it is likely that cellulose II would be formed, instead, due to this 

difference in stability (O'Sullivan, 1997). After dissolution and regeneration, or swelling 

in NaOH, cellulose I is transformed to Cellulose II. Thus, the crystalline part of the 

cellulose in all regenerated cellulosic fibers, such as viscose and lyocell is composed of 

cellulose II (O'Sullivan, 1997).  

As with most polymers, cellulose is polydisperse, i.e. the length of the chains varies, and 

the DP is only an estimate of the average of the distribution. The full molecular mass 

distribution may be measured using size exclusion chromatography (SEC) after the 

dissolution of the cellulose (Henniges, Kostic, Borgards, Rosenau, & Potthast, 2011). 

The DP can also be estimated from a measurement of cellulose intrinsic viscosity, after 

the dissolution of cellulose. The standard measurement applied today involves 

dissolution in cupper ethylene diamine, CED, also referred to as CuEn. In this 
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measurement, cellulose is dissolved and then the time for the solution to run through a 

thin capillary is measured. The intrinsic viscosity of the solvent may then be calculated 

and correlated to the DP of the cellulose. 

In this thesis, cellulosic fibers of high purity, i.e. cotton and dissolving pulp, are mainly 

discussed since these can be used in the production of regenerated cellulosic fibers. 

However, high purity cellulose is also used in the production of cellulose derivatives, 

such as nitrocellulose, cellulose acetate, hydroxypropyl methyl cellulose, and 

carboxymethylated cellulose (Chang & Zhang, 2011). 



 

4. Effect of Laundering on Textile Fibers 

Investigation of cotton fibers has previously mainly been conducted on virgin fibers. 

However, in recycling, fibers are introduced to the process after many laundering cycles, 

which may alter the fiber properties. One important issue to highlight is the effect of 

drying and rewetting cellulose fibers, known as hornification. This phenomenon has a 

major impact on the recycling of paper and, for this reason relevant literature from this 

area will be presented below. 

4.1 Changes during laundering of cotton  

Industrial laundering, which service textiles are subjected to, is performed at an elevated 

temperature (around 80°C, but may vary from one laundering company to another) in 

an alkaline environment. Laundering is known to decrease the tensile strength of textiles 

due to chemical and mechanical wear. Chemical wear decreases the DP of cotton, and 

this decrease may also be correlated to a decrease in the tensile strength of the fabric 

(Vaeck, 1966). This is a very important factor for industrial laundering companies, which 

handle large volumes of textiles. If the laundering process is too harsh, the fibers will be 

degraded too fast, which leads to major economic losses for the laundering companies. 

For this reason, the decrease in the DP of cotton is used to configure specific laundering 

processes. 
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Detergent formulations are often alkaline. This means that laundering is usually 

performed in an alkaline environment in which, the cellulose may undergo alkali-

induced peeling reactions (Sjöström, 1993). In this reaction terminal anhydrosugar units 

at the reducing end of the cellulose chain are split off, one by one, until stopped by a 

competing stopping reaction. The first step in the peeling reaction is the rearrangement 

of the reducing end group, known as the Lobry de Bruyn-Alberda van Ekenstein 

rearrangement. After further rearrangements, this leads to a β-elimination of terminal 

monomer from the cellulose chain. The leaving group undergoes further 

rearrangements, and the main degradation product is isosaccharinic acid. The peeling 

may be stopped either chemically or physically. In chemical stopping, the reducing end 

group is most commonly stabilized by conversion into metasaccharinic acid, which stops 

further peeling reactions. In physical stopping, the peeling ends when an inaccessible 

part of the cellulose is reached (Sjöström, 1993). The number of glucose units peeled off 

before stabilization may be approximated to around 65 anhydroglucose units (Franzon 

& Samuelson, 1957). The decrease in DP during laundering is much larger than this, and, 

thus, peeling reactions are not the main reason for the decrease in DP during laundering. 

Furthermore, since laundering is performed at temperatures below 100°C, at moderate 

alkalinities, there is virtually no risk of alkaline hydrolysis during laundering (Loon & 

Glaus, 1997). Instead, the dominating factor for the decrease in DP is most likely 

oxidative peeling, which is related to oxidation reactions that lead to the introduction of 

carbonyl groups along the cellulose chains, since the presence of such groups is known 

to induce alkali promoted chain cleavage reactions in cellulose (Lai, 1981; Herbert Sixta, 

2006).  

4.2 Hornification of cellulose fibers 

Another important effect to discuss in relation to the laundering of cotton fibers is 

hornification. This term is used to define the changes that occur during the drying of 

cellulose fibers and has been attributed to Jayme (1944), who introduced the 

measurement of the water retention value, WRV, as a measurement of hornification.  

Today, the meaning of hornification has expanded from Jayme’s original definition, to 

describe the effects of drying on cellulose fibers, which leads to a decrease in the water 

holding capacity of the fibers, in a broader sense (Weise, 1998). Hornification makes the 
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fibers stiffer and less conformable, and the proposed reason for these changes in the 

properties is that during drying, the pores in the fiber wall collapse, and if there are no 

blockers present, such as lignin or hemicellulose, fibril surfaces may come in contact with 

each other leading to irreversible aggregation (Kontturi & Vuorinen, 2009). When the 

fibers are rewetted, the pores do not open again since bonds may have formed between 

adjacent fibrils (Stone & Scallan, 1968). This phenomenon has mainly been studied on 

chemical pulp fibers in relation to paper recycling. Stiffer fibers lead to a decrease in the 

ability of the fibers to form fiber-fiber bonds in paper sheets. In this manner, 

hornification influences the quality of fibers from recycled paper (Hubbe, Venditti, & 

Rojas, 2007). The decrease in WRV caused by hornification is the greatest in the first 

drying, from never-dried to once-dried, however the WRV continues to decrease with 

the number of drying and rewetting cycles. (Yamauchi & Yamamoto, 2008). 

Hemicellulose (i.e. glucomannan and/or xylan) protect cellulose from hornification, by 

suppressing the tendency of fibril coalescence during drying. Thus, pulps with higher 

hemicellulose content are less sensitive to hornification (Köhnke, Lund, Brelid, & 

Westman, 2010; Oksanen, Buchert, & Viikari, 1997).  

Since the secondary wall of cotton consists of pure cellulose, cotton is very sensitive to 

hornification (Fahmy & Mobarak, 1971; Philip J. Wakelyn et al., 2007). The growth of a 

cotton fiber ends when the boll opens and the fibers dry. Thus, virgin cotton has already 

been subjected to initial hornification. The WRV of never-dried cotton from an un-

opened ball is 1.4 g/g, which decreases to 0.46 g/g for cotton fibers that have been dried 

in the field (Nelson, Rousselle, Ramey, & Barker, 1980). This may be compared to the 

decrease in the WRV of a Kraft pulp sample from 1.5 g/g pulp in the never-dried state, 

to 1.0g/g after one drying and rewetting cycle (Köhnke et al., 2010).  

The mechanism of hornification is largely debated, however some terms are generally 

used to describe the changes related to hornification. Newman (2004) has used solid-

state 13C NMR spectroscopy to study the hornification of pulp fibers and the findings in 

the paper indicate that the changes cannot be attributed to the transfer of cellulose from 

non-crystalline domains to crystalline domains. Instead, the findings indicate that the 

NMR signals change from external surfaces to internal surfaces, thus indicating the 

coalescence of pairs of surfaces without change in crystallinity. Newman has concluded 
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that co-crystallization, which increases the lateral dimension of crystallites, is closely 

connected to hornification. An increase in lateral fibril size has also been observed in 

Kraft pulp and CNC (cellulose nanocrystals), and a decrease in hemicellulose content 

has been found to increase fibril aggregate dimensions (E. L. Hult, Larsson, & Iversen, 

2001; Idström, Brelid, Nydén, & Nordstierna, 2013). 

4.2.1 Measurement of hornification 

The original definition of hornification, as formulated by Jayme, is based on the 

measurement of the WRV, however there are also other methods to quantify the change 

in cellulosic fibers caused by hornification, such as the measurement of the fiber 

saturation point (FSP) with solute exclusion. When measuring WRV, a partly dewatered 

pulp pad is centrifuged for a certain amount of time (in this study, 3000 g for 15 minutes). 

The weight of the pulp pad after centrifugation is then compared to the weight of the 

pulp pad after drying, yielding a measure of how much water the pad held during 

centrifugation. WRV has been used to measure the “fiber saturation point” of chemical 

pulp fibers, which can be defined as: 

“The point in drying wood at which all free moisture has been removed from 

the cell itself while the cell wall remains saturated with absorbed moisture.” 

(Merriam-Webster Dictionary) 

However, since WRV does not distinguish between the water inside a fiber wall and on 

the surfaces of a fiber, the method has been questioned. Instead, it has been proposed 

that measurement of the FSP may be performed with solute exclusion. 

The FSP measurement method based on solute exclusion with dextran was developed 

by Stone and Scallan (1968), however the method of using solute exclusion to measure 

the pore size distribution of cellulose fibers had been proposed by Aggebrandt and 

Samuelson (1964) some years earlier. When measuring FSP with solute exclusion, a 

solution of dextran polymers, which are too large to penetrate the fiber wall, is added to 

water-swollen pulp fibers and allowed to equilibrate. Then the difference in 

concentration between the stock solution and the solution filtered off from the fibers 

gives a value of how much water that did not dilute the stock. This water was inaccessible 

to the polymer solution, and, thus, was contained within the fibers. 
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4.3 Changes during laundering of polyester  

Laundering may also influence the properties of polyester (poly(ethylene 

terephthalate), PET) fibers, and this is relevant to the last paper included in the thesis, 

Paper V.  

The ester bonds in polyester are sensitive to alkali, and it is, thus, likely that the 

molecular mass of the polymer decreases during laundering (International Fabricare 

Institute, 1995). This decrease is important when considering how to recycle polyester 

fibers, and the implications will be discussed in Section 9.9.5 on the separation of 

polyester and cotton.  



 

5. Acid Degradation of Cellulosic Fibers 

In order to promote the dissolution of cellulose fibers, pretreatments of the fibers may 

be performed. In this thesis three different acid pretreatments were studied closer; mild 

acid hydrolysis in water, acid hydrolysis in ethanol and hydrothermal degradation in an 

acetate buffer solution. This chapter provides some background to acid degradation in 

general and the specific treatments in particular. 

5.1 Acid hydrolysis of cellulose in water 

The glucosidic bonds, which link the anhydroglucose units together in cellulose are 

sensitive to acid. Heterogeneous degradation of cellulosic fibers is dependent on several 

factors of which the morphology of the fibers is very important. Glucosidic linkages in 

the amorphous parts of the cellulose fibers are more accessible, and are, thus, more 

easily degraded than bonds in the crystalline parts (Philipp, 1981). This leads to the 

specific degradation pattern of cellulose, which consists of two phases. In the beginning 

the degradation of cellulose is fast, but after prolonged treatment, the degradation 

reaches the “levelling-off degree of polymerization” (LODP) (Battista, 1950; Battista, 

Coppick, Howsmon, Morehead, & Sisson, 1956). During this second phase, the rate of 

degradation is very low, however, the degradation continues even after this point. Bonds 

in the amorphous regions may also be subjected to strain, which may increase the 
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hydrolysability of those bonds (Daruwalla & Narsian, 1966). Battista (1950) has 

compared weight loss and LODP during mild and drastic acid hydrolysis and found that, 

in both methods, the LODP approached the same level, however, the mild acid 

hydrolysis resulted in less weight loss. The proposed explanation was that crystallization 

may occur during mild acid hydrolysis. 

As presented in Section 4.2, drying leads to the hornification of cellulose fibers. In 

enzymatic hydrolysis, hornification has been found to decrease the hydrolysability of 

chemical pulp fibers (Duan, Long, Li, Ma, & Ni, 2015; Philipp, Dan, Fink, Kasulke, & 

Loth, 1981), explained by the lower accessibility of dried cellulose fibers. However, in 

acid hydrolysis, the opposite behavior has been found. Both Jørgensen (1950) and 

Lindgren & Goliath (1956) reported that that of LODP of never-dried pulp was higher 

than the LODP of once-dried pulp. Similar results have been presented later and 

explained with that drying may induce stress, which leads to the higher susceptibility of 

dried pulp to acid hydrolysis compared to never-dried pulp (Philipp, Dan, & Fink, 1981). 

In another study on the production of CNC through hydrolysis with sulfuric acid, it was 

found that the length distribution of the CNCs shifted towards longer CNCs when 

produced from never-dried pulp, compared to production from once-dried pulp. Those 

authors concluded that supramolecular changes in the amorphous cellulose occur during 

drying, which leads to higher susceptibility to acid hydrolysis (Kontturi & Vuorinen, 

2009).  

5.2 Acid hydrolysis of cellulose in ethanol 

If acid catalyzed degradation is performed in ethanol instead of water, the degradation 

rate increases. This was found as early as in 1923 (Coward, Wood, & Barrett, 1923), 

however recently, new interest in the method has arisen (Kihlman, Medronho, Romano, 

Germgard, & Lindman, 2013; Lin, Chang, & Hsu, 2009; Trygg & Fardim, 2011; Trygg, 

Trivedi, & Fardim, 2016). It must be noted that in all of these experiments there was a 

low percentage of water in the ethanol, which means that hydrolysis of glucosidic bonds 

in cellulose may take place, i.e. it is not ethanolysis reactions that lead to 

depolymerization of cellulose. It has been claimed that acid hydrolysis in ethanol may 

give pulp samples that are more susceptible towards dissolution than samples treated 

with acid hydrolysis in water (Trygg & Fardim, 2011; Trygg et al., 2016). 
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Alcoholysis and acid hydrolysis in alcohols has been investigated previously by Reeves 

et al. (Reeves, Schwartz, & Giddens, 1946) and Valley (1955)(Valley, 1955). Both found 

that the same LODP was reached, regardless whether water or alcohol was used as 

solvent. Valley started the investigations of acid/alcohol system with the aim of 

investigating alcoholysis of cellulose. However, the studies, performed in methanol, 

butanol, n-hexanol and n-octanol, with hydrogen chloride, sulfuric acid and p-

toluenesulfonic acid, showed that probably no alcoholysis occurred. This was concluded 

since the same LODP was reached in all the experiments, and the difference in 

accessibility of the cellulose to degradation was not related to the molecular mass of the 

alcohols. These findings were explained by the fact that traces of water cannot be 

completely removed from cellulose fibers, and thus, when acid is added with the alcohol, 

the polar acid will preferentially be sorbed by the cellulose. This leads to a high acid 

concentration at the cellulose-liquid interface of the fibers, resulting in a higher 

degradation rate. 

The results of Valley were confirmed by Nevell & Upton (1976), who performed 

experiments with hydrochloric acid and benzene with increasing additions of water. 

Those authors also found that the acid added with the benzene was sorbed by the fibers, 

yielding very concentrated solutions of hydrogen chloride within the fibers.   

The combination of these findings in the literature suggests that ethanol may be used to 

speed up the rate of hydrolysis, but it does not change the degradation mechanism of 

cellulose if traces of water are present.  

In the recent publications, by Trygg et al. (2011; 2016), the higher degradation rate is 

explained by a higher activity of acid in ethanol than in water. It was also suggested that 

acid hydrolysis in ethanol may give pulp samples that are more susceptible towards 

dissolution than samples treated with acid hydrolysis in water. 

5.3 Hydrothermal degradation of cellulose 

The degradation of cellulose before dissolution in cold NaOH has also been performed 

at high temperature and with a small addition of acid (Struszczyk, Wawro, Urbanowski, 

Mikolajczyk, & Starostka, 2009). This pretreatment is included in this thesis to study the 

effect of temperature on the pretreatment and dissolution of cellulose fibers.  
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5.4 Modelling of acid degradation of cellulose 

Ekenstam (1936a, 1936b) was one of the first to model the degradation kinetics of 

cellulose and has proposed a linear zero order relationship, Equation 1. 

ଵ஽௉ − ଵ஽௉బ =  Equation 1     ݐ݇

Ekenstam’s experiments were performed in phosphoric acid, which can dissolve 

cellulose, forming a homogenous system in which all glucosidic bonds are equally 

accessible for the hydrolytic medium. Sharples (1954a, 1954b) adapted the equation to 

fit a heterogeneous degradation, by adding an accessibility factor, �. 

Several attempts have been made to develop new models for cellulose degradation 

(Calvini, Gorassini, & Merlani, 2008; Dadach & Kaliaguine, 1993; Ding & Wang, 2008; 

Emsley, Heywood, Ali, & Eley, 1997). Common to all of these models is that they use 

an exponential relationship. With this kind of relationship, it is possible to obtain a very 

good fit to experimental data. However, the good fit of a model does not ensure its 

correctness in terms of physical interpretation. In this thesis, the degradation data from 

acid hydrolysis were fit to the first-order degradation model developed by (Calvini et al., 

2008), see Equation 2. ܵ = ∑ ݊௜ ∗ ሺ1 − expሺ݇௜ݐሻሻ, ݅ = 1, 2, 3௜ … ݊    Equation 2 

Where S is the number of scissions per cellulose chain (DP0/DP -1), n is the initial 

number of scissile bonds per cellulose chain, k is the rate constant of the hydrolytic 

medium, and t is the time of hydrolysis. In the model, it is assumed that each bond may 

experience a different environment, and, thus, the equations would in the ideal case be 

expressed as a sum of an infinity of parallel processes. Calvini suggests that the model 

can be simplified into one, two, or three first-order reactions corresponding to the 

degradation of weak, amorphous, and crystalline bonds.  



 

6. Swelling and Dissolution of Cellulosic Fibers 

This thesis investigates the preconditions for recycling cotton fibers into regenerated 

cellulosic fibers. When producing regenerated cellulosic fibers, cellulose dissolution is a 

key step. This chapter discusses some aspects of cellulose dissolution that are relevant 

to the scope of the thesis. 

The dissolution of cellulose fibers has been studied extensively due to its importance in 

the production of materials and fibers from cellulose, and many books and reviews have 

been devoted to the subject (Budtova & Navard, 2016; Liebert, Heinze, & Edgar, 2010; 

Olsson & Westman, 2013). Cellulose fibers are natural fibers with a complicated 

ultrastructure, as a natural composite, composed of several types of macromolecules, 

which make dissolution of cellulose fibers complicated. Both intra- and intermolecular 

hydrogen bonds, and hydrophobic interactions need to be broken in order to the 

accomplish dissolution of cellulose. In other words, water or common organic solvents 

cannot dissolve cellulose, and, instead, special solvents are needed to do this (Lindman, 

Karlström, & Stigsson, 2010). Owing to the effect of entropy, cellulose with a high DP is 

generally harder to dissolve than cellulose with a low DP. A cellulose chain is also 

relatively rigid, which decreases entropy gain when the chain is dissolved (Budtova & 

Navard, 2016). 
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Depending on the application, different dissolution systems are used. In the production 

of regenerated fibers, there are two common systems. The most common system is 

dissolution in NaOH, after derivatization by the introduction of xanthate groups to the 

cellulose. This is used in the viscose process. The other system is direct dissolution in 

NMMO, which is used in the Lyocell process (Woodings, 2001). Other systems for the 

production of regenerated cellulosic fibers have previously been used and new systems 

are under development. In this thesis, extra focus is on dissolution in cold NaOH. 

The direct dissolution of cellulose in cold NaOH has been studied extensively. It has 

been claimed that cellulose may be dissolved directly in NaOH when the temperature is 

around -5°C and the NaOH concentration is between 5 and 10% (Budtova & Navard, 

2016; Isogai & Atalla, 1998). Much attention has been focused on the production of 

regenerated cellulosic fibers through dissolution in cold aqueous NaOH. However, 

dissolution in cold aqueous NaOH is problematic, since it is poor solvent, and the 

window of dissolution is very narrow. Furthermore, there still remain many questions 

regarding the conformation of cellulose chains in such a solution (Budtova & Navard, 

2016). 

The dissolution of cellulose is also important in analytical applications. One of the most 

basic characterization methods for cellulose is the measurement of intrinsic viscosity, 

described above. The standard measurement applied today involves dissolution in CED. 

However, CED has also been used to investigate dissolution of cellulose under a 

microscope (Schild & Sixta, 2011) and with a fiber analyzer (Arnoul-Jarriault, Passas, 

Lachenal, & Chirat, 2016). One of the advantages with CED of is that the solvent quality 

may be controlled with the addition of water. 

When analyzing the molecular mass distribution of cellulose, the cellulose must be 

dissolved first. In this application, a very common analysis method is based on 

dissolution in lithium chloride/N,N-dimethylacetamide (LiCl/DMAc), either direct or 

after derivatization, before analysis with size exclusion chromatography (SEC) (Potthast 

et al., 2015). Differences in dissolution behavior have been discovered from one 

substrates to another, and, for this reason, the method must be adapted for different 

materials (Henniges et al., 2011). 



 SWELLING AND DISSOLUTION OF CELLULOSIC FIBERS  
 

25 

 

In many aqueous solvents cellulose forms colloidal aggregates (Schulz, Seger, & 

Burchard, 2000), and does not lead to a real solution. This makes the investigation of 

cellulose dissolution hard. Many different approaches have been used to study cellulose 

dissolution, such as ocular inspection with light microscopy (Celine Cuissinat & Navard, 

2006a; Schild & Sixta, 2011) turbidity measurements (Mazza, Catana, Vaca-Garcia, & 

Cecutti, 2008; Olsson, Idström, Nordstierna, & Westman, 2014), light scattering (Röder, 

Morgenstern, Schelosky, & Glatter, 2001) and centrifuging off undissolved fragments 

(Le Moigne & Navard, 2010). 

When studying cellulose dissolution with microscopy, two main dissolution pathways 

have been identified. If the solvent is very good and/or if the cellulose is very easy to 

dissolve, the dissolution occurs through fiber fragmentation. Fragmentation leads to fast 

dissolution, and the fibers look like they have been cut with scissors before dissolving. 

In a less effective solvent or with a material that is harder to dissolve, first balloons along 

the fiber are observed, and when these balloons break up, the dissolution continues (Le 

Moigne, Montes, Pannetier, Höfte, & Navard, 2008). When studying cellulose 

dissolution with light microscopy, it is consequently, possible to divide dissolution into 

four modes, fragmentation (dissolution), ballooning (dissolution), ballooning (no, or 

partial dissolution) and homogenous swelling (no dissolution) (Celine Cuissinat & 

Navard, 2006a). It must, however, be noted that when dissolution is observed under a 

microscope, the cellulose may not be completely dissolved on the molecular level. 

Le Moigne et al. (2008) have studied dissolution of cotton fibers from different stages in 

the development of cotton fibers and those authors found large differences in the 

dissolution capacity of the different layers of the cellulose fibers. Fibers from the 

elongation stage, which contain only the primary wall, were impossible to dissolve. It 

was also observed that ballooning only occurred in fibers with a secondary wall. If the 

primary wall is removed with enzymatic peeling, no balloons are observed, instead 

homogenous swelling occurs (Céline Cuissinat, Navard, & Heinze, 2008).  

In this thesis, a method based on the assessment of swelling, instead of dissolution, has 

been used to quantify the susceptibility of different cellulose samples to dissolution. 

When cellulosic fibers are subjected to water, this leads to swelling of the non-crystalline 

domains of the cellulose without affecting the crystallinity of the cellulose, and this is 



 SWELLING AND DISSOLUTION OF CELLULOSIC FIBERS  
 

26 

 

referred to as intercrystalline swelling. However, when liquids penetrates the crystalline 

areas of cellulose, intracrystalline swelling occur, which cause irreversible changes in the 

crystal structure of the cellulosic material (Krässig, 1993). Examples of such liquids are 

NaOH/water, liquid ammonia and CED. Arnoul-Jarriault et al. (2016) have developed 

a method, in which the swelling of fibers in water is compared to the swelling of fibers 

in dilute CED. The findings of those authors showed that the change in width caused by 

the swelling could be correlated to Fock reactivity, a method used to quantify the 

reactivity of different pulp samples toward xanthation, which is the derivatization step 

in the viscose process (Fock, 1959). The measurement of fiber width was performed with 

a fiber analyzer, which enables the measurement of a large number of fibers in 

comparison to microscopy, in which only a few fibers can be analyzed. One advantage 

of measuring fiber swelling instead of dissolution, is that the problems of determining 

whether a samples is dissolved or not is avoided. It has been shown previously that the 

maximum expansion of cellulose fibers is a good indicator of solvent quality (Celine 

Cuissinat & Navard, 2006b). 



 

7. Separation of Polyester and Cotton Fibers

Most textiles are blends of two or more materials to acquire the properties desired for 

the final material and to use the benefits of each material optimally. One of the most 

common textile blends is polycotton. Polycotton are e.g. used in virtually all service 

textiles, such as sheets and towels at hospitals and hotels. The benefit of polycotton is 

that it combines the comfort and water absorbency of cotton with the strength, 

durability, and low price of polyester. The recycling of service textiles may be a possible 

starting point for textile recycling since, in this sector, there are large volumes of textiles 

with similar quality. However, in that case, polycotton must be separated into its two 

components, polyester and cotton. Some background information about this area is 

provided in this chapter.  

7.1 Separation of polycotton 

The separation of polycotton may be simplified into four possible main pathways, shown 

in Figure 5.  
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The first approach is to dissolve the cotton and maintain the PET. This approach was 

used by Jeihanipour et al. (2010) who dissolved the cotton part in NMMO to separate it 

from polyester. The cotton was then regenerated, and digested to biogas. De Silva et al. 

(2014) have shown that cotton and polyester can be separated by dissolving cotton in 

ionic liquids. Those authors have proposed that the cotton could be used to produce 

fibers or films and that the recovered PET may be melted into fibers or bottles. It must, 

however, be pointed out that if the aim is to produce bottles from the recovered 

polyester, the molecular mass must be increased, through e.g. partial repolymerization, 

since the polyester that is used in bottles has a much higher molecular mass than the 

polyester used in textile fibers. 

Dissolve cotton
Maintain PET

Degrade cotton
Maintain PET

Maintain cotton
Degrade PET

Maintain cotton
Dissolve PET

1

2

4

3

Figure 5: Illustration of the four main pathways for separation of PET and cotton. The grey material 

symbolizes cotton and the black PET. Please note that this is only an illustration and that fabrics woven of

cotton and PET are not constructed in this way. 
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Instead of dissolving the cotton, separation may also be accomplished through the 

degradation of the cotton. Cotton is sensitive to acid, which PET is very resistant to. This 

approach has been proposed by Ouchi et al. (2010). In their article, the separation of 

cotton and polyester is accomplished by degrading the cotton with 10 M H2SO4, which 

gives a “cotton powder” with a degree of polymerization around 180, probably similar 

to microcrystalline cellulose, MCC. Other authors have proposed hydrolyzing the cotton 

with microbes and fermenting the hydrolysate into methane (Bernd & Gerahard, 1996). 

Instead of the approaches above, where the polyester is maintained, the opposite, i.e. 

maintaining the cotton and degrading or dissolving the PET can also be an option. The 

approach to degrading the polyester while maintaining the cotton has been proposed 

using hydrolysis (Negulescu et al., 1998) and alcoholysis of the PET (Oakley, Gorman, 

& Mason, 1993). No examples in the literature could be found in which, the latter 

approach to dissolving PET and maintaining cotton has been used. 

In this thesis, the hydrolysis of PET, with the aim of maintaining cotton has been studied. 

This approach was chosen since, as described in previous sections, the laundering of both 

polyester and cotton causes degradation of the polymers. When the molecular mass of 

polyester decreases, this leads to a lower viscosity of the polyester melt, and, thus, melt 

spinning may either give fibers of very low quality or may not be possible. 

7.2 Polyester degradation 

Since PET is used in large volumes to produce PET bottles, different depolymerization 

processes have been extensively examined, and the findings have been reviewed (Al-

Sabagh, Yehia, Eshaq, Rabie, & ElMetwally, 2016; Chen, Wang, Li, & Yang, 2011; Dutt 

& Soni, 2013; George & Kurian, 2014; Geyer, Lorenz, & Kandelbauer, 2016; Paliwal & 

Mungray, 2013; Sinha, Patel, & Patel, 2010). There are three main chemical degradation 

methods for PET; hydrolysis (acid, neutral, or alkaline), alcoholysis (Oakley et al., 1993), 

and glycolysis (Viana, Riul, Carvalho, Rubira, & Muniz, 2011). However, only hydrolysis 

degrades PET back to terephthalic acid (TPA) and ethylene glycol (EG) which are the 

monomers mainly used in PET production today (Gupta et al., 1997).  

In this thesis, alkaline hydrolysis with the addition of a phase transfer catalyst is 

investigated. This method has been proved to be very effective in the hydrolysis of PET 
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flakes. The hydrolysis is performed at moderate temperatures (70-95°C) and alkalinity 

in the range 5-15 wt% NaOH (Das, Halgeri, Sahu, & Parikh, 2007; Kosmidis, Achilias, 

& Karayannidis, 2001; López-Fonseca, González-Marcos, González-Velasco, & 

Gutiérrez-Ortiz, 2009; Polk et al., 1999). The process starts with hydrolysis for 1-3 hours, 

which causes the formation of disodium terephthalate salt and ethylene glycol, see 

Figure 6, which are both soluble in the aqueous phase. When the reaction is finished, the 

aqueous phase is acidified to a pH around 2.5-3, which causes the formation and 

precipitation of TPA. 

 

Figure 6: a) Degradation of PET with NaOH, into disodium terephthalate salt and ethylene glycol, b) 

Formation of precipitated TPA
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8. Materials and Methods 

8.1 Materials 

The present investigation is centered on cotton or polycotton sheets, but wood pulp 

samples were also included as reference. The materials are presented and divided into 

three parts below. Part 1 was used in Paper I, Part 2 in Papers II-IV, and Part 3 in Paper 

V. In Part 1, only cotton sheets were included, however in Part 2 both cotton and wood 

pulp samples were included. 

8.1.1 Background information regarding the cotton sheets used in Part 1 and 

Part 2 

The 100% cotton bed sheets were made from cotton from Pakistan and provided by a 

major Swedish supplier of service textiles. The sheets indicated as used had been used 

at Swedish hospitals. The laundering was performed by the service provider using an 

industrial laundering system with a maximum temperature of 84°C and the washing 

agent Clax Hellux free 3EP3, from JohnsonDiversey Sverige AB, an alkaline detergent 

with a pH between 12 and 12.5 in a 1% solution. The washing agent did not contain any 

oxidants. After laundering, water was pressed out of the fabric prior to tumble drying. 
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Before all of the analyses, except where noted, the sheets were ripped into 

approximately 1 cm2 pieces and defibrated using a Wiley mill (< 1mm). 

8.1.2 Part 1 materials 

In Part 1, four cotton sheets were used, see Table 1. The defibrated sheet samples were 

extracted with light petroleum and water, according to ISO 18:33-1:2010. 

Table 1: Use and laundering of the cotton sheets included in Part 1. 

Laundered number  
of times 

Use 

0  

Never used 
2-4 

~50 

Used 
>50 

Before weaving, an additive was applied to the yarn to facilitate weaving. All residues 

of this were removed during laundering, however, on the never-laundered sheet, traces 

of a non-cellulosic additive were found using 13C solid-state NMR spectroscopy, even 

after extraction. The presence of the non-cellulosic additive in the never-laundered sheet 

was also proved in a test in which a water droplet was placed on dried fiber pads 

containing the extracted fibers. The droplet was immediately absorbed into all of the 

fiber pads, except for the fiber pad containing fibers from the never-laundered sheet 

where the contact angle of the droplet was >105°. No further attempts were made to 

characterize this non-cellulosic material. However, this contamination obstructed the 

measurements of the specific surface area and WRV for the never-laundered sheet. 

8.1.3 Part 2 materials 

In Part 2, two fractions with 5 cotton sheets in each batch were investigated, referred to 

as “New” and “Discarded”. The materials in Part 2 materials were the same kind of 

sheets used in Part 1, however, they had been received at a later date. The New sheets 

had been laundered 2-4 times but never used, and the Discarded sheets had been 
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laundered >50 times, used in hospitals and were classified as worn out. The sheets 

included in this part were not extracted before analysis. 

In Part 2, wood pulp samples were also included as references. These comprised two 

dissolving pulp samples, and a bleached softwood paper grade Kraft pulp. The dissolving 

pulps were both once-dried and consisted of a Scandinavian softwood sulfite pulp 

(Sulfite pulp) sample and a pre-hydrolysis eucalyptus Kraft pulp (PHK-pulp) sample. 

The bleached softwood paper grade Kraft pulp (BKP) sample was split into two parts; a 

never-dried and a once-dried sample. In the following, the samples are referred to with 

the names/abbreviations in brackets above. 

8.1.4 Part 3 materials 

The third group of materials, used in the separation of polycotton, comprised one new 

polycotton sheet. The sheet was found to contain 52% cotton when analyzed according 

to European standard “Mixtures of cellulose and polyester fibres (method using 

sulphuric acid)” (ISO 1833‑11:2006).  

In the separation of polycotton, a phase transfer catalyst, benzyltributylammonium 

chloride (BTBAC, purity >98%), was used. Sodium hydroxide (NaOH, reagent grade) 

and sulfuric acid (H2SO4, reagent grade) were also used in the experiments. 

All chemicals were used without any prior purification. 

8.2 Cellulosic fiber characterizations 

8.2.1 Scanning electron microscopy 

Before analysis, the cotton sheet samples (non-extracted) were sputtered with a 30 nm 

thick layer of gold. The micrographs were collected using a Zeiss EVO HD 15 scanning 

electron microscopy (SEM) instrument operated at 1.3 kV.  

8.2.2 Water retention value 

The water retention value (WRV) was measured according to the SCAN-C 62:00 

method. A 2 g sample, was centrifuged at 3000 g for 15 min. The sample had been 

defibrated in water and partially dewatered before analysis. The sample weight after 
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centrifugation was then compared to the sample weight after drying at 105°C. All tests 

were carried out in duplicate. 

8.2.3 Specific surface area 

Before measuring the specific surface area, the samples were subjected to a solvent 

exchange procedure to avoid pore closure. The exchange was performed by carefully 

dewatering 1 g o.d. sample swollen in water and displacement washing it with 20 ml dry 

acetone (>99.8%). The sample was then shaken in 20 ml acetone. The procedure was 

first performed 10 times with acetone and then 10 times with cyclohexane (Köhnke et 

al., 2010; X. Wang, 2006). The samples were then dried in a nitrogen stream overnight. 

Nitrogen adsorption was performed using a Micrometrics TriStar 3000 instrument, and 

the specific surface area was calculated according to the BET theory (Brunauer–

Emmett–Teller). Nitrogen adsorption permits the measurement of all surface area 

accessible to the nitrogen molecule which is 3.6 Å in diameter (Stone & Scallan, 1966). 

The measurement of the specific surface area of cellulose fibers using this method 

requires dry samples, and to evaluate the surface of a water-swollen sample, a solvent 

exchange may be used, as described above. In this thesis, the samples were dried from 

cyclohexane. This leads to an underestimated surface area since cyclohexane has been 

found to cause a slight contraction of pulp fibers (X. S. Wang, Maloney, & Paulapuro, 

2003).  

8.2.4 Intrinsic viscosity 

The intrinsic viscosity of the samples was determined by dissolving the samples in 0.5 M 

CED (copper(II)ethylenediamine), and measuring the time for the solution to run 

through a thin capillary. The measured time could then be correlated to intrinsic 

viscosity, according SCAN-C 15:62. The intrinsic viscosity can be correlated to the 

degree of polymerization (DP) of a cellulose sample, and when DPv-values are reported 

in this thesis, the calculation has been done according to Immergut et al. (1953) 

(Immergut, Schurz, & Mark, 1953), as stated in SCAN-C 15:62, see Equation 3. ܦ ௩ܲ଴.ଽ଴ହ = 0.75ሾߟሿ     Equation 3 
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Measuring intrinsic viscosity is a simple and fast method, however, the correlation to DP 

is more complicated. The correlation proposed by Immergut et al. in the 1950s may be 

considered to be outdated, but remains the most commonly used one. This correlation 

was chosen, despite that it has been criticized, since this would better allow for 

comparison to data from other papers. Further discussion on the correlation between 

the intrinsic viscosity and DP of cellulose is presented in Section 9.4. 

8.2.5 HP-SEC 

Size exclusion chromatography was carried out after the dissolution of the samples in 

lithium chloride/N,N-dimethylacetamid (Li/DMAc), according to Henniges et al. (2011). 

20 mg (dry weight) of sample was suspended in deionized water and then dewatered in 

a Büchner funnel. The sample was rinsed with ethanol, and then placed in a dry septum-

capped glass vial. DMAc (4 ml), was added and the vial was placed on a laboratory 

shaker overnight for solvent exchange. Following this procedure, DMAc was removed, 

and 2 ml of a solution of 9% LiCl (w/v) in DMAc was added. The vial was placed on the 

laboratory shaker for 16 to 40 h at room temperature. After dissolution, 0.9 ml of the 

solution was diluted with 2.7 ml DMAc. Prior to chromatographic analysis, the dissolved 

samples were filtered using a 0.45 μm PTFE filter. Chromatographic analysis was 

performed using a Dionex Ultimate 3000 system with a guard column and four analytical 

columns (PLgel Mixed-A, 20 μm, 7.5 x 300 mm). DMAc/LiCl (0.9% v/w) was used as 

the mobile phase. The injection volume was 100 μl. The flow rate was 1.00 ml/min, and 

the elution was performed at room temperature. RI (Optilab T- rEX from Wyatt) and 

MALLS (Down Heleos-II, λ0=658 nm, from Wyatt) were used for the detection process. 

The value of dn/dc used was 0.136 ml/g. Data evaluation was performed with standard 

Astra and Chromeleon software (6.1.17). The BKP samples in Paper II were not 

completely dissolved in the DMAc/LiCl, and no attempts were made to quantify the 

undissolved fraction.  

8.2.6 Solid-state CP/MAS 13C NMR 

Part 1 materials 

Solid-state 13C NMR experiments were performed on a Varian Inova-600 operated at 

14.7 T and equipped with a 3.2 mm solid state probe. Measurements were conducted as 
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described earlier (Idström et al., 2013). Both untreated (non-hydrolyzed) samples and 

samples subjected to an acid hydrolysis pretreatment were analyzed. The acid hydrolysis 

of the samples was performed according to Wickholm et al.(1998) (Wickholm, Larsson, 

& Iversen, 1998) in 2.5 M HCl at 100°C for 17 hours. The resulting cellulose was washed 

several times by centrifuging the samples, decanting the supernatant and adding fresh 

water. Spectral deconvolution was applied to all NMR spectra according to the method 

described by Wickholm (2001) (Wickholm, 2001). 

Part 2 materials 

The supramolecular properties of cellulose were determined in the water-swollen state 

using a method with solid-state cross polarization magic angle spinning carbon-13 

nuclear magnetic resonance (CP/MAS 13C-NMR), as described in previous papers 

(Larsson, Wickholm, & Iversen, 1997; Wickholm et al., 1998). The spectra were recorded 

in a Bruker Avance III AQS 400 SB instrument operated at 9.4 T. All measurements 

were carried out at 295 (±1) K with a magic angle spinning (MAS) rate of 10 kHz. A 4-

mm double air-bearing probe was used. 4096 transients were recorded for each sample 

depending on solids content, which led to an acquisition time of 3 h. The software for 

spectral fitting was developed at Innventia AB and is based on a Levenberg-Marquardt 

algorithm (Larsson et al., 1997; Wickholm et al., 1998). All computations were based on 

integrated signal intensities obtained from spectral fitting. Signals intensities of non-

crystalline origin (fitted signals in the 82 ppm to 85 ppm C4 spectral range) were used to 

calculate the crystallinity (CI) of a sample. The errors given for parameters obtained 

from the fitting procedure are the standard error of the mean with respect to the quality 

of the fit. 

8.2.7 FSP 

FSP was measured by following the method developed by Stone and Scallan (Stone and 

Scallan 1968) (Stone & Scallan, 1968). The samples were swelled in water over-night and 

partially dewatered.  The determination started by mixing a 1% dextran solution (2000 

kDA) with the partially dewatered sample, where 1 mass unit of wet sample was mixed 

with 3 mass units of dextran solution. The samples were then allowed to equilibrate for 

3 days in a sealed vessel.  
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A liquid sample was subsequently taken and filtered through a Puradisc syringe filter 

(Whatman, Maidstone, UK) equipped with a 0.45 μm polytetrafluoroethylene  (PTFE) 

membrane in a polypropylene housing (VWR International AB, Stockholm, Sweden). 

The concentration of dextran in the sample was determined using a calibration curve 

established for the optical rotation of polarized light measured using a Polartronic NH8 

polarimeter (Schmidt+Haensch, Berlin, Germany) operated at 589 nm, with a resolution 

of 0.005 degrees. The FSP value is expressed as the dimensionless ratio of the mass of 

pore water to the mass of dry solids (g/g). 

8.2.8 LODP determination 

To determine the LODP, 2 g (o.d.) of sample were hydrolyzed for 2 and 4 hours in 100 

ml 4 M hydrochloric acid at 80°C. After hydrolysis the samples were gently rinsed with 

cold water. The DP of the samples was then estimated though measurement of the 

intrinsic viscosity, and the average value of the two hydrolysis times were calculated. 

Each hydrolysis was performed in duplicates. 

8.2.9 Fiber analysis 

The fibers were analyzed with a Kajaani FS300 according to Tappi standard T271, and 

the calculations were based on length average. Length is reported as the centerline 

length. Before analysis, the pulp and the cotton fiber samples were swelled in water over 

night and gently defibrated.  

8.2.10 Swelling experiments 

Before the swelling experiments, the samples were swelled in water, and carefully 

defibrated. During the agitation of 0.05 g (o.d.) sample, CED (1 M) was added to a final 

liquid weight of 10 g. After 2 min the swelling was quenched by adding the sample to 0.5 

L acetate buffer (0.01 M, pH 4.5). The fibers were directly analyzed with a fiber analyzer 

(Kajaani FS300). During the swelling, the CED concentration was 0.16, 0.18 or 0.20 M. 

This method provides a comparison of the difference in the width of fibers swollen in a 

solvent to fibers swollen in water, which was calculated according to Equation 4.  

Width variation ሺ%ሻ =  ൫୛୧ୢ୲୦ిుీି୛୧ୢ୲୦ౄమో൯∗ଵ଴଴୛୧ୢ୲୦ౄమో    Equation 4 
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8.2.11 Optical microscopy of fiber swelling 

Microscopy slides were prepared by suspending the fibers in water and distributing them 

wet on the slides. When the samples were dry, the fiber concentration on each slide was 

corrected to a similar level for all samples. 

The swelling was studied using a Zeiss SteREO Discovery.V12 equipped with an Axio 

Cam IC1 in time-lapse mode with which images were taken every 2 seconds for 4.5 

minutes, yielding 136 images per sequence. Dilute CED was added during the first 10 

seconds, and the delay was accounted for. The dissolving pulp samples were treated in 

0.16, 0.18 or 0.20 M CED, and the two cotton sheet samples were treated in 0.16, 0.20 

and 0.24 M CED. 

8.3 Pretreatments 

8.3.1 Acid hydrolysis in water 

The samples were prepared for acid hydrolysis by swelling the samples in water over 

night and, subsequently, defibrating them in 0.01 M HCl. The defibration was performed 

in a low acid concentration to remove any alkaline residues remaining in the sheets from 

the laundering agent. This was performed on all samples in order to treat them according 

to the same procedure. 

Acid hydrolysis was performed using the following method: water was added to a wet 

sample to a total water volume of 60 ml, and the sample was heated in a water bath to 

80°C in a polypropylene container. After 30 min the sample had reached 80°C, and the 

hydrolysis was started by adding 40 ml 1M HCl to a total volume of 100 ml and 0.4 M 

HCl. The hydrolysis was performed for 15, 30, 60, 120, and 240 min. After completed 

hydrolysis, the sample was carefully rinsed with deionized water at room temperature, 

in order to remove all acid, and then air-dried before further analysis. 

8.3.2 Acid hydrolysis in ethanol 

Samples were prepared for acid hydrolysis in ethanol by swelling them in water followed 

by defibration in 0.01 M HCl. Then a solvent exchange was performed from water to 

ethanol through displacement washing with 50 ml of ethanol (99.5%) followed by 

shaking the sample in 50 ml ethanol. The solvent exchange procedure was repeated five 
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times. After this, additional ethanol was added to the samples to a total ethanol volume 

of 100 ml and heated to 50°C in a polypropylene container. After 30 min of preheating 

4 ml of 37% HCl was added and the hydrolysis was performed for 15, 30, 50, 120 and 240 

min. The final hydrolysis solvent contained 94wt% EtOH and 0.46 M HCl. After 

completed hydrolysis, the samples were carefully rinsed with deionized water at room 

temperature, to remove all acid, and then they were air-dried before further analysis. 

8.3.3 Hydrothermal treatment 

Samples were prepared for hydrothermal treatment by swelling them in water followed by 

defibration in acetate buffer (0.02 M pH 4.75). Then the pulp samples and additional acetate 

buffer were added to acid resistant stainless steel autoclaves at room temperature to a final 

weight of 300 g with 5 wt% pulp. The autoclaves were then placed in a preheated 

polyethylene glycol bath (170°C). The treatment was performed for 30, 60, 120, and 240 

min. The time to reach the final temperature 168°C inside the autoclaves was approximately 

25 min (Bogren, 2008). Treatment for 360 min was also tested, however, the pH was not 

maintained by the buffer during long treatment times. The pH was tested before and after 

all experiments to confirm that it had been maintained. The experiments were stopped by 

removing the autoclaves from the polyethylene glycol bath and cooling them in cold water. 

After cooling down, the pulp was carefully rinsed with deionized water and air dried. 

8.4 Modelling of acid hydrolysis 

The theoretical background to the modelling is described in Section 5.4. The acid 

hydrolysis was modelled according to the model developed by (Calvini, 2005), with 1, 2 

or 3 components, see Equation 5. ܵ = ∑ ݊௜ ∗ ሺ1 − expሺ݇௜ݐሻሻ, ݅ = 1, 2, 3௜ … ݊    Equation 5 

Where S is the number of scissions per cellulose chain (DP0/DP -1), n is the initial 

number of scissile bonds, k is the rate constant, and t is the time of hydrolysis. The model 

was fit to minimize the sum of squared errors of prediction (SSE) using the minimization 

function fmincon in Matlab 2013b. A very good fit for the samples was achieved with 

only one component, as in Equation 6. 

S = n (1 – exp(-kt)),     Equation 6 
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8.5 Separation of polyester and cotton from mixed textiles 

The separation of polyester and cotton was performed in two different systems. One 

small-scale system (50 ml), where each experiment was run for a certain time period and 

then analyzed, and a large-scale system (500 g) where samples of the hydrolysis solution 

were removed out during the experiment. 

8.5.1 Small-scale experiments 

The small-scale experiments were performed in 50 ml falcon tubes. The NaOH 

concentration was 10 or 15wt%, and the BTBAC concentration was varied between 0 

and 1 mol BTBAC/mol repeating unit in PET, where 1 mol/mol corresponds to 52 mmol 

BTBAC /kg hydrolysis solution. The hydrolysis started by mixing NaOH and BTBAC 

to the selected concentrations followed by heating the solution to the selected 

temperature (80 or 90°C). The reaction was started by adding 1.0 g o.d. polycotton 

sample to the reaction tube, and the hydrolysis was performed for the selected time 

period (15 – 240 min). The reaction was quenched by immersing the reaction tube in an 

ice bath. The remaining solid phase was separated and washed with water on a glass 

microfiber filter. The liquid phase was acidified to pH 2-3 by the addition of H2SO4 (95-

97%), which caused the terephthalic acid (TPA) to precipitate. The TPA was separated 

using a glass microfiber filter and rinsed with water. The weight of the isolated TPA, was 

determined after drying overnight in an oven at 105°C. The yield of TPA was calculated 

as the percentage of the theoretical yield of TPA that can be obtained from PET, 

assuming that the PET is formed by the esterification of equimolar amounts of TPA and 

EG. 

8.5.2 Large-scale experiments 

The large-scale experiments were performed in a glass reactor containing 500 g 

hydrolysis solution. The NaOH concentration in the hydrolysis solution was 5, 7.5, or 

10wt%, and the temperature was 70, 80, or 90°C. The BTBAC concentration was 52 

mmol/kg in the hydrolysis solution. The hydrolysis started by mixing NaOH and BTBAC 

to the selected concentrations and heating the solution to the selected temperature. 

Then 5.0 g o.d. polycotton sample was added, and the hydrolysis started. During the 
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hydrolysis, samples of the hydrolysis solution, 1.5 g each time, were removed at different 

times to analyze the course of the reaction.  

After the selected reaction period (240 – 420 min) the reaction was stopped by filtering 

the solid (cotton) residue through a glass microfiber filter. The cotton residue was then 

rinsed with water, dried and weighed after drying. The liquid phase was acidified and 

isolated as described in the small-scale experiments. 

8.6 Polyester analysis 

8.6.1 Optical microscopy 

The hydrolysis was followed during 1 hour with the time-lapse mode using a Zeiss 

SteREO Discovery.V12 equipped with an Axio Cam IC1 and a Linkam PE120 heating 

stage at 80°C. The fibers were spread out evenly over the microscope slide and then a 

solution containing 10% NaOH and 0.1M BTBAC, which corresponds to using 2mol 

BTBAC per mol repeating unit PET, was added. 

8.6.2 Solution state NMR 

The TPA and the filtrate obtained after separation were analyzed with solution-state 

NMR spectroscopy, which was performed on a Varian Inova-800 operated at 18.8 T and 

equipped with a 5 mm TXO cryoprobe. Measurements were performed at 298 K. For 1H 

spectra 64 acquisitions were recorded. For 13C spectra, 1024 acquisitions were recorded 

under continuous irradiation of the proton channel.  

Before the analyses, water was evaporated from the filtrate, which was then dissolved in 

DMSO-d6, while the TPA was directly dissolved in DMSO-d6. 

8.6.3 UV-vis spectroscopy 

The TPA concentration was measured with a UV-vis spectrophotometer (Specord 205, 

Analytic jena) at 242 nm, using the initial hydrolysis solution as background. The 

concentration calculations in the large-scale experiments were adjusted to the removal 

of solvent and TPA.  
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8.6.4 ATR FT-IR 

The IR spectra were recorded at room temperature in air from 4000 to 400 cm-1 with 20 

scans using a PerkinElmer FT-IR spectrophotometer with the diamond ATR 

attachment GladiATR from Pike Technologies. The resolution was 2 cm−1, and interval 

scanning was 0.5 cm−1. 



 

9. Results and Discussion 

This thesis is based on five papers, and the findings may be related to four closely 

connected areas; laundering, pretreatment, swelling, and separation. In this chapter, the 

results from the papers are combined and discussed to give an overall picture of the 

findings. The areas will be presented in the order described above. Before the section 

on separation, the relationship between DP and intrinsic viscosity will be examined and 

discussed.  

9.1 Changes in cotton fibers during laundering 

The first step on the road to textile recycling is understanding the material. Chemical 

recycling should mainly be performed when reuse is not possible anymore, and the 

textiles have been laundered many times. Thus, a comparison of the characteristics of 

cotton sheets in different stages on the path to being discarded provides a background 

to textile recycling. The first paper in this thesis, Paper I, discusses the effect of use and 

laundering through an investigation using WRV, specific surface area, solid-state 13C-

NMR, intrinsic viscosity, and molecular mass distributions. In this section of the thesis, 

some of these results will be compared to results from Papers II-IV, which also have 

relevance to the subject. 
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9.1.1 Observations on fiber level 

Paper I is based on the materials referred to as Part 1, and these include four sheets 

laundered 0, 2-4, ~50, and >50 times. The never-laundered sample was off-white and 

stiff. The stiffness was probably due to the additive that had been applied during the 

production process, which made the fibers very hydrophobic. The additive can be seen 

in the SEM micrograph in Figure 7a as a film covering the fibers.  

 

Figure 7: SEM micrographs of the four sheets, laundered a) 0 times, b) 2-4 times, c) ~50 times and d) 

>50 times. 

After being laundered an increased number of times, the sheets became softer and 

whiter and also easier to tear into smaller pieces. In the SEM micrographs in Figure 7, it 

is clear that with increasing number of launderings the fiber surface changes. The 

structure of the outside of the fibers indicates that the primary wall has, at least partly, 

been removed. This probably mainly occurs in the processing from fiber to fabric. 
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9.1.2 Ultrastructure of the fibers 

Cotton fibers are natural fibers with a number of different structural levels. The 

supramolecular level influences the accessibility of the fibers and is, therefore, important 

to study in order to better understand fiber properties. This may be done with a variety 

of methods, and in this thesis both WRV, FSP, nitrogen adsorption, and solid-state 13C-

NMR spectroscopy were used. Here, additional results from Papers II and III will be 

included to highlight the findings of Paper I. In Papers II and III, analyses were 

performed on Part 2 materials in which the sample referred to as “New sheet” is 

comparable to the sheet laundered 2-4 times, and the sample referred to as “Discarded 

sheets” to the sheet laundered >50 times. The sheets in Part 1 and 2 were the same kind 

of sheets but from different batches. The analyses results from both Part 1 and 2 are 

shown in Table 2. 

Table 2: Comparison of characterization of Part 1 and Part 2 materials. Values of the WRV and specific 

surface area could not be measured for the never-laundered sheet due to a weaving additive. 

 Sample WRV (g/g)* Specific 

surface area 

(m2/g) 

FSP Elementary 

fibril (nm) 

Fibril 

aggregates 

(nm) 

P
ar

t 1
 

0    6.4 ± 0.2** 21.9 ± 2** 

2-4 0.40 73 ± 4.2  7.0 ± 0.2** 25.6 ± 2** 

~50 0.41 66 ± 2.9  7.2 ± 0.2** 24.2 ± 2** 

>50 0.38 45 ± 1.4  7.2 ± 0.2** 24.1 ± 2** 

P
ar

t 2
 

New 0.44  0.293 5.6 ± 0.1 38.9 ± 1.9 

New***    6.2 ± 0.2 40.2 ± 2.2 

Discarded 0.43  0.209 6.0 ± 0.2 42.0 ± 2.3 

Discarded***    6.3 ± 0.2 37.9 ± 2.2 

*Pooled standard deviation 0.01, **Based on samples treated with strong acid hydrolysis (2.5M HCl, 100°C, 17h) according to  

(Wickholm et al., 1998),  ***Based on samples treated with dilute acid hydrolysis (0.4M HCl, 80°C, 60min) 

The findings show that no major increase in WRV or fibril aggregate size occurred 

during laundering. The WRV from Part 1 and 2 samples was in the same range, and no 

decreasing trend was observed in Part 2 materials either. This indicates that repeated 

laundering did not increase the hornification of the cotton sheets. It is important to note 
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that the solid-state NMR analysis of the two groups of samples was performed by 

different labs and with different pretreatments of the samples, which partly hinders 

comparison. However, despite these differences, the elementary fibril size is in the same 

range in both measurements. The size of the fibril aggregates is, on the other hand, 

smaller in Part 1 materials, which could possibly be a result of the harsher hydrolysis 

performed on Part 1 materials. 

Investigation of the specific surface area with nitrogen adsorption (BET) showed a 

decrease with increasing number of launderings. In Paper I the decrease in specific 

surface area, while the WRV was constant, was found to be confusing. However, when 

measuring the WRV of highly hornified samples, the water on fiber surfaces will have a 

major impact, which may disturb the measurement of minor changes. 

The water in the fiber wall can also be measured with solute exclusion as the FSP. The 

FSP measured for Part 2 materials revealed a decrease in FSP with increasing number 

of launderings. This shows the same trend as the measurement of the specific surface 

area of Part 1 materials. These two findings indicate that a change in pore structure takes 

place during laundering. Such a decrease could be due to the coalescence of cellulose 

elementary fibrils. However, only very minor changes were observed in the fibril 

aggregate size as a result of laundering. Thus, the decrease in FSP and specific surface 

area cannot be entirely explained by the increase in the fibril aggregate size. It can, 

therefore, be suggested that this decrease is due to reorganization on a higher structural 

level, and it may be hypothesized that if smaller pores are merged into larger ones, these 

effects would be visible without changing the fibril aggregate size.  
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9.1.3 Molecular structure of the fibers 

The molecular mass distributions of sheets in Part 1 and 2 are shown in Figure 8 and 

Table 3. It can be seen that the molecular mass decreases with increasing number of  

launderings, which is in agreement with 

earlier  findings (Vaeck, 1966). Some 

differences between Parts 1 and 2 can 

be observed, which may be because the 

number of launderings were estimated 

by the textile provider, and are, thus, 

not exact. The decrease is probably due 

to oxidation reactions that occur during 

laundering (oxygen from the air is likely 

to give rise to such reactions), which 

leads to chain scission, as described in 

more detail in Section 4.1.  

The molecular mass distributions of the 

cotton were narrow before laundering, 

which can also be seen in the dispersity. 

With increasing number of launderings, 

the distribution became somewhat 

broader, but as the DP approached the 

LODP, the distribution became 

narrower again. It has previously been 

reported that cotton has a second peak 

at very low molecular mass values 

(Marx-Figini, 1969), however, this was 

not observed in the results shown in 

Figure 8. The second low molecular 

mass peak has been assigned to the primary wall (Marx-Figini, 1969). In the SEM-

micrographs in Figure 7, it can be seen that the primary wall had, at least partly, been 

 

Figure 8: Molecular mass distributions of sheets 

laundered different number of times. The New sheets 

sample is comparable to the sheet laundered 2-4 

times, and the Discarded sheets to Part 1 samples 

laundered >50 times. 

Table 3: Changes in mass average molecular mass, 

number average molecular mass and dispersity during 

laundering. 

 Times 

laundered 

Mm 

(kDa) 

Mn 

(kDa) 

Dispersity 

(Mm/Mn) 

P
ar

t 1
 

0 1323 719 1.8 

2-4 567 86 6.6 

~ 50 338 93 3.6 

> 50 151 64 2.4 

P
ar

t 2
 New 813 193 4.2 

Discarded 224 86.8 2.6 
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removed, and the results from the molecular mass distributions give further indications 

of this. 

Regarding industrial textile recycling, it is likely that there will be a spread in the number 

of times the sheets have been laundered before being sent for recycling. Thus, the 

molecular mass distribution of the incoming material to a recycling facility will be broad. 

To adjust the molecular mass distribution so that the incoming feed to the dissolution 

process is homogenous, pretreatment of the material will be important. For this reason, 

the next section will discuss the pretreatment of cotton fibers.  

9.2 Pretreatment of cellulosic fibers 

Pretreatment of cellulosic fibers is used prior to dissolution both to adjust the level of 

the DP and to enhance dissolution. In this section, the effect of the pretreatments on the 

cotton sheets will be compared to the pretreatment of the two dissolving pulps.  

Three different pretreatments were investigated, acid hydrolysis in water (H2O/HCl), 

acid hydrolysis in ethanol (EtOH/HCl), and hydrothermal treatment (HT), in order to 

study the different degradation patterns. First, some similarities and differences among 

the three pretreatments will be highlighted, and then acid hydrolysis in water will be 

discussed in more detail. 

9.2.1 Comparison of different acid pretreatments 

In order to study differences in degradation pattern, three different pretreatments were 

included in the study. Figure 9 shows the decrease in intrinsic viscosities with time. All 

pretreatments decrease the intrinsic viscosities of the samples. The intrinsic viscosity 

approaches the level at which the degradation rate levels off, i.e. the intrinsic viscosity 

at LODP, shown as a dashed line. 

Acid hydrolysis was performed in water and in ethanol, however, the treatment in 

ethanol was performed at 50°C and the treatment in water at 80°C. The lower 

temperature was chosen for the acid hydrolysis with ethanol since the aim was to 

produce samples with a similar DP after similar time periods. Acid hydrolysis in ethanol 

is faster than acid hydrolysis in water, which has been shown previously (Reeves et al., 

1946; Valley, 1955). The reason for this is, however, disputed, as discussed in the 
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introduction. Despite the lower temperature, the intrinsic viscosity of the samples 

treated in ethanol reached a lower value at the first measurement point, after 15 min, for 

all samples except the PHK pulp, see Figure 9. The intrinsic viscosity of the samples 

treated in ethanol also seems to level off at a higher level than the samples treated in 

water. This could indicate that hydrolysis in ethanol leads to a higher LODP. However, 

the inclusion of a few data points from the Discarded sheets treated at 65°C, see Figure 

9d, shows that the levelling off is possibly only an effect of the lower temperature. To 

study this further, longer reaction times would be needed.  

 

Figure 9: Acid-catalyzed degradation of a) PHK pulp, b) Sulfite pulp, and c) New and d) Discarded cotton 

sheets. 

It has been shown previously that the LODP of samples hydrolyzed in water and in 

ethanol are very similar (Reeves et al., 1946; Valley, 1955). In Table 4, a small increase 

in both elementary fibril and fibril aggregate size as well as in CI can be observed as an 
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effect of acid hydrolysis in water and ethanol. The impact of these mild hydrolysis 

methods is, however, rather minor.  

Table 4: Calculations of the elementary fibril size, the fibril aggregate size, and the crystallinity index from 

deconvolution of 13C solid-state NMR experiments. 

Sample Treatment Elementary 

fibril size (nm) 

Fibril aggregate 

size (nm) 

CI (%) 

PHK-pulp Original 4.4 ±  0.1 23.2 ± 0.9 55 ± 1 

H2O/HCl 4.6 ± 0.1 26.0 ± 1.1 57 ± 1 

EtOH/HCl 4.6 ± 0.1 28.6 ± 1.1 56 ± 1 

HT 4.6 ± 0.1 28.2 ± 1.2 57 ± 1 

Sulfite pulp Original 4.3 ± 0.1 22.1 ± 0.7 54 ± 1 

H2O/HCl 4.6 ± 0.1 24.6 ± 1.0 57 ± 1 

EtOH/HCl 4.5 ± 0.1 25.2 ± 1.0 56 ± 1 

HT 4.6 ± 0.1 29.9 ± 1.4 57 ± 1 

New sheets Original 5.6 ± 0.1 38.9 ± 1.9 64 ± 2 

H2O/HCl 6.2 ± 0.2 40.2 ± 2.2 67 ± 2 

EtOH/HCl 5.9 ± 0.2 33.5 ± 1.9 65 ± 2 

HT 6.5 ± 0.2 50.2 ± 3.3 68 ± 2 

Discarded sheets Original 6.0 ± 0.2 42.0 ± 2.3 66 ± 2 

H2O/HCl 6.3 ± 0.2 37.9 ± 2.2 67 ± 2 

EtOH/HCl 6.2 ± 0.2 40.7 ± 2.6 67 ± 2 

HT 6.7 ± 0.2 64.5 ± 4.2 69 ± 2 

The hydrothermal treatment was performed at 170°C, with the addition of acetate buffer 

(0.02 M, pH 4.75), and the low acidity led to a much slower degradation of the samples 

than the other pretreatments. The slow degradation at high temperature and in dilute 

acid, seemed to facilitate recrystallization during hydrolysis. This can been seen in Table 

4 as larger fibril aggregates after the HT treatment, and as an increase in the crystallinity 

index (CI). Slow acid hydrolysis has previously been found to cause crystallization 

(Battista, 1950). 
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To investigate the differences between the pretreatments further, the molecular mass 

distributions of the samples were analyzed, see Figure 10.  

 

Figure 10: Molecular mass distributions of samples before and after pretreatment. 

When the distributions prior to hydrolysis were first analyzed, it was found that the 

distribution of the Sulfite pulp was much broader than the other distributions, and this 

is in line with previous research (H Sixta, 2000). 

The distributions of the PHK pulp and the two cotton samples (New and Discarded) 

were similar in shape and narrower than the Sulfite pulp. The molecular mass 

distribution after the different pretreatments showed that the shape of the distributions 

was maintained. This indicates that all of the pretreatments had a similar degradation 

pattern, despite the differences in the pretreatments. It can also be noted that 

crystallization, which occurred to a greater extent in the hydrothermal pretreatment 
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than in the other pretreatments, appears not to have given rise to any difference in 

molecular mass distributions. 

9.2.2 Acid hydrolysis 

To understand the differences between the different materials better, a deeper analysis 

of the susceptibility to acid hydrolysis of the cellulose fibers was performed. In this 

section, findings from modelling the degradation, measuring LODP and CI, will be 

presented. Since laundering involves many repeated drying and re-wetting cycles, the 

effect of drying was also studied by including an analysis of the effect of acid hydrolysis 

of never-dried and once-dried paper pulp samples.  

Findings from modelling of the acid hydrolysis of the different samples are presented in 

Figure 11 and Table 5. When observing the effect of acid hydrolysis on the bleached 

Kraft pulp, BKP, in Figure 11a, it was found that drying both led to a lower LODP of 

the dried pulp than the never-dried pulp and that the modelling shows that there were 

more available bonds n, in the dried pulp. The WRV of the never-dried pulp was higher, 

and generally, the accessibility of never-dried pulp was higher than that of dried pulp. 

This finding may seem somewhat surprising. However, as described in Section 5.1, this 

has been observed before (Jørgensen, 1950; Kontturi & Vuorinen, 2009; Lindgren & 

Goliath, 1956; Philipp, Dan, & Fink, 1981). The behavior has been explained as that 

during drying, stresses are built up in the cellulose, and these make the susceptibility of 

the cellulose to acid hydrolysis higher. The hydrolysis reaction starts with addition of a 

proton to the oxygen atom of the glucosidic bond, followed by a very slow formation of 

a carbocation, which adopts a half chair conformation (Edward, 1955). This causes a 

chain scission and is followed by a rapid addition of water (Philipp, Dan, & Fink, 1981; 

Sjöström, 1993). The formation of the carbocation is reversible, but when water has 

added, the reaction is irreversible. A simplistic explanation to the effect of stresses in 

cellulose on the hydrolysis rate could be that if there is a strain in the chain, the chain 

scission may lead to the relaxation of the chains and move them apart, thus, making the 

reaction irreversible. This may contribute to the higher susceptibility of the dried sample 

to acid hydrolysis.  
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The comparison of the modelling of acid hydrolysis of the New and the Discarded sheets 

in Figure 11c and d shows that due to the high starting DP of the New sheets, it is hard 

to see differences. However, Table 5 lists the rate constant of degradation of the two 

sheets, and it can be seen that they are very similar. The measured LODP values showed 

no effect of the drying and rewetting cycles, i.e. no large difference was measured 

between the New and the Discarded sheets in terms of LODP. This is probably due to 

the large effect of the initial hornification that occurred before the cotton was harvested. 

 

 

Figure 11: Weak acid hydrolysis (0.4 M HCl, 80 ºC) of cellulosic fibers, lines indicate modelling results. 

LODP values from modelling shown as straight lines.  
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Table 5: Initial DP, LODP, WRV and parameters from modelling weak acid hydrolysis, n - initial number of 

scissile bonds, k - the rate constant of the hydrolytic medium and LODP values predicted by the model, 

see Equation6. 

Sample 
Measured values Modelling values 

Initial DP LODP WRV* (g/g) n k*102 (min-1) LODP 
(calc.) 

BKP never-dried 1095 195 1.29 2.53 0.46 310 

BKP once-dried 1095 159 0.93 4.02 0.48 218 

PHK pulp 581 88 0.72 4.43 0.58 107 

Sulphite pulp 761 124 0.65 3.61 0.63 165 

New sheets 2621 97 0.44 24.3 0.63 104 
Discarded 

sheets 726 99 0.43 5.11 0.60 119 

*Pooled standard deviation 0.02 (g/g) 

When studying Figure 11, the appearance of the degradation data seems to be similar 

for the two dissolving pulps. However, an inspection of the parameters from the 

degradation in Table 5 reveals differences. Inspection of n, the number of bonds 

available to acid hydrolysis, in Table 5, shows that this is higher in the PHK pulp than in 

the Sulfite pulp, despite that the DP of the Sulfite pulp was higher before hydrolysis. 

This higher susceptibility to acid hydrolysis of the PHK pulp is also reflected in the lower 

measured LODP of the PHK pulp. This difference between PHK pulp and Sulfite pulp 

has been reported earlier (Håkansson & Ahlgren, 2005; H Sixta, 2000). The differences 

between the two pulps may, at least partly, be understood from differences in the pulping 

processes. This effect has been discussed by Page (1983), who proposes that the higher 

susceptibility of Kraft pulp to acid hydrolysis is due to the swelling of the amorphous 

cellulose that takes place during alkaline pulping, and this may both enhance 

accessibility and induce stresses. During alkaline pulping, fibril aggregation is also 

known to occur (Hult, Liitiä, Maunu, Hortling, & Iversen, 2002), and this may also 
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contribute to building up stresses. Thus, both swelling and fibril aggregation may lead to 

stress build up, which can lead to higher susceptibility to acid hydrolysis. Parallels can 

be drawn to the effect of drying on acid hydrolysis where the fibril aggregation caused 

by drying leads to stress build up and, thus, higher susceptibility to acid hydrolysis.  

9.2.3 Effect of hemicellulose on acid hydrolysis of cellulose 

If the BKP samples are compared to the other samples (PHK pulp, Sulfite pulp, and 

cotton sheets), it is clear that the LODP values of these two samples are considerably 

higher than the other samples, despite the decrease after drying. Furthermore, since 

these samples are paper-grade pulp, their hemicellulose content is higher than that of 

the other samples in the study. An investigation by Håkansson et al. (2005) on the effect 

of hemicelluloses on LODP found that hemicellulose leads to higher LODP, and those 

authors concluded that hemicellulose protects cellulose from hydrolysis. However, 

despite the clear relationship between acid hydrolysis and hemicelluloses, the 

mechanism may be another. Since the samples in that study were dried before hydrolysis, 

it is possible that the hemicelluloses mainly protected the samples from hornification. 

Therefore, the stress build up in the hemicellulose-rich samples was lower, and this 

decreased their susceptibility to acid hydrolysis. 
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9.3 Swelling of cotton and dissolving pulp in dilute solvent 

Pretreatments can be performed before the dissolution of cellulose fibers to make their 

properties more uniform and to enhance their susceptibility to dissolution. In Section 

9.2, the effect on the fibers of three different pretreatment methods (acid hydrolysis in 

water, acid hydrolysis in ethanol and hydrothermal treatment) was investigated. In this 

section, the aim is to highlight the susceptibility to dissolution of the different materials 

both before and after the three pretreatments. However, as presented in the 

introduction, it is hard to determine if complete dissolution of cellulose has occurred. 

Thus, instead, the swelling of the cellulose fibers in dilute solvent was assessed with two 

complementing methods. First, dissolution and swelling were studied in different 

concentrations of CED using microscopy in order to observe differences in dissolution 

patterns among the different samples. However, since this method only allows for the 

investigation of a few fibers, and only qualitative results can be obtained, this was 

complemented with a quantitative method. In the quantitative method, the samples were 

subjected to dilute CED for two minutes before the reaction was quenched. The average 

width of the swollen fibers was then measured with a fiber analyzer, and, based on the 

change relative to fibers swollen in water, the width variation was calculated, see 

Equation 4. In each measurement with the fiber analyzer, more than 20 000 fibers were 

analyzed, making this method less sensitive to fiber-specific effects than microscopy. 

Figure 12 shows micrographs of the samples pretreated in acid hydrolysis (0.4 M HCl, 

80°C, 60 min) after being subjected to dilute CED for 1 minute. The dissolving pulp 

samples (PHK and Sulfite) were subjected to the same concentrations of CED as when 

the width variation was determined, 0.16 M, 0.18 M, and 0.20 M. However, since cotton 

is very hard to swell, the concentration levels were increased to 0.16 M, 0.20 M, and 0.24 

M, when cotton samples were studied. Due to questions regarding the point at which the 

dissolution of cellulose occurs, the term “apparent dissolution” is used below to describe 

when no fibers are visible. 

Observation of the swelling of the PHK pulp showed that the swelling occurred mainly 

through ballooning. At 0.18 M CED and higher concentrations, apparent dissolution was 

observed. When observing the Sulfite pulp, on the other hand, apparent dissolution 

through fragmentation occurred even at the lowest CED concentration, 0.16 M. 
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The cotton fibers (New and Discarded sheets) were much less reactive in the CED than 

the dissolving pulp samples (PHK pulp and Sulfite pulp). In the most dilute CED 

solution (0.16 M), no visible swelling of the cotton samples occurred, however, at 0.20 M 

some homogenous swelling did occur. The highest CED concentration 0.24 M led to at 

least partial apparent dissolution; mainly homogenous swelling was observed, but also 

some ballooning. 

The results from the microscopy study in Figure 12, clearly show that cotton is harder to 

swell than dissolving pulp. Previous investigations of the dissolution of cotton fibers 

show that they dissolve through ballooning, similar to wood pulp fibers (Cuissinat & 

Navard, 2006a; Le Moigne et al., 2008). The cotton fibers in this study mainly showed 

homogenous swelling, indicating that the primary wall has been removed. This is further 

supported by the SEM micrographs in Figure 7 and the molecular mass distributions in 

Figure 8. 

The microscopy investigation of the PHK pulp and the Sulfite pulp showed that apparent 

dissolution was observed in the majority of the samples, even at very dilute CED 

concentrations. However, it is important that mainly swelling occurred in the 

quantitative method described above, where the change in fiber width after swelling in 

CED was measured with a fiber analyzer. The results from the microscopy could, 

therefore, be worrying, and, thus, the fibers were also investigated with optical 

microscopy after quenching. This showed that the fibers after quenching were swollen, 

but their natural fiber structure was maintained. This implies that despite that apparent 

dissolution occurred in the micrographs, the fibers were not completely dissolved after 

2 min. This shows that analysis of dissolution with microscopy should be accompanied 

with other analyses to obtain a more complete picture of the dissolution process. 

 

 



RESULTS AND DISCUSSION 

58 

 

 

Figure 12: Micrographs of fiber samples treated with acid hydrolysis for 60 min and subjected to different 

concentrations of CED for 1 min. The black scale bar indicates 0.1 mm. 

The results from the quantitative swelling experiments performed to complement the 

analysis of the fiber swelling in light microscopy are shown in Figure 13. The results from 

the swelling of the PHK pulp and the Sulfite pulp clearly show that with increasing CED 

concentration, the width variation, i.e. the fiber width after swelling, increases. The three 

Sulfite pulp samples, original, H2O/HCl, and EtOH/HCl, are the only exception where 

the width variation decreased at the highest CED concentration, 0.20 M. This is probably 

because the Sulfite pulp samples started to dissolve. In the microscopy analysis, it was 

found that the Sulfite pulp dissolved through fragmentation. Fragmentation is a more 

efficient dissolution pathway than ballooning and causes fibers to break up in smaller 

parts during dissolution (Cuissinat & Navard, 2006a). The dissolution of the PHK pulp, 

on the other hand, proceeded through ballooning, and high swelling through ballooning 

may not break up the fibers to the same extent as fragmentation.  
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Figure 13: Width variation, calculated according to Equation 4 at different CED concentrations, of 

dissolving pulp (PHK and Sulfite) and cotton sheets (New and Discarded) subjected to three different 

pretreatments (H2O/HCl, EtOH/HCl, and HT).  

The results in Figure 13 show that none of the pretreatments (H2O/HCl, EtOH/HCl, or 

HT) led to a significant increase in width variation, and, thus, the swellability of the 

fibers, compared to the original samples. On the contrary, the samples pretreated with 

the HT pretreatment show a decrease in swellability in both the PHK pulp and the 

Sulfite pulp. This may be related to the changes in the supramolecular structure caused 

by the HT pretreatment: the HT pretreatment increases the size of fibril aggregates and 

also leads to a small increase in the CI, see Table 4.  

The change in width variation with increasing CED concentration was very much lower 

in the sheet samples (New sheets, Figure 13c, and Discarded sheets, Figure 13d). This 
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confirms the trend observed in the micrographs that cotton samples are much harder to 

swell. This indicates that the dissolution of cotton samples would require stronger 

solvents than the dissolving pulp samples. This could be due to the larger fibril 

aggregates in cotton than in the dissolving pulp samples (see Table 4). Large fibril 

aggregates decrease the accessibility of cellulose to solvent, and may, in this manner, 

contribute to hindering dissolution. The CI of cotton is also higher than that of dissolving 

pulp, and since crystalline cellulose is harder to dissolve than amorphous cellulose, this 

would also decrease the susceptibility of cotton to dissolution. 

The CED had barely no swelling effect on the cotton samples, except the New sheets 

sample which had not been pretreated (New sheets, original). The width variation of the 

original New sheets sample was much lower, at all three concentrations, compared to 

the dissolving pulp samples. However, the width variation increased with increasing 

CED concentrations. The Mm of this sample was the highest among all samples, 813 kDa, 

corresponding to a DP of around 5000. Despite the large decrease, caused by the 

pretreatments, the swellability of the New sheets decreased after pretreatment. 

Investigation of the fibril and the fibril aggregate size showed a slight increase in fibril 

size, but only minor changes in the fibril aggregate size. The reasons for the higher 

swelling are, therefore, not completely understood from these analyses. 

The method for evaluating the dissolution properties of different pulp samples by 

measuring width variation in a fiber analyzer is based on a few assumptions. The first 

assumption is that the swelling of fibers may be used to evaluate the susceptibility of 

pulp fibers to dissolution. The authors who first presented the method showed that the 

increase in swelling could be correlated to an increase in Fock reactivity (Arnoul-

Jarriault et al., 2016). Fock reactivity is a simplified method for evaluating the reactivity 

of pulp fibers to the viscose process (Fock, 1959). This shows that swelling in dilute CED 

is clearly connected to susceptibility to dissolution. 

The second assumption is that, in the dilute solvent, the sample only swells. However, 

the question may be asked whether the samples mainly swell or if both dissolution and 

swelling occur. The amount of dissolved material has not been quantified in the current 

study, but the evaluation of the results may give some answers. Observation of fibers 

after quenching in water in light microscopy in the current study showed that they 
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resembled natural fibers, and no fragments of regenerated cellulose were visible. 

Furthermore, the clear decrease observed at the highest concentration of CED in the 

Sulfite pulp samples, indicates that when a considerable amount of cellulose is dissolved, 

the width variation decreases. Since the width variation in the other samples increased 

with increasing CED concentration, this strengthens the hypothesis that swelling can be 

studied by measuring width variation. 
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9.4 Correlation between intrinsic viscosity and DP 

In the research performed herein, a number of molecular mass distributions of cellulose 

were analyzed to complement the measurements of intrinsic viscosities. The intrinsic 

viscosity of cellulose dissolved in CED is related to the mass-average DP of the cellulose. 

Many different correlations have been proposed to give a correlation between the 

intrinsic viscosity and the DP of cellulose. In this section, the measured data of the 

molecular mass will be combined with the measured data from the intrinsic viscosity 

measurements, and the most common correlations will be investigated. 

The Mark–Houwink–Sakurada (MHS) equation relates the intrinsic viscosity of a 

polymer solution to the molecular mass of the polymer, see Equation 7 (Kamide, Saito, 

& Miyazaki, 1993). ሾߟሿ =  ௔      Equation 7ܯܭ

This equation may be rewritten in the form of Equation 8 ܦ ௩ܲ௔ = ܾሾߟሿ       Equation 8 

This thesis uses the correlation proposed by Immergut et al. (1953) (Immergut et al., 

1953), as stated in SCAN-C 15:62, see Equation 3. ܦ ௩ܲ଴.ଽ଴ହ = 0.75ሾߟሿ     Equation 9 

Other correlations have been proposed, however, this correlation was chosen despite 

critique since this would better allow for a comparison with data from other papers. 

Today, one of the most cited works on the correlation between intrinsic viscosity and 

DP is that by Evans & Wallis (Evans & Wallis, 1989), see Equation 4. ܦ ௩ܲ଴.ଽ଴ = 1.65ሾߟሿ                       Equation 10 

It needs to be pointed out that the range of DP in the correlation proposed by Evan & 

Wallis is 700 to 7000, and, consequently, many of the data points are below this range. 

The measurements of DPm from molecular mass distributions and the intrinsic viscosity 

of 20 different dissolving pulp and cotton samples were combined, and the parameters a 

and b were estimated by fitting Equation 8 to the experimental data, yielding Equation 11. 
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ܦ ௩ܲ଴.଼ହ = 0.85ሾߟሿ                          Equation 11 

In Figure 14, the data from intrinsic viscosity measurements are plotted against the DPm 

values, measured with HP-SEC. The three correlations in Equations 9-11 are also 

included for comparison. This shows that the correlation proposed by Evan & Wallis 

(1989) overestimates the DP obtained from these samples, while the correlation ascribed 

to Immergut et al. (1953) underestimates it. The deviations can be explained by the 

measurement methods used to determine DPm. 

The kinetic modelling presented in Section 8.2.2 was performed with both correlations, 

and both the trend and the fit of the data were similar. 

 

Figure 14: DPm values from SEC plotted against the intrinsic viscosity of cellulose in CED with the 

correlations in Equation 9-11 shown, a) showing all data points and b) data in the range 200 < Intrinsic 

viscosity < 600.  

Molecular mass distribution may also influence the intrinsic viscosity, for example, 

Figure 14b shows the difference between the different pulp samples. The DPm from the 

Sulfite pulp samples are all located above the correlation based on the experimental 

data. This is an effect of the broad molecular mass distribution of the Sulfite pulp, as can 

be seen in Figure 10. If the correlation presented in this thesis would have been used to 

calculate the DPm of the Sulfite, the DPm would have been underestimated.  
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Furthermore, the samples investigated in Figure 14 contained very low levels of 

hemicellulose, and, consequently, the effect of hemicellulose has not been taken into 

consideration. A discussion of this in more detail can be found in Van Heiningen et al. 

(2004).  

The findings presented in this section show the importance of investigating the 

background to a correlation before using it.  
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9.5 Separation of polyester and cotton 

The main objective of this thesis was to investigate chemical fiber-to-fiber recycling of 

cotton. To accomplish this on an industrial-scale, a pure fraction of cotton must be made 

available. Service textiles, such as hospital sheets and towels, are available in large 

quantities and could serve as a first step in textile recycling. However, most of these 

textiles contain mixes of PET and cotton, referred to as polycotton. Thus, separating the 

components in polycotton is important for the overall objective.  

The separation process, studied in this section, is illustrated in Figure 15. It starts with 

the degradation of the PET in the polycotton mix and the degradation products, which 

are dissolved, are then separated from the solid cotton phase through filtration. The 

filtrate is then acidified, lead to precipitation of TPA. The solid TPA is then separated 

from the liquid phase through filtration. The liquid phase then contains the EG, the 

phase transfer catalyst (if used) and process chemicals. Some of the parameters 

governing this separation as well as the purity of the products will be discussed below. 

Figure 15: Illustration of the main steps in the separation of polycotton into cotton fibers and the two PET 

monomers, ethylene glycol (EG) and terephthalic acid (TPA), for detailed method description, see the 

Methods section. 
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The gradual degradation and dissolution of PET can be observed with optical 

microscopy, and an example of this is shown in Figure 16. At the start of the experiment, 

shown in Figure 16a, both PET and cotton fibers are visible. After 37 min, the PET fibers 

have partly been degraded, and only small fragments are visible. At the end of the 

experiment, after 1 hour, no solid PET fibers are visible anymore, and the cotton remains 

solid but swollen in the alkaline solution. The bubbles in Figure 16b and c are the 

degraded and dissolved components from the PET.  

 

Figure 16: Micrographs of PET and cotton fibers subjected to selective hydrolysis of PET in 10wt% NaOH, 

0.1 M BTBAC, a) at start, 23°C, b) after 37 min, 80°C, and c) after 1 hour, 80°C. The black scale bar 

indicates 0.1 mm. 

There are several parameters that affect the degradation of PET in an alkaline solution, 

such as the concentration of NaOH and phase transfer catalyst (BTBAC), time, and 

temperature. In the small scale system, used herein, the effect of the NaOH- 

concentration was investigated with and without the addition of a phase transfer catalyst 

for a 100-min reaction, see Figure 17a. Without the addition of BTBAC, 15% NaOH 

was required to reach full yield, whereas, very low, or no yield was reached with 1.5% 

NaOH and 5% NaOH. A yield higher than 50% was reached even with as little as 5% 

NaOH, when 0.1 mol BTBAC/mol repeating unit in PET, corresponding to 52 mmol/kg 

solution, was added to the solution, which shows the major impact of the phase transfer 

catalyst. 

 Figure 17b shows the effect of increasing the BTBAC concentration at two temperature 

levels, 80°C and 90°C, for a 100-min reaction. The findings show that less BTBAC is 

needed to reach the same yield when a higher reaction temperature is used. At 90°C, 

only 0.1 mol BTBAC/mol repeating unit in PET was needed to reach full yield, however, 

at 80°C 0.7 mol BTBAC/mol repeating unit in PET was needed.  
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Figure 17: a) Yield of TPA against the NaOH concentration, with and without the addition of BTBAC at 

90°C, b) Yield of TPA against different BTBAC concentrations at 80°C and 90°C using 10% NaOH 

concentration. Both figures are from the small-scale experiments, and the reaction time was 100 min. 

To investigate the degradation of PET during the experiment, a large-scale set-up was 

used. In these experiments, a small amount of polycotton sample was added to a large 

volume of reaction solution, and then samples of the solution were removed at different 

times. The TPA content of the solution was then analyzed with UV-vis spectroscopy. 

Figure 18a shows that the hydrolysis rate of the PET sample increased when the NaOH 

concentration increased. The experiment with 5% NaOH at 70°C was stopped after 120 

min and, thus, only yielded around 66% TPA.  

The effect of the phase transfer catalyst can be seen in Figure 18b where the results from 

experiments with 10% NaOH and BTBAC (52 mmol/kg solution) at 70°C, 80°C, and 

90°C are compared to the results from an experiment at 10% NaOH and 90°C without 

the addition of BTBAC. Without BTBAC, it took about 160 min to reach full 

depolymerization of the PET sample, however, at the same conditions (10% NaOH and 

90°C) with BTBAC, full depolymerization was reached after less than 40 min. This 

shows that BTBAC acts as a catalyst since it increases the rate of degradation, however, 

complete degradation can also be obtained without a catalyst. 
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Figure 18: Time dependence of degradation with a) increasing NaOH concentrations (5%,7.5% and 10% NaOH at 

70°C), and b) increasing temperature (70°C, 80°C, and 90°C at 10% NaOH), with BTBAC (52 mmol/kg solution) 

and one trial at 90°C with 10% NaOH without any addition of BTBAC). 

The results presented above show that the yield was influenced by temperature, NaOH-

concentration, BTBAC addition and residence time. These findings are a good 

framework within which to further optimize the process. 

The aim of the separation is to degrade PET into TPA and EG while leaving the cotton 

as unaffected as possible, thus, generating three product streams. To be able to use the 

products in the production of new fibers, the purity of the product streams is important. 

For this reason, the purity of the degradation products from PET, EG and TPA, was 

analyzed with solution-state NMR spectroscopy. The analyses showed that no other 

components could be found in the crystallized TPA, and the only components in the 

filtrate were EG and BTBAC (when added). This is discussed further in Paper V, where 

the NMR spectra also are shown. 

The process aims to leave the cotton as unaffected as possible, however, cotton is not 

completely chemically resistant to NaOH at these conditions. Therefore, it was expected 

that at least signs of some cellulose degradation products, i.e. hydroxy acids, would be 

present, since cellulose is known to generate such degradation products when treated 

under alkaline conditions (Sjöström, 1993). However, more thorough analyses with 

focus on cellulose degradation products would certainly show the presence of some 

cellulose degradation products. 
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The degradation of the cotton cellulose decreases both the yield and the DP of cotton. 

In Figure 19, the yield of cotton is plotted versus the intrinsic viscosity of cotton cellulose. 

The results show that the highest yields and DP values are from experiments with the 

lowest temperature (70°C). 

 

Figure 19: Yield of cotton plotted vs intrinsic viscosity of cotton cellulose recovered after separation from 

polycotton textiles. All separation experiments were performed in the large-scale set-up for 240 min, except 

the two with the lowest DP, which were performed for 360 min. 

The degradation of cellulose in alkaline solutions follows three main paths, alkaline 

hydrolysis, peeling, and chain scission after oxidation (oxidative peeling), as introduced 

in Section 3.3.1. The decrease in intrinsic viscosity that takes place during the separation 

experiments is probably both caused by alkaline hydrolysis and oxidative peeling (chain 

cleavage due to β-elimination), while primary and secondary peeling decrease the cotton 

yield. Alkaline hydrolysis is generally described to occur mainly at higher temperatures 

than what is used in these experiments, however, it cannot be excluded that some 

alkaline hydrolysis occurs even at these low temperatures (Nieminen, Testova, 

Paananen, & Sixta, 2015). 

The purity of the cotton fraction was investigated with ATR FT-IR. IR spectra from two 

experiments are compared in Figure 20. The hydrolysis performed at 70°C and 5% 

NaOH had only reached a yield of 66% TPA when stopped, as shown in Figure 18.  

The residual PET in this sample can be seen in two absorption bands in the range 

between 1150 and 1250 cm-1, and 1715-1740 cm-1, enlarged in Figure 20. The first band 
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was assigned to the C-O stretch, and the second to the C=O stretch, both from the ester 

bonds in the PET. The IR spectra from the hydrolysis performed at 90°C and 10% 

NaOH, which had reached full yield according to Figure 18, showed no peaks in these 

two absorption bands, which implies that the PET has been removed from this sample. 

 

Figure 20: ATR FT-IR spectra of the solid (cotton) residue after PET hydrolysis. The experiments were 

performed in the large-scale set-up with 52 mmol BTBAC/kg solution.  



 

 

10. Concluding remarks 

 

The main objective of this thesis was to investigate the preconditions for chemical fiber-

to-fiber recycling of cotton textiles. This was investigated through the evaluation of four 

research questions. The main results from each question are summarized below.  

1) How does important material properties of cotton fiber change during long-term 

laundering and use? (Paper I) 

An investigation of sheets used in hospitals, and laundered different number of 

times showed that during service life there was initially a small decrease in WRV 

and fibril aggregate size. This indicates a minor initial hornification, however, 

long-term use did not increase the hornification. In contrast, long-term use 

induced a decrease in FSP and specific surface area, which indicates that the pore 

structure of the cotton cellulose changed over long-term use. 

Long-term use and extensive laundering were also found to decrease the mass-

average molecular mass of cotton cellulose from 1323 kDa, in a new, never 

laundered sheet, down to 151 kDa of a sheet ready to be discarded after more 

than 50 use and laundering cycles.  
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2) How are new and used cotton fibers affected by acid pretreatment, in comparison 

to dissolving pulp? (Paper II, IV) 

Acid-catalyzed pretreatment of cellulose was investigated using three different 

methods: acid hydrolysis in water, acid hydrolysis in ethanol, and hydrothermal 

treatment in a dilute acidic buffer. In the case of acid hydrolysis in ethanol, the 

pretreatment solution contained 6 wt% water. The degradation was investigated 

both for cotton cellulose and dissolving pulps. A comparison of the effect of the 

different pretreatment methods on cellulose degradation showed that 

degradation caused by acid in water and acid in ethanol was similar, however, the 

degradation with acid in ethanol was faster. The higher degradation rate of 

cellulose fibers during treatment in acid hydrolysis in ethanol can possibly be 

explained an elevated acid concentration in the fibers due to sorption of acid from 

the bulk phase by the cellulose, making the actual acidity at the cellulose-liquid 

interface to be higher than in the bulk phase. Degradation in the hydrothermal 

treatment was slower, i.e. higher temperature and longer pretreatment times 

were required to reach the same degree of degradation, and the high temperature 

and low acidity induced fibril aggregation.  

The degradation pattern of cotton was similar, to that of PHK pulp. However, 

the Sulfite pulp showed a slower degradation rate, and higher LODP. It was 

found that both drying and PHK pulping increase the susceptibility to acid 

hydrolysis of cellulose fibers, probably due to the build-up of stress in the 

cellulose during fibril aggregation.   

 

3) How is the susceptibility of cotton fibers and dissolving pulp to swelling changed 

after acid pretreatment? (Paper III) 

 

An investigation of the swelling of cotton fibers and dissolving pulps in dilute 

CED showed that the susceptibility of these materials to swelling was much lower 

for the cotton fibers than for the dissolving pulps. It was found that the fibril 

aggregate size in the cotton samples was higher than in the dissolving pulp 

samples, and this probably contributed to the difference in swelling. 
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The swelling of dissolving pulp fibers after pretreatments involving acid 

hydrolysis in water, acid hydrolysis in ethanol, or hydrothermal treatment in 

dilute acidic buffer did not increase, compared to the original samples. In 

contrast, the hydrothermal treatment tended to decrease the swelling. Since the 

hydrothermal treatment increased the size of the fibril aggregates, it is possible 

that this change in properties decreased the swellability of the fibers. 

 

4) How can separation of mixed textiles containing polyester and cotton be 

accomplished? (Paper V) 

In the last paper alkaline hydrolysis of PET was used on polycotton textiles, with 

the aim of separating the components. It was found that PET could be completely 

degraded after 40 min hydrolysis in 10% NaOH at 90°C, with the addition of 52 

mmol BTBAC/ kg solution. Complete hydrolysis without BTBAC also yielded 

pure streams, however, longer reaction times were required, and, thus, the cotton 

yield decreased. 

After the process, three product streams were recovered; the residual cotton, 

solid TPA, and an aqueous stream containing EG. The isolation of cotton and 

TPA as pure streams implies that recycling may be accomplished through the 

repolymerization of the TPA with EG (recycled or virgin), and that the cotton 

fibers could possibly be used in the production of regenerated cellulosic fibers. 

However, before the process is ready to be implemented industrially, 

optimization, scaling-up experiments, as well as a techno-economical assessment 

of the process must be performed. 

Based on the findings presented under each research question, some general conclusions 

about textile recycling can be drawn.  

- The cotton fibers investigated in this thesis are harder to swell, than conventional 

dissolving pulp, and thus recycling of cotton fibers into regenerated cellulosic 

fibers require very good solvents.  

- The pretreatment of cotton and dissolving pulp may possibly be performed 

simultaneously since the degradation patterns are similar.  



CONCLUDING REMARKS 
 

74 

 

- One possibility to separate the components in a polycotton mix is through 

alkaline hydrolysis of the polyester.   

Some general conclusions about the susceptibility of cellulose fibers to acid hydrolysis 

and dissolution can also be drawn. It is commonly stated that the ultrastructure of 

cellulose governs much of its reactivity. However, the findings presented in this thesis 

indicate an opposite susceptibility. The Sulfite pulp had a higher susceptibility to 

swelling, but a lower susceptibility to acid hydrolysis. In contrast, the PHK pulp and the 

cotton sheets were more reactive to acid but showed less susceptibility to swelling. This 

shows that despite that ultrastructure is important in both processes, different aspects of 

the ultrastructure are important in the two processes. More specifically, stress in the 

cellulose proved to be important for the rate of acid degradation. Drying cellulose fibers 

leads to greater susceptibility of the cellulose fibers to acid hydrolysis, however, drying 

may also decrease susceptibility to swelling/dissolution. 



 

 

11. Future work 

Chemical recycling of textiles is a relatively new research field, and thus there are many 

questions waiting to be investigated. Development in this field is closely connected to 

increased regulations by authorities aimed at increasing textile recycling, as well as an 

increased awareness in society and industry of the large volumes of waste from textiles. 

A key issue will be to build up knowledge of end-of-life issues throughout the value 

chain. This means that to be able to recycle textiles in large volumes, the companies in 

every part of the value chain must take responsibility for end-of-life issues. 

The work presented in this thesis is only the very first step towards chemical recycling 

of textiles, and it opens up many further research questions. In this section, some future 

aspects of each of the four parts of the thesis, will be outlined. 

In the first part, cotton sheets were characterized after use and laundering. Since pure 

cotton textiles are rare in service textiles, understanding how laundering and use affects 

polycotton sheets, would provide further understanding of these materials. The 

characterization in this thesis was based on cotton sheets used in hospitals and laundered 

industrially. To get a more complete picture, comparisons between different sheet 

qualities and laundering companies in Sweden and other parts of the world, would need 
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to be studied. All sheets included in the study were white, as are most service textiles, 

however, the effect of dyes on the properties of textile fibers is important to know to 

achieve large-scale textile recycling.  

Acid degradation of cellulose was investigated in this thesis, and, despite the long history 

of this research field, many more aspects remain interesting to study. The findings in this 

thesis show that strain may be an important component for the susceptibility of cellulose 

fibers to acid hydrolysis. Thus, more focus on how strain is built up in different ways in 

cellulose fibers would possibly provide more understanding of differences in 

susceptibility to acid. 

Swelling of cotton cellulose was investigated to get an idea of differences in susceptibility 

to dissolution. The low swellability of cotton fibers indicates that cotton lint fibers have 

a lower susceptibility to dissolution than dissolving pulp fibers. To further investigate 

this, future investigations may include both different cotton fibers, additional solvent 

systems and complementing investigation methods. The connection between swelling in 

dilute solvent and dissolution could be examined by analyzing the amount of dissolved 

material after swelling in dilute solvent. This would complement the very convenient 

method of assessing swelling in a dilute solvent with a fiber analyzer. Furthermore, the 

behavior of cotton cellulose from different types of discarded textiles should be 

evaluated in commercial processes for production of regenerated cellulose fibers i.e. 

viscose and lyocell. 

In the last part, a separation process for polycotton textiles was presented. Currently, 

many different processes for this are being investigated, and the future will reveal which 

is the most efficient. To develop the process presented in this thesis, both fundamental 

and applied questions remain. The separation of cotton and polyester was performed 

using new white sheets, however, to be more industrially relevant, sheets laundered and 

used many times should be studied, and the effect of different dyes need to be included. 

Many process aspects need to be investigated, such as the effect of higher concentrations 

of solid material, the reactor design, recycling the phase transfer catalyst, and the 

mechanical pretreatment of polycotton material. The three process streams does also 

need to be further evaluated. The susceptibility of cotton to dissolution, after the 

separation process also needs to be assessed.  
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To evaluate the industrial potential of the process, a techno-economical assessment of 

the process and an LCA analysis of possible environmental benefits call for careful 

investigation.  
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