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Abstract

The millimeter wave frequency range has got a lot of attention over the past few
years because it contains unused frequency spectrum resources that are suitable for
delivering Gbit/s end-user access in areas with high user density. Due to the limited
output power that current RF active components can deliver in millimeter waves,
antennas with the merits of low profile, high gain, high efficiency and low cost are
needed to compensate free space path loss and increase the communication distance
for the emerging high data rate wireless systems.

In order to move towards the millimeter wave frequencies we need to face signif-
icant hardware challenges, such as active and passive components integration, pack-
aging problems and cost-effective manufacturing techniques. The gap waveguide
technology shows interesting characteristics as a new waveguide structure. It may
be suitable to fill the existing gap between the planar transmission lines, such as mi-
crostrip, coplanar waveguide and substrate integrated waveguide and the non-planar
hollow waveguides in terms of performance, such as loss and fabrication flexibility at
high frequencies. Gap waveguide has a planar profile, and it can be used as low loss
distribution network for an antenna array.

This thesis mainly focuses on passive components design, in particular array an-
tennas and bandpass filters based on gap waveguide technology. We present several
low-profile multilayer corporate-fed slot array antennas with high gain, high efficiency
and wide impedance bandwidth for the 60-GHz band. The aim of this thesis is to
demonstrate the advantages of gap waveguide technology as an alternative to the tra-
ditional guiding structures to overcome the problem of good electrical contact due to
mechanical assembly with low loss. The main challenge of gap waveguide components
is the realization of the textured structure (pin surface) with a cost-effective manu-
facturing method. Due to the relatively complex pattern and physical dimensions of
the textured structure, the fabrication of the gap prototypes introduces a challeng-
ing task, especially at millimeter wave frequencies. Therefore, we are continuously
searching for effective alternative methods. A fast modern planar 3-D manufacturing
method called die-sink Electric Discharge Machining (EDM) is applied for the first
time to manufacture a large planar high gain antenna at the 60-GHz band. Measure-
ment results and experimental validation are provided for the presented designs.

Keywords: aperture efficiency, Artificial Magnetic Conductor (AMC), Bandpass fil-
ter (BPF), Electric Discharge Machining (EDM), low sidelobe, gap waveguide, grating
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Chapter

Introduction

The continuously growing demand for higher data rate communication leads to use
higher frequency bands. There are requirements that will be challenging to address
within the frequency spectrum resources. One of these challenges is how to deliver
Gbit/s end-user access in areas with high user densities. It is expected that there
will be a need for extremely high peak data rates, in the order of 10 to 50 Gbit/s in
the near future [1]. To achieve these data rates, it would be beneficial to use wider
frequency bands in the order of several GHz. Finding these continuous frequency
bandwidths below 20 GHz is unlikely. Instead, the research effort for these ultra-high
speed radio access interfaces has been targeting millimeter wave frequency range
(30-300 GHz) where it could be easier to get access to wider bandwidths [1].

The use of millimeter wave frequencies is growing in many applications such as
automotive anti-collision radar at 77 GHz [2] , vehicle-to-vehicle communication [3],
high resolution millimeter wave imaging [4], satellites cross-link communication in
space [5], indoor wireless data transmission at 60 GHz [6], and outdoor millimeter
point-to-point backhaul terminals [7]. Communication at millimeter waves is advan-
tageous because of the high attenuation in the atmosphere, and large absorption in
urban scattering obstacles. This enables frequency reuse over small distances and
higher security. Furthermore, there are several license free bands in millimeter wave
frequency band. For example 7 GHz from 57 to 64 GHz are allocated in United States
and Europe for unlicensed use.

The communication distance is limited at millimeter waves, due to the high atten-
uation that propagating signals experience. This loss is higher at certain frequencies
due to the oxygen molecule resonance frequency and water vapor [8]. Fig.1.1 shows
average atmospheric absorption at millimeter wave frequencies in dB/km at sea level.
The attenuation level mainly depends on temperature, pressure, and humidity. At 60
GHz, due to high atmospheric absorption, relatively secure communications can be
implemented. On the other hand, the negligible atmospheric absorption at 28 and 38
GHz make these frequencies good candidates for long-range radio links and emerging
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Figure 1.1: Average sea level atmospheric absorption at millimeter wave frequencies
[10].

5G cellular systems.

The 60 GHz band or V-band is suitable for short-range high data rate commu-
nication systems with a low probability of intercept. The frequency band 59 to
64 GHz is attractive in particular due to a high atmospheric absorption (i.e. over
10 dB/km) which provides an opportunity for small cell backhauling. Moreover,
atmospheric absorption drops down significantly in the frequency range 64-66 GHz,
which is attractive for similar applications where longer communication distance are
needed. For these purposes, highly-directive antennas with high aperture efficiency
are needed. Directive antennas for radio links are generally realized by using reflector
antennas [9]. However, planar array antennas are more attractive for these new ap-
plications, due to lower volume and weight. Furthermore, array antennas can provide
rapid electronic beam steering.

In the 71-76/81-86 GHz band longer communication distance can be obtained due
to relatively small gas absorption compared with the 60 GHz band. Therefore, this
band is suitable for long range high-capacity communication with negligible atmo-
spheric attenuation. Most applications are foreseen for fixed and mobile infrastructure
in this band [1].

The official license and spectrum allocation are other restricting challenges that
the development of the millimeter wave application is facing. Since the frequency
spectrum in millimeter wave has not yet been unified in different countries, the po-
tential frequency interference could cause legal disputes [1|. Fig.2 illustrates the
potential conflict between frequency bands used for wireless backhaul in different
European member countries. The green areas indicate the frequency regions that
already have a primary allocation in ITU Region 1, while the yellow areas indicate
harmonized frequency bands used for fixed links in Europe [1].
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At microwave frequencies, passive components such as high-Q bandpass filters and
slot array antennas are commonly realized in hollow waveguide structures, due to low
insertion loss and high power handling capability. However, the manufacturing cost
of the hollow waveguide structures becomes too high at millimeter wave frequen-
cies due to the strict tolerance requirements in the split-block technique. Planar
technologies such as microstrip, coplanar waveguide (CPW) and substrate integrated
waveguide (SIW), are more suitable for integration with active and passive compo-
nents and easier to fabricate than standard hollow waveguide structures. However,
these transmission lines suffer from high dielectric and ohmic losses and radiation
leakage, especially when increasing the operating frequency.

To move towards millimeter wave frequencies we need to face significant hardware
challenges such as active and passive components integration, packaging problem
and cost-effective manufacturing techniques. The previously mentioned traditional
technologies do not fulfill the strict requirements of the emerging millimeter wave
applications.

1.1 Aim of the Thesis

The aim of this thesis is to demonstrate the advantages of gap waveguide technology
as an alternative to the traditional guiding structures to overcome the problem of
good electrical contact due to mechanical assembly with low losses, especially in
millimeter wave frequencies. Moreover, the gap waveguide technology is expected to
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be suitable for millimeter and sub-millimeter wave frequencies, since high integration
capability of active and passive components are required for these new emerging
systems, although a lot of challenges are still need to be solved. Some of the major
issues found at these frequencies are the strict manufacturing and assembly tolerances.

High gain antennas are essential components to compensate for the losses in point-
to-point wireless links, due to the high path loss at millimeter wave. The gap waveg-
uide technology presents some benefits for high frequency antenna applications. It
has a planar profile, and it can be used as low loss distribution network for an antenna
array. This thesis is mainly focused on the design of passive components, particularly
array antennas and bandpass filters based on gap waveguide technology for millimeter
wave applications. Several low profile multilayer corporate-fed slot array antennas
with high gain, high efficiency and wide impedance bandwidth for the 60 GHz band
have been designed and are thoroughly explained in this thesis.

In gap waveguide, periodic textured structures, in the form of pins or mush-
rooms, are used to realize an Artificial Magnetic Conductor (AMC). The fabrication
of the textured structure presents a challenging task, especially at millimeter wave
frequencies, due to the relatively complex pattern and physical dimensions. The
conventional Computer Numerical Control (CNC) machining technique is very time-
consuming and not effective to manufacture gap waveguide structures. Therefore,
a fast modern planar 3-D manufacturing method called die-sink Electric Discharge
Machining (EDM) is used for the first time to manufacture a large planar high gain
antenna at millimeter wave. The integration of active and passive component such
as bandpass filters (BPFs), diplexers, amplifiers and monolithic microwave integrated
circuits (MMICs) with the feed-network of an array antenna to constitute a complete
RF front-end based on gap waveguide technology is our long term goal. Therefore,
we have designed a fourth order Chebyshev-type end-coupled bandpass filter based
on inverted microstrip gap waveguide to provide a 2 GHz bandwidth at 60 GHz cen-
ter frequency. Which later it will be integrated with an array antenna feed-network.
Measurement results and experimental validation are provided for the presented de-
signs.

1.2 Thesis Outline

The thesis is divided in two main parts. The purpose of the first part, organized in
4 chapters, is to introduce the subject and the background needed in order to better
understanding of the appended papers, presented in the second part.

The first part of the thesis is organized as follows: in Chapter 2 some of tra-
ditional transmission line issues and challenges at high frequencies are indicated.
This clarifies the context and motivation of the present research and how the new
metamaterial-based gap waveguide technology can help to overcome the noted prob-
lems and challenges. Chapter 3 presents an overview of the gap waveguide technology
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and its principle. In this chapter preliminary studies of the gap waveguide are pre-
sented. Finally, Chapter 4 concludes the first part of the thesis with a brief summary
of the listed contributions and the future work.

In the second part of the thesis, the most relevant contributions of the author are
included in the form of five appended papers. Additionally, other related publication
of the author can be found as references in the section List of Publications.






Chapter

Challenges at Millimeter Waves

Millimeter waves spectrum was remained unused until recent years, because there
were no RF electronic components able to generate or receive signal efficiently at
those frequencies. Generating and receiving power in millimeter wave frequencies
is a challenge, due to low output power amplifier, atmospheric and free-space path
losses. The transmission range is limited and restricted mainly by the atmosphere
absorption. Rain, fog, and water vapor in the air make the signal attenuation even
higher. The wavelength becomes very small and raindrop size is comparable with the
wavelength and therefore causes scattering. At 60 GHz, due to the oxygen molecule
absorption, the situation is way worse.

According to the Friis transmission equation, the power transmitted from one an-
tenna is received by another antenna under idealized conditions in a certain distance
is given by:

P, = P, + Gy + G, + 20 log;( (2.1)

R
where P, is the receiving signal output power, P, is the transmitting signal output
power, GG, and G, are the receiving and transmitting antenna gains, \ is the wave-
length, and R is the distance between the antennas. Free-space path loss is more
critical in millimeter wave spectrum than lower frequencies due to a limitation re-
lated to their wavelength.

For a given power, the shorter the wavelength, the shorter the transmission range.
In order to improve signal to noise ratio (SNR) at the receiver and thereby increase
the transmission range we need to increase the power of the transmitting signal, or
use more directive antennas. Due to the limited output power that the current active
components can deliver in millimeter waves, we can only increase the antennas gains
in order to increase the communication distance and compensate free-space path loss.
Therefore, high gain and low loss antenna is one of the most necessary component of
millimeter wave short- and long-range wireless communication systems. Moreover,
millimeter wave hardware modules need to be compact size, highly-integrated, at the
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Figure 2.1: Planar transmission lines and fundamental E-filed mode distribution. (a)
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lowest possible cost.

2.1 Traditional Transmission Line Issues at High
Frequencies

Planar transmission line structures such as microstrip, CPW and stripline, are printed
circuit technologies that present a compact and low cost solution. They are more
suitable for integration with active and passive components and easier to fabricate
than standard waveguide structures. However, these transmission lines suffer from
high dielectric and ohmic losses and radiation leakage, especially when increasing the
operating frequency. Fig.2.1 shows the planar transmission lines configuration and
their fundamental modes distribution.

Thin film substrate layers can be used to decrease the dielectric loss [11-13].
However, in order to have a 50  line impedance, a narrower strip must be used
for a thin substrate, which increases the conductive losses. Due to higher resistance,
narrower strip lines have higher conductive losses. Surface waves and higher order
modes can also be generated especially in the presence of discontinuities, bends, open-
ends and steps, for example in bandpass filters and feed-network of array antennas.

Standard hollow waveguides have some benefits compared to planar technologies
such as low loss and high power handling capability (Fig.2.2). The non-planar struc-
ture of hollow waveguides makes difficult to use them in integration of passive and
active components in the same module. Manufacturing and assembly tolerances, es-
pecially at millimeter waves, are the other disadvantages of this technology. However,
if we want to design a high-Q filter or a low loss and high-efficiency array antenna,
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Figure 2.2: Rectangular waveguide structure and 7' F}, fundamental mode distribu-
tion.

we have to use hollow waveguide instead of dielectric based transmission lines.

The fabrication of complex waveguide structures at millimeter waves presents a
challenging task. There are several ways to fabricate waveguide structures, such
as CNC machining and Electronic Discharge Machining (EDM). Waveguide struc-
tures are typically manufactured in split-blocks and then can be connected by screw-
ing, diffusion bonding or deep-brazing techniques. Accurate machining techniques
are needed at millimeter wave frequencies, which is difficult, expensive, and time-
consuming process.

The substrate integrated waveguide (SIW) or post-wall waveguides is introduced
in [14,15] as an attractive technology with the advantages of both planar trans-
mission lines and hollow waveguides (Fig.2.3). The structure of SIW is similar to
a rectangular dielectric-filled waveguide structure, where two rows of metalized via
holes replace the narrow walls of waveguide. The upper and lower metal plates and
via holes form a current loop in the cross-section, similar to metal waveguide. All
these via holes should be placed closely to avoid possible leakage. Because there are
vias at the sidewalls, transverse magnetic (T'M) modes do not exist and therefore
this transmission line only support propagation of TE,,; modes of the traditional
rectangular waveguide.

SIW has a planar profile which makes them interesting for integration with active
components. However, due to the presence of dielectric, SIW faces the same prob-
lem as microstrip transmission lines and shows higher loss than hollow waveguides.
Moreover, radiation losses and leakage can occur in a bad design, because the via
holes do not provide a perfect shielding |16,17].

Although microstrip bandpass filters have simple structures, their applications are
limited to microwave frequencies due to high losses. A V-band third order bandpass
filter realized in SIW technology is presented in [18]. The fabricated prototype shows
an insertion loss of 3 dB at the center frequency of 62 GHz, mainly due to dielec-
tric loss. On the other hand, the fourth order Chebyshev-type end-coupled BPF,
designed based on the inverted microstrip gap waveguide in [Paper B| at 60 GHz
center frequency, shows around half of that insertion loss of the corresponding SIW
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filter in [18].

2.2 Array Antenna Challenges

High gain, high efficiency and low profile antenna is one of the main challenges of
millimeter wave wireless systems. Planar array antennas are very popular and widely
used because of their advantages such as flat structure, low volume and weight.
Furthermore, in array antennas the main beam direction can be rapidly changed by
electronic steering. This fact makes them attractive for many applications.

In the design of a broadside-radiating antenna array, the element spacing is re-
quired to be within one wavelength to avoid high grating lobes. However, the element
spacing may become larger than one wavelength in order to accommodate a fully
branched also called corporate distribution network, especially at high frequencies.
Therefore, it is important to know the grating lobe behavior and its effect on the
aperture efficiency. |Paper A| makes such a study and validates a simple formula for
the efficiency reduction due to grating lobes. Several methods have been developed
to suppress grating lobes, such as aperiodic arrays configurations including rotated
sub arrays [19], ring-grid array with trapezoid subarrays [20], arrays of random sub-
arrays [21], random element and subarray positioning [22], and processing techniques
in synthetic aperture radar (SAR) systems [23,24].

A high gain array antenna with a large number of elements requires long trans-
mission lines in the distribution network, and these ones must have very low losses.
Although microstrip and SIW arrays have low profile, they suffer from dielectric
and ohmic losses, which is a disadvantage for high gain millimeter wave applica-
tions [25-27]. The losses can be partly reduced by using low loss dielectrics, but
these materials are expensive, and also quite soft. Therefore, it becomes difficult to
machine and make via holes through those types of planar structures. Leakage and
surface waves may become a major problem in microstrip array antennas, especially
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Figure 2.4: (a) Surface Currents distribution for T'E}, mode in rectangular waveguide
walls [33]. (b) Sensitive and least-sensitive places for joining walls.

in a big distribution network [28]. They can have a large effect on the radiation
patterns and thus lead to reduction in antenna efficiency and thereby gain. Hybrid
corporate-fed array antennas are proposed in [29] and [30] to reduce the dielectric loss
of the distribution network, by using a microstrip ridge gap waveguide feed network
and Substrate Integrated Cavity (SIC) radiating layer.

Slotted waveguide array antennas have been known for years and still are the
best choice for high efficiency and high power applications. The basic principle of
slot antenna is disturbing the surface current on the waveguide walls by introduc-
ing slots. Hollow waveguide distribution networks show low loss and high efficiency,
which makes them suitable for such applications require high gain antennas [31,32].
However, the tiny gaps between the antenna blocks can also cause leakage and ra-
diation, if they disturb the surface current (Fig.2.4). Therefore, the fabrication of
a complex waveguide structure is a challenging task, especially at millimeter wave
frequencies. The key challenge is to achieve good electrical contact between building
blocks, which increases fabrication cost and manufacturing complexity. Need for pre-
cise assembly also adds more challenges in multilayer slot array antennas. Moreover,
the junctions must be protected from corrosion and oxidation.

Series-fed slotted waveguide arrays are simple but have narrow bandwidth due
to the long line effect [34]. In a single layer structure, it is normally not possible
to feed each radiating element in parallel (full corporate-feed) because of the space
limitations associated with keeping the element spacing smaller than one wavelength
(Xo) to avoid grating lobe [35]. Multi-layer corporate distribution networks [36] show
wider bandwidth than series-fed arrays [37]. In these antennas, radiating elements
are fed in parallel by a corporate-feed network, formed by waveguide power dividers.
However, it is very difficult to achieve good electrical contact between the vertical
walls and the upper layer in a distribution network, where a narrow vertical wall is
separating each closely spaced waveguide branches [37,38].
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Figure 2.5: Surface current distortion in slotted waveguide antennas. (a) Current
cut in broad-wall slot antenna. (b) Narrow-wall slot antenna without problem of
disturbing current.

(b)

Figure 2.6: (a) Array antenna feed-network with many screws. (b) Flatness problem.

To overcome the problem of leakage due to the assembly in the broad-wall slotted
waveguide antenna, a narrow-wall slotted waveguide can be used (Fig.2.5). This
antenna can be manufactured in E-plane spite-black without disturbing and cutting
the surface current on the waveguide walls.

Flatness of the metal layers is another key to assure good electrical contact be-
tween plates. Guaranteeing good plate flatness, especially in a large surface, is not
an easy task. A high-quality surface finishing over the whole metal contacts as well
as good alignment of the two blocks must be achieved in order to remove the gaps
between the two split-blocks and have a good electrical contact. Moreover, lots of
screws are needed to assure good contact, and not always successful (Fig.2.6).

These strict mechanical requirements lead to use complex and high-precision man-
ufacturing techniques and novel ideas. A corporate-fed multiple layers rectangular
waveguide cavity-backed slot array antenna is reported in [39]. This is based on
normal rectangular waveguide technology realized by diffusion bonding of many thin
copper plates in order to achieve good electrical contact between all the plates. It
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Figure 2.7: comparison of different array antennas technologies performance. ( Mi-
crostrip array antennas [42], LTCC and SIW array antennas [43,44|, Hollow waveg-
uide slot arrays [39])

shows high efficiency and wideband performance, but the diffusion bonding is expen-
sive in mass production. Diffusion bonding is a solid-state welding technique capable
of joining metals. Diffusion bonding is typically implemented by applying both high
pressure and high temperature to the materials to be welded. Another attempted
solution, a novel over-sized post-wall waveguide fed by a Q — T'EM mode array an-
tenna in parallel-plate waveguide configuration is introduce in [40]. In this design, a
compact design is achieved by using densely placed posts on the same layer as the
parallel plate. This solution has a narrow bandwidth and also ) — TEM mode is
difficult to obtain by combining T'E,; modes. Several attempts have been made for
solving the junction problem at the radiating layer where screws cannot be inserted,
such as alternating phase-fed single-layer slotted waveguide array which removes the
need of the electrical contact between plates [41].

2.3 Summary and Conclusions

In this chapter some of the issues of the traditional technologies and challenges in
manufacturing of slot array antennas at high frequencies have been indicated. There
exists a big gap between the planar transmission lines such as microstrip, CPW and
SIW and the non-planar hollow waveguides in terms of performance such as loss
and fabrication flexibility. One of the main current research challenges is to find a
transmission line solution with flexible and low-cost fabrication and with low-loss at
the same time. Fig.2.7 compares the performance of some reported planar high gain
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array antennas based on different technologies in terms of loss, fabrication complexity
and cost. Microstrip and SIW array antennas have lower profile and cost than hollow
waveguide arrays, but they suffer from higher loss which is a disadvantage for high
gain antennas.

Therefore, we instead realize slot array antennas in separated metal layers that
are assembled without requiring any metal contact between them. This is possible
by using the new metamaterial-based gap waveguide technology. Our research goal is
to introduce a solution to fill the mention gap between the planar transmission lines
and hollow waveguides.
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Chapter

Gap Waveguide Technology Principle and
Overview

The gap waveguide technology was recently introduced in [45] as an extension of pre-
vious studies on hard and soft surfaces in [46]. In brief, gap waveguide technology can
be explained as a new wave-guiding mechanism that uses a periodic electromagnetic
band gap (EBG) geometry around a guiding structure, such as strip, ridge or groove
to control the power flow direction. This new guiding structure is based on soft/hard
boundary conditions and the cutoff of electromagnetic waves on a parallel PEC/PMC
waveguide configuration. The soft surface has the ability to stop the propagation of
any polarization wave along the surface. For example, corrugations act as a soft sur-
face along its surface. On the other hand, the hard surface support the propagation
of waves along its surface.

3.1 Gap Waveguide Concept

The basic principle operation of gap waveguide is the cut-off of a PEC/PMC parallel-
plate waveguide configuration, to control the propagation of waves in desired direc-
tions between the two plates. This idea is shown in Fig.3.1. For the air gap between
the two plates smaller than A/4 no wave can propagate between the plates, due to
the boundary conditions at the plates. By introducing a metal strip in the PMC
surface, a TEM mode will be able to propagate along the strip.

In practice, the PMC condition is artificially realized by using Artificial Magnetic
Conductors (AMCs) to emulate the high impedance boundary condition of a PMC
surface [47]. In gap waveguides, the AMC is realized in the form of periodic textured
structures (e.g. metal pins or mushroom structures) in combination with a smooth
metal plate, with an air gap between them. When the air gap is smaller than quarter
wavelength there is a cut-off of all mode propagation within the gap due to the high
surface impedance created by periodic texture [48]. This can be used to control the
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Figure 3.1: Basic principle operation of gap waveguide. (a) PEC — PMC Parallel-
plate electromagnetic wave Cutoff. (b) TEM local waves propagation.

N

propagation direction without leaking away in other directions.

Based on the guiding-line, propagation characteristics and the band gap structure,
the gap waveguide can be made in different versions. Ridge gap waveguide [49], groove
gap waveguide [50], microstrip gap waveguide [51], and inverted microstrip-ridge gap
waveguide [52] are the four different varieties of gap waveguide technology. Fig.3.2
shows the different gap waveguide configurations and the fundamental modes.

3.2 Gap Waveguide Benefits and Early Studies

The gap waveguide has interesting characteristics such as low loss, flexible planar
manufacturing, and cost-effectiveness, especially at millimeter-wave frequencies [53].
The advantage compared to microstrip transmission line, CPW and SIW is that the
gap waveguide has a planar profile with low loss, since the wave propagates in the
air. This new technology has almost no dielectric loss (especially in ridge and groove
gap waveguide configurations), and it is mechanically more flexible to fabricate and
assemble than hollow waveguide structures. Electrical contact between the building
blocks is not needed in these guiding structures. This offers new opportunities for
making cost-effective antennas and in particular corporate-feed networks [54-56].
Therefore, gap waveguides can be mass-produced by the usage of some low cost
fabrication techniques such as injection molding, die pressing, plastic hot embossing,
or die-sink EDM.

The AMC of the gap waveguide technology can be used to package active circuits
[57,58] and low-cost bandpass filters [59,60], which thereby could be integrated with
the feed network. Microstrip ans CPW transmission lines are open structures and
the final product need to be protected form interference and physical damages. The
traditional packaging method is based on using metal shielding boxes. One of the
main drawbacks of this method is the appearance of cavity resonance modes when
two of the dimensions of the box are larger than half wavelength. Tt is possible to
suppress these resonances by adding absorber material, which introduces additional
losses. The metamaterial /metasurface background of gap waveguide technology is
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Figure 3.2: Different gap waveguide geometries and desired modes of propagation.
(a) Ridge gap waveguide. (b) Groove gap waveguide. (¢) Microstrip gap waveguide.
(d) Inverted-microstrip gap waveguide. [61]

described in more detail in [53].

The gap waveguide technology has a stronger potential and advantages at Tera-
hertz (THz) frequency range. The book chapter in [61] gives a handbook description
of all works on gap waveguides till now with 107 references including related works.

3.3 Gap waveguide Array Antenna

As mentioned before, the periodic texture (e.g. pins or mushrooms) creates a PEC/PMC
stopband for the parallel-plate modes and suppresses undesired modes and leakage. It
acts as a high impedance surface when the air gap is smaller than A/4. The dispersion
diagram of the unit cell of the periodic structure is the most important parameter
in designing the stopband, which is a function of the geometrical parameters of the
structure [48].

The dispersion diagram of a pin unit cell used to create the stopband for the
parallel plate modes is shown in Fig.3.3. The dispersion diagram is calculated using
the Eigenmode solver of CST Microwave Studio for the pin unit cell with periodic
boundary condition. The pin dimensions have been suitably chosen to have the
V-band well inside the stopband. Fig.3.3 shows that the pin unit cell creates a
parallel plate mode stopband over 40-105 GHz frequency band. There is no need for
electrical contact between the textured surface and the upper metal plate, due to
the electromagnetic bandgap properties of the pin surface. By introducing a ridge
between the pin texture, a quasi-TEM mode propagates in the air gap between the
ridge and the upper plate. Fig. 3.4 shows that there is a single propagating mode over
the frequency band 40-90 GHz, which covers the whole unlicensed 60 GHz frequency
band.
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Figure 3.3: Dispersion diagram for the infinite periodic pin unit cell (a = 0.4 mm,
df = 1.3 mm, p=0.8 mm, and g = 0.05 mm).
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Figure 3.4: Dispersion diagram for the infinite periodic unit cell including a ridge
embedded within a pin texture (@ = 0.4 mm, df = 1.3 mm, p = 0.8 mm, g =
0.05 mm, g, = 0.25 mm, w, = 1 mm, and d,, = 1.1 mm).

We have designed several low-profile array antennas with high efficiency and wide
impedance bandwidth based on gap waveguide technology to demonstrate the advan-
tages of this new guiding structure with flexible mechanical assembly and low loss.
The main challenge of gap waveguide components is the realization of the textured
structure (pin surface) with a cost-effective method. Due to the relatively complex
pattern and physical dimensions of the textured structure, the fabrication of the prod-
uct presents a challenging task, especially at millimeter wave frequencies. In our first
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Figure 3.5: Photograph of a 8 x 8 gap waveguide slot array antenna fabricated by
die-sink EDM.

Figure 3.6: Graphite electrodes used to form the distribution network. (a) Electrode
with ridges in transverse direction. (b) Electrode with ridges in longitudinal direction.

attempt, [Paper C|, a 8 x 8 slot array antenna with ridge gap waveguide corporate
distribution network in the 60 GHz band is fabricated with CNC machining. CNC
machining technique is very time-consuming and not effective to manufacture gap
waveguide structures. Therefore, we searched for more effective alternative methods.
In [Paper E| a fast modern planar 3-D method called die-sink Electric Discharge
Machining (EDM) is used for the first time to manufacture a large planar high gain
antenna at millimeter wave.

A photograph of a multilayer corporate-fed 8 x 8 cavity-backed slot array antenna
for the 60-GHz band applications is shown in Fig. 3.5. The antenna’s structure is
similar to the presented array in [Paper E| and here we present the EDM fabrication
method in more detail. The antenna is designed using the stopband property of
the pin unit cell presented in Fig.3.3. The antenna consists of three unconnected
metal layers, i.e. the radiating layer, the cavity layer, and the distribution layer.
All three layers are separated by a small gap. A multilayer configuration is used in
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Figure 3.7: Graphite electrodes used to form the Cavity layer. (a) Electrode with
ridges in transverse direction. (b) Electrode with ridges in longitudinal direction.

Figure 3.8: Graphite electrode used to form radiating layer.

the design procedure, due to the limited space for the corporate-fed excitation of the
radiating elements. The designed antenna has a simple mechanical assembly without
any requirement of electrical contact between the building blocks.

A fully corporate distribution network is designed in ridge gap waveguide in the
lower layer. The antenna input is a standard WR-15 rectangular waveguide placed at
its back side. A wideband and compact hybrid transition-splitter is designed to match
the rectangular input waveguide to the ridge gap waveguide. The radiating parts
consists of 2 x 2 cavity-backed slot subarrays in two separated layers, i.e. the cavity
and slot layers. The cavities are formed by pins on the middle layer. The prototype is
manufactured by die-sink EDM technique. In this manufacturing process, the desired
pattern is formed by rapidly recurring electrical discharges between the workpiece and
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an electrode, separated by a dielectric liquid. The electrode contains the negative of
the desired pattern and the high energy sparks makes this pattern form a footprint
in the surface of the workpiece.

We used several electrodes with different details of the resulting texture to man-
ufacture each layer. Fig.3.6 shows the two graphite electrodes used to form the
distribution network of the antenna. In order to form the pin texture, first an elec-
trode containing small transversal ridges burns the metal surface and after that the
procedure completes with another electrode with ridges in longitudinal direction.
The other graphite electrodes used to form cavity and radiation layers are shown in
Fig.3.7 and Fig.3.8, respectively.
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Chapter

Contributions and Future Work

The gap waveguide technology shows interesting properties as a new waveguide struc-
ture, and may be suitable to fill the existing big gap between the planar printed
transmission lines and the non-planar hollow waveguides in terms of loss and fabri-
cation flexibility at high frequency bands. This thesis presents a collection of recent
development of the gap waveguide passive components, such as bandpass filters and
planar array antennas. In the first part of the thesis, the reader is provided with
an introduction and the background needed to understand the work described in the
five appended papers. This section summarizes the contributions by the author.

Paper A: Simple Formula for Aperture Efficiency Reduction Due to Grat-
ing Lobes in Planar Phased Arrays

In this paper, we make a generic study of grating lobes in a large slot array. A simple
formula called “grating efficiency” is presented for aperture efficiency reduction due
to the power lost in the grating lobes, see Chapter 10 in [62]. Array antennas with el-
ement spacing greater than one wavelength will produce grating lobes. Grating lobes
are not a big problem in most new millimeter wave applications, except for the fact
that they reduce the aperture efficiency, and thereby the directivity. We numerically
verify this simple formula for a uniformly excited 32 x 32 element array of slots in an
infinite ground plane.

Paper B: A V-band Inverted Microstrip Gap Waveguide End-coupled
Bandpass Filter

The main goal of this paper is to show that low cost end-coupled bandpass filters
are feasible at millimeter frequencies by using inverted microstrip gap waveguide
technology. The inverted microstrip gap waveguide is advantageous for millimeter
wave applications because of its low loss, self-packaging characteristics, and cost-
effectiveness. Since the wave propagates mainly in the air and surface waves do not
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exist, the width of the lines in gap waveguides become wider than typical microstrip
and SIW. A fourth order Chebyshev-type end-coupled BPF is designed to provide
a 2 GHz bandwidth at 60 GHz center frequency. The fabricated prototype embed-
ded within a 10 cm inverted microstrip gap waveguide, containing two back-to-back
transitions to rectangular waveguide presented in [52]. Measurement results con-
firmed that the overall loss in inverted microstrip gap waveguide is lower than in
conventional microstrip and SIW filters. Therefore, inverted microstrip gap waveg-
uide has advantages of both easy PCB fabrication, and packaging characteristics of
gap technologies. The fabricated prototype exhibits an insertion loss of 3 dB in the
passband. However, the insertion loss of the filter itself is better than 1.6 dB. The
measured results show that insertion loss of the inverted microstrip gap waveguide
filter is around half of a corresponding SIW filter in [18|. The designed filter has a
planar structure and acceptable loss, thereby becoming suitable for integration with
active and passive components.

Paper C: Corporate-Fed Planar 60 GHz Slot Array Made of Three Un-
connected Metal Layers Using AMC pin surface for the Gap Waveguide

In this paper, we propose a high efficiency and low profile corporate-fed 8 x 8-slot ar-
ray antenna in the 60 GHz band. The antenna is built using three unconnected metal
layers based on Artificial Magnetic Conductor (AMC) in gap waveguide technology.
A 2 x 2 cavity-backed slot subarray is designed in a groove gap waveguide cavity.
The cavity is fed through a coupling slot from a ridge gap waveguide corporate-feed
network in the lower layer. The antenna shows better radiation pattern and higher
aperture efficiency than the presented antenna in [56]. The fabricated antenna shows
a relative bandwidth of 14% with input reflection coefficient better than -10 dB and
an overall aperture efficiency larger than 65% (i.e., -2 dB) with about 25 dBi realized
gain between 56.2 and 65.0 GHz. This paper presents for the first time such 8 x 8-slot
planar array based on a fully corporate distribution network in ridge gap waveguide
technology.

Paper D: V-band High Efficiency Corporate-Fed 8 x 8 Slot Array Antenna
with ETSI Class II Radiation Pattern Based on Gap Technology

This paper is a follow-up work of the previous paper. The purpose is to improve
the radiation pattern of the antenna presented in [Paper C|. The co-polar radiation
pattern and sidelobe levels of the antenna are improved by using a simple slot-tilting
method to fulfill the radiation pattern requirement of the ETSI 302 standard for
fixed radio links. Thereby, the sidelobes in the principle planes of the array are not
appearing in the E- and H-planes, assumed to correspond to horizontal and vertical
planes. The fabricated prototype has a relative bandwidth of 12% with input reflec-
tion coefficient better than -10 dB. The E- and H-planes radiation patterns satisfy
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the ETSI class II co-polar sidelobe envelope over 57-65 GHz frequency band.

Paper E: Wideband and High-Gain Corporate-Fed Gap Waveguide Slot
Array Antenna with ETSI Class IT Radiation Pattern in V-band

In this paper, we present a low profile multilayer corporate-fed 16 x 16 slot array an-
tenna with high gain, high efficiency and wide impedance bandwidth for the 60 GHz
band. The proposed antenna consists of three unconnected metal layers similar to
presented array antenna in [Paper C]. A new wide bandwidth air-filled cavity-backed
2 x 2 slot subarray is designed to cover the whole unlicensed 60 GHz frequency band.
A prototype consisting of 16 x 16 slots is manufactured by a fast modern planar 3-D
machining method, i.e. die-sink Electric Discharge Machining (EDM). This is used
for the first time to manufacture a large planar high gain antenna at millimeter-wave,
as far as we know. The fabricated prototype has a relative impedance bandwidth of
17.6% with input reflection coefficient better than -10 dB. The E- and H-planes radi-
ation patterns satisfy the ETSI class IT co-polar sidelobe envelope, and the measured
cross-polar level is more than -30 dB below the copolar level over the 56-75 GHz
frequency band. The measured total aperture efficiency is better than 60% over the
same band.

4.1 Future Work

Our main research goal is to develop a complete RF front-end demonstrator based
on gap waveguide technology and find a flexible and low-cost fabrication with low-
loss solution. Therefore, our future research direction and main steps to address the
remain issues are as follow:

e In gap waveguide we do not need any electrical contact between the building blocks,
thanks to the stopband created by the periodic texture. However, the “aspect ratio”
of the pins (the ratio between the width and height of pins), is very high and there-
fore, the final prototype is not suitable to be mass-produced by the usage of some low
cost fabrication techniques such as injection molding. The current aspect ratio of the
pin texture of the designed array antennas in appended papers is around 1:3, and an
aspect ration smaller than 1 is demanding. Therefore, we need to find a solution to
decrease the pins aspect ratio. On solution is presented in [63| by using half-height
pins.

e Gap Waveguide Array Antenna for E-band Applications. The E-band fre-
quency range (71-76/81-86 GHz) is one of the interesting millimeter wave band due
to low atmospheric attenuation, for long-range high-capacity wireless communication
systems. To cover the whole frequency range from 71-86 GHz, we need a wideband
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Figure 4.1: (a) Configuration of the corporate-fed horn array antenna with feed-
network on the back side of the radiating layer. (b) The proposed horn unit cell.

antenna with a relative impedance bandwidth of more than 19%, which is challeng-
ing with common slot array antennas. We have improved the performance of horn
unit cell presented in [55], by introducing a septum in the E-plane of the horn. The
proposed antenna has a relative bandwidth of 24% with input reflection coefficient
better than -10 dB and simulated total antenna efficiency better than 85% over the
69-88 GHz frequency band (Fig.4.1). We are going to manufacture and measure a
prototype consisting of 4 x 4 element horn array antenna with different fabrication
methods, such as Direct Metal Laser Sintering (DMLS) 3-D printing and die-sink
EDM techniques.

e GAP MEMS Array Antenna. The frequency range above 100 GHz has got

a lot of attention over the last few years. The 145-GHz band is another interesting
frequency band for point-to-point radio link systems. The gap waveguide technology
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Figure 4.2: The proposed 8 x 8 Gap MEMS slot array antenna with ridge gap
waveguide feed network.

has more potential and advantages at these frequency ranges. New fabrication tech-
niques need to be used for effective manufacturing above 100 GHz. Micro-Electro-
Mechanical-Systems (MEMS) silicon etching and micromachining could be a good
solution to manufacture gap waveguide components. We have started the design
of a planar array antenna to be manufactured by MEMS technology at 145 GHz.
The plan is to realize GAP waveguide MEMS planar array antenna above 100 GHz.
Fig.4.2 shows the proposed slot array antenna for the 145 GHz band.

e Planar array antenna with integrated diplexer. Diplexers are one of the im-
portant and integral part of many communication systems. Easy integration is one of
the advantages of our technology, since gap waveguide has a open structure. We have
done the initial design and full-wave simulations, in order to realize the integration of
diplexer with feed-network of a array antenna. The proposed technique allows for the
design of a high performance module that integrates the diplexer with the antenna
efficiently with similar size to the antenna. The designed antenna is shown in Fig.4.3.
We have selected 28 GHz frequency band to have less strict fabrication tolerances.

e Active component integration and planar steerable beam array antenna.
The final piece of the puzzle of the complete gap waveguide RF front-end is inte-
grating active electronic devices with the feed-network of array antenna. There is
ongoing research on new contact-less transitions and MMIC integration with differ-
ent gap waveguide variants. We have started the process of the integration of MMICs
with a planar array antenna. The goal is to design a steerable beam array antenna
with self-alignment capability. Fig.4.4 shows the sketch of this idea.
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Figure 4.3: The designed 16 x 16 slot array antenna with integrated diplexer within
the feed network. (a) Radiating layer. (b) Cavity layer. (c) Feed-network with
integrated diplexer.
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Figure 4.4: Sketch of the proposed steerable planar array antenna with integrated
RF electronics under investigation.
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