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a b s t r a c t

The recently developed elasto-viscoplastic Creep-SCLAY1S model has been used in conjunction with
PLAXIS 2D to investigate the effectiveness of vibro-replacement in a creep-prone clay. The Creep-
SCLAY1S model accounts for anisotropy, bonding, and destructuration, and uses the concept of a con-
stant rate of viscoplastic multiplier to calculate creep strain rate. A comparison of settlement improve-
ment factors with and without creep indicates that ‘total’ settlement improvement factors (primary plus
creep) are lower than their ‘primary’ counterparts (primary settlement only). The lowest settlement
improvement factors arise for analyses incorporating the effect of bonding and destructuration. Exam-
ination of the variations of vertical stress with time and depth has indicated that vertical stress is
transferred from the soil to the column as the soil creeps. This results in additional column yielding. In
addition, the radial and hoop stresses in the soil are lower for the ‘creep’ case. The reduced radial stresses
lead to additional column bulging and hence more settlement, whereas the hoop stress reductions
appear to be a secondary effect, caused by additional plastic deformation for the ‘creep’ case.
� 2016 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Vibro-replacement has traditionally been considered to be an
effective means of improving the bearing capacity and settlement
characteristics of mixed fills and weak soils. Vibro-replacement
solutions can be more cost-effective, quicker to implement and
less CO2-intensive than piling alternatives in certain circumstances.
The technique is becoming increasingly popular for the treatment
of soft fine-grained deposits; some of these soils can comprise a
significant organic content, in which case creep settlements can
contribute a significant proportion of the total settlement.

The settlement reduction potential of vibro stone columns is
typically quantified using a settlement improvement factor (n):

n ¼ duntreated/dtreated (1)

where duntreated and dtreated are the final settlements of untreated
(i.e. no columns) and treated ground, respectively.
McCabe).
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
by-nc-nd/4.0/).
The majority of analytical settlement design methods pertain to
primary settlement only (e.g. Priebe, 1995; Castro and Sagaseta,
2009; Pulko et al., 2011), and so the same n value tends to be
applied to both primary and creep settlements in routine designs.
In addition, the majority of n values measured in the field (McCabe
et al., 2009) tend to be ‘lumped’, with no distinction between initial
compression, primary consolidation settlement, and creep. The
length of time required to measure ‘pure’ long-term creep settle-
ments in soft low permeability soils serves as the main impediment
in the latter case.

While themajority of laboratory-scale testing carried out to date
has been informative (e.g. Black et al., 2011), it tends to be limited
by scale effects and a difficulty in replicating realistic boundary
conditions. Additionally, Castro et al. (2013) have noted that the
reconstituted soils used in laboratory testing are not fully repre-
sentative of natural clay behaviour, while Mesri (1973) has pointed
out that the rate of creep is lower in reconstituted soils. There are
also difficulties associated with extrapolating long-term perfor-
mance in the field from short-term laboratory tests (Mitchell and
Kelly, 2013).

Moorhead (2013) carried out a series of laboratory tests in
one- (1D) and three-dimensional (3D) loading chambers, and is,
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:bryan.mccabe@nuigalway.ie
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jrmge.2016.05.004&domain=pdf
www.sciencedirect.com/science/journal/16747755
http://www.rockgeotech.org
http://dx.doi.org/10.1016/j.jrmge.2016.05.004
http://dx.doi.org/10.1016/j.jrmge.2016.05.004
http://dx.doi.org/10.1016/j.jrmge.2016.05.004
http://creativecommons.org/licenses/by-nc-nd/4.0/


B.G. Sexton et al. / Journal of Rock Mechanics and Geotechnical Engineering 8 (2016) 672e688 673
to the authors’ knowledge, the only researcher to date to inves-
tigate the creep settlement reduction potential of vibro stone
columns in the laboratory. The tests were carried out on recon-
stituted samples of kaolin and Belfast sleech and examined stone
column behaviour for both a rigid raft and an isolated loading
scenario. Although the laboratory data showed a significant
amount of scatter, it was tentatively concluded that columns
effectively reduced primary settlement at low bearing pressures
but were ineffective at high pressures, and had only a minor
influence on reducing initial compression and creep settlements.
The findings need to be treated with caution because the initial
conditions in the untreated and treated soil beds were different
in some cases.

In this paper, a series of axisymmetric analyses carried out using
the PLAXIS 2D finite element (FE) program (Brinkgreve et al., 2011)
is reported with a view to assess the settlement reduction potential
of vibro-replacement in a structured anisotropic creep-prone clay.
The Bothkennar soft clay test site in Scotland, comprising an
overconsolidated crust overlying two layers of lightly over-
consolidated Carse clay, has been used as a representative soil
profile for the numerical analyses.

In previous studies, Sexton and McCabe (2013, 2015) carried
out some preliminary numerical work using a simplified single-
layer version of the multi-layer Bothkennar profile to gauge the
influence of creep on settlement improvement factors. Subse-
quently, Sexton and McCabe (2016) extended this work to a multi-
layer scenario. The commercially available soft soil creep (SSC)
model was used to represent the host clay behaviour in these
studies. The latter study in particular provided valuable insight
into the likely behaviour of stone columns in creep-prone soils
and formed an important frame of reference for one using a
more advanced constitutive model, such as the Creep-SCLAY1S
model, which is used to model the soft clay in this paper. The
Creep-SCLAY1S model (Sivasithamparam et al., 2013, 2015) in-
corporates anisotropy, bonding, and destructuration, each of
which can be ‘switched off’ individually or in various combina-
tions by adjusting the input parameters. The model is not yet
commercially available, and therefore a user-defined model
implementation into the PLAXIS FE code was used. The hardening
soil (HS) model (Schanz et al., 1999) is used to represent the
granular column material. For simplicity, any installation effects
have been ignored.
2. Modelling creep using advanced constitutive models

2.1. Model classification

Constitutive models for describing the time-dependent behav-
iour of soft soils can be classified as either empirical models,
rheological models, or general stressestrainetime models, each of
which have been reviewed in detail by Liingaard et al. (2004).
Empirical models are generally obtained by fitting mathematical/
constitutive expressions to experimental data whereas rheological
models tend to be used to gain a conceptual understanding of time
effects in soil.

General stressestrainetime models are capable of describing
the rate-dependent behaviour of soils under a variety of different
loading conditions. These models tend to be formulated incre-
mentally and so are suitable for implementation within the FE
method. The majority of elasto-viscoplastic general stressestraine
time models are based on overstress theory (e.g. Perzyna, 1963,
1966), either ‘conventional overstress’ or ‘extended overstress’.
‘Extended overstress models’ are preferable to ‘conventional over-
stress models’ (Yin et al., 2010).
2.2. 3D elasto-viscoplastic models

2.2.1. Isotropic models
The commercially available isotropic SSC model (Vermeer et al.,

1998; Vermeer and Neher, 1999) can be classified as either an
‘extended overstress model’ or a ‘creep model’, as defined by Yin et al.
(2010). ‘Creep models’ use the creep coefficient, Ca, or its isotropic
equivalent, m*, as the soil viscosity input parameter. The isotropic
elasto-viscoplastic model developed by Yin et al. (2002) is also
denoted a ‘creep model’.

2.2.2. Anisotropic models
Anisotropic elasto-viscoplastic soil models have been developed

as extensions to the EVP and SSC models, e.g. the anisotropic EVP
model (Zhou et al., 2005) and the anisotropic creep model (ACM,
Leoni et al., 2008), respectively. These ‘creep models’ assume that
the viscoplastic volumetric strain rate is independent of the stress
state, and consequently they predict unrealistic strain-softening
behaviour for undrained triaxial tests on isotropically consoli-
dated samples (Yin et al., 2010; Sivasithamparam et al., 2013, 2015).
To overcome this deficiency, Yin et al. (2010) proposed a new
anisotropic elasto-viscoplastic soil model in which the volumetric
strain rate is dependent on the stress ratio, h ¼ q/p0 (where p0 and q
denote the mean effective stress and deviatoric stress,
respectively).

2.2.3. Anisotropic models with bonding and destructuration
The Creep-SCLAY1S model (Sivasithamparam et al., 2015) is an

anisotropic soil model that also takes account of bonding and
destructuration. ‘Destructuration’ refers to the progressive break-
down/degradation of bonds during straining (Leroueil et al., 1979)
and is accommodated using the concept of an intrinsic yield surface
proposed by Gens and Nova (1993). Other models which fit in this
category are the AniCreep model developed by Yin et al. (2011) as
an extension to the model developed by Yin et al. (2010), the EVP-
SCLAY1Smodel (Yin and Karstunen, 2008) which is categorised as a
‘conventional overstress model’, and the non-associated structured
anisotropic creep (n-SAC) model developed by Grimstad et al.
(2010).

The key feature of the n-SAC model is that the time resistance
concept is introduced to the viscoplastic multiplier rather than to
the viscoplastic volumetric strain. Models which assume constant
contours of volumetric creep strain (e.g. SSC or ACM) yield unre-
alistic creep strains for almost all stress paths (Olsson, 2013). In
keeping with the n-SAC model, the Creep-SCLAY1S model also uses
the concept of a constant rate of viscoplastic multiplier to calculate
creep strain rate, but the commonly used semi-logarithmic creep
coefficient, Ca, is used as the viscosity input parameter, making the
model attractive from a practical modelling perspective.

3. Formulation of the Creep-SCLAY1S model

The formulation of the Creep-SCLAY1S model (in triaxial stress
space) was described by Sivasithamparam et al. (2013) and it was
extended to 3D for FE analyses by Sivasithamparam et al. (2015). In
the version used in this paper, destructuration has also been
incorporated. The anisotropy and destructuration components of
the model were formulated using the constitutive equations from
the rate independent S-CLAY1 (Wheeler, 1997; Wheeler et al.,
2003) and S-CLAY1S (Koskinen et al., 2002; Karstunen et al.,
2005) models, which accounted for anisotropy and both anisot-
ropy and destructuration, respectively.

For simplicity, the Creep-SCLAY1S model is briefly explained
here in triaxial stress space. For the extension to 3D, readers can
refer to Sivasithamparam et al. (2015). The total strain rate (_ε) is
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composed of an elastic component ( _εe) and a viscoplastic (creep)
component (_εc), i.e.

_ε ¼ _εe þ _εc (2)

The rotational hardening law, describing the changing inclina-
tion of the yield surface due to creep strains, takes the form shown
as follows:

da ¼ u

��
3h
4

� a

��
dεcv
�þ ud

�h
3
� a

�		dεcd		



(3)

where u and ud are two additional soil constants; dεcv and dεcd are
the increments of creep volumetric and deviatoric strains, respec-
tively; and hi denote Macaulay brackets. The constant ud controls
the relative effectiveness of the deviatoric and volumetric creep
strains in determining the overall target value for a, while u con-
trols the absolute rate at which a approaches the target value,
where a is the angle of inclination of the yield surface (Fig. 1).

The destructuration law describing the breakdown of bonding
caused by creep strains takes the following form:

dc ¼ �xc
�		dεcv		þ xd

		dεcd		� (4)

where x and xd are two additional soil constants controlling the
absolute rate of destructuration and the relative effectiveness of
volumetric and deviatoric creep strains, respectively, in destroying
the bonding.

The initial amount of bonding (c0) relates the size of the natural
yield surface (p0p0) to the size of the intrinsic yield surface (p0p0i),
i.e.

p0p0 ¼ ð1þ c0Þp0p0i (5)

The yield surface (normal consolidation surface, NCS) evolves
with the creep volumetric strains according to Eq. (6), with the
equivalent mean stress measure (p0eq, Eq. (7)) defining the inter-
section of the current stress surface (CSS) with the p0 axis (Fig.1), i.e.
Fig. 1. Yield surfaces of the Creep-SCLAY1S model in triaxial stress space.
p0p ¼ p0p0exp
�

ε
c
v

l* � k*

�
(6)

p0eq ¼ p0 � ðq� ap0Þ2
M2ðqÞ � a2

�
p0

(7)

where M(q) is the stress ratio at critical state, which is a function of
Lode angle (q) to incorporate a smooth failure surface (see
Sivasithamparam et al., 2015); and l* and k* are the modified
compression and swelling indices, respectively, and hence related
to the 1D compression and swelling indices (Cc and Cs).

In contrast to the SSC model and the ACM, which calculate the
volumetric creep strain rate according to Eq. (8), the Creep-
SCLAY1S model uses the rate of viscoplastic multiplier ( _L) (Eq. (9)):

_εcv ¼ m*

s

 
p0eq
p0p

!l* � k*

m*
(8)

_L ¼ m*

s

 
p0eq
p0p

!l* � k*

m* M2ðqÞ � a2Knc
0

M2ðqÞ � h2Knc
0

(9)

where the additional term in Eq. (9) was added to ensure that under
oedometric conditions, the resulting volumetric creep strain cor-
responds to Eq. (8); aKnc

0
denotes the inclination of the yield ellipse

in the normally consolidated condition; and s is a reference time,
which is usually 1 day if m* is calculated using an incremental load
oedometer test with a loading duration of 1 day.

The determination of the additional model parameters required
for the Creep-SCLAY1S model is straight-forward. The anisotropy
parameters, a0 (initial yield surface inclination) and ud can be
calculated from the critical state friction angle (f0) and the coeffi-
cient of lateral earth pressure in the normally consolidated condi-
tion (Knc

0 ). The value of u should be calculated/optimised by
simulating undrained triaxial extension tests, or in their absence,
simply estimated based on compressibility (Zentar et al., 2002).

The initial amount of bonding, c0, can be calculated based on the
sensitivity, St (see Eq. (10)), and the other destructuration param-
eters (xd and x) can be calibrated using the optimisation procedure
described in Koskinen et al. (2002). The intrinsic compression and
creep indices, l*i and m*i (measured from oedometer tests on
reconstituted samples), should be used as opposed to l* and m*

(measured from oedometer tests on natural samples) when
modelling destructuration using the FE method.

c0 ¼ St � 1 (10)

4. Soil profile

4.1. Soil parameters

The Bothkennar soft clay test site in Scotland was purchased by
the UK Science and Engineering Research Council (SERC) in 1987 as
a national soft clay test bed. The silty clay at Bothkennar is highly
structured with an organic content of 3e5%, depending on the
‘facies’ type (bedded, laminated, mottled and weathered) (e.g. Paul
et al., 1992), and a bulk unit weight of g ¼ 16.5 kN/m3 (e.g. Nash
et al., 1992a). The multi-layer soil profile (Table 1) adopted in this
study is based on the HS model soil profile used by Killeen and
McCabe (2014). The authors obtained the parameters from ICE
(1992) and validated their profile against a field load test on an



Table 1
Bothkennar material parameters.

Type Depth (m) g (kN/m3) OCR POP (kPa) K0 e0 l* li* k* m* mi* c0 (kPa) j (�) n kx (m/d) ky (m/d)

Crust 0e1.5 18 e 15 1.5 1 0.015 0.006 0.002 0.0006 0.0002 3 0 0.2 1 � 10�4 6.9 � 10�5

Upper Carse clay 1.5e2.5 16.5 e 15 1 1.2 0.049 0.018 0.006 0.002 0.0007 1 0 0.2 1 � 10�4 6.9 � 10�5

Lower Carse clay 2.5e14.5 16.5 1.5 e 0.75 2 0.162 0.06 0.023 0.0065 0.0024 1 0 0.2 1 � 10�4 6.9 � 10�5

Note: OCR ¼ s0p=s00; POP ¼ s0p � s00.
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unreinforced rigid pad footing described by Jardine et al. (1995).
However, creep was not considered in their study and so the
additional creep parameters in Table 1 were calculated based on a
Ca/Cc (¼ m*/l*) ratio of 0.04 (e.g. Nash et al., 1992b). The additional
anisotropy and destructuration parameters for Bothkennar clay
quoted in Table 2 have previously been calibrated by Karstunen
et al. (2013).

The initial stress state for the FEmodel has been generated using
a pre-overburden pressure (POP) of 15 kPa for the upper layers and
an overconsolidation ratio (OCR) of 1.5 for the lower Carse clay, with
s00 and s0p denoting the initial effective stress and 1D pre-
consolidation stress, respectively. The in situ at-rest earth-pressure
coefficients (K0) are based on a series of spade cell, self-boring
pressuremeter (SBPM), and Marchetti dilatometer tests carried
out by Nash et al. (1992a).

The slopes of the critical state lines (CSLs) in compression (Mc)
and extension (Me) have been selected based on a series of triaxial
stress paths tests on reconstituted clay carried out by Allman and
Atkinson (1992). The Mc corresponds to a critical state friction
angle of 34�; this high friction angle is attributable to both a high
organic content and an abundance of silt-sized grains. Nominal
cohesion values (c0 ¼ 1 kPa) have been used for numerical stability
and a dilatancy angle (j) of 0� was adopted as representative of a
lightly overconsolidated clay. The horizontal and vertical perme-
abilities (kx and ky) were measured by Leroueil et al. (1992) using
both in situ (e.g. pushed-in-place piezometers, self-boring per-
meameters, BAT system) and laboratory (e.g. oedometer cells,
triaxial cells, radial flow cells) methods.
Table 2
Additional material parameters.

Mc Me a0 ud u c0 xd x

1.375 �1 0.5267 0.9281 50 8 0.2 9

Fig. 2. Typical column grids encountered in pract
The adopted soil parameters derived predominantly from the
results of oedometer tests have been validated by using the PLAXIS
‘Soil Test’ facility to simulate the undrained triaxial compression
tests reported by Atkinson et al. (1992) (see Sexton, 2014).

4.2. Scenarios

Three separate scenarios have been considered for the Creep-
SCLAY1S model analyses described in Section 6:

(1) Anisotropy and destructuration have been ‘switched off’ by
setting the relevant parameters to zero and by setting
Me ¼ Mc. For these ‘isotropic’ analyses, the rotational hard-
ening law (Eq. (2)) is ‘switched off’ and K0 will be over-
predicted, analogous to themodified Cam-Clay (MCC)model.

(2) Anisotropy has been ‘switched on’ while destructuration is
‘switched off’.

(3) Both the anisotropy and bonding/destructuration parame-
ters have been ‘switched on’. The intrinsic compression and
creep indices quoted in Table 1 have been used for the ana-
lyses incorporating destructuration.

ISO is used hereafter to denote the isotropic response of the
Creep-SCLAY1S model with anisotropy and destructuration
‘switched off’, ANIS is used to denote the anisotropic response with
destructuration ‘switched off’, and A&D denotes the response with
both anisotropy and bonding/destructuration ‘switched on’.

5. Modelling stone columns using the finite element method

5.1. Previous numerical studies

The majority of numerical studies investigating stone column
behaviour have used 2D analysis techniques, e.g. plane strain (Gäb
ice. (a) Triangular; (b) Square; (c) Hexagonal.



Fig. 3. Bothkennar soil profile (not to scale).

Table 3
Properties of granular column material.

g (kN/m3) f0 (�) j (�) c0 (kPa) Erefoed
(MPa)

Eref50
(MPa)

Erefur
(MPa)

pref

(kPa)
m kx

(m/d)
ky
(m/d)

19 45 15 1 70 70 210 100 0.3 1.7 1.7
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et al., 2008) or axisymmetry (Ambily and Gandhi, 2007); 3D
modelling has been used by Weber et al. (2008), Kamrat-
Pietraszewska and Karstunen (2009), and Killeen and McCabe
(2014). In the majority of cases, either the Mohr Coulomb (MC) or
HS models have been used to represent the behaviour of both the
granular column material and the treated soil (e.g. Ellouze and
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Fig. 4. Settlement vs. log(time
Bouassida, 2009; Killeen and McCabe, 2014). Kamrat-
Pietraszewska and Karstunen (2009) used the MCC, S-CLAY1, and
S-CLAY1S models for the soil and the HS model for the column.
Kamrat-Pietraszewska (2011) and Sexton and McCabe (2013) were
among the first to use amodel incorporating viscous effects with an
application to stone columns.

The majority of numerical studies investigating stone column
behaviour have declined to use interface elements at the boundary
between the granular column material and the in situ soil (e.g.
Ambily and Gandhi, 2007; Domingues et al., 2007a, b; Gäb et al.,
2008), consistent with field observations that columns are tightly
interlocked with the surrounding soil due to the lateral displace-
ment caused by re-lowering the poker during column installation
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(e.g. McCabe et al., 2009). This assumption of full contact at the
columnesoil interface is adopted in this study.

5.2. Axisymmetric unit cell concept

The axisymmetric unit cell concept is used in this paper,
representative of the behaviour of a large grid of regularly-spaced
columns subjected to a uniform load, as would be used to sup-
port an embankment or a large floor slab, for example. The extent of
treatment is usually measured using the areaereplacement ratio:

Ac

A
¼ 1

g

�
Dc

s

�2
(11)

where Ac is the cross-sectional area of a single stone column; A is
the cross-sectional area of its ‘unit cell’; s and Dc denote the column
spacing and column diameter, respectively; and g is a constant
depending on the column arrangement (Fig. 2). The boundary
conditions applied to the unit cell are shown in Fig. 3.
5.3. Stone column material parameters

The hyperbolic elastoplastic HS model has been used to model
the column material. The parameters have also been derived from
Killeen and McCabe (2014) (see Table 3). The model has two yield
surfaces: a shear hardening yield surface to incorporate shear
hardening and a cap yield surface for compression hardening. The
sizes of these yield surfaces are governed by the secant (E50) and
oedometric (Eoed) moduli, respectively; the unloadereload
modulus, Eur, is used to control the elastic unloadereload behav-
iour. The model accounts for the stress dependency of soil stiffness
using the following power law:

E ¼ Eref
�

p
pref

�m

(12)

where m is the power dictating the stress dependency of soil
stiffness and Eref is a reference stiffness modulus corresponding to a
reference pressure, pref.
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6. Axisymmetric 2D modelling

The impact of creep on stone column settlement performance is
examined by performing two sets of analyses: one set using the
standard soil properties in Table 1 and the other using very low
creep coefficients (m* � 1% of the standard value), in effect elimi-
nating most of the creep effects. It is not possible to use m* ¼ 0 as it
would result in division by zero.

These two sets of analyses (referred to subsequently as ‘creep’
and ‘no creep’) are carried out with a view to deriving settlement
improvement factors (n values) for the three separate scenarios laid
out in Section 4.2:

(1) The n values with andwithout creep for the isotropic case are
denoted by nTOTAL(ISO) and nPRIMARY(ISO), respectively.
(2) The n values with and without creep for the anisotropic case
are denoted by nTOTAL(ANIS) and nPRIMARY(ANIS), respectively.
Direct comparison with the isotropic results enables the in-
fluence of anisotropy to be established.

(3) The n values with and without creep for the analyses incor-
porating anisotropy, bonding, and destructuration are
denoted by nTOTAL(A&D) and nPRIMARY(A&D), respectively. The
influence of soil destructuration can then be examined.

The variations of radial, vertical, and hoop stress with time and
depth corresponding to scenarios (1)e(3) can be expounded.

The general analysis stages are as follows:

(1) Generate initial stresses using the K0 procedure (Brinkgreve
et al., 2011).

(2) Install the stone columns in undrained conditions using the
‘wished-in-place’ technique (any changes in stresses and
state parameters due to column installation are not
accounted for). Any out-of-equilibrium stresses generated by
the ‘wished-in-place’ installation are restored using a plastic
nil-step.

(3) Apply a load (pa) of 100 kPa in undrained conditions
through a plate element placed over the surface of the unit
cell. The plate acts as a loading platform and prevents dif-
ferential settlements at the surface between the column
and the soil.

(4) Allow a consolidation phase; settlements effectively
cease after full pore pressure dissipation for the ‘no
creep’ case.
7. Computational results and discussion

7.1. Timeesettlement behaviour

Settlement versus time plots in logarithmic scale for the un-
treated ‘creep’ and ‘no creep’ cases for the three different sce-
narios are presented in Fig. 4. The timeesettlement behaviour for
the isotropic and anisotropic cases is almost identical. This will be
the case for 1D loading if the anisotropy parameters are derived
based on the K0 state. The end-of-primary (EOP) consolidation
times for the ‘no creep’ and ‘creep’ cases are approximately 15,000
days (w40 years) and 40,000 days (w100 years), respectively. The
EOP consolidation times are shorter and settlements are lower for
the case with bonding and destructuration (since l*i � l* and
m*i � m*).

The timeesettlement behaviour for the treated case (at different
reciprocal areaereplacement ratios, A/Ac) is compared to that of the
untreated case in Fig. 5a and b for the ‘no creep’ and ‘creep’ cases,
respectively; these plots pertain to the isotropic case. It is evident
that the granular columns significantly accelerate the consolidation
process; the consolidation time reduces with increasing stone
replacement. The findings are consistent with those reported by
Kok Shien (2013), who also modelled stone columns using the
axisymmetric unit cell concept, albeit using a different soil model
and soil profile. Settlementelog(time) plots for the ‘anisotropy’ and
‘anisotropy and destructuration’ cases are not presented here
because the patterns are relatively consistent with the isotropic
case; settlement differences will be reflected in the relevant n
values.

7.2. Evolution of settlement improvement factor with time

The evolution of nwith time for the ‘creep’ and ‘no creep’ cases
is plotted in Fig. 6 for the different scenarios; A/Ac ¼ 6 is chosen for
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illustrative purposes. In all cases, the predicted n values are less
than unity initially because the settlement of treated ground occurs
more rapidly than that of untreated ground; however, these n
values are of no practical significance. Regardless of the scenario,
the ‘steady-state’ nTOTAL values after EOP are less than the corre-
sponding nPRIMARY values; this holds at all values of A/Ac and is
consistent with the findings of Sexton and McCabe (2013, 2015,
2016): when creep is present, settlement improvement factors
are lower.

7.3. Comparison of settlement improvement factors

The nPRIMARY and nTOTAL values (after EOP) for the different
scenarios are presented in Fig. 7a and b, respectively. At all values of
A/Ac, the highest n values arise for the isotropic case and the lowest
for the analyses incorporating bonding and destructuration. For the
isotropic analyses, K0 is overpredicted (see Section 4.2), resulting in
larger horizontal soil stresses which provide more resistance
against column bulging. This results in lower settlements for the
treated case, and since the settlements of untreated soil for the
isotropic and anisotropic cases are similar, nPRIMARY(ISO) >

nPRIMARY(ANIS).
For the analyses incorporating bonding and destructuration

(l*i � l* and m*i � m*), the ratio of column stiffness to soil stiffness is
lower and slightly lower n values would be expected. However, the
n values in Fig. 7a and b are still much lower than those expected
because n is not very sensitive to soil stiffness (and hence the ratio
of column stiffness to soil stiffness) above a threshold value. The
lower n values can be explained as follows:

(1) Increased settlement leads to a reduction in the bonding
parameter, c.

(2) Creep (i.e. more settlement) leads to additional bond
degradation (for both the untreated and treated cases), and
hence a larger reduction in c.

(3) For the ‘no creep’ case, columns reduce settlement to a larger
extent than they do for the ‘creep’ case (and hence they
curtail the amount by which c is reduced).

The extent to which destructuration should be accounted for in
design will depend on the initial amount of bonding, c0, which is
dictated by the soil sensitivity, St (see Eq. (9)).

Analytical predictions obtained using Priebe (1995), Castro and
Sagaseta (2009), and Pulko et al. (2011) are superimposed with
the nPRIMARY values in Fig. 7a for comparison. The n values predicted
by Castro and Sagaseta (2009) and Pulko et al. (2011) fall between
the nPRIMARY(ISO) and nPRIMARY(ANIS) for 4 < A/Ac < 15.

‘Creep’ settlement improvement factors for the different sce-
narios are compared in Fig. 7c. These ‘creep’ settlement improve-
ment factors have been derived based on the slopes of the
settlementelog(time) plots after EOP:

nCREEP ¼ m*untreated

.
m*treated (13)

where m*untreated and m*treated denote the slopes of the untreated and
treated settlementelog(time) plots, respectively. For each scenario
considered, these nCREEP values are lower than the corresponding
nPRIMARY values. However, given that the nCREEP values are greater
than 1, the columns have a positive impact on reducing long-term
creep settlements. The nTOTAL values in Fig. 7b are effectively a
weighted average of the nPRIMARY and nCREEP values, dependent on
the relative percentages of primary/creep settlement. In general,
larger differences between nPRIMARY and nTOTAL would be observed
in situations where nPRIMARY is larger to begin with. This occurs
because the nPRIMARY values aremuch greater than the nCREEP values
and so a larger effect would be seen in the weighted average.

The relative differences between the nTOTAL and nPRIMARY values
for each scenario are investigated in Fig. 8 by plotting (nTOTAL � 1)
against (nPRIMARY � 1) at different values of A/Ac; for an untreated
soil, both nTOTAL and nPRIMARY will be equal to 1. Each data point in
Fig. 8 corresponds to a nPRIMARY value and a nTOTAL value at a single
value of A/Ac. Best-fit lines have been added to each figure, along
with their corresponding coefficients of determination (R2). The
relationship takes the following form:

nTOTAL � 1 ¼ bðnPRIMARY � 1Þ (14)

where b is the slope of the line. For the isotropic and anisotropic
cases, the b values are almost identical, suggesting that the relative



0

50

100

150

200

250

300

350

400

0.1 1 10 100 1000 10000 100000 1000000

σ'
yy

(k
P a

)

Time (d)

A/Ac=3 (No Creep) at S

A/Ac=3 (Creep) at S

A/Ac=3 (No Creep) at C

A/Ac=3 (Creep) at C

Column

Soil

Fig. 9. Variation of vertical stress (s0yy) with time at mid-depth for the isotropic case.

(a)

(b)

0

10

20

30

40

50

60

70

0.1 1 10 100 1000 10000 100000 1000000

σ'
xx

(k
Pa

)

Time (d)

A/Ac=3 (No Creep) at S

A/Ac=3 (Creep) at S

0

10

20

30

40

50

60

0.1 1 10 100 1000 10000 100000 1000000

σ'
zz

(k
Pa

)

Time (d)

A/Ac=3 (No Creep) at S

A/Ac=3 (Creep) at S

Fig. 10. Variations of (a) radial stress (s0xx) and (b) hoop stress (s0zz) in the soil with time at mid-depth.

B.G. Sexton et al. / Journal of Rock Mechanics and Geotechnical Engineering 8 (2016) 672e688 681



0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
0 50 100 150 200

D
ep

th
 (m

)

σ'yy (kPa)

ISO

ANIS

A&D

A/Ac = 3 Untreated

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
0 50 100 150 200

D
ep

th
 (m

)

σ'yy (kPa)

ISO

ANIS

A&D

A/Ac = 3 Untreated

(a) (b)

Fig. 11. Profiles of vertical stress in the soil for A/Ac ¼ 3. (a) No creep; (b) Creep.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
0 20 40 60 80 100

D
ep

th
 (m

)

σ'xx (kPa)

ISO

ANIS

A&D

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
0 20 40 60 80 100

D
ep

th
 (m

)

σ'xx (kPa)

ISO

ANIS

A&D

(a) (b)

Fig. 12. Profiles of radial stress in the soil for A/Ac ¼ 3. (a) No creep; (b) Creep.

B.G. Sexton et al. / Journal of Rock Mechanics and Geotechnical Engineering 8 (2016) 672e688682



Fig. 13. Total shear strains for A/Ac ¼ 3 (isotropic case). (a) No creep; (b) Creep.
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values of nTOTAL and nPRIMARY are rather independent of anisotropy.
For the case incorporating anisotropy and bonding/destructuration,
the value of b is higher because (i) the nPRIMARY(A&D) values are
lower to begin with and (ii) m*i � m* so the weighted effect of creep
is less visible.

7.4. Variations of vertical, radial, and hoop stress with time

For the ‘no creep’ case, the stresses on the soil and column are
constant after EOP. For the ‘creep’ case, vertical stress is transferred
from the soil to the column as the soil creeps. This is illustrated in
Fig. 9 by plotting the variations of vertical stress (s0yy) with time for
A/Ac ¼ 3 (for the isotropic case) at points C and S (mid-depth of the
lower Carse clay layer) in Fig. 3. The spacing represented by A/Ac¼ 3
has been selected for presentation purposes because the stress
transfer is most pronounced at close spacings, although the same
trend holds for the range 3 < A/Ac < 15 considered. The additional
stress transferred to the already yielded column results in addi-
tional yielding, and hence lower n values for the ‘creep’ case.

The corresponding variations of radial (s0xx) and hoop (s0zz)
stress in the soil with time are plotted in Fig.10a and b, respectively.
For the ‘no creep’ case, both s0xx and s0zz are constant after EOP. For
the ‘creep’ case, these stresses continue to reduce after EOP, with
s0zz reducing to a greater extent than s0xx. The reduction in s0xx
means that the lateral support imparted onto the column by the soil
diminishes due to creep. This leads to additional column bulging,
more settlement, and ultimately, a lower load-carrying capacity.
The s0xx and s0zz reductions will be discussed in more detail in
Sections 7.5.2 and 7.5.3.

7.5. Profiles of stress and strain with depth

In this section, distributions of stress and strain with depth in
the soil for A/Ac ¼ 3 (with and without creep) are compared after
100 years (after EOP for the untreated case) to highlight the effect of
the different features (e.g. anisotropy, bonding and destructura-
tion). The stress and strain profiles have been obtained at the same
radius from the column centre as a vertical plane through point S in
Fig. 3.

7.5.1. Vertical stress profiles
The vertical stress profiles in the soil for A/Ac ¼ 3 are plotted in

Fig. 11 for the different scenarios without and with creep, respec-
tively. The stress profiles for the untreated case are also included on
the figure to provide a frame of reference for comparison between
the ‘creep’ and ‘no creep’ cases. The Updated Mesh option (e.g.
McMeeking and Rice, 1975) has been used for these analyses and so
the final ground surface will be ‘lower’ when there is more settle-
ment, e.g. for the analyses incorporating creep.

For each scenario, the columns reduce the vertical stress carried
by the soil over the full column length in comparison with the
untreated case. For the ‘creep’ case (Fig. 11b), the stress reductions
are larger and increase with depth. These are illustrated using ar-
rows and markers for visual purposes. The surplus stress unloaded
from the soil is transferred to the column, as discussed in Section
7.4. The stress transfer (i.e. the stress reduction in the soil) is the
smallest for the analyses incorporating destructuration (Fig. 11b)
because of the lower creep coefficient (i.e. m*i � m*).

7.5.2. Radial stress profiles
The corresponding radial stress profiles in the soil for A/Ac ¼ 3

are presented in Fig. 12; reference lines (with no physical signifi-
cance) have been included on this figure for ease of comparison
between the ‘creep’ and ‘no creep’ cases. The stress profiles for the
untreated case have not been included on these figures for the sake
of clarity; the radial stresses in the soil for the untreated case are
almost equivalent to those in the soil for the ‘no creep’ case
(Fig. 12a), apart from the isotropic case, for which the untreated
radial stresses are overpredicted. For the ‘creep’ case (Fig. 12b), the
radial stresses in the soil are lower than those for the ‘no creep’ case
(Fig. 12a).

The magnitudes of the radial stress reductions are relatively
consistent for the three scenarios considered, although there are
significant stress oscillations for the ‘creep’ case. These oscillations
are caused by shear-plane formation in the column (due to addi-
tional yielding, e.g. Fig. 13, illustrated for the isotropic case) and
extend much deeper for the anisotropic case than for the isotropic
case. For the isotropic case, the horizontal stresses in the soil are
overpredicted and so additional resistance is provided against
lateral column bulging; this inhibits the formation of shear-planes
in the column. The magnitudes of the shear-planes are similar for
the ‘anisotropy and destructuration’ case, despite the lower creep
coefficient (m*i � m*); for this scenario, columns do not have the
same beneficial effect on c, as discussed in Section 7.3.

The shear-plane formations can also be identified by examining
profiles of radial strain (εxx) in the soil with depth (Fig. 14). For the
‘creep’ case, there is a sharp decrease of radial strain at the base of
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the unit cell (Fig. 14b); this explains the ‘jump’ in the radial stress
profile at the base in Fig. 12b. Additional analyses have shown that
these ‘jumps’ also occur at the base of floating columns; floating
columns punch into the underlying soil and so there is also a
sudden lateral/radial strain reduction. This is illustrated in Fig. 15
for the isotropic case.
7.5.3. Hoop stress profiles
The corresponding distributions of hoop stress in the soil with

depth for A/Ac ¼ 3 are presented in Fig. 16. The plots are presented
in a similar format to those for radial stress. The hoop stresses are
equal to the radial stresses for the untreated case. The following
points are relevant:

(1) The hoop stresses in the soil are lower than the radial
stresses (comparing Fig. 16 with Fig. 12) and hence lower
than the corresponding hoop stresses in the soil for the un-
treated case.

(2) The hoop stress reductions for the ‘no creep’ case are more
prominent in the regions where the strains are the largest,
e.g. at the depth of the maximum column bulging (which can
be approximated from Figs. 13 and 14 as being between 3 m
and 4 m below ground level). The hoop stress reductions are
caused by plastic deformation which leads to the dissipation
of energy; there is more plastic deformation at the bulging
depth than that at the base.

(3) The hoop stress reductions are larger for the ‘creep’ case
(Fig. 16b) because there is more plastic deformation
throughout the full depth of the profile. A larger hoop stress
reduction occurs for the anisotropic case than for the
isotropic case (additional plastic deformation and shear
plane formation lead to a larger hoop stress reduction, e.g.
Fig. 14b). The hoop stress profile for the analyses incorpo-
rating anisotropy and bonding/destructuration is approxi-
mately parallel to that for the anisotropic case, although the
hoop stress reduction is lower (less plastic deformation
because m*i � m*, e.g. Fig. 14b).
8. Conclusions and recommendations for future research

A series of axisymmetric analyses has been carried out in
conjunction with the elasto-viscoplastic Creep-SCLAY1S model to
assess the effectiveness of stone columns in soft creep-prone soils.
The columns were wished-in-place and hence installation effects
have not been accounted for. Three different scenarios have been
considered: (i) isotropy, (ii) anisotropy, and (iii) anisotropy and
bonding/destructuration. The main findings are as follows:

(1) For all three scenarios, incorporating creep leads to lower
‘total’ settlement improvement factors, i.e. lower than ‘pri-
mary’ settlement improvement factors. The ‘total’ settlement
improvement factors are effectively a weighted average of
‘primary’ and ‘creep’ settlement improvement factors; the
latter are much lower than the former but are, nevertheless,
greater than unity. If creep constitutes a significant propor-
tion of total settlement, lower settlement improvement
factors for creep settlements should be used in design.

(2) The ratios of ‘total’ to ‘primary’ settlement improvement
factors are almost identical for the ‘isotropic’ and ‘aniso-
tropic’ cases, suggesting the effectiveness of stone columns at



B.G. Sexton et al. / Journal of Rock Mechanics and Geotechnical Engineering 8 (2016) 672e688686
arresting creep settlements is independent of anisotropy. A
smaller ratio is observed for the case incorporating ‘anisot-
ropy and bonding/destructuration’ because (i) the ‘primary’
settlement improvement factors for this scenario are lower
to begin with and (ii) the ‘intrinsic’ creep index is less than
the creep index for natural clay (m*i � m*) so the effect of
creep on the weighted average is less visible.

(3) For the ‘creep’ case, vertical stress is transferred from the
‘creeping’ soil to the granular column. The additional vertical
stress transferred to the already yielded column causes
additional yielding and explains why ‘total’ settlement
improvement factors are lower than their ‘primary’
counterparts.

(4) The actual n values (both ‘primary’ and ‘total’) are lower for
the analyses incorporating bonding and destructuration. The
extent to which destructuration should be accounted for in
design will depend on the initial sensitivity of the clay; in
highly sensitive clays, destructuration will be a greater
consideration.

(5) In addition to the vertical stress transfer process, the radial
and hoop stresses in the soil also reduce for the ‘creep’ case.
The radial stress reduction results in additional column
bulging and a lower load-carrying capacity. The hoop stress
reduction is more of a secondary effect, caused by additional
plastic deformation (and hence energy dissipation) for the
‘creep’ case.

(6) The simulations ignored any installation effects, which
inevitably are significant (e.g. Castro and Karstunen, 2010;
Castro et al., 2014). Hence for future work, it is recom-
mended to complement the present study with analyses that
account for installation effects for a more complete under-
standing of how the stone columns behave in soft sensitive
creep-prone soils.
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Notation

The following symbols are used in this paper:
A cross-sectional area of soil unit treated with granular

material
Ac cross-sectional area of granular column
Ac/A areaereplacement ratio
Cs swelling index
Cc compression index
Ca coefficient of secondary compression/creep
coefficient

c0 effective cohesion
Dc column diameter
E50 secant/triaxial modulus
Eoed oedometric modulus
Eur unloadereload modulus
e0 initial void ratio
K0 coefficient of lateral earth pressure at rest
Knc
0 coefficient of lateral earth pressure in the normally

consolidated condition
g constant dependent on column arrangement (square,

triangular, or hexagonal)
k, kx, ky permeability, horizontal permeability, vertical

permeability
M,Mc,Me slope of CSL, slope of CSL in compression, slope of CSL

in extension
M(q) stress ratio at critical state
m power dictating the stress dependency of soil

stiffness (HS model)
n settlement improvement factor, n ¼ duntreated/dtreated
nTOTAL ‘Total’ settlement improvement factor (i.e.

primary þ creep)
nCREEP ‘Creep’ settlement improvement factor
nPRIMARY ‘Primary’ settlement improvement factor
n2 Priebe’s (1995) settlement improvement factor
p, p0 mean principal total stress, mean principal effective

stress
pa applied load/load level
pp preconsolidation stress/pressure (3D)
pref reference pressure
q deviatoric stress
Rc column radius
St sensitivity
s column spacing
a0, a initial yield surface inclination, yield surface

inclination
g bulk unit weight
d settlement
εxx radial strain
q Lode angle
k, k* swelling indices
l, l* compression indices
li, l

�
i intrinsic compression indices

m, m* creep coefficients/indices
n Poisson’s ratio
x rate of destructuration
xd effectiveness of shear and volumetric strains in

destroying the bonding
s00 initial effective stress/pressure (1D)
s0p preconsolidation stress/pressure (1D)
s0xx, s0yy, s0zz effective radial, vertical (axial), and hoop (tangential)

stresses
f0 friction angle
u rate of yield surface rotation
ud effectiveness of shear and volumetric strains in

rotating the yield surface
c0 initial amount of bonding
j dilatancy angle
_L rate of viscoplastic multiplier
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