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Abstract
As technology keeps advancing, autonomous vehicles are more than a possibility,
they are inevitable. An inevitability offering both security and comfort for passen-
gers as well as for others in traffic. However there are still certain predicaments to
be investigated, one of those challenges involves an accurate positioning system of
the vehicle, especially when GPS is not available. One method dealing with this
issue is to incrementally estimate motion using images taken by a digital camera,
an area know as Visual Odometry. However Visual Odometry algorithms can be
implemented in many different ways, hence there is a need to evaluate the perfor-
mance on real data.

The aim of the thesis is to compare the different single camera Visual Odometry
algorithms with respect to vehicle trajectory (the rotational and translational error)
and the execution time. The algorithms differed with respect to the used feature
detectors and descriptors and the feature matching/tracking method. The investi-
gated feature detectors, descriptors and tracking were based on FAST/ORB, SIFT
and SURF methods and compared with Kanade-Lucas-Tomasi (KLT) tracking. The
relative motion between two consecutive images was estimated from 2D–to–2D fea-
ture correspondence and Nister’s five-point algorithm.

The algorithms are implemented in C++/OpenCV and tested on three image se-
quences in different environments from the public KITTI dataset. The obtained
results are compared to ground truth data from a highly accurate GPS. The results
show that the investigated methods are able to estimate the ego-motion with an
average translation error of <7 % and a rotation error of <0.02 deg/m. The best
results, with respect to rotational and translational error, are obtained using feature
matching of SIFT features along with the corresponding descriptor. The results also
show that the feature tracking using KLT provides a faster algorithm than feature
matching. However this comes at the cost of reduced accuracy, which is something
that also holds for the choice of detectors and descriptors.

Keywords: Visual Odometry, FAST, SURF, SIFT, RANSAC, Monocular, KLT.
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1
Introduction

1.1 Background

Autonomous vehicles are of substantial focus today with vehicle manufacturers com-
peting for headlines, competence and technological capabilities. The Gothenburg
region have interest in developing both competence within the area of autonomous
driving and also showcase that the region is ready for the next generation of tech-
nological challenges of autonomous driving.

In order to meet these goals, the project “Born to drive” [1] was started. It will oper-
ate as a consortium of local companies to work together in order to achieve the task
of developing a system to control a vehicle. The vehicle shall operate autonomously
within certain boundaries to showcase the potential of the technology and know-how.

Today someone drives the vehicles from factory to the designated parking area. The
project aims to use autonomous driving within the factory area, from the drop-plan
of factory completed vehicles to a designated parking area in order to improve effi-
ciency of vehicle logistics.

To move the vehicle autonomously and safe it is required that the vehicle is aware
of the ego-motion, its 3D-movement in a static environment, along with potential
obstacles in the surrounding. To comply with these requirements the vehicle is
equipped with the sensors shown in Figure 1.1

Figure 1.1: Sensors available for the target vehicle, note that this is only an
illustrative image

1



1. Introduction

The project is divided into eight different packages which focuses on different tasks.
The thesis is done in the second package “Research, development and implementa-
tion of new functionality”.

1.2 Purpose
The purpose of this thesis is to examine and evaluate how the images taken by a
single digital camera, mounted on a vehicle can establish the ego motion using Visual
Odometry. The main focus will be on how the usage of different feature detectors
and descriptors will affect the accuracy of the position in varying environments.

1.3 Delimitations
The set of existing hardware is the hardware at disposal, thus there is one camera
available to work with along with the velocity of the vehicle. Considering the fact
that only one camera is available, the scale ambiguity (the translation vector is in-
correct by an unknown factor) of the motion is resolved using the speed of the vehicle.

Even though the intention of Visual Odometry is to be run in real-time, no code
optimization is done in this project since it is outside the scope of this thesis. The
execution time of the different methods are only to be interpreted relative to each
other.

As we will see further down in this thesis, two different methods for motion estima-
tion is examined 2D–to–2D and 3D–to–2D. However only the former is implemented,
which means that no triangulation is required.

The implemented algorithm requires that the input images are all in grayscale.
The images must also be rectified which means that they are compensated for lens
distortion. However the KITTI dataset provide images that already fulfill these re-
quirements, hence the algorithm does not manipulate the images in any way.

All the images must be in grayscale and compensated for lens distortion.

1.4 Structure of the thesis
Chapter 2, Theory, gives a thorough explanation about the problems with Visual
Odometry and how the tools used to solve the problem function. It is followed
by the chapter Implementation, which describes how the algorithms presented in
chapter 2, are pieced together in the Visual Odometry chain. Chapter 4, Results,
presents the achieved positioning accuracy with different combinations of algorithms
in different environments. The work done in the thesis is summed up in Chapter
5, Discussion, where the authors reflect over the used method, achieved results and
further improvements.
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1. Introduction

1.5 Different methods of positioning

Today there exists multiple ways of calculating the position of a moving vehicle.
A popular method to position Automatic Guided Vehicles (AGV) is to triangulate
the position with well placed laser beacons [2, 3]. A downside with this method is
that it requires additional expensive hardware, beacons at the parking area plus an
optional antenna on the vehicle. The benefit is that the calculated position is very
accurate. Data received from testing in [3], gives a positioning error of ±10 mm and
angle error of ±0.3 deg.

A more basic method is to use wheel encoders combined with an Extended Kalman
Filter (EKF) [4]. However, the method suffers from the need of an exact wheel ra-
dius and that the road conditions are good enough to have wheel rotations with no
slip. This parameter and environmental dependant method makes it hard to design
an algorithm which does not require daily maintenance.

Visual Odometry (VO) [5, 6] is a special case of Structure From Motion (SFM)
[7, 8]. The method uses an image sequence to detect the movement of features
points between each frame. The movements are used in order to calculate the pose
and motion of the camera, thus giving the position. With the improvement of both
algorithms and hardware, the method is realizable in real-time [9]. There exists
two different approaches, with one camera (monocular) [9] and two cameras (stereo)
[10, 11]. Stereo VO is the branch of VO in which most research has been done. By
using two cameras the 3D structure of the environment is given by an image pair
instead of sequential images, resulting in that the drift is less than compared to the
monocular method. Additionally, 3D features are computed in absolute scale due to
the embedded depth given by the image pair. In Monocular VO, the scale cannot
be calculated with a single image. Additional information is required to calculate
the relative scale and thus proper motion. In paper [12] the authors have evalu-
ated several different detectors and descriptors such as FAST, SURF, SIFT, and
BRIEF. The have compared these different methods in terms of speed, precision,
and repeatability. They have also investigated how the combination of detectors
and descriptors affect the accuracy and speed.

Another existing method is point cloud based VO, which is a mixture of mono or
stereo VO combined with point cloud data. A simple implementation is described
in [13]. This method needs a Light Detection And Ranging (LIDAR) sensor in order
to generate the point cloud.

SLAM, Simultaneous Localization and Mapping [14, 15], positions the vehicle by
mapping the surrounding environment at the same time as the method calculates
the location of the sensors mounted on the vehicle. Two popular solutions are
Particle Filter (PF) [16] and the Extended Kalman Filter [17]. One problem with
this method is how to handle parts where the vehicle has already been at. This
is called Loop closure, and this problem is usually solved by having an additional
algorithm which checks for similar sensor inputs and refines the map accordingly. By

3



1. Introduction

using Bundle Adjustment (BA), the camera poses can be optimized by minimizing
the reprojection error that occurs when triangulating the same 3D-point in different
images. An evaluation of feature detection algorithms for SFM can be read about
here [18]. The authors build up a SFM framework using different feature detectors
like KLT tracker, SURF, and SIFT, and tries to determine the accuracy and speed
of these different algorithms.

4



2
Theory

This chapter provides the theory needed to understand the Visual Odometry prob-
lem. It explains how the algorithms function and how they provide the outputs that
are used in steps further down the Visual Odometry chain.

2.1 Problem formulation
For a camera in an environment taking pictures, let the set of images taken at the
discrete time instants k be denoted by I0:n = {I0, . . . , In}. Two camera positions
at adjacent time instants k − 1 and k are then related, see Figure 2.1, by the rigid
body transformation Tk,k−1 ∈ R4×4, defined as

Tk,k−1 =
[
Rk,k−1 tk,k−1

0 1

]
(2.1)

where Rk,k−1 ∈ R3×3 is the rotation matrix, and tk,k−1 ∈ R3×1 is the translation

Ck−1 Ck

X

Epipolar plane
p′p

Tk,k−1

Epipolar line

Figure 2.1: Epipolar constraints.

vector. For the sake of simplicity the notation Tk will be used instead of Tk,k−1. Let
then the set of all subsequent movements be denoted by T1:n = {T1, . . . ,Tn} and
the camera poses denoted by C0:n = {C0, . . . ,Cn}, the initial pose is arbitrary and
can be set to C0 = I4×4. The pose C has the same structure as T, see (2.1), however
it is relative to the initial pose C0. By concatenating all the transformations the
camera pose can be calculated, hence Cn = Cn−1T−1

n . The position of the camera
at time k, relative the initial position, is given by the last column of Ck. The values
in that column represent the x, y and z coordinates.

5



2. Theory

2.2 Pinhole camera model

There are several different camera models to choose from when working with visual
odometry, e.g. catadioptric projection, spherical model for perspective, omnidirec-
tional and perspective projection. However the most used model is the perspective
projection [5]. The model assumes a pinhole projection system where the intersection
of all light rays through the camera lens forms the image.

(u0, v0)

p

X

u

v

x
y

z

Figure 2.2: Pinhole camera projection.

Let the projection of a 3D-point X = (x, y, z)>, on the xy-plane going through
the point (0, 0, f)>, be denoted by the image coordinates p = (u, v)> as seen in
Figure 2.2. The image coordinates are then related to the objects world coordinates
by following relation

λ

uv
1

 =

f 0 u0
0 f v0
0 0 1


︸ ︷︷ ︸

K

xy
z

 , (2.2)

where λ is the depth factor, f is the focal length and u0, v0 are the coordinates
of the projection center. These parameters are known as intrinsic parameters or
calibration matrix and are given by the matrix K. The calibration matrix can be
found using a camera calibration tool from MATLAB for instance, in our case the
matrix are obtained from the KITTI website. The camera matrix is required for the
five point solution described in section 2.7.1. Important to note is that the intrinsic
matrix in (2.2) assumes an ideal camera where the pixels are perfect squares. This
is however not always true and in order to compensate for that, three other factors,
sx, sy and sϕ, are introduced. The first two terms are called scaling factors and
they define the size of a pixel. The last term is know as the skew factor and it is
proportional to cot(ϕ), where ϕ is the angle between the axes u and v. Given these
parameters the intrinsic matrix is rewritten as,

K =

fsx fsϕ u0
0 fsy v0
0 0 1

 . (2.3)

6



2. Theory

2.3 Feature detection

The first step of the Visual Odometry algorithm, is to detect features within an
image. A feature is a small part or region within the image, which differs from the
pixels in its proximity. This difference is often described by colour and intensity, and
the difference is noticed in edges and blobs. Pixels in an edge have a high gradient
magnitude and stands out from pixels in the immediate neighbourhood. Two or
more edges that coincide forms a corner and can easily be detected. Blobs on the
other hand consists of many pixels with the same colour and intensity, grouped
together that stands out from pixels surrounding the blob. A good feature detector
is determined by the following properties [6]

1. Computational efficiency
2. Geometric invariance (rotation and scale)
3. Localization accuracy
4. Photometric invariance (illumination)
5. Repeatability (detect same features in consequent images)
6. Robustness (against blur/noise)

2.3.1 Harris corner detection
Harris corner detection is one of the earliest detectors made (1988), which is still
used widely today. Although the algorithm is not implemented in this thesis, it
gives a good insight in how many of the existing algorithms work. The basic idea
behind Harris corner detection is to examine a point by looking at the point and
the nearby pixels through a small window. By shifting the window in any direction
from a given point, the average intensity of the window should change significantly
if the point is a corner. Three possible scenarios are shown in Figure 2.3

Figure 2.3: Harris corner detection.

Since the the window is shifted in all directions, the algorithm gives the same results
if the image is rotated (rotation invariant). If the image is “zoomed out”, then the
algorithm might not give the same result as the original image. This is because
the algorithm might interpret a curved edge in the original image as a corner when
zoomed out. Thus the algorithm is non-invariant to scale. It is also computationally
demanding due to many calculations of the window intensity average.

7



2. Theory

2.3.2 FAST
Feature from Accelerated Segment Test (FAST) is a corner detection algorithm
which as the acronym suggests, is a quick detector. The algorithm uses a 16 pixel
circle with a radius of 3 pixels around a pixel p in order to determine if p is a corner,
see Figure 2.4.

15

11

10

16

14

13

12

p

21

3

4

5

6

7

89

Figure 2.4: FAST corner detection, the arc shows 12 pixels which have a brighter
intensity than p (from Rosten and Drummond, 2006).

As seen in the figure, pixels 11–16 and 1–6 have a higher intensity than the examined
pixel p. This means that p is a corner and the location of the feature is saved. The
segment test can be summarized in two conditions:

1. If there are N adjacent pixels in the ring that all have a brighter intensity than
p plus a threshold, then p is a corner

2. If there are N adjacent pixels in the ring that all have a darker intensity than
p minus a threshold, then p is a corner

Thus if either of the conditions is true, then p is classified as a corner. The parameter
N is usually set to 12 in order to get a high quality feature detection. N could be
set to 9 in order to achieve a faster detection, the trade-off is however accuracy.
The algorithm is dependent on the intensity threshold, thus different environments
might give different results and the threshold then needs to be tweaked for best
performance. Since the algorithm uses a circle of pixels to determine if the examined
pixel is in a corner, the algorithm is both scale and rotation invariant.

2.3.3 SIFT detector
The first step in the Scale Invariant Feature Transform (SIFT) algorithm is to
smooth an input image by convolution with a Gaussian. This scale space function
of an image is defined as

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (2.4)

where I(x, y) is the input image and the Gaussian kernel G(x, y, σ) is equal to

G(x, y, σ) = 1
2πσ2 e

−(x2+y2)/2σ2
. (2.5)

8



2. Theory

The step is repeated with different σ, scaled by a factor k. This is done in order to
compute the Difference of Gaussians (DoG)

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ). (2.6)

The DoG has two important properties, it is an efficient computation and it “pro-
vides a close approximation to the scale-normalized Laplacian of Gaussian, σ2∇2G”
[19]. This means that features found by a DoG are more stable in comparison to
other types of feature detection [20]. Once all the DoGs are computed for the cur-
rent scale, called octave, the smoothed images are down-sampled by a factor of 2
and the process is repeated. The procedure is illustrated in Figure 2.5.

Figure 2.5: Computation of DoG (from Lowe, 2006).

When the DoGs are found for each octave, the DoGs are searched for local extrema.
Each pixel is compared to the surrounding eight pixels and then compared to the
pixels in the scale directly above and below, which is shown in Figure 2.6

9



2. Theory

Figure 2.6: Detection of extrema in the DoGs (from Lowe, 2006).

If the pixel is either larger or smaller than the other 26 pixels, the pixel is saved for
further refinement and testing. To determine if the pixel has proper characteristics,
a 3D quadratic fitting function is used. This is done by shifting the origin of the
DoG to the pixel location, and by using Taylor expansion the following expression
is formed

D(x) = D + ∂DT

∂x
x + 1

2x
T ∂

2D

∂x2 , (2.7)

here x = (x, y, σ)T describes the offset from the location of the shifted pixel. The
extremum is then located by taking the derivative of (2.7) w.r.t x and solving for
zero, resulting in the following equation

x̂ = −∂
2D

∂x2

−1
∂D

∂x
. (2.8)

If x̂ is larger than 0.5 in any direction it indicates that the extrema of the point
which is investigated, lies closer to an other point. The point is then changed, and
the test is redone. When below 0.5 in any direction, the offset is added to the pixel,
which gives “the interpolated estimate for the location of the extremum”[19]. For
sorting out points with low contrast, (2.7) combined with (2.8) gives

D(x̂) = D + 1
2
∂DT

∂x
x̂, (2.9)

which returns the function value at the extrema point. Then the keypoint is either
kept or discarded by comparing the function value to a threshold. In order to further
increase stability, keypoints located along edges are removed. These keypoints have
a low principal curvature perpendicular to the edge, and large along the edge. To
find these keypoints, the Hessian matrix is used to calculate the principal curvatures.
It is calculated at the scale and location of the detected keypoint, as seen in (2.10)
below

H =
[
Dxx Dxy

Dxy Dyy

]
. (2.10)

The ratio of the Hessian’s eigenvalues are of importance, the larger eigenvalue in
terms of magnitude is denoted α and the smaller is denoted β. Then the trace and

10



2. Theory

determinant can be calculated as

Tr(H) = Dxx +Dyy = α + β,

Det(H) = DxxDyy −D2
xy = αβ.

(2.11)

If the determinant becomes negative, the point is discarded due to curvatures with
different signs. By introducing r, the ratio between the two eigenvalues, we have
that α = rβ. Combining this with (2.11) the following inequality can be formed

Tr(H)2

Det(H) = (α + β)2

αβ
<

(r + 1)2

r
. (2.12)

This makes it easy to see if the principal curvature ratio is below the threshold
r. The RHS of (2.12) is minimized when the eigenvalues of the Hessian is equal.
When the ratio r is greater than 10 [19], the keypoint is discarded and the edge
responses have been sorted out. In order to make the keypoints rotational invariant,
the keypoints are assigned an orientation. This is done by computing magnitude
and orientation in the closest smoothed image based on the scale, for every detected
keypoint as follows

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = tan−1((L(x, y + 1)− L(x, y − 1))/(L(x+ 1, y)− L(x− 1, y)))
(2.13)

Once this is done, a histogram of the gradient orientation is computed. This is
done over 36 bins around the keypoint, which covers the 360◦ of possible orien-
tations. Each point in the histogram is also weighted in terms of distance to the
keypoint. The peak given by the histogram determines the orientation of the region.

To summarize, each keypoint given by the SIFT algorithm has the following prop-
erties:

1. Location, x- and y-coordinate of the keypoint centre
2. Scale, radius of the calculated circle (scale invariance)
3. Orientation, angle based on direction of the region’s gradient magnitude (ro-

tation invariance)
An important note about the SIFT detector is that the algorithm is patented, see
[21] for a full commercial license.

2.3.4 SURF detector
Speeded Up Robust Features (SURF) is similar to SIFT (section 2.3.3) in the sense
that the steps are the same, but they are done differently. Instead of smoothing the
image with a Gaussian, as in SIFT detection, the SURF algorithm filters the image
with windows based on the integral image method [22] as an approximation of a
Gaussian

IΣ(x,y) =
x∑
i

y∑
j

I(i,j). (2.14)

The benefit of using this method is that the number of calculations are low and that
different window sizes have no impact on the calculation time [23]. One addition
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and two subtractions using the corner points of the window are required to calculate
the sum, see Figure 2.7.

Figure 2.7: Illustration of the integral image method.

The sum of all pixels as seen in (2.14) is thus equal to IΣ = A−B−C+D, given that
the origin of the original image is in the upper left corner. Blob-detection is used
and it is done using the Hessian matrix. Given an image I and a point x = (x, y) in
that image, the Hessian matrix H(x, σ) is calculated. Here σ is the current scale.
The matrix has the following form

H(x, σ) =
[
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

]
. (2.15)

Where Lxx,xy,yy(x, σ) are the second order partial derivatives convoluted with I in
point x. These partial derivatives are approximated using filters for different scales
and octaves. Instead of smoothing and down-sampling the image for each σ as
in SIFT, the SURF algorithm up-scales the filter size. The use of integral images
assures a constant computational cost. Once the Hessian is formed for a point x
at a certain scale σ, the determinant of the Hessian is calculated and weighted in
order to get a good approximation. The approximated determinant is saved in a
response map for the current scale. Once the Hessian matrix are calculated for all
octaves, the algorithm searches for local maximum and the detected maximum is
saved and “interpolated in scale and image space”[23]. This procedure assures scale
invariance.
Furthermore, Haar wavelets [24] are used to add rotational invariance. A circular
region with radius 6s, where s is the scale in which the point was detected, is
centered at the feature point. Haar wavelet responses are calculated and weighted
in both x and y direction. The orientation of the feature point is determined by
summing the responses within a sliding orientation window of the size π

3 . This gives
an orientation vector, and the vector of highest magnitude is chosen to describe the
orientation, see Figure 2.8.
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Figure 2.8: Orientation assignment using sum of Haar wavelet responses in a
sliding orientation window (from Bay et al, 2008).

To conclude, the SURF detected keypoints has
1. Location, x- and y-coordinate
2. Scale
3. Orientation

2.4 Feature descriptors
Once a set of keypoints has been extracted from an image, they need to be processed
for further use. This is done by encoding a numerical description of the image area
around the keypoint, for each individual keypoint. By doing this, the keypoints
between two images are comparable to each other.

2.4.1 ORB
ORB is an acronym for Oriented FAST and Rotation-Aware BRIEF. This means
that the ORB descriptor needs the keypoints to be detected by the oFAST detector.
The detection is done as described in section 2.3.2 with the addition of orientation
to the feature points. This is done by calculating the intensity centroid [25]. First,
the moment of a patch is calculated as [26]

mpq =
∑
x,y

xpyqI(x, y), (2.16)

where p and q are parameters for a pixels order of moment. And the centroid of the
patch is found with the following equation

C = (m10

m00
,
m01

m00
). (2.17)

Then a vector ( ~OC) is constructed from the center of the detected feature, O, to
the centroid given by (2.17). The angle of ~OC gives the orientation of the patch. It
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is calculated by the following equation

θ = atan2(m01,m10). (2.18)

Once the features has been assigned an orientation, the BRIEF descriptor does
a binary test, τ , of intensity between points in a smoothed image patch. The
smoothing is done using integral image as explained in section 2.5.2, “each test
point is a 5 x 5 subwindow of a 31 x 31 pixel patch” [26]. The test is defined as

τ(p;x,y) =

1 if p(x) < p(y)
0 if p(x) ≥ p(y)

, (2.19)

here p is the image patch which has been smoothed and x is the point that is tested.
The resulting feature is a vector of 256 binary tests

f256(p) =
∑

1≤i≤256
2i−1τ(p;xi,yi). (2.20)

In order to make the Binary Robust Independent Elementary Features descriptor
invariant to rotation, is to steer the descriptors to the keypoint orientation θ. This
is done by constructing a steered version of the binary tests at the feature location

Sθ = RθS, (2.21)

where Rθ is a rotation matrix and S is equal to

S =
[
x1 · · · x256
y1 · · · y256

]
. (2.22)

The steered BRIEF then is equal to

gn(p, θ) = fn(p)|(xi,yi) ∈ Sθ. (2.23)

A downside with the steered BRIEF is the low variance and high correlation among
the binary tests. This is reduced by searching among the binary tests for tests with
high variance and uncorrelation. Further details of the algorithm can be seen in [26].
The resulting descriptor is called rBRIEF and the method is considerable faster than
SURF and SIFT [26].

2.4.2 SIFT descriptor
First the gradient and orientation are computed for points in a window which is
centered by the keypoint of interest. The size of the window is constructed by 16×16
bins in an array. This array is divided into 4 × 4 sub-regions, where a histogram
based on orientation is computed for each sub-region. Then the coordinates of
these points and the orientation of the gradients are rotated w.r.t the keypoint
orientation, to incorporate rotational invariance. The points are further refined by
using a Gaussian weighting function where σ = w

2 , w is the width of the descriptor
window. The weighting is aimed at the magnitude of each point. One important
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property by doing the weighting is that the gradients which are far away from the
keypoint are taken less into account, “as these are more affected by misregistration
errors” [19]. The procedure is illustrated in Figure 2.9

Figure 2.9: SIFT feature description procedure. The arrows depict the sum of
gradients in the individual bins. The blue ring in the left image shows the region
which is considered after the Gaussian weighting function is applied. This example
shows a 8× 8 array and the resulting 2× 2 descriptor (from Lowe, 2004).

2.4.3 SURF descriptors
A square window is centered at the keypoint, with the same orientation as the
keypoint. The size of the window is 20s × 20s, where s is the scale in which the
keypoint was detected. The window is then evenly split up into 4 × 4 sub-regions.
Haar wavelet responses and their absolute value are summed up for horizontal and
vertical direction in each sub-region. The resulting descriptor consists of a 4D vector
which contains the four sums for each sub-region.

2.5 Feature matching
When the features and descriptors are extracted from a sequence of images, the next
step is to match the features from one image to the next image in the sequence. This
is done by the matcher and two different methods are briefly explained below. To
further refine the matches, if the second closest match has a distance ratio greater
than 0.8 of the best match then the match is rejected. “Which eliminates 90% of
the false matches while discarding less than 5% of the correct matches”[19].

2.5.1 Brute force
The brute force matcher compares a descriptor from a set of keypoints in the first
image to all the descriptors of the keypoints in the second image. Generally, the
descriptor with the shortest Euclidian distance is then matched to the descriptor
in the first image. The distance of the shortest descriptor also needs to be below
some defined threshold in order to make the matching valid. The time between two
images must also be low enough in order to correctly match the descriptors.
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2.5.2 FLANN
Fast Library for Approximate Nearest Neighbours (FLANN), consists of algorithms
that searches a dataset for the closest neighbour. It is functional in high dimensional
spaces but also well suited for feature matching in two dimensions. OpenCV uses
a FLANN based matcher which utilizes the k-d tree data structure and nearest
neighbour search. K-d stands for k-dimensional, where k is a positive integer. The
basic idea behind k-d trees is, given a dataset with k dimensions:

1. Pick a dimension from k
2. Find the median value of that dimension
3. Split that dimension in two halves based on the median value
4. Repeat, k-1 until it reaches 0 then start over with the original k until all

elements in the dataset is examined
The procedure is illustrated with a dataset in Fig 2.10. In this example the starting
point is (7,2).

Figure 2.10: The left image shows a 2-d decomposition, note that the red lines are
for x and blue for y. Right image shows corresponding 2-d tree.

Once the k-d tree is formed, the next step is to use points from the second dataset
and see which node from the k-d tree that the examined point is closest to. The
procedure is called Nearest Neighbour (NN). By starting at the root node (7,2) in the
example, the algorithm moves down the constructed 2-d tree recursively. It chooses
the left or right branch if the examined point has a greater or smaller value than
the current node in current dimension. Once the algorithm has reached an ending
node (leaf node), the algorithm saves that node as the current best. The recursion
is then finished and the algorithm start to traverse back to the root node. The
distance to the examined point is checked at every node, if the distance is smaller
then the current best gets updated. The algorithm also checks if the hyperplane on
the other side of the tree is inside the radius of the current shortest distance, if not,
that hyperplane is discarded. If it is inside, then the algorithm runs through that
branch of the k-d tree as well. The procedure can be seen in the example shown in
Figure 2.11, and an explanation can be read after the image.
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Figure 2.11: NN search algorithm based on a 2-d tree.

Point (2,8) is examined for its nearest neighbour, marked with a star in the figure.
The algorithm starts at the root node (7,2) and the distance e.g. the radius of
the large circle centered at the star, covers all hyperplanes. This means that we
cannot discard any hyperplane yet. The algorithm runs through the tree, ignoring
the purple hyperplanes in the figure. The leaf node (4,7) is set as the current best
match and the algorithm starts to traverse back to the root node, checking the
distance at every node. Since the radius of the small circle centered around the star
is the current best match and it is not intersecting with the purple hyperplanes, we
can now discard those hyperplanes and the algorithm does not search through them.
Once at the root node, the algorithm terminates and (4,7) was indeed the closest
neighbour.

2.6 KLT tracker

The Kanade-Lucas-Tomasi (KLT) tracker is an intensity based tracker, this method
tracks points in one image to another using optical flow which is based on changes
in light intensity. This means that the tracker is not comparing nor matching any
descriptors as described in section 2.5. Given I and J, two images in sequence, the
idea is to find a point v =

[
vx vy

]T
on image J where the intensity of I(u) and

J(v) are a match. This can be summarized in the following equation

v = u + d =
[
ux + dx uy + dy

]T
(2.24)

where d =
[
dx dy

]T
is the optical flow at point u. Since there are multiple dis-

advantages with tracking only a pixel using optical flow[27], the algorithm uses a
window which is centered at the feature point. The vector d, also called the dis-
placement vector, contains as mentioned two parameters. These parameters are
chosen in order to minimize the residual error. Which can be seen in the following
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equation [28]

ε(d) =
ux+wx∑

x=ux−wx

uy+wy∑
y=uy−wy

(I(x,y)− J(x+ dx, y + dy))2 (2.25)

Here wx and wy are parameters for the window size. If the residual error is below
some threshold, the points are a match. The time between two sequential images
must be sufficiently low, since images taken at near same time instances are strongly
related and the displacement vector will thus be small[27]. Further details about
the KLT tracker can be read about here [27, 28, 29, 30]

2.7 Motion estimation
Once features have been found and matched in previous and current image, it’s time
to estimate the motion. Motion estimation is the fundamental step performed in
every step in a VO system. The basis of this algorithm involves computation of the
relative camera motion between previous and current image. By concatenating all
these relative movements, the trajectory of the camera is recovered.

This section will give a detailed explanation of two methods used for estimating the
relative motion. The two methods are

• 2D–to–2D: Features in both previous and current image are given in 2D image
coordinates.

• 3D–to–2D: In this case the features in previous image are triangulated and
given in 3D-coordinates. Corresponding features in current image are given in
2D.

2.7.1 2D–to–2D
The underlying idea of 2D–to–2D is to utilize some geometric relations to which the
image correspondences are restricted to. These relations are also known as epipolar
geometry and can be seen in Figure 2.1 on p. 5.

Consider the case of monocular VO where two images I0 and I1 are taken at time
k = {0, 1}. Let c0 and c1 denote the camera centers at k = 0 and k = 1 respectively,
where c1 has undergone the rotation R and translation t relative c0. Also let the
projection of the 3D-point X on the camera planes, i.e. images, be p and p′. Looking
at Figure 2.1 on p. 5 we can see that the vectors, between X and the camera centers,
(c0 −X) and (c1 −X) spans a plane known as the epipolar plane. Since t also lie
in this plane, we know that the cross product between t and (c1 −X) is the normal
vector of the epipolar plane and it is orthogonal to (c0 −X). This means that

(c0 −X)> (t× (c1 −X)) = 0. (2.26)

However since we know that p is parallel to (c0 −X) and Rp′ is parallel to (c1 −X),
(2.26) can be rewritten as

p> (t×Rp′) = 0. (2.27)
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By using the property t×R = [t]×R, where

[t]× =

 0 −tz ty
tz 0 −tx
−ty tx 0

 , (2.28)

is a skew symmetric matrix, (2.27) becomes,

p> [t]×Rp′ = p>Ep′ = 0. (2.29)

The matrix E is called the essential matrix. Hence the 2D–to–2D correspondences
problem boils down to estimating the essential matrix satisfying (2.29) for all of the
feature correspondences. In practice there is no matrix that is able to solve it due
to noise, there will always some residual left. We can deal with this problem by
incorporating it with a RANSAC-framework in order to minimize the residual, see
section 2.9.

There are several different methods solving for the essential matrix, however since
R has three Degrees of Freedom (DoF) and t has two DoF (correct up to scale), we
have chosen the five point solution proposed by Nistér in [31]. This means that only
five correspondence points are needed to estimate the essential matrix. Generally we
want to choose a method based on as few correspondences as possible for efficiency,
see section 2.9. Once the essential matrix is computed we need to extract R and t
where

R = U
(
±W>

)
V>,

t = U (±W) SU>,
(2.30)

where

W> =

 0 ±1 0
∓1 0 0
0 0 1

 , (2.31)

and the matrices U,S and V are computed from the Singular Value Decomposition
(SVD),

E = USV>. (2.32)

2.7.2 3D–to–2D
As mentioned in previous section, the five point method can be used to calculate
the essential matrix from which the pose (R and t) can be extracted. The method
requires image correspondences in two different images (feature points) as indicated
by the name, 2D–to–2D. However there are methods utilizing feature points and
their corresponding 3D-points. The problem of estimating the pose using this ap-
proach is know as Perspective–n–Point (PnP), where n is the number of feature
points and their corresponding 3D-points. Although this method is not used in this
thesis, it is interesting to know how it works compared to 2D–to–2D.
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In section 2.9 we learn how the number of correspondence points affects the number
of iterations required by the RANSAC algorithm in order to filter out outliers. This
means that we can keep the number of iterations down by estimating the pose using
a method requiring fewer correspondence points. And as show in [32], the minimum
number of correspondence points required is three and the method is denoted as
P3P. The output of the algorithm will in fact be four possible poses, however by
using a fourth correspondence point three of the solutions will be eliminated.

One downside with this method is that the 3D-coordinates of the feature points are
required as indicated by the name 3D–to–2D. This is not a problem if the images
are given in Red Green Blue - Depth (RGB-D) format (the format uses one extra
channel containing information about the image depth). However in our case, where
we only use one camera without any information about depth, some workaround is
required concerning triangulation of the feature points as described in section 2.8.

The 3D–to–2D method requires image correspondences across three images. The
outline of this method is as follows:

1. Compute feature correspondences pk−2,pk−1 and pk across the images Ik−2, Ik−1
and Ik.

2. Use 2D–to–2D method to extract relative transformation Tk−2,k−1 between
images Ik−2 and Ik−1.

3. Use Tk−2,k−1 to triangulate corresponding 3D-points X.
4. Use X and pk in the P3P-algorithm to compute the transformation Tk−1,k

between images Ik−1 and Ik.
5. Compute feature correspondences pk−1,pk and pk+1 across Ik−1, Ik and a new

image Ik+1.
6. k = k + 1.
7. Go to step 3.

It should be noted that X and p are vectors of equal length containing 3D-coordinates
and 2D-coordinates respectively for the features extracted and matched across the
images. The length n ≥ 4 is required since the P3P-algorithm needs at least three
features and the fourth feature is used to get the unique solution. We can also see
that the 2D–to–2D method is only used to initialize the algorithm.

2.8 Triangulation
As discussed in section 2.7.2 the P3P-algorithm requires 3D correspondence which in
this case (working with only one camera with no depth information) must be com-
puted using triangulation from two different views. The process of triangulation
concerns the task of computing the position of a point in space given its position in
two images by finding the intersection of two known rays in space. Acknowledging
the fact that feature matching across different views is not always perfect due to
noise, makes the task of triangulation slightly more difficult than expected. This
complication arises since the two rays will generally not meet, hence it is necessary
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to find the best point of intersection. A lot of research has been done in this area
and as a result of that several different methods have been developed. For more
information refer to [33, 34] where the authors have developed an optimal way of
triangulation, they also compare several different methods.

The simplest methods is the linear triangulation method which is the only method
implemented in the OpenCV library. The method works by using the property of
the pinhole camera model described in (2.2) with some additional parts since we are
dealing with two cameras. We can see that (2.2) is in fact equal to

λ

uv
1

 =

f 0 u0
0 f v0
0 0 1


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3


︸ ︷︷ ︸

M=(R|t)


X
Y
Z
1

 (2.33)

when the matrix M (extrinsic matrix) has an identity matrix as rotation and no
translation, (I3|0). The extrinsic matrix M′ for the second camera has however
undergone a transformation relative the first camera. The general form of the pro-
jection is expressed as

λ

(
p
1

)
= KM

(
X
1

)
(2.34)

for the first camera and
λ

(
p′
1

)
= KM′

(
X
1

)
(2.35)

for the second camera. Hence the objective of the linear triangulation method is
to find a vector X satisfying (2.34) and (2.35). We can combine these system of
equations and form AX = 0 [33], where

A =


uf3> − f1>

vf3> − f2>

u′f ′3> − f ′1>
v′f ′3> − f ′2>

 , (2.36)

and f i> are the rows of P = KM. The equations given by AX = 0 can then be
solved using singular value decomposition.

2.9 Outlier removal using RANSAC
As it is evident from sections 2.7.1 and 2.7.2, the foundation on which VO rests is
based upon the idea that the feature correspondences used in the process are perfect.
However since this is not the case we must contemplate with how to deal with these
outliers (false correspondences). Not accounting for this will yield wrong essential
matrix which in the end results in false transformation matrix.

One way of solving this problem is by using a method know as Random Sample
Consensus (RANSAC). The idea is to randomly select a set of data points which are
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then used to calculate a model. Then try to fit the rest of the data points to this
model and compute the error residuals. The set of points fitted to the model with
a residual less than a predefined threshold is called the consensus set. Redo this
iteratively a number of times and select the set yielding the largest consensus set.
In our case we want to choose a set of five feature correspondences which are used to
compute the essential matrix. Use all other feature correspondences to compute the
residual given by (2.29). The largest consensus set are inliers and rest are outliers.
A pseudocode for this method is given in Algorithm 1.

input : All features correspondences (w), iterations (K), threshold (t)
output: Five features (x) with largest consensus set (N), best essential

matrix (E)
N ← 0;
for K iterations do

l← selectFiveFeatures(w);
tempE ← computeEssentialMatrix(l);
n← fulfillConstraint(w - l, tempE, t);
if N < n then

x← l;
E ← tempE;
N ← n;

end
end

Algorithm 1: RANSAC.
The algorithm outputs five feature correspondences along with the essential matrix
they produce. The function fulfillConstraint() is simply computing the error
residual according to (2.29) and returns the number of features for which the resid-
ual is less than the given threshold, i.e. number of inliers. It is important to note
that a sufficient number of iterations is required in order to ensure that the five
feature correspondences are all inliers. If K is too small then some of the features
might be outliers hence a false essential matrix. However if K is too large then the
RANSAC algorithm will be time consuming.

Let N denote the total number of feature correspondences and s is the size of sample
we randomly select (five in our case). Furthermore assume that actual fraction of
inliers is ε and let γ be the probability that the RANSAC algorithm at least once
selects s inliers. This means that probability of choosing a set with only inliers is

P(set of inliers) = εs, (2.37)

which means that the probability of choosing a set with outliers is

1− P(set of inliers) = 1− εs, (2.38)

hence selecting a set of outliers K times is

P(K sets of outliers) = (1− εs)K . (2.39)
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This is equivalence to the RANSAC algorithm failing which means the probability
of success at least once (γ) is

P(success) = 1− (1− εs)K = γ. (2.40)

By rewriting previous equation we conclude that the number of iterations K is

K = log (1− γ)
log (1− εs) , (2.41)

and in Table 2.1 we can see how the number of iterations are affected by the sample
size and the percentage of inliers.

Number of iterations required for success
Sample size (s)

% inliers (ε) 2 3 4 5 6 7 8
90 3 4 5 6 7 8 9
80 5 7 9 12 16 20 26
70 7 11 17 26 37 54 78
60 11 19 34 57 97 163 272
50 17 35 72 146 293 588 1177
40 27 70 178 448 1123 2809 7025
30 49 169 567 1893 6315 21055 70188

Table 2.1: The table shows how the sample size (s) and the fraction of inliers (ε)
affects the number of iterations (K) required to successfully pick a sample with only
inliers when the desired probability of success (γ) is set to 99%.
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3
Implementation

This chapter describes the how the Visual Odometry algorithm is implemented by
piecing together the different parts from the previous chapter.

The implementation is done using C++ due to its superiority in speed, together
with the third party library OpenCV.

As mentioned in previous chapter the motion estimation in monocular VO can be
done using one of two methods, 2D–to–2D or 3D–to–2D. The algorithm in this
project is using the former, hence no triangulation is needed.

3.1 Visual Odometry
The implemented algorithm is divided into four parts. Part 1 acquires an image
and extracts features using one of three methods described in section 2.3. Part
2 involves finding corresponding features in another image which can be done by
either using feature matching (see section 2.5) or feature tracking (see section 2.6).
In Part 3 the algorithm utilizes the epipolar contraint in order to compute the
essential matrix using the five points solution within a RANSAC framework. This
step also removes outliers as described in section 2.9. Part 4, which is the last
part of the algorithm, computes and extracts the rotation matrix along with the
translation vector according to equation (2.30).

Part 1, Feature detection: The first step is to acquire a rectified1 image and
send it to one of the feature detectors. The detector will find a set of features,
the quality and quantity of the features depend on the detector parameters, see
Appendix A.1 for a list of parameters used. Depending on the choice of method,
matching or tracking, descriptors for the features must be extracted.

Part 2, Finding corresponding features: The feature matching algorithm re-
quires features and descriptors for two consecutive images. Once those are sent to
the FLANN matcher the algorithm finds corresponding features in the two images by
comparing the descriptors. The features for which no match is found is deleted along
with the corresponding descriptor. A list of parameters for the FLANN matcher can
be seen in Appendix A.1.

1The images from the KITTI dataset used in this project are all grayscale and rectified.
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The KLT tracker works in a different way, it does not need descriptors. The tracker,
given a set of features in one image, tracks the features based on optical flow and
finds the corresponding features in the consecutive image. The features for which
no “match” is found, or the ones moving out of the image, are removed. Unlike the
feature matcher, where new features are detected in every new image, the features
detected in an image are tracked over several images. Once the number of features
drop below a certain threshold new features are detected.

Part 3, Compute essential matrix: The feature correspondences acquired in
previous part are sent to the five point algorithm in order to compute the essen-
tial matrix. Within this algorithm is the RANSAC-framework incorporated (see
Algorithm 1) where an essential matrix best describing the feature correspondences
is computed. The algorithm also ensures to remove any feature correspondences
which do not satisfy equation 2.29 using the computed essential matrix. The set of
features left are inliers. By tuning the RANSAC parameters described in section 2.9
the strictness of outlier rejection is achieved.

Part 4, Compute rotation and translation: The final part of the VO is to ex-
tract the rotation matrix and translation vector from the essential matrix, computed
previously, using equation (2.30). The rotation and translation are used according
to equation (2.1) in order to compute the relative transformation between two im-
ages. Once this is done the algorithm returns to Part 1.

A summary of the algorithm using feature matching and feature tracking is given
in Algorithm 2 and 3.
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input : Image (I), Velocity (v), minimum matches (ε)
output: Rotation (R), Translation (t)
for image 1 do

p′ ← extractFeatures(I);
d′ ← computeDescription(I, p’);

end
for images 2 : N do

p← extractFeatures(I);
d← computeDescription(I, p);
m← matchFeatures(d’, d);
if size(m) < ε then

/* Not enough matches */
[p′, d′]← [p, d];
return;

end
/* Compute essential matrix using only inliers */
/* oulier rejection using RANSAC is embedded */
E ← computeEssentialMatrix(p’, p, m);
[R, t]← computeRotationTranslation(E);
t← correctScale(t, v);
/* Save features and descriptors */
[p′, d′]← [p, d];

end
Algorithm 2: Visual Odometry using feature matching.
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3. Implementation

input : Image (I), Velocity (v), minimum features tracked (ε)
output: Rotation (R), Translation (t)
for image 1 do

p′ ← extractFeatures(I);
I ′ ← I;

end
for images 2 : N do

p← trackFeatures(I’, p’, I);
if size(p) < ε then

/* Not enough features found, detect new features */
p′ ← extractFeatures(I);
I ′ ← I;
return;

end
/* Compute essential matrix using only inliers */
/* oulier rejection using RANSAC is embedded */
E ← computeEssentialMatrix(p’, p);
[R, t]← computeRotationTranslation(E);
t← correctScale(t, v);
/* Save features and descriptors */
[p′, d′]← [p, d];

end
Algorithm 3: Visual Odometry using feature tracking.
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In order to evaluate and compare results from the different feature detectors, 3 dif-
ferent sets of images are used. The images which are from the KITTI dataset [35],
have different characteristics such as environment, traffic, distance and speed, see
Table 4.1. The results are divided into two parts. In the first part the algorithm is
evaluated using feature matching with three different type of detectors and descrip-
tors. In the second part however, the algorithm is using feature tracking instead
with the same three detectors.

Data sets used in the simulations
Data set Environment Traffic Speed Frames Distance Name
00 Residential + + 4541 3.73 km 2011_10_03_drive_0027

01 Highway +++ +++ 1101 2.45 km 2011_10_03_drive_0042

02 Residential + + 4661 5.07 km 2011_09_29_drive_0071

Table 4.1: Overall information about the datasets used in the simulations.

The comparisons are made with respect to execution time per frame, rotation error
measured in degrees per meter, and translation error measured in percent. The error
in rotation and translation is calculated and compared with the GPS ground truth
data (accurate <10 cm) using the KITTI evaluation code [35] where the results are
divided into subsequences of length (100, 200, . . . , 800) meters. Note however that
the execution time should be interpreted carefully since they may not be consistent
for the different simulations.

The evaluation code computes the translation error as the distance between the
endpoints of the ground truth subsequence and the corresponding estimated sub-
sequence. The rotation error is the difference between the orientations of the final
pose in the ground truth and VO algorithm for each subsequences.

4.1 Feature matching
This section will show the results obtained using feature matching. The results
are computed as following; for each image sequence the algorithm is evaluated three
times using the detectors along with their descriptors and matchers, i.e. FAST–ORB,
SURF–SURF, and SIFT–SIFT. The results are then presented using three different
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graphs showing the path of the vehicle, the translation error, and the rotation error
for each method. In Table 4.2, at the end of the section, a summary of the obtained
results are presented.

The result for dataset 00 are presented in Figure 4.1. We can see that errors for
the three different detectors are quite similar, especially for SURF and SIFT. The
FAST detector appears to handle the translation error better than the other however
the rotation error is larger than the other detectors. Furthermore we note that the
average execution time is 0.22274 s/frame for the FAST detector compared to 0.7667
s/frame and 0.6098 s/frame for SURF and SIFT respectively, see Table 4.2.
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Figure 4.1: Evaluation of dataset 00 using feature matching.

Evaluation results for dataset 01 can be seen in Figure 4.2. This particular dataset
represents driving on a highway where the velocity of the vehicle is high. The
environment is also not ideal since it contains a lot of trees which makes the detection
of “good” features poor. However the detectors performs relatively well considering
the environment, especially SIFT with lowest error in both rotation and translation.
And once again it is noted that the FAST detector exceeds in speed with an execution
time of 0.1053 s/frame.
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Figure 4.2: Evaluation of dataset 01 using feature matching.

Looking at the trajectory of the vehicle in Figure 4.3a – 4.3c we can immediately see
that all three detectors performed quite well for dataset 02, which is also reflected
in the error plots. Despite the large distance traveled by the vehicle, the error
propagation is small in contrast to previous results. As predicted by the theory,
SIFT achieves best result in terms of error while FAST outperforms in speed, see
Table 4.2.
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Figure 4.3: Evaluation of dataset 02 using feature matching.

Summary of results for matcher
Data set Rotation Translation Time

[deg/m] [%] [s/frame]
FAST 00 0.0066 3.22 0.2274

01 0.0155 5.99 0.1053
02 0.0057 1.19 0.3567

mean 0.0093 3.47 0.2298
SURF 00 0.0057 4.37 0.7667

01 0.0070 5.38 0.5421
02 0.0049 1.25 0.8393

mean 0.0058 3.67 0.7161
SIFT 00 0.0044 4.37 0.6098

01 0.0062 2.39 0.4876
02 0.0035 0.92 0.7207

mean 0.0047 2.56 0.6061

Table 4.2: A summary of the results obtained by the detectors for all datasets
using feature matching.
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4.2 Feature tracking
Having evaluated all three datasets using feature matching in previous section, we
proceed by reevaluating the datasets now using feature tracking. As described in
section 2.6, the KLT does not depend on feature matching using descriptors instead
it relies on optical flow. This means the VO algorithm will run faster but not nec-
essarily better.

Starting with dataset 00 we can immaculately conclude that the results are slightly
worse (as seen in Figures 4.4a – 4.4c) than the ones obtained by the matcher, es-
pecially for the FAST detector. However the execution time for all three methods
have also changed as expected. All three methods are faster, noticeably for SURF
and SIFT, when no feature matching is done.
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Figure 4.4: Evaluation of dataset 00 using feature tracking.

Continuing with dataset 01 we see that the impact on the results are even more
noticeable than previous. As mentioned earlier, this dataset represent driving on
a highway were no clear structures are visible which makes the feature detection
more difficult. The only source for features are bypassing vehicles and trees. This
combination is clearly reflected in the translation error Figure 4.5e where the error is
increasing for all detectors. This difference is however expected considering the fact
that we cannot distinguish the feature as good when no descriptors are available.
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Figure 4.5: Evaluation of dataset 01 using feature tracking.

The last data evaluation, dataset 02, using the tracker has some interesting results.
So far the trajectory of the path has been consistent for all three detectors however
is not the case for this dataset. The method using FAST clearly deviates from the
other two, Figure 4.6a. SURF and SIFT seems to handle the dataset quite well which
might be due to the fact that the environment is full off structures providing “good
enough” features to track for these methods. However looking at the images in the
dataset we can also see that the vehicle is driving in an area with many trees which
may be one reason to why the FAST detector performs so poorly. The error plots
in Figure 4.6d and 4.6e show that SURF and SIFT perform very similar, which can
also be seen in dataset 00 in Figure 4.4d – 4.4e. This raises the question to whether
these two detector are so different or not, now that their respective descriptors are
not used.
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Figure 4.6: Evaluation of dataset 02 using feature tracking.

Summary of results for tracker
Data set Rotation Translation Time

[deg/m] [%] [s/frame]
FAST 00 0.0099 7.06 0.1482

01 0.0117 12.70 0.1441
02 0.0091 2.30 0.2372

mean 0.0103 7.36 0.1765
SURF 00 0.0051 5.26 0.2332

01 0.0204 14.43 0.2806
02 0.0048 0.95 0.2459

mean 0.0101 6.88 0.2532
SIFT 00 0.0055 4.82 0.2086

01 0.0124 10.25 0.2732
02 0.0047 0.99 0.2438

mean 0.0075 5.36 0.2419

Table 4.3: A summary of the results obtained by the detectors for all datasets
using feature tracking.
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5
Discussion

This chapter is dedicated to a short discussion of the results obtained by the algo-
rithm by trying to explain the behaviour. The chapter is divided into three parts.
The first part will cover the affect of the chosen detectors and descriptors on the
results. The second part will discuss the benefit of using 3D–to–2D instead of 2D–
to–2D. And finally in the last part we will recommend some changes to be considered
in future work to improve the ego-motion.

5.1 Feature detectors and descriptors

Looking at the results for the matcher we can see a clear and unmistakable differ-
ence between the different feature detectors, both in terms of execution time and
accuracy. The underlying trend is that the FAST detector combined with the ORB
descriptor yields the fastest execution time. However this comes at the cost of losing
accuracy. We can also see that the SIFT detector is the most accurate detector but
not as fast as the FAST detector. This trade off between speed and accuracy is to
be expected and it is also supported by the theory. The same holds for the on going
trend. One behaviour deviating from the theory is that of the SURF descriptor.
Given how it works in comparison with the SIFT descriptor and the fact the it uses
less information, the SURF–SURF combination should run faster than SIFT–SIFT.
This does not seem to be the case. In most of the results the accuracy of SURF–
SURF is almost comparable to SIFT–SIFT which could be one of the explanations.
This means that the parameters are tuned to achieve higher accuracy which then
affects the speed of the algorithm.

By using feature tracking we are effectively eliminating the use of descriptors and as
a result of that we can see the impact on the performance. The error increases for
all detectors, especially the translation error, but the execution time decreases. And
it seems that SURF and SIFT are affected significantly when used in a tracker with-
out their corresponding descriptor, indicating that these descriptors are slow but at
the same time crucial to a correct feature matching. The change of performance in
absence of descriptors is however also supported by the theory. In the case of SIFT
descriptors, for every feature, a vector of 128 number of floating precision is used
yielding a total of 512 byte/feature. For the SURF descriptor the number is 256
byte/feature. This means that the run-time will be affected, especially if memory
management in C++ is not done carefully. Another interesting result when using
the KLT tracker is the one obtained by the FAST detector. For instance by referee-
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ing to the trajectories of the vehicle in Figure 4.4a and 4.6a and comparing them to
the corresponding trajectories with the matcher (Figure 4.1a and 4.3a), we see a sig-
nificant difference. The results obtained using the matcher follow the ground truth
much better than when using the KLT tracker. This particular behaviour suggests
that the FAST detector alone, in absence of ORB descriptor, does not perform well
compared to the other detectors. This is a result of two different factors. One of the
factors is that the KLT tracker is not well tuned. By tuning the parameters of the
tracker one would expect to get better results. The other factor is that the FAST
detector simply is not well suited by itself in terms of accuracy.

5.2 Implementation
It is important to realize that the results are not only affected by the choice of
detectors and descriptors. In section 2.7.1 and 2.7.2 we discussed different methods
for motion estimation, mainly 2D–to–2D and 3D–to–2D, which would also change
the performance of the overall algorithm. If the chosen implementation had been the
latter, several things would have been different. First of all the RANSAC algorithm
would be faster, as seen in Table 2.1, due to the number of correspondence points
used in the P3P algorithm. Besides this gain in run-time, the accuracy could also
be better by using Bundle Adjustment1 since this optimizes the pose with respect
to features detected in several consecutive images [36].

5.3 Future work
In order to improve the results of the Visual Odometry, there are several interesting
ideas that could be investigated. Besides the detectors and descriptors used in this
thesis, a numerous others are available which might even perform better. Even if
the proposed detectors descriptors are not changed, some code optimization could
be considered. For instance the detection of features could be done using the GPU
for a faster execution time or even FPGA could be used. And the feature matching
could implemented by utilizing parallelized loops in the C++ code, which could
improve the performance.

It would also be interesting to considering 3D–to–2D for motion estimation by im-
plementing P3P algorithm. This choice of implementation enables the opportunity
to use Bundle Adjustment (BA) which could improve the accuracy, even if a small
number of images and points are accounted for [36]. If it is possible to use stereo
cameras the triangulation for the BA and P3P would be more convenient.

1Bundle Adjustment (BA) is the concept of of minimizing the reprojection error of the triangu-
lated features with respect to several different features and images. This is done by optimizing the
transformation matrix and the triangulated features until the reprojected points yield a minimum
error in those images. The complexity of BA increases with the number of images and triangulated
features used in the optimization resulting in a increase in run-time.
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Currently there are even more advanced methods which can achieve better results
than Visual Odometry. One such method where the ego-motion is obtained as a
consequence of the algorithm is Simultaneous Localization and Mapping (SLAM).
The purpose of SLAM is to build a map of the surroundings to together with the
position of the camera in the map. Visual Odometry is in fact a special case of
SLAM when some of the parts of SLAM is removed. One of the benefits of SLAM
is the use of Loop Closure. Loop Closure is when the SLAM algorithm recognizes a
particular part of the map where the camera has already visited. And as a result of
that the algorithm corrects the position and map by comparing it to previous state.
However by using BA and Loop Closure along with a 3D-map of the environment,
more work has be put to code optimization in order to run the algorithm in real-time.
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Appendix 1

A.1 Parameters

Name Value
FAST Threshold 25

Non-max suppression True
Type TYPE_9_16

SURF Hessian threshold 400
Octaves 4
Octave layers 2
Descriptor elements 64
Orientations True

SIFT Number of feature UNLIMITED
Octave layers 3
Contrast threshold 0.04
Edge threshold 10
Sigma 1.6

FLANN Number of trees 4
Checks 50
Eps 0
Sorted True

KLT Termination criteria iterations & accuracy
Maximum iterations 30
Accuracy 0.001
Window size 21×21
Maximum levels 3

RANSAC Desired confidence 99.9%
Threshold 0.5

Table A.1: A list of parameters used to produce results.

I


	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background
	Purpose
	Delimitations
	Structure of the thesis
	Different methods of positioning

	Theory
	Problem formulation
	Pinhole camera model
	Feature detection
	Harris corner detection
	FAST
	SIFT detector
	SURF detector

	Feature descriptors
	ORB
	SIFT descriptor
	SURF descriptors

	Feature matching
	Brute force
	FLANN

	KLT tracker
	Motion estimation
	2D–to–2D
	3D–to–2D

	Triangulation
	Outlier removal using RANSAC

	Implementation
	Visual Odometry

	Results
	Feature matching
	Feature tracking

	Discussion
	Feature detectors and descriptors
	Implementation
	Future work

	Bibliography
	Appendix 1
	Parameters


