
Deferred Vector Map Visualization

Matthias Thöny∗ Markus Billeter∗

Departement of Informatics, University of Zürich

Renato Pajarola∗

Figure 1: Example of a large scale vector map data set showing a part of a street network consisting of 16 million line segments.

Abstract

Interactive rendering of large scale vector maps is a key challenge
for high-quality geographic visualization software systems. In this
paper we present a novel approach for the visualization of large
scale vector maps over detailed height-field terrains. Our method
uses a deferred line shading approach to render large scale vector
maps directly in a screen-space shading stage over a terrain visu-
alization. The fact that there is no traditional geometric polygo-
nal rendering involved allows our algorithm to outperform conven-
tional vector map rendering algorithms for geographic information
systems. Our flexible clustered deferred line rendering approach
allows a user to interactively customize and apply advanced vector
styling methods, as well as the integration into a vector map level-
of-detail system.

Keywords: geographic visualization, vector map, line rendering

Concepts: •Human-centered computing → Geographic visual-
ization; •Computing methodologies → Rendering;

1 Introduction

Vector map visualizations are often part of geographical informa-
tion systems such as virtual globe software, mapping and navigation
systems or other geo-spatial real-time 3D environments. Improving
the interactive visualization of vector maps will allow these soft-
ware products to show and interact with more data and in a more

∗e-mail:{mthoeny|billeter|pajarola@ifi.uzh.ch}
Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s). c© 2016 Copyright held by the owner/author(s).

SA ’16 Symposium on Visualization , December 05-08, 2016, , Macao

ISBN: 978-1-4503-4547-7/16/12

DOI: http://dx.doi.org/10.1145/3002151.3002157

precise way. Vector maps are used to represent geographic features
such as streets, rivers, contour lines or land use information. An
example of such data can be seen in Fig. 1. Displaying and visual-
izing these data sets interactively in real-time 3D applications, such
as Google Earth, Caesium Virtual Globe and Map Engine or NASA
Worldwind is a challenging task. In this paper we focus on the prob-
lem of rendering large scale vector maps with many millions of line
segments within a 3D real-time geo-visualization application. The
massive amount of vector map data is challenging because of lim-
ited memory capacities and because of the rendering time per frame
which should be minimized for real-time purposes.

In geographic visualization systems, previous vector map render-
ing methods may cause visual artifacts that negatively affect the
interactive data exploration quality and corresponding geo-spatial
analysis tasks. Examples of such artifacts are shown in Fig. 2. In
particular, when combining multiple vector maps and a continuous
multiresolution level-of-detail terrain mesh the mismatching reso-
lutions cause significant artifacts in visualization. The problems in
Fig. 2(a) occur because line segments of differing resolution vector
maps (in yellow) float above or intersect the terrain. This unpre-
dictable scene configuration makes the problem more complicated
for geometric line rendering methods. Texture based approaches
can solve the intersection problem, but suffer from other artifacts
such as aliasing and projective distortions as shown in Fig. 2(b).

Compared to other vector map rendering methods, our approach
performs a deferred shading pass for the vector map data on top
of the traditionally rendered terrain surface such as to avoid de-
pendence on modified (preprocessed) vector map geometry. Con-
sequently this avoids the coupling between different vector maps
or between vector maps and the terrain height-field during a pre-
processing stage, and all data set combinations are changeable at
runtime. Furthermore, we can avoid on one hand artifacts as shown
in Fig. 2, and on the other hand we also achieve pixel precise line
display results even with multiple layers of vector maps with differ-
ent level-of-detail resolutions being visualized on top of the terrain.
Moreover, modern map visualization systems should allow the user
to interactively change their map visualization with advanced vec-

(a) (b)

Figure 2: Example artifacts when rendering vector maps. (a) Vector lines floating or intersecting the underlying 3D terrain, and (b) texture
mapping based projection and resolution artifacts.

tor styling methods. This requires a flexible line rendering method
capable of extending the geometric line rendering to a line styling
display concept. In this paper we take these requirements into ac-
count and allow interactive modification of vector maps on top of
the terrain visualization.

To achieve fast rendering, we will show how a deferred render-
ing approach can be exploited to interactively visualize large scale
vector maps with many millions of line features. In particular, we
demonstrate how a clustered spatial line segment hierarchy can im-
prove our deferred line rendering pipeline by optimizing the GPU
workload for every pixel.

2 Related Work

In the following section we review state-of-the-art techniques for
vector map rendering, as well as relevant work related to clustered
deferred shading. The terrain rendering in this work is based on
RASTeR [Bösch et al. 2009; Goswami et al. 2010] but could be
replaced by other state-of-the-art systems such as [Losasso and
Hoppe 2004; Dick et al. 2009; Livny et al. 2009; Ripolles et al.
2012; Kang et al. 2015].

2.1 Vector Map Visualization

Vector maps as shown in Figs. 1 and 2 are usually line or poly-
gon based data describing geometric objects with specific attributes.
This geometric information can be used directly for a 3D visual-
ization as shown in [Bruneton and Neyret 2008]. However, the
most popular method is the combination of vector maps with image
based information, like aerial photographic data, projected onto a
terrain height field surface model. The closest related approaches
for vector map visualizations discussed below can be divided into
three categories: (1) texture based, (2) applying geometric sub-
division and (3) using shadow volumes. These methods are de-
scribed in more detail in the survey of interactive visualization of
vector data [Kersting and Döllner 2002] and the survey of a digital
earth [Mahdavi-Amiri et al. 2015]. A possible system description
for these methods can be found in [Cozzi and Ring 2011]. In Tab. 1
we summarize the main advantages and limitations of these three
approaches in comparison to our new deferred vector map visual-
ization method.

A common method used in geo-visualization systems is the texture
based approach of rendering vector maps. Different descriptions of
this method as well as comparisons to other methods can be found
in [Kersting and Döllner 2002; Wartell et al. 2003; Sun et al. 2008;
Wang et al. 2009]. The basic idea is that vector maps are (orthog-
onally) rasterized to images and used as textures mapped on the
terrain, e.g. as in Fig. 2(b). In general, any rendering system can

easily apply textures to (terrain) surfaces, therefore, it is convenient
and simple to implement such a texture based vector map visual-
ization. In addition, texture based methods are often used if the
development targets have limited hardware capabilities such as em-
bedded devices, mobile platforms or browser based applications.

Texture based vector maps, however, may suffer from artifacts as
shown in Fig. 2(b). The highlighted artifacts are caused by the 2D
texture projection as well as stem from the limited texture resolu-
tion. If the texture resolution is increased, however, more mem-
ory is needed. Many systems thus work with preprocessed texture
pyramids, but adding higher resolutions increases on one hand the
memory consumption and on the other hand also the amount of tex-
ture files in these systems exponentially. Additionally, the texture
pyramid may introduce border artifacts of the vector map informa-
tion during rendering when used in a multiresolution level-of-detail
system. Furthermore, most of the systems using this type of visu-
alization do not allow immediate modification and styling of vector
maps within an interactive 3D display session. To achieve a precise
and suitable visualization for interactive vector map modification,
it is necessary to manage a dynamic texture pyramid and to im-
plement an on-the-fly rasterization step for updating vector maps.
The amount of re-rasterization grows with the complexity of modi-
fication possibilities such as selection of vector map layers or high-
lighting of selected elements. Artifacts often appear when moving
the view frustum close to the surface and the camera points to a far
distance. In these cases, the texture based approach can get overly
complex and costly in terms of memory, rendering time and system
flexibility.

In geometric subdivision approaches for vector maps [Kersting and
Döllner 2002; Schneider et al. 2005; Xu et al. 2010; Deng et al.
2013] lines are subdivided according to the terrain mesh structure
as illustrated in Fig. 3. Along the line segment at every change in
slope of the underlying terrain, corresponding to crossing triangle
edges, the line segment is subdivided. An application of the geo-
metric line subdivision in combination with advanced map styling
features can be found in [Vaaraniemi et al. 2011] and [Wilkie et al.
2012]. The methods show possible ways to do precise line ren-
derings. However, this geometric approach for vector maps has
the drawback that its line subdivision requires a predetermined and
fixed combination of terrain triangulation and vector map subdivi-
sion. Dynamically changing terrain information, as is the case in
continuous LOD terrain rendering, as well as unforeseeable com-
binations or editing of vector map data sets are hard to manage in
this approach, and therefore, interaction possibilities are limited.
This problem becomes even harder when the terrain information
contains multiple layers. This is the case when height maps of dif-
ferent resolutions are combined and transitions between them are
generated dynamically. It cannot be assumed anymore that a single

Criteria Geometric Approach Texture Mapping Approach Shadow Volumes Deferred Vector Maps

Rendering artifacts (Fig. 2) Intersections, z-Buffer artifacts texture aliasing, distortions geometric aliasing geometric aliasing

Output accuracy tesselation resolution texture resolution pixel-accurate pixel-accurate

Dynamic changes recompute tesselation redraw textures yes* yes

Interactive styling & editing recompute tesselation evaluate texture content missing geometry at shading update line buffer

Memory consumption geometry only hi-res textures geometry only geometry only

Additional geometry needed recompute tesselation none geometry extrusion only line information

Preprocessing requirements complete terrain necessary texture hierachy no preprocessing line buffer generation

GPU requirements none none geometry shader* random memory reads

Applicable to large data intensive preprocessing expensive redraw/preprocessed pixel overdraw too expensive demonstrated with > 106 lines

Table 1: The table summarizes the differences between previous methods and our new technique (last column). *GPU requirements may be
traded for a preprocessing step, making dynamic changes more costly.

point has a unique fixed height value, and often terrain blending is
done in the shader stage such that the mesh cannot be retrieved. In
such cases graphical artifacts would appear. Another aspect is the
precise overlay of planar geometric objects, which often leads to z-
buffer artifacts (z-fighting) due to the limited precision of the depth
buffer.

v
0

v
1

(a)

v
0

v
1

v
2 v

3

v
4

v
5

(b)

v
0

v
1

(c)

v
0

v
1

(d)

Figure 3: Example for subdivision of a line according to the terrain
height field. (a) Shows the elevation profile and (b) the subdivision.
(c) Shows the line on top of the terrain and (d) the subdivision of
the line matching the terrain mesh.

The shadow volume approach for vector map visualizations pro-
duces high quality solutions because the algorithm works indepen-
dent from the terrain resolution and always produces a pixel precise
result on the screen [Dai et al. 2008; Wang et al. 2009; Yang et al.
2011]. The idea is that the geometry of a vector map is orthograph-
ically projected on the terrain by extruding the vector map’s line
segments into 3D polyhedral objects. The vertically extruded poly-
hedrons are then rendered in two steps, first front faces then back
faces. Analog to shadow volumes, every screen pixel counts the
difference between front and back faces. The result per pixel then
contains the information if this pixel is a part of a projected vec-
tor map or not. The main drawback of this method is that multiple
geometry rendering passes are required for the vector map, in ad-
dition to the terrain, and that the vector map geometry has to be
extruded, e.g. in a geometry shader. On one hand the amount of
geometry is thus about four times bigger than in the original vector
map, and on the other hand every extruded line segment has to be
rendered twice. Furthermore, in case of large vector maps the ver-
tically extruded geometry covers large portions of the screen and
may produce a massive overdraw. Overall, this severely limits the
technique to rendering very moderately sized vector maps of maybe
a few thousand line segments. A special case is shown in [Ohlarik
and Cozzi 2011] where the method is optimized for vector maps
only containing lines. Furthermore, it is hard to preserve the origi-
nal vector map information so that advanced vector styling or pro-
cedural texturing can be achieved.

2.2 Deferred Shading

Our clustered deferred line rendering approach is inspired by
the way lighting calculations are done in deferred shading
pipelines [Saito and Takahashi 1990; Liktor and Dachsbacher
2012]. Deferred shading is applied to reduce the amount of shad-
ing operations by introducing a two-pass rendering pipeline. The
first pass renders the geometry and produces a set of textures con-
taining geometric scene information such as color, normal, depth
or light information. The collection of output textures of the first
pass is called a G-buffer, see also Fig. 4. All shading operations
are done as image based effects using the information from the G-
buffer in as few shading passes as possible. These render passes
implement the effective shading and lighting for every pixel as well
as other screen-space post processing operations such as e.g. an-
tialiasing [Chajdas et al. 2011] or ambient occlusion [Bavoil and
Sainz 2008]. Building up a deferred shading pipeline raises on one
hand the GPU memory consumption for additional texture layers,
and on the other hand the pixel fill rate because many more images
are produced than effectively used as final output frames. Eventu-
ally the overall rendering effort per frame can nevertheless be re-
duced drastically and allows for more image-space effects within
one single frame. Clustered Deferred Shading described in [Olsson
et al. 2012] subdivides the view frustum into clusters to improve
the rendering speed for scenes with many lights. In our concept
we took over the idea of clustering scene objects by creating line
clusters in world-space as a preprocess.

3 Deferred Vector Map Rendering

All approaches discussed above are using some kind of extracted
geometry or geometry rasterized on textures for vector map visu-
alizations. However, modern programmable GPUs allow us to de-
velop much more flexible systems. The basic idea of our line pro-
jection and rendering approach is to directly project and display
vector maps on top of the terrain surface using an adaptation of the
deferred shading principle without the need to generate intermedi-
ate geometric objects or textures. In contrast to common rendering
methods where the color of a pixel is derived from the main (geom-
etry) rendering pass, our approach inverts this principle for vector
map visualization.

In Fig. 4 we outline the main steps of our deferred line rendering
method as further detailed below. In a deferred shading stage, for
every pixel corresponding to a point on the terrain it is determined
if it contributes to the visualization of a vector map feature. Using
the G-buffer data obtained from the main terrain rendering pass, we
back-project each pixel into the 3D world and determine its loca-
tion within the vector map, see also Fig. 6. To identify candidate
line features, we use a clustered buffer storing all vector map line el-
ements, which we call a clustered line buffer. An optimized search

Cluster per pixel

G-buffer Stage

Cluster Evaluation

Deferred Line Shading

Line Preprocessor:

Line AssignmentClustered Line Buffer

Normals

Depth

Color

Cluster InformationComposition

Figure 4: Our deferred line rendering pipeline for large scale vector map visualization. After the generation of the G-buffer, the cluster
evaluation is performed and used as input in combination with the clustered line buffer for the deferred vector map line shading. The
clustered line buffer is prepared in the line assignment preprocess.

within the clustered line buffer clusters allows us to find the closest
line feature quickly and color pixels accordingly.

3.1 Clustered Line Buffer

During the deferred shading stage, for each pixel the closest inter-
secting line feature, if any, must be determined very quickly. For
this we use our clustered line buffer which clusters the individual
line segments of the vector map features into a large 2D structure
of cells. Every line segment is assigned to each buffer cell it inter-
sects. This can be a regular grid as currently implemented, but it
could also be a multi-level nested grid or other space-partitioning
hierarchy to better adapt to variations in the feature density in very
large vector maps. Important is the ability to perform point-to-cell
look-ups very efficiently, to allow fast identification of the cluster
containing the closest lines potentially intersecting a back-projected
pixel. Moreover, within each cluster the line segments are orga-
nized in an effective spatial search index structure to accelerate line
search and pruning as well as minimize distance calculations after
the coarse cluster identification.

The clustered line buffer is thus a data structure enabling fast point-
to-line search queries and is designed to be used efficiently on the
GPU during the deferred shading pass, as illustrated in Fig. 5(a).
The clusters of this line buffer are formed during a preprocessing
pass which assigns all vector map line segments to their correspond-
ing clusters as further described below.

Two line segment buffer arrays store the start- and end-point coor-
dinates {ps, pe} of the individual line segments li on the GPU. A
single line segment index buffer stores the indices to line segments
concatenated for all cluster. The cluster grid is represented by two
2D integer textures, ou,v representing the cluster’s index offset into
the line segment index buffer and cu,v for the index count denoting
the number of lines in the cluster. In a line assignment preprocess,
for each cluster Cu,v the vector map line features intersecting it are
recorded, counted, and then concatenated to form the line segment
index buffer.

The texture sizes for ou,v and cu,v equal the size of the cluster grid
Cu,v. On one hand the grid should not be too coarse, because that
would include too many line segments within each cluster. On the
other hand the amount of clusters is limited to the texture memory
that can be committed. In our implementation we typically divided
the map space into 256×256 clusters to express the cluster indices
u,v as one byte each. Other multi-level nested grids or space parti-
tioning structures could be used as well, given a memory efficient
implementation and fast cluster identification on the GPU.

The line assignment to a specific cluster follows a Bresenham line
rasterization pattern as illustrated in Fig. 5(b), with certain line seg-
ments being assigned to several clusters. As the line drawing style is
not known beforehand, we currently assume a predetermined con-
servative maximal line width which is incorporated into the line as-
signment. As indicated in Fig. 5(b), the line segment l1 = {p1, p2}
lies in at least two clusters, but since the line has a certain line width
we also have to assign its line segment index to all clusters it over-
laps, e.g. C1,2 too. Similar for l2 = {p3, p4} all overlapping clusters
along the line are included, e.g. including also C3,1.

To optimize the point-to-line query after the coarse point-to-cluster
location, we use a hierarchical spatial index structure to organize all
line segments within one cluster Cu,v. For simplicity combined with
efficiency we generate a fully balanced binary bounding volume hi-
erarchy (BVH). In the preprocess we first order all lines within each
cluster based on their midpoint along a space filling curve. Then we
build a binary tree bottom-up forming a balanced BVH. Other op-
timized BVH construction approaches could further improve upon
this solution.

3.2 Deferred Line Shading

The final fragment color for a screen pixel is determined in the de-
ferred line shading stage, see also Fig. 4. In this stage our approach
decides whether a pixel contributes to the visualization of a vec-
tor map element or not. Using the clustered line buffer, where all
line segments are grouped into clusters, the search space of all line
segments influencing a single pixel can be restricted to the line seg-
ments belonging to a certain cluster into which the pixel projects.
Hence the line identification consists of two main steps: in the first
step it is necessary to determine the cluster in the clustered line
buffer affecting a certain pixel. The second step determines if and
which line effectively intersects the given pixel considering the ap-
plied line-style width.

The cluster of a certain pixel s(x,y) is determined by a backwards

projection of the pixel position from screen space to world space
coordinates. For every screen position s(x,y) a back projection can

be applied using the corresponding depth d(x,y) from the G-buffer

information, illustrated in Fig. 6 by the red line. The back projec-
tion of s(x,y,d(x,y)) then results in the point Is which is the pixel’s lo-

cation in world coordinates. The back projection can be expressed
as multiplication with the inverse view-projection matrix MVP as

Is = M−1
VP · s(x,y,d(x,y)).

With the information about the clustered line buffer’s subdivision
of the vector map and the point Is in world space, it is easy to cal-

Index offset
per cluster

12

Index count
per cluster

3

... n

l
n

0 12... 13 14

Line segment index buffer:

Line segment buffer:

l
0

2 ...

p
5

p
6

(a)

p
1

p
2

p
3

p
4

C
(3,1)

C
(0,0)

C
(u,v)

C
(1,2)

(b)

Figure 5: (a) The clustered line buffer GPU data structures consist of multiple array buffers and textures supporting efficient point-to-cluster
location and point-to-line search queries from a given geographical location. (b) Assignment of feature lines to clusters by rasterization.

culate the cluster Cu,v containing the point Is. In other words, this
step maps the screen-space pixel locations (x,y) to the cluster-index
space (u,v). In Fig. 4 we visualize this cluster evaluation by col-
oring each pixel in (red,green) based on its relative position within
the corresponding cluster.

p�

p� p�

p�
p�

IV

s�[�\�

Figure 6: Pixel back-projection and vector map location.

Using the back-projected 3D point location Is of a pixel s(x,y) with

depth d(x,y) from the G-buffer we thus have determined the cluster

Cu,v containing any potential line candidates. We now have to deter-
mine if the point Is lies within a certain distance of any line segment
li ∈Cu,v in the 2D vector map plane. As illustrated in Fig. 6, point Is

lies inside a certain distance to the line segment p1, p2 of the vector
map. Thus it is considered to be part of that line segment and the
pixel s(x,y) can be colored accordingly using the current style and

visualization parameters.

For large and complex vector maps as shown in Figs. 10(a), 10(c)
and 10(f), however, per-pixel line identification and point-to-line
distance tests can become costly in our deferred line shading ap-
proach and some further optimizations are called for as described
below.

The point-to-line search and distance calculation within a cluster
Cu,v should be optimized to keep the per-pixel computation cost
low. Fig. 10(d) shows a heatmap indicating the varying cost effort to
find corresponding line segments. Given the varying number of line
segments in different clusters, for large vector maps we organize the
line segments within each cluster in a BVH as already mentioned
in Sec. 3.1 to limit the number of distance test computations.

Given a pixel’s position Is in world coordinates and in vector-map
space, the BVH can be traversed effectively to identify the leaf
nodes containing any line segments l′i ⊆Cu,v which are potentially
closer than a certain given distance from Is. Only for this subset
of lines l′i the point-to-line distance has eventually to be computed.
Therefore, even for very large vector maps with many millions of
lines, the amount of line distance tests required per cluster is even-
tually reduced to a small number and can thus be performed in a
fragment shader for each pixel efficiently.

3.3 Line Styles and Antialiasing

The deferred line rendering method outlined above can further sup-
port visualization features beyond bare line rendering. In particular,
the screen-space per-pixel shading allows the implementation of
advanced colorization decisions like applying different line styles
and line patterns on-the-fly during interactive rendering. Cross-
sectional color patterns can easily be incorporated into a generic
line shader taking the width of the line feature and the distance
of the pixel to the line into account (see also Fig. 8 and results
in the next section). Longitudinal procedural patterns can be ap-
plied using pattern buffers and more complex line shaders as well.
Furthermore, given the pixel-to-line distance to the closest or all
pixel-intersecting line features, alpha-blended compositing of mul-
tiple features or over background can be achieved. Dynamically
varying or view-dependent visualization parameters can also be in-
corporated into the deferred line shading process, as demonstrated
e.g. in Fig. 9 with an interactive lens function.

Thin lines can suffer from aliasing artifacts as shown in Fig. 10(c)
where distant contour lines at the back become discontinuous. This
effect may appear in several ways and is caused by the difference of
the line size and the size of one pixel at this distance. In our man-
ual GPU implementation, we distinguish three cases as described
in Fig. 7. In the first, normal case when the line width covers sev-
eral pixels, normal pixel drawing works and common artifacts can
be reduced by supersampling or other standard antialiasing algo-
rithms. The second case describes artifacts due to procedural pat-
terns, see Fig. 7(b), which are not easily solved even when using
alpha-blending techniques. We handle this case by reverting to the
main color of the line pattern for line segments at far distances to
convey the primary association to feature categories. The result can
be seen in Fig. 10(b). The third case corresponds to a line segment
missing the line test for some pixels due to the line width being
smaller than the pixel at far distances. This is similar to render-
ing phone wires as described in [Persson 2012]. The main idea is
to adjust the line width for distant points and color the pixel using
alpha-blending based on the line’s approximative coverage of the
pixel. This is estimated from the ratio between the line’s width and
the pixel’s extent.

4 Results

Our implementation runs on an Intel Core i7 3.5 GHz, 16 GB RAM,
Nvidia GTX680 (4GB RAM, 1920×1080) machine with C++ and
OpenGL. It allows us to load and interactively visualize large scale
terrain and vector map datasets. In particular, the system supports
exploration of large scale vector maps interactively in a full 3D en-
vironment. Tab. 2 lists the vector map datasets used in our tests.

(a) d > pixel (b) d ≈ pixel (c) d < pixel

Figure 7: Three cases where aliasing artifacts can occur: (a) Reg-
ular line rendering staircase artifacts appear at distances where the
line width d is bigger than the pixel size. (b) If d is almost equal
to the pixel size artifacts may appear by wrong hits in the pattern
buffers when using line-style patterns. (c) If d is smaller than the
pixel size parts of a line segment are hidden and wrongly identified
as background.

Data set
Vector map Cluster Line Render

Lines max. size Assignment time

Vorarlberg (higher streets) 193,042 1,106 9.8 s 50 ms

Switzerland (TLM streets) 16,556,412 3,429 101.7 s 55 ms

Carinthia (isolines) 31,297,095 4,650 120.7 s 190 ms

Table 2: Dataset overview. For each vector map we used a
fixed cluster grid of 256 × 256. Average render times measured
for viewpoints (3840 × 2160 for 2 × supersampling) shown in
Fig. 10(b), 10(a), 10(c) including ∼15 ms for rendering terrain.

Experimental results show that our approach can be used for large
scale interactive vector map visualization, see also Fig. 10. In com-
parison to texture-based visualizations, it can be guaranteed that
the visual result is a pixel precise rendering as demonstrated in
Fig. 8. Our system maintains full pixel precision at any zoom-in
factor even near to the terrain. To achieve this with texture map-
ping it would require a much more complex and elaborate solution
still suffering from resolution artifacts, see also Fig. 8(f). In con-
trast to geometric line rendering approaches, intersecting or floating
line artifacts as shown in Fig. 2(a), as well as z-fighting problems
as shown in Fig. 8(a) can be avoided.

Our deferred line rendering solution also efficiently supports in-
teractively changing visualization parameters such as line size or
styling properties as well as view-dependent data selection with-
out reloading or re-rasterization of textures. A dynamic view-
dependent vector map data-lens example is shown in Fig. 9.

A regular grid based clustered line buffer without additional hier-
archical line segment organization is capable of handling vector
maps of up to 200,000 line segments and 1,100 lines per cluster.
The use of hierarchical spatial line indexing within each cluster fur-
ther makes the interactive exploration of much larger vector maps
possible. Vector maps with several millions of line segments can
be visualized at interactive frame rates with our methods using the
maximal cluster sizes indicated in Tab. 2. The rendering effort per
pixel depends on the number of lines and their organization within
each cluster in the line buffer. Fig. 4 shows an example for the con-
tent of the cluster information. Fig. 10(d) illustrates the per-pixel
line search and distance test costs based on our clustered line buffer
and local bounding volume line hierarchies.

5 Conclusion

In this paper we present a novel approach for handling GIS vector
data sets within interactive 3D environments. Our approach rep-
resents an efficient and flexible solution for different purposes. It
can be used for interactive editing and adaptive or view-dependent

(a) (b) (c)

(d) (e) (f)

Figure 8: Comparison of our approach (b,c,d) with normal 3D ge-
ometry (a) and texture based rendering (e,f): (a) A street rendered
as a simple geometric object. (b) Simple line rendering with our
method, and (c) applying some advanced vector styling. (d) A street
rendered with our algorithm, and (e) using texture mapping at the
highest resolution available for this texture set. (f) Overlay of (d)
and (e) for direct comparison.

(a) (b)

Figure 9: Example for interactive editing functionality. It is poss-
bile to interactivly fade out specific categories of streets from the
vector map on a pixel precise basis using alpha blending.

styling of vector maps as well as for large scale visualizations. In
particular, it is also suitable for dynamic level-of-detail and out-of-
core geographic visualization systems. Our approach relies on mul-
tiple rendering passes and was implemented using modern graphics
hardware. However, as hardware is continuing to improve in terms
of graphics functionality, this limitations may be overcome in the
near future.

Our next steps are the extension of the system to work with polygo-
nal objects as well as further improve rendering speed. In addition,
future plans include an extensive evaluation and incorporating the
system with a vector map out-of-core level-of-detail system to make
larger data sets accessible.

Acknowledgements

The authors want to thank the Federal Office of Topography Swis-
stopo for providing the Swiss VECTOR25 and SwissTLM data sets
as well as the Landesvermessungsamt Feldkirch, Austria, for pro-
viding the data sets of Vorarlberg.

(a) (b)

(c) (d)

(e) (f)

Figure 10: (a) An example for line rendering of street data with styling pattern. (b) Example showing the smooth transition of a procedural
pattern to solve alising artifacts shown in Fig. 7(b). (c) Carinthia isolines with black contour lines and distant lines suffering from aliasing
artifacts. (d) A heatmap illustrating the bintree line search and intersection traversals cost from black (zero traversals) over blue to green. (e)
Visualization of ski slopes over a hill-shade textured terrain with blue and red colored slopes for beginner and advanced levels respectively.
Off-piste tracks are shown in a stippled black style pattern. (f) Swiss TLM street data containing 21 different categories of streets and using
multiple line styles. Streets smaller than 4m wide using white and grey combinations, streets with 6m width are shown in yellow, and streets
more than 10m wide are shown in red. Highways are highlighted in orange.

References

BAVOIL, L., AND SAINZ, M. 2008. Screen space ambient occlu-
sion. In ShaderX 7, NVIDIA Corporation.

BÖSCH, J., GOSWAMI, P., AND PAJAROLA, R. 2009. RASTeR:
Simple and efficient terrain rendering on the GPU. In Proceed-
ings Eurographics Areas Papers, Scientific Visulization, 35–42.

BRUNETON, E., AND NEYRET, F. 2008. Real-time rendering and
editing of vector-based terrains. Computer Graphics Forum 27,
2 (April), 311–320.

CHAJDAS, M. G., MCGUIRE, M., AND LUEBKE, D. 2011. Sub-
pixel Reconstruction Antialiasing for Deferred Shading. Pro-
ceedings Interactive 3D Graphics and Games, 15–22.

COZZI, P., AND RING, K. 2011. 3D Engine Design for Virtual
Globes. A. K. Peters, Ltd.

DAI, C., ZHANG, Y., AND YANG, J. 2008. Rendering 3D vec-
tor data using the theory of stencil shadow volumes. The Inter-
national Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences 37, 643–648.

DENG, B., XU, D., ZHANG, J., AND SONG, C. 2013. Visual-
ization of vector data on global scale terrain. In Proceedings
International Conference on Computer Science and Electron-
ics Engineering, Atlantis Press, Advances in Intelligent Systems
Research, 85–88.

DICK, C., KRÜGER, J., AND WESTERMANN, R. 2009. GPU
ray-casting for scalable terrain rendering. In Proceedings Euro-
graphics Areas Papers, 43–50.

GOSWAMI, P., MAKHINYA, M., BÖSCH, J., AND PAJAROLA, R.
2010. Scalable parallel out-of-core terrain rendering. In Pro-
ceedings Eurographics Symposium on Parallel Graphics and Vi-
sualization, 63–71.

KANG, H., JANG, H., CHO, C.-S., AND HAN, J. 2015. Multi-
resolution terrain rendering with GPU tessellation. The Visual
Computer 31, 4 (April), 455–469.

KERSTING, O., AND DÖLLNER, J. 2002. Interactive 3D visual-
ization of vector data in GIS. In Proceedings ACM SIGSPATIAL
International Conference on Advances in GIS, 107–112.

LIKTOR, G., AND DACHSBACHER, C. 2012. Decoupled deferred
shading for hardware rasterization. In Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games,
143–150.

LIVNY, Y., KOGAN, Z., AND EL-SANA, J. 2009. Seamless
patches for GPU-based terrain rendering. The Visual Computer
25, 3 (February), 97–208.

LOSASSO, F., AND HOPPE, H. 2004. Geometry clipmaps: Ter-
rain rendering using nested regular grids. ACM Transactions on
Graphics 23, 3 (August), 769–776.

MAHDAVI-AMIRI, A., ALDERSON, T., AND SAMAVATI, F. 2015.
A survey of digital earth. Computers and Graphics 53 (Decem-
ber), 95–117.

OHLARIK, D., AND COZZI, P. 2011. A screen-space approach
to rendering polylines on terrain. In ACM SIGGRAPH Posters,
68:1–1.

OLSSON, O., BILLETER, M., AND ASSARSSON, U. 2012.
Clustered deferred and forward shading. In Proceedings ACM
SIGGRAPH/Eurographics Symposium on High-Performance
Graphics, 87–96.

PERSSON, E., 2012. Graphics gems for games: Findings from
avalanche studios. ACM SIGGRAPH Advances in Real-Time
Rendering in Games - Course Material, August.

RIPOLLES, O., RAMOS, F., PUIG-CENTELLES, A., AND

CHOVER, M. 2012. Real-time tessellation of terrain on graphics
hardware. Computers & Geosciences 41 (April), 147–155.

SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible rendering
of 3-D shapes. In Proceedings ACM SIGGRAPH, 197–206.

SCHNEIDER, M., GUTHE, M., AND KLEIN, R. 2005. Real-time
rendering of complex vector data on 3D terrain models. In Pro-
ceedings International Conference on Virtual Systems and Mul-
timedia, 573–582.

SUN, M., LV, G. L., AND LEI, C. 2008. Large-scale vec-
tor data displaying for interactive manipulation in 3D landscape
map. The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences 37, 507–512.

VAARANIEMI, M., TREIB, M., AND WESTERMANN, R. 2011.
High-quality cartographic roads on high-resolution DEMS.
Journal of Winter School of Computer Graphics 19, 41–48.

WANG, X., LIU, J., AND BI, J. 2009. Rendering of vector data on
3D virtual landscapes. In Proceedings IEEE International Con-
ference on Information Science and Engineering, 2125–2128.

WARTELL, Z., KANG, E., WASILEWSKI, T., RIBARSKY, W.,
AND FAUST, N. 2003. Rendering vector data over global, multi-
resolution 3D terrain. In Proceedings Eurographics Symposium
on Data Visualization, 213–222.

WILKIE, D., SEWALL, J., AND LIN, M. C. 2012. Transform-
ing GIS data into functional road models for large-scale traffic
simulation. IEEE Transactions on Visualization and Computer
Graphics 18, 6, 890–901.

XU, Y., SUI, Z., WENG, J., AND JI, X. 2010. Visualization meth-
ods of vector data on a Digital Earth System. In Proceedings
International Conference on Geoinformatics, 1–5.

YANG, L., ZHANG, L., MA, J., KANG, Z., ZHANG, L., AND LI,
J. 2011. Efficient simplification of large vector maps rendered
onto 3D landscapes. IEEE Computer Graphics and Applications
31, 2 (March/April), 14–23.

