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Abstract—Global optimization methods can be employed to
design aperiodic array antennas that accurately account for their
electromagnetic behavior and complex performance specifica-
tions. However, they are computationally expensive and therefore
limited to small to mid-sized array problems. On the other hand,
analytical methods do not suffer from this problem, but often
assume idealized antenna elements and fully adjustable excitation
controls, thereby excluding beam degradation effects caused e.g.
by mutual coupling and quantized phase shifters. We present a
fast design method for large maximally sparse arrays (MSAs)
that is capable of handling the aforementioned limitations. It is
based on the previously published combined EM-Compressive
Sensing approach which has been herein generalized for multi-
beam optimization, and where we also exploit array symmetry
in order to reduce the design complexity. Results are obtained
for a circular array (100λ diameter) of horn antennas operating
in a multi-beam SATCOM scenario, and demonstrate that even
weak mutual coupling effects and small phase quantization are
important when very demanding side-lobe and cross-polarization
levels are required.

Index Terms—sparse array antennas, multibeam antennas,
satellite applications.

I. INTRODUCTION

Aperiodic array antennas are of great interest for modern ar-
ray applications, thanks to their ability to enhance multi-beam
performance while minimizing the number of elements and
associated costs with respect to classical uniform arrays [1].
To realize such array designs, Global Optimization (GO) and,
generally, stochastic techniques have been widely used [2]–[5].
Although well-established, these methods are computationally
expensive, and thereby suitable only for small to medium
sized array problems, or be used as a refinement of an initial
solution for large arrays [6]. Analytical techniques, on the
other hand, are very effective in handling large problems [7]–
[13]. A common drawback of the latter methods is that they
assume idealized antenna elements (often isotropic radiators)
and, hence, exclude mutual coupling (MC) effects between
antenna ports, which may be inadequate in some cases. The
resulting degradation of the beam quality (such as increased
side-lobe [14] and cross-polarization levels) can be assessed
by means of an a posteriori full-wave simulation of the final
array [15]. Accordingly, the effective steering vector can be
found by multiplying the antenna mutual coupling matrix with
the initially obtained steering vector [16]. Unfortunately, the
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Fig. 1: Full-wave EM model (CBFM) of the synthesized array
comprising 385 pipe horn antenna elements.

latter approach is limited to minimum scattering antennas, and
is neither part of the optimization loop.

Another important aspect that is often neglected, particularly
in analytical methods, is the joint optimization for multiple
beams. In fact, the array layout is often optimized for a single
(broadside) beam, which may not be a severe restriction for
small beam-scanning scenarios [17]. For wider scan ranges,
the beam scanning degradation due to a non-uniform element
pattern can be accounted for by modifying the optimization
mask [18].

The goal of this work is to go further and to develop a
fast design method for large maximally sparse arrays (MSAs)
– i.e. arrays with the smallest number of antenna elements –
satisfying a given pattern mask for multiple scanned beams
while accurately accounting for electromagnetic coupling ef-
fects and phase shifter quantization in the optimization phase.
Our approach is based on the Compressive Sensing theory,
where the synthesis of MSAs is formulated as the problem of
finding the element excitation vector with a minimum number
of non-zero entries (while fulfilling certain pattern constraints).
This is accomplished through an iterative convex optimization
procedure [19]. We have: (i) extended the original formulation,
which is constrained to single-beam arrays of isotropic ele-
ments radiating scalar fields, to the multi-beam vectorial-field
scenario; and (ii) hybridized the original iterative optimization
procedure with a full-wave EM analysis to include the effects
of the antenna element geometry and mutual coupling into the
design process (cf. Fig. 1). This hybridization represents also
an extension to [14] from linear to planar arrays, where we
can enforce a certain degree of symmetry of the array layout
to reduce the design complexity, which can subsequently be
exploited to reduce the optimization time.

This paper is organized as follows. Section II presents
the extended formulation of the MSA optimization problem
and describes the iterative EM-analysis and combined convex
optimization procedure. In Sec. III, the developed approach
is examined for large planar arrays comprising horn antenna
elements and operating in a multi-beam scenario. The per-
formance of the algorithm is assessed in terms of the beam
characteristics, number of array elements, as well as overall
synthesis time. Array symmetry, beam scanning and mutual
coupling effects are discussed in separate subsections. The
conclusions are presented in Sec. IV.
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II. METHODOLOGY

A. Generic Formulation of the Optimization Problem

The problem of synthesising a maximally sparse array is
that of designing an array with the least number of elements.
This can also be stated as finding the excitation vector
w = [w1, w2, . . . , wN ]T (where T denotes the transpose)
with the minimum number of non-zero entries, that is, to
solve the problem argmin ‖w‖`0 with w ∈ CN , subject
to certain pattern constraints. This is a NP-hard (Nondeter-
ministic Polynomial time hard [20]) problem for which no
closed-form solution exists, and finding a solution using a
combinatorial search method is intractable, even for moderate
array sizes. It is, however, possible to obtain a solution to this
problem through a more tractable iterative convex optimization
procedure. In [19], the problem is relaxed and solved in a
semi-analytical manner by approximating the `0-norm mini-
mization through an iterative weighted `1-norm minimization
procedure.

As a generalization to [19] and [14], for P focused beam
patterns scanning at the directions {r̂p}Pp=1 and prescribed
radiation masks {Mp

ν (r̂)}Pp=1 for the vector field component
ν, the ith iteration of the algorithm reads

argmin
wi∈CN

‖Ziwi‖`1 (1a)

subject to
{
fpco(r̂p) = 1, p = 1
|fpν (r̂)|2 ≤Mp

ν (r̂), p = 1, . . . , P
(1b)

where, in the minimization objective, Zi is a diagonal matrix
with entries zi = 1/(|w(i−1)| + ε), chosen as to maxi-
mally enhance the sparsity of the solution and is selected
based on the recommendation of [14]. The constraint terms
involve the array far-field patterns, which for N elements
with locations {rn}Nn=1, excitation coefficients {wn}Nn=1 and
embedded far-field vector patterns {fn(r̂)}Nn=1 can be gen-
erally written as f(r̂) =

∑N
n=1 wnfn(r̂) = fco(r̂)ĉo +

fxp(r̂)x̂p = [wT fco(r̂)]ĉo + [wT fxp(r̂)]x̂p, where fν =
[fν,1, fν,2, . . . fν,N ]T for ν ∈ {co, xp} are the co-polar and
cross-polar steering vectors.

Additionally, in multi-beam phased arrays, beams are
scanned by applying an appropriate phase shift to each element
excitation while keeping its magnitude fixed. Hence, for a
generic beam p with far-field function fp(r̂), the correspond-
ing excitation coefficients can be expressed as wpn = wne

−jΦp
n ,

where Φpn is the phase shift at element n for beam p. For linear
phase shift scanning in the direction r̂p, the corresponding
phase shift term is Φpn = krn · r̂p. However, quantized
phase shifters and other non-idealities can affect such values.
To account for this, each phase shift term can be modified
accordingly, e.g. by appropriate rounding leading to quantized
phase shifters, and be included in the design phase.

Please note that the method returns both the element posi-
tion and excitations, thus the final array is aperiodic but not
isophoric.

B. Iterative Optimization Procedure

To include the effects of mutual coupling (MC), a two step
iterative optimization procedure is used [14], cf. Fig. 2. During

Step I

Step II

INPUT: {rn}; {fn(r̂)}; {Mp
ν (r̂)}; δ

Iterative multi-beam
`1-norm minimization

Initial array
configuration (IAC)

Simulate EEPs for
active elements of IAC

Estimate EEPs for
inactive elements of IAC

Iterative multi-beam
`1-norm minimization

Iterate
if

different
set of
active

elements
is

identified

Final array configuration and excitation

Fig. 2: Block diagram of the proposed optimization approach.

Step I, the optimization is performed without considering the
MC effects and yields an initial sparse array configuration
while Step II involves the iterative full-wave EM analysis to
refine this initial solution. The available aperture is discretized
very finely so as to emulate a quasi-continuous element po-
sitioning and phase-shifted versions of the simulated isolated
element pattern (IEP) are assumed. Once the algorithm con-
verges, the significant (active) elements are found by setting
a threshold δ on the excitation magnitudes.

In Step II, a full-wave analysis of the initial array is
performed to obtain embedded element patterns (EEPs) of
the active elements. The IEPs of the active elements are
then replaced with the simulated EEPs, while the patterns of
the remaining elements are estimated by assuming a phase-
shifted version of their nearest simulated EEP. With this new
set of element patterns, the algorithm is invoked again to
obtain a new array layout. This procedure is repeated until the
convergence criterion is satisfied, i.e, the state of active and
inactive elements remains the same between two consecutive
iterations. Typically, few MoM-`1 iterations are needed to
reach convergence.

III. RESULTS

In the following subsection we describe how the symmetry
of the array layout can be enforced and subsequently be ex-
ploited to reduce the optimization time and design complexity.
We then present numerical results obtained with the developed
multi-beam optimization procedure for SATCOM applications
whose specifications are summarized in Table I and where
the beam coverage regions are as shown in Fig. 3. For this
type of application, frequency reuse is very important, giving
very stringent requirements on both the side-lobe and cross-
polarization levels of each beam in the Field of View (FoV).
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Fig. 3: Illustration of the multi-beam scenario, where (see
insertion on the right) each hexagon represents a (main-lobe)
beam spot on the Earth and the colors distinguish the four
frequency bands.

Typical values are 25–27 dB below the desired signal level.
However, relaxed requirements exist for the Out of the Earth
coverage, since spurious radiation in this region does not lead
to signal interference between beams but solely to a loss in
gain, and an increased system noise temperature in receive
mode, which is negligible owing to the cold space. Hence,
the aim is to minimize the number of array elements, while
fulfilling the side-lobe and cross-polarization requirements.
Accordingly, the pattern mask used in our optimization for
the maximum side-lobe and cross-polarization levels is set to
-25 dB from the Out of Coverage (±0.795◦) up to the edge
of the Field-Of-View region (±8◦).

The considered array element in Fig. 4 is a circular cor-
rugated pipe horn designed by RUAG Space AB [21]. The
element design frequency is 18.3 GHz, at which its aperture
diameter equals 1.5λ. Note that, over the given FoV, this
element has a virtually constant directivity of about 9 dBi
and D-plane relative cross-polarization level of order -40 dB.

A. Exploitation of the Array Symmetry

By enforcing symmetries in the array layout the overall
system design renders to a modular design approach, which
is beneficial for reducing the manufacturing costs as well as
the complexity of the connected subsystems. In fact, since
symmetry is enforced also on the excitation coefficients, only
a reduced number of amplifier types is needed. Furthermore,
symmetry can be exploited to expedient the optimization
process. In this subsection we consider the single beam
optimization case. Although various kinds of symmetries may
be enforced, we focus on rotational symmetry, since circu-
larly symmetric beams are required for the given SATCOM

TABLE I: Specification for the antenna design optimization

Array type Planar, dual-polarized
Antenna element type Corrugated pipe horn
Field of View (FoV) ±8◦

Beam arrangement Multi-spot 4-band hexagonal grid
Interbeam distance 1.06◦

Edge of Coverage angle 0.61◦

Out of Covererage (OoC) angle 0.795◦

Max. SLL in the OoC region -25dB
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Fig. 4: The corrugated horn (left, inset): MoM model and its
isolated element pattern; (right) The array layout and pattern
for the case of the 8-fold symmetry, where only one aperture
and pattern sector are considered during the optimization.

application. Rotational symmetry of order Nsym is obtained by
subdividing the circular aperture of the array in Nsym sectors.
This subdivision allows one to consider only the base sector
of the array in step I of the optimization process (no MC yet),
while the remaining part of the layout can be obtained through
rotation operations on the sectors and element patterns. This
reduces the number of discretization points of the uniform
array, and hence, the number of optimization unknowns.
Furthermore, since the resulting pattern will also exhibit such
symmetry, the number of pattern samples, and therefore the
number of constraints to accurately describe the pattern mask
Mp
ν (r̂), can be reduced as well. Figure 4 depicts the symmetry

in the array layout as well as in the resulting pattern in case
of an 8-fold symmetry, as an example.

Table II shows the results for the 4-, 8-, 16- and 32-fold
rotational symmetries. For each case, the resulting array lay-
out, including its corresponding base sector, and 3D-pattern
for the broadside-scanned beam are shown. As can be seen,
the design time is very much reduced by increasing the order
of symmetry, albeit at the cost of the increased number of
array elements (and thus distinct element weights). For the
application at hand, the 8-fold symmetry provided the best
choice offering a significantly reduced design time (factor 64)
with only a moderate increase in the element number (4%) as
compared to the reference layout (w/o exploiting symmetry).

Additionally, the robustness of the method has been studied
in terms of the aperture sampling density. Results indicate that
a sampling distance of about 0.08λ − 0.03λ is an adequate
choice for achieving an optimal freedom in element placement,
design robustness and computational complexity.

B. Optimization for Multiple Beams

Next, we discuss the achieved beam-scanning performance
when simultaneously optimizing the array layout for multiple
beams, and compare the results to those for the single beam
optimized case. As in the previous analysis, an 8-fold sym-
metry is adopted. In conventional phased-array approaches,
scanning is a simple phase translation in the array factor
and certain beam degradation effects caused by the EEPs and
electronic controls are therefore neglected. Let us refer to the
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TABLE II: Comparison of optimal array layouts, obtained by imposing different symmetry orders with respect to the reference
case when the entire array aperture is considered in the `1-norm minimization.

Symmetry order none (reference) 4 8 16 32

Array layout

100λ

Broadside beam
pattern

0

30

330

60

300

90

270

120

240

210

150

180

FoV

Element # N{ref} = 116 N{ref} + 17 (15%) N{ref} + 5 (4%) N{ref} + 29 (25%) N{ref} + 80 (69%)
Directivity D{ref} = 29.19dBi D{ref} + 0.3dB D{ref} + 0.1dB D{ref} + 0.4dB D{ref} + 0.9dB
Design time t{ref} = 48h36m t{ref}/16 t{ref}/64 t{ref}/256 t{ref}/4096

Reference approach as the single beam broadside optimized
case. The SLL mask covers a suppression region twice larger
then the FoV (±16◦) to guarantee the desired SLL when
scanning within ±8◦. It is worth pointing out that the extended
radiation mask can be corrected such as to include the effect
of the element pattern shape [18], however, for the present
element the IEP is almost uniform over the FoV, its effect will
be limited. The proposed multi-beam approach intrinsically
designs arrays by simultaneously optimizing for multiple beam
directions and masks. To demonstrate this, two arrays have
been designed, with and without accounting for a 10◦ phase
shifter quantization.

Figures 5(a)-(c) present the comparison results for the
worst-case scanning situation, i.e, when the scan angle cor-
responds to the edge of the field-of-view (FoV) in the diag-
onal plane. The optimized array for broadside operation is
unsuitable for scanning to such large angles, as the 18.2 dB
peak side-lobe level in Fig. 5(a) largely exceeds the required
-25 dB level within the FoV. The far-field pattern of the
synthesized array in Fig. 5(b) satisfies the mask constraints
with a maximum relative SLL increase of 2.3 dB when phase
shifter quantization is not accounted for, and less than 0.7 dB
otherwise [cf. Fig. 5(c)]. This performance improvement is
owing to the fact that the pattern mask constraints for both
the broadside and the outermost scanned beams were imposed,
albeit at the cost of an increased number of elements.

We have found that this two-beam optimization procedure is
adequate choice to achieve the desired accuracy and keep the
optimization time to minimum (due to the increased number
of constraints) relatively to the single beam optimization case.
Notice that these arrays have different element excitation
amplitudes (are not isophoric), thus the aperture efficiency is
always reduced. The chosen array has a directivity of about
34 dBi, only 1 dB less than the uniformly-excited case. In the
latter case, however, the SLL would increase to -20 dB.

C. Inclusion of Mutual Coupling Effects

Mutual coupling effects can play an important role in
designing sparse antenna arrays, even in case of weakly
coupled elements, such as the considered pipe horn. The
following example demonstrates some of these effects for the
8-fold symmetric array optimized for multi-beam applications
without phase shifter quantization presented in the previous
section, Figure 5(b). It is pointed out that, also for symmetric
arrays, the MC modeling introduced in Sec. II-B requires
a full-wave analysis of the entire array. The resulting EEPs
are then summed to the corresponding base sector EEPs
(with a phase term correction when scanning) which yields
a set of active base sector EEPs. Note that this is similar
to imposing periodic boundary conditions in infinite phased
array approaches yielding an active unit cell. This, in turn,
enables us to apply the sparsification algorithm to the active
base sector only. Although not employed in this manuscript,
upon imposing appropriate EM-field boundary conditions one
could also exploit the rotational symmetry in reducing the
computational burden of the full-wave analysis. The full-
wave analysis (CBFM) of the entire array with 385 elements
required approximately 20 hours.

The meshed array geometry is shown in Fig. 1 and the
resulting EEPs and the IEP of the pipe horn are shown in
Fig. 6. The initial element positions and excitations, as well
as their relative change after accounting for MC effects, are
listed in Table III: the minimum inter-element distance varies
between 2λ to 6.4λ, therefore both densely as well as sparsely
separated elements are present in the array. As a result, the
EEPs are different and exhibit strong oscillations around the
IEP with a ripple of about ±2 dB for the co- and ±20 dB for
the cross-polarization components, respectively.

The total array patterns, which have been computed from
the initially assumed IEPs and the MoM-simulated EEPs are
cross-compared in Fig. 7. The co-polarization component (left)
suffers from an increase in SLL of about 1 dB, both in the
close proximity of the main beam as well as for far-off scanned
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(a) Reference approach

(b) Proposed multi-beam approach: not accounting for phase shifter quantization

(c) Proposed multi-beam approach: accounting for phase shifter quantization

Fig. 5: Comparison of three array layouts and corresponding scanned beams at 8◦ resulting from different optimization strategies:
(a) optimization assuming a broadside (BS) beam scenario, where the element excitation vector for the scanned beam has been
obtained by multiplying the BS-beam optimized excitation vector with the phase steering factor for 8◦, and; (b) the proposed
multi-beam approach when not accounting for the phase shifter quantization and (c) when including it in the optimization.

beams. The cross-polarization pattern (right) is affected by an
increase of about 10 dB in the broadside direction and around
30 dB over the rest of the FoV. It is worth noticing that, despite
the strong distortion of the embedded element patterns, the
effects on the total co-polar pattern are limited. The algorithm
corrects for this distortion with just two additional iterations,
while reducing the number of elements from 385 to 361 at
the same time. The relative corrections to the base sector are
listed as superscripts in Table III. As one can see, two new
elements are introduced, 5 elements are removed, 4 elements
have their positions adjusted, and all excitations are modified.

On the other hand, the cross-polarization pattern exhibits
much higher power levels than for the case when MC effects
are ignored, but these levels are still acceptable for the chosen
scenario. For applications that are more susceptible to cross-
polarization variations, or high cross-polarization levels, it is
recommended to include the cross-polar mask constraint levels
in the optimization process.

IV. CONCLUSIONS

An array synthesis method has been proposed and demon-
strated for the design of circularly symmetric planar arrays, in
particular for providing multi-beam global Earth coverage.

It has been shown that: (i) to meet the SLL constraints over
the specified 2D-coverage region, the array layout optimization
only needs to consider the broadside and an outermost scanned
beam; (ii) phase shifter quantization should be accounted for
in order to meet the stringent SLL specifications, and that; (iii)
MC effects have a strong effect when demanding XP levels
are required.

Furthermore, enforcing and exploiting symmetries in the
array layout not only allows for a modular design but also
reduces the optimization time: a factor 64 has been reached
for an 8-fold rotationally symmetric array case.
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0.6 x 36.3 8.7 22.5 28.8 6.5 38.5 21.1 32.9 x 2.3 12.1 28.4 42.8 38.4 7.5 x 19.6 24.6

φ
n

[o ]

14.1 30.9 43.8 2.0 x 10.0 18.1 26.9 31.6 44.6 -44.3 22.5 34.9 +0.7 43.5 13.0 17.6 43.6 +0.6 2.6 x 35.5

0.0 -3.5 +0.1 -4.3 +1.0 -5.3 +1.4 x -7.9 -4.9 +1.6 -3.7 +0.4 -7.1 +1.8 -9.7 +2.4 -4.1 +1.2 x -6.4 -3.5 +0.7 -6.1 -0.1 -6.5 +1.8 -4.5 +1.2 -5.0 -0.4 -5.9 +1.7

-12.8 x -7.2 +2.3 -3.3 +0.4 -7.7 +1.7 -9.4 +3.0 -4.7 +0.8 -5.0 -0.3 -5.8 +0.3 -6.0 x -6.0 +1.5 -4.5 -0.4 -6.9 +1.3 -6.7 +1.1 -6.0 -0.3 -8.6 x -4.6 +0.2 -5.2 +0.9

w
n

[d
B

]

-4.5 -0.2 -4.3 -1.2 -4.7 +0.2 -8.7 x -8.2 +2.3 -6.9 +1.7 -7.9 +2.5 -7.2 +0.9 -6.4 +0.8 -11.6 +3.7 -8.6 +2.4 -8.7 +0.8 -6.6 -0.3 -9.3 +1.7 -11.2 +3.9 -10.9 x -12.3 +4.8


