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Optical signatures of nonlocal plasmons in graphene
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We theoretically investigate under which conditions nonlocal plasmon response in monolayer graphene can
be detected. To this purpose, we study optical scattering off graphene plasmon resonances coupled using a
subwavelength dielectric grating. We compute the graphene conductivity using the random phase approximation
(RPA) obtaining a nonlocal conductivity, and we calculate the optical scattering of the graphene-grating structure.
We then compare this with the scattering amplitudes obtained if graphene is modeled by the local RPA conductivity
commonly used in the literature. We find that the graphene plasmon wavelength calculated from the local model
may deviate up to 20% from the more accurate nonlocal model in the small-wavelength (large-q) regime. We
also find substantial differences in the scattering amplitudes obtained from the two models. However, these
differences in response are pronounced only for small grating periods and low temperatures compared to the
Fermi temperature.
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I. INTRODUCTION

Monolayer graphene has attracted much attention due to
its remarkable electronic and optical properties [1–5]. For
instance, monolayer graphene has broadband absorption of
2.3% [6], which is quite substantial since graphene is only
one atom thick. The doping level in monolayer graphene
is also tunable by applying external gating [7], and it
exhibits an optical response ranging from terahertz to optical
frequencies [8]. The exciting properties of graphene arise
from a combination of its two-dimensional nature and its
hexagonal lattice structure. Together these properties make
the low-energy electrons obey an effective massless Dirac
equation [9], which also has consequences for the collective
plasmon excitations in graphene.

Plasmons in graphene have been known for quite some
time [10–13] and exhibit strong confinement of the elec-
tromagnetic fields [14]. The plasmon wavelength is much
smaller than the free-space wavelength of light, for instance
making it possible to achieve subwavelength resolution mi-
croscopy [15], and facilitates strong light-matter interaction
[16]. Furthermore, the strong field confinement of graphene
plasmons has recently been used for ultra-sensitive detec-
tion of molecules [17,18]. Other proposed applications of
graphene plasmons include modulators, filters, polarizers, and
photodetectors [19,20].

However, due to their small wavelength it is challenging
to interact with and to detect graphene plasmons, and many
different schemes have been proposed. Examples include
introducing metal antennas on top of the graphene surface
[21], patterning the graphene into microribbon arrays [22–24]
or microdisk arrays [25,26], using total internal reflection [27],
introducing a periodic spatial modulation of the graphene
conductivity [28,29], and placing a nanotip close to the
graphene surface [30–35]. Another approach is to pattern the
substrate into a grating [36] which has been experimentally
demonstrated in Refs. [37,38].

In this paper, we theoretically investigate the optical
scattering of a system consisting of a subwavelength dielectric

grating and a doped monolayer graphene sheet, as shown
in Fig. 1. The scattering amplitudes are computed using a
scattering matrix method [39], and the graphene enters our
electromagnetic problem as a conducting boundary condition.
We calculate the graphene conductivity using the random
phase approximation (RPA), yielding a nonlocal conductivity
σ (q,ω). A local expression can be obtained by taking the limit
σ (q → 0,ω)—this is usually called the local RPA result in
literature. The combined system of graphene together with a
subwavelength dielectric grating has been treated previously
[40–43] using the local RPA. The local RPA result is expected
to correctly describe long-wavelength plasmons (where q is
small), but since much interest in plasmons arises from their
small wavelengths (where q is large), it is important to also
investigate nonlocal effects.

The conductivity of graphene has been the subject of
much research lately and in particular the effects of disorder
[44,45], phonons [14,46], and electron-electron interaction
[44,47] have been investigated using various approaches.
Plasmon-phonon hybridization has also been experimentally
investigated in Refs. [48,49]. We assume that we are far
from resonance with any phonon in our system, and we also
assume that our samples are clean enough to neglect impurities.
We also neglect electron-electron interaction effects in our
treatment. Our focus will be on quantifying the nonlocal effects
(nonzero q) by comparing with the local RPA. Previous studies
of nonlocal effects in graphene include Refs. [50–52]. It was
found that nonlocal effects influence the plasmon dispersion
and also the plasmon width in both nanoribbons and nanodisks.
We also investigate the temperature dependence of our
results.

The paper is organized as follows: In Sec. II we calculate the
plasmon dispersion and quantify the intrinsic plasmon width.
Section III contains our calculated results for the reflectance,
transmittance, and absorbance in the combined system of
graphene and subwavelength dielectric grating for one specific
grating. In Sec. IV we investigate the optical response for
various grating periodicities and temperatures.
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FIG. 1. Grating on top of graphene and incident radiation with
the electric field in the longitudinal direction, i.e., perpendicular to
the grating. The incident electric field has amplitude E0, the reflected
field amplitude is rE0, and the transmitted field amplitude is tE0.

II. LONGITUDINAL SURFACE PLASMON MODES

In order to study the plasmons, it is convenient to calculate
the plasmon dispersion, i.e., the relationship between energy
and momentum of the plasmon mode. This has previously
been studied at zero temperature in Refs. [12,13] and at
finite temperature in Refs. [14,53,54]. Having a conductor in
between two dielectrics, an equation for modes confined to the
conductor can be derived from Maxwell’s equations [14]:

ε↑√
q2 − ω2ε↑

c2

+ ε↓√
q2 − ω2ε↓

c2

+ iσ (q,ω)

ωε0
= 0, (1)

where q is the in-plane wave vector, σ (q,ω) is the sheet
conductivity of graphene, and ε↑ and ε↓ are the relative
dielectric constants above and below the graphene sheet.
Solving the real part of Eq. (1) for ω as a function of q,
we obtain the plasmon dispersion. The nonlocal conductivity
of graphene is computed using linear response theory (details
are given in Appendix A).

Another convenient way to investigate intrinsic plasmon
properties is to calculate the spectral function of density
fluctuations [55,56]

S(q,ω) = − 1

vq

Im

[
1

ε(q,ω)

]
= 1

vq

ε2(q,ω)

ε1(q,ω)2 + ε2(q,ω)2
, (2)

where ε(q,ω) = ε1(q,ω) + iε2(q,ω). The RPA expression for
the dielectric function is [55,56]

ε(q,ω) = 1 − vq�(q,ω), (3)

where vq = e2

qε0(ε↑+ε↓) and �(q,ω) is the polarizability. For a
definition of the polarizability see Appendix A.

In order to relate equations (1) and (2), we rewrite Eq. (1)
using the so-called nonretarded approximation, i.e., q � ω/c.
Since we are interested in the plasmon behavior of strongly
localized plasmons this is a valid approximation. Equation (1)
then becomes

1 + iq

ε0(ε↑ + ε↓)ω
σ (q,ω) = 0 (4)

and from Appendix A we have

σ (q,ω) = ie2ω

q2
�(q,ω). (5)

Inserting this in Eq. (4), we get

1 − vq�(q,ω) = 0 (6)

which by definition is equivalent to

ε(q,ω) = 0. (7)

This equation is often used to determine the plasmon disper-
sion in the literature. Here we see it emerging as a nonretarded
approximation to Eq. (1).

The width of the surface plasmons can be estimated by
substituting the definition of the dielectric function into Eq. (2)
for the spectral function, yielding

S(q,ω) = −�2(q,ω)

(1 − vq�1(q,ω))2 + v2
q�

2
2(q,ω)

, (8)

where �1 (�2) is the real (imaginary) part of �. Close to
the plasmon frequency ωp, ε1(q,ω) = 1 − vq�1(q,ω) may
be expanded as ε1(q,ω) ≈ −vq(ω − ωp)∂ω�1(q,ω)|ω=ωp , and
inserting this into the spectral function we obtain

S(q,ω) = I0(q,ω)
γ (q,ω)2

(ω − ωp)2 + γ (q,ω)2
, (9)

where we have defined

γ (q,ω) = �2(q,ω)

∂ω�1(q,ω)|ω=ωp

(10)

I0(q,ω) = − 1

vq�2(q,ω)
. (11)

Close to the plasmon frequency, this resembles a Lorentzian
with height I0(q,ω) and half width at half maximum (HWHM)
γ (q,ω). This is strictly only true if I0(q,ω) and γ (q,ω) are
constant close to the plasmon resonance.

Figure 2(a) shows the plasmon dispersion for four different
temperatures obtained by solving the real part of Eq. (1) using
σ (q,ω) [57]. Temperature effects on the plasmon dispersion
are modest at small T/TF but shift the dispersion curve
significantly at temperatures T/TF ≈ 1. We clearly observe
a nonmonotonic behavior for the dispersion as a function of
the temperature, which was previously discussed in Ref. [58].
In Fig. 2(a), we wish to clarify the white triangle. This area
is defined by the real part of σ (q,ω) [or imaginary part of
�(q,ω)] being identically zero at zero temperature due to Pauli
blocking of interband transitions. The spectral function then
becomes a delta function, as the width of the Lorentzian goes to
zero, and the plasmon mode is an infinitely sharp energy state.
However, this is only true in the absence of impurities and at
zero temperature. Adding impurities and/or going to nonzero
temperature make �2(q,ω) nonzero, resulting in a nonzero
plasmon width. Below we investigate how the plasmon width
is affected by nonzero temperatures.

Figure 2(b) shows the intrinsic plasmon width obtained
from Eq. (10) for the dispersions in Fig. 2(a). We see that the
zero-temperature plasmon width is indeed zero inside the white
triangle in Fig. 2(a). The zero-temperature plasmon obtains a
nonzero width for q/kF � 0.74, which is where the zero-
temperature dispersion crosses from the white triangle to the
gray shaded area in Fig. 2(a). The temperature can be seen
to affect the high energy plasmons (large q/kF ) more than
the low energy plasmons (small q/kF ). However, when the
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FIG. 2. (a) Plasmon dispersions for different temperatures ob-
tained by solving the real part of Eq. (1). The graphene has vacuum
on one side and a dielectric substrate with εr = 2 on the other
side. The white triangle is defined by the real part of σ (q,ω) being
identically zero at zero temperature due to Pauli blocking of interband
transitions. (b) Intrinsic plasmon width of the dispersions in (a)
obtained from Eq. (10). In both figures T/TF = 0.0 (blue solid line),
T/TF = 0.1 (green dot-dashed line), T/TF = 0.3 (orange dashed
line), and T/TF = 1.0 (red dotted line).

temperature is of the order of the Fermi temperature, the low
energy plasmons are affected too.

Figure 3(a) shows a comparison between plasmon disper-
sions obtained from the nonlocal RPA model and the local
RPA model. We calculate the dispersion for zero temperature
and T/TF = 1.0, and it is clear from the figure that there
are differences in the plasmon dispersion obtained from
the two models. The local RPA (dashed lines) consistently
underestimates the energy of the plasmon for a given mo-
mentum with the deviations being larger for high energy
plasmons. Having obtained the plasmon dispersions, we can
compute the plasmon wavelengths as a function of the energy
by numerically inverting the dispersion relations [59]. The
differences between the calculated plasmon wavelengths are
shown in Fig. 3(b). They are larger for the high energy
plasmons, with a relative difference up to 20%. We also see that

the difference between the local RPA result and the nonlocal
RPA result is larger at small temperatures.

Figure 3(c) shows a comparison between the plasmon
widths obtained from nonlocal RPA and local RPA. The
overall trend is that for small temperatures the local RPA
underestimates the width and the underestimation is larger for
high energy plasmons. As the temperature increases, the local
RPA becomes better and approaches the RPA result, especially
for low energy plasmons.

III. OPTICAL SCATTERING PROPERTIES OF GRAPHENE
PLASMON RESONANCES

In this section, we calculate the reflectance, transmittance,
and absorbance from the graphene-grating structure shown
in Fig. 1. The dielectric grating has a dielectric constant of
εr = 3, and we take the dielectric rods to have the same
width, d/2, as height (aspect ratio of 1). The dielectric rods
are placed periodically along the x axis with a distance of
d/2 between them. The length of the effective unit cell of
the periodicity is then d. In this section, we use d ≈ 80 nm,
which for these parameters corresponds to q/kF = 0.5. Our
results indicate that the aspect ratio of the dielectric rods does
not play a significant role for the scattering properties. We
restrict our treatment to longitudinal electric fields, meaning
that the electric field is aligned as in Fig. 1, along the
direction of periodicity, and the magnetic field is thus always
along the grating rods. This restriction of longitudinal fields
is quite natural as we want to investigate the response to
longitudinal graphene plasmons. For simplicity we also restrict
our treatment to normal angles of incidence.

We use the scattering matrix method explained in
Appendix B, and we calculate the reflectance R, transmittance
T , and absorbance A defined as

R = |r|2 (12)

T = |t |2 (13)

A = 1 − R − T , (14)

where r and t are the reflection and transmission amplitudes
calculated in Appendix B, and the equation for the absorbance
comes from energy conservation. We set the Fermi energy
of the graphene sheet to EF = 0.1 eV, corresponding to
n ≈ 0.8 × 1012/cm2. As was shown earlier in Fig. 2(a), the
temperature effect on the plasmon dispersion is determined by
the ratio T/TF . In this section, we investigate three different
temperatures, T/TF = 0, T/TF = 0.05, and T/TF = 0.1,
which correspond to T = 0 K, T = 58 K, and T = 116 K,
for the chosen Fermi energy. In order to compare the optical
properties between σ (q,ω) (nonlocal RPA) and σ (ω) (local
RPA), we do all calculations with identical parameters for
both cases. The results of our calculations are shown in
Fig. 4.

Figure 4 shows the reflectance, transmittance, and ab-
sorbance of our structure as a function of frequency. The top
row shows the results for the local RPA, and the bottom row
shows the results for the nonlocal RPA. The insets in Figs. 4(c)
and 4(f) show the relevant plasmon dispersion together with a
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FIG. 3. (a) Dispersion relations illustrating the differences between using nonlocal RPA (solid lines) and local RPA (dashed lines). The blue
lines are obtained for T/TF = 0.0 and the red lines for T/TF = 1.0. (b) The differences between the surface plasmon wavelengths obtained
from the dispersions in (a). The blue line is the relative difference between the results at T/TF = 0.0, and the red line is the relative differences
between the result at T/TF = 1.0. (c) Relative difference in the plasmon width obtained from Eq. (10) using nonlocal RPA and local RPA.
The colors represent the same colors as in Fig. 2, i.e., T/TF = 0.0 (blue solid line), T/TF = 0.1 (green dot-dashed line), T/TF = 0.3 (orange
dashed line), and T/TF = 1.0 (red dotted line). For q/kF � 0.74, both the zero-temperature width from local RPA and nonlocal RPA are zero
and the relative difference is undefined. This is the reason for the blue curve ending abruptly.

dashed line indicating the grating-induced momentum. In the
top row of Fig. 4 (local RPA results), we observe clear plasmon
resonances and the peak positions are in good agreement
with the calculated plasmon dispersions shown in the inset
of Fig. 4(c). The plasmon response is visible in reflectance,
transmittance, and absorbance with the exception of the

zero-temperature absorbance which is zero everywhere. This
is because the local RPA conductivity at zero temperature has a
vanishing real part for all energies below 2EF (remember that
we have no impurities or phonons in our model). Physically
the vanishing real part is due to the interband transitions
being Pauli blocked at zero temperature. However, for nonzero

FIG. 4. Top row: results using σ (ω). Bottom row: results using σ (q,ω). In all figures T = 0 K (blue solid lines), T = 58 K (orange dashed
lines), and T = 116 K (red dotted lines). (a),(d) Reflectance. (b),(e) Transmittance. (c),(f) Absorbance with an inset showing relevant plasmon
dispersions together with a dashed line indicating the grating induced momentum q = 2π/d . Note that the frequency axes are different in the
top row and bottom row.
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temperatures, we see that the interband transitions are allowed
due to thermal smearing of the Fermi functions, and this leads
to nonzero absorbance. We observe that the plasmon frequency
shifts towards lower frequencies when the temperature is
increased. Increasing temperatures also lead to an increased
broadening of the plasmon peaks together with a decrease
of the reflectance, transmittance, and absorbance peaks/dips.
Even in the rather small T/TF = 0.1 results (red dotted lines),
the reflectance and transmittance peaks/dips have become sub-
stantially less pronounced compared with the zero-temperature
results.

The bottom row of Fig. 4 shows the calculated optical
properties obtained using the nonlocal RPA conductivity.
Similarly to the local RPA calculation, we observe resonance
peaks in both reflectance, transmittance, and absorbance. We
also observe a frequency shift towards higher frequencies
compared to local RPA results for the same parameters. (Note
that the frequency axes are different in the top and bottom
rows of Fig. 4.) We also see that the plasmon dispersion
shifts to lower frequencies when raising the temperature. This
corresponds well with the dispersions shown in the inset of
Fig. 4(f). Comparing the top and bottom rows, we see that
using nonlocal RPA predicts smaller peaks/dips for nonzero
temperatures compared to local RPA. This is clearly visible by
comparing for instance the reflectance shown in the orange
dashed lines in Figs. 4(a) and 4(d). The difference in the
reflectance for these two cases clearly illustrates the impor-
tance of taking into account the momentum dependence of the
conductivity, at least in this particular case. The absorbance
we obtain in the structure is rather large on resonance with the
plasmon, up to 50%, and in contrast to the local RPA result
the zero temperature absorbance is nonzero. The appearance
of nonzero absorbance can be understood by considering the
q dependence of the nonlocal RPA conductivity. Due to the
grating structure, any given frequency couples to many q

vectors, allowing the plasmon (also at zero temperature) to
couple to the electron-hole continuum which gives rise to a
nonzero real part of the conductivity. In our model this is
encoded in the Fourier series expansion of the conductivity,
which, for any frequency, samples many q vectors, many
of them outside the white triangle in Fig. 2(a). This effect
does not appear in the local RPA, because the conductivity
in that approximation is independent of q. The q dependence
in the RPA is also responsible for the overall lowering of the
reflectance peaks and transmittance dips in the RPA results
compared to the local RPA results.

We wish to once again point out that we have neglected
impurities and phonons in our model, and we have instead
focused on the momentum dependence and the temperature
effects. Of course, since the temperature effect depends on
the ratio T/TF , an obvious way to reduce the temperature
effect is to go towards larger doping levels. We also wish
to point out that the q dependence introduces an additional
lowering of the reflectance peaks and transmittance dips
and in addition broadens the resonances compared to the
local RPA. Additional broadening is an effect one would
normally associate with impurities and/or electron-electron
interactions, and care should be taken when analyzing scat-
tering results using the local RPA with regard to these
effects.

IV. ANALYSIS OF THE PLASMON RESONANCES
FOR VARIOUS GRATING PERIODICITIES

In order to further investigate the plasmon resonance signa-
tures and their temperature dependence, we consider several
different grating periodicities. For each grating periodicity,
giving rise to q = 2π/d where d is the grating periodicity,
we find the peak reflectance, transmittance, and absorbance
given by the plasmon resonance. We also calculate the width
of the plasmon resonance peaks. We calculate these quantities
using both the local RPA and nonlocal RPA conductivity. This
allows us to quantify the behavior of the plasmon resonances
as a function of grating periodicity, and by comparing the
local RPA with the nonlocal RPA results, we can quantify the
difference between them. We calculate these results for the
temperatures T/TF = 0.0, T/TF = 0.05, T/TF = 0.1, and
T/TF = 0.15. We point out that the results in Sec. III were
obtained using q/kF = 0.5. The results shown in Fig. 5 are
produced by solving the scattering problem as in Sec. III for
a multitude of grating periodicities, and for each periodicity
we find the peak reflectance, transmittance, and absorbance.
Also the width of the transmittance peaks was extracted and is
shown in Figs. 6(a) and 6(b).

The top row in Fig. 5 shows the peak value of the reflectance,
transmittance, and absorbance for various grating periodicities
obtained with the local RPA conductivity. At zero temperature
the reflectance always peaks to unity and the transmittance
decreases to zero, so the absorbance must be zero. The local
RPA predicts that the reflectance peak becomes smaller for
larger temperatures—this is in agreement with the behavior
we observed in Sec. III. Also, the transmittance dip becomes
smaller as the temperature increases and we see that, for any
temperature, there is a particular grating period for which the
absorbance is 50%. At a temperature of T/TF = 0.15 only
gratings with small q/kF (large grating distance d) will show
scattering signatures from the plasmon resonances.

The bottom row in Fig. 5 shows the peak value of the
reflectance, transmittance, and absorbance for various grating
periodicities obtained with the nonlocal RPA conductivity.
We see that at zero temperature (blue solid lines) there is a
nontrivial sharp behavior of the peak heights as a function
of q/kF . This is in stark contrast to the smooth behavior at
zero temperature in the local RPA results. The sharp features
can be understood by again considering the q dependence
of the conductivity, similar to the way we understood the
nonzero absorbance at zero temperature in Sec. III. For a given
frequency the light is coupled through the grating to many
different momenta, and at zero temperature the conductivity
has sharp features that we are probing. These sharp features are
quickly smeared out when going to nonzero temperatures; this
can be seen in the green dot-dashed lines in Figs. 5(d) and 5(f)
where the sharp features only remain for small q/kF . In the
larger temperature results the sharp features have completely
vanished and we approach the local RPA results. It is worth
noting that there is a rather significant absorbance in the system
due to the interaction with the single particle continuum, also at
small temperatures. This is the case for both the local RPA and
the nonlocal RPA results. However, the location and form of
this peak as a function of grating periodicity and temperature
is quite different between the two models. The absorbance has
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FIG. 5. Scattering coefficients along the plasmon dispersion. Top row: results using σ (ω). Bottom row: results using σ (q,ω). In all figures
T/TF = 0 (blue solid lines), T/TF = 0.05 (green dot-dashed lines), and T/TF = 0.1 (orange dashed lines) and T/TF = 0.15 (red dotted
lines). (a),(d) Reflectance peak height. (b),(e) Transmittance peak height. (c),(f) Absorbance peak height.

FIG. 6. (a) Width (FWHM) of the transmittance peaks used
in Fig. 5(b), i.e., using local RPA. (b) Width (FWHM) of the
transmittance peaks used in Fig. 5(e), i.e., using RPA. In both figures
T/TF = 0 (blue solid lines), T/TF = 0.05 (green dot-dashed lines),
T/TF = 0.1 (orange dashed lines), and T/TF = 0.15 (red dotted
lines).

a peak value of 50%, and the position of this peak in terms of
q/kF is temperature dependent. We note that 50% saturates
the theoretical upper limit for normal incidence absorbance of
a thin (much thinner than the incident wavelength) structure
sandwiched between two identical dielectrics established in
Ref. [25]. In our case the graphene-grating structure is
sandwiched between two half spaces of air.

An important result can be obtained by comparing the local
RPA results and the nonlocal RPA results. At zero temperature
the results are very different, but as the temperature is
increased the local RPA results and the full RPA are in better
agreement; at T/TF = 0.15 the two practically coincide.
The conclusion is that nonlocal effects are only important
for low temperatures compared to the Fermi temperature.
We note that the Fermi temperature depends on the doping
level, making finite q effects more important for graphene
with large doping. Conversely, the nonlocal effects are less
important for small doping levels.

Figs. 6(a) and 6(b) show the width of the transmittance peak
for the various grating periodicities from Fig. 5. Figure 6(a)
shows the width using local RPA, and Fig. 6(b) shows the width
obtained using nonlocal RPA. It is clear that the widths differ
between the two cases and the local RPA underestimates the
resonance width for small temperatures and large q. For larger
temperatures, the results coincide as in the results in Fig. 5.

V. CONCLUSIONS

In conclusion, we have theoretically investigated the scat-
tering properties of monolayer graphene on a subwavelength
dielectric grating, and we find that such a structure, if properly
tuned, can exhibit very large reflectance and transmittance
signatures when the external light is on resonance with
the graphene plasmon. We have compared intrinsic plasmon
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properties as well as scattering results obtained by using the
local RPA conductivity σ (q → 0,ω) with results obtained
by using the nonlocal RPA conductivity σ (q,ω). We find
that small grating periodicities (large q/kF ) have the largest
discrepancies in the optical properties obtained from the
two results, indicating that in this regime the local RPA is
no longer valid. A less obvious result we find is that the
discrepancies between local RPA and nonlocal RPA are largest
at small temperatures, but as the temperature is increased
the discrepancies become smaller, and around T/TF = 0.15
the differences have almost completely vanished. For large
temperatures, T/TF > 0.15, the local RPA conductivity is
a good approximation that correctly captures the scattering
properties of graphene on a subwavelength dielectric grating.

Furthermore, we find that the optical scattering amplitudes
are heavily degraded by temperature effects, which makes
grating experiments at room temperature challenging. We
point out that the temperature effects depend on the ratio T/TF .
Thus, a possible way to reduce the degrading temperature
effects is to increase the doping level and, thereby, increase
the Fermi temperature. Another important aspect is that the
plasmons with small q/kF (long wavelength) are less affected
by the detrimental temperature effects.

We have also compared the intrinsic plasmon properties ob-
tained from the local RPA and nonlocal RPA. We have shown
that the calculated wavelength of the plasmons may differ up
to 20%. For example, for a grating periodicity d ≈ 80 nm
and doping level EF = 0.1 eV or n ≈ 0.8 × 1012/cm2, the
difference in the calculated plasmon frequency obtained from
the two models is around 2 THz. In an experiment this blueshift
may be misinterpreted if the experimental results are compared
with the local RPA dispersion, but it is in fact a nonlocal effect.

For some applications such as solar cells, a large absorbance
is beneficial and plasmonic enhancements may help improve
on current technologies [60]. We point out that graphene on
a subwavelength dielectric grating structure absorbs up to
50% of the incident radiation close to resonance with the
plasmon and that in some cases this absorbance approaches
the theoretical maximum [25].

Our results could be used to make a refractive index sensor,
and our narrow plasmon resonances should make it possible
to detect very small refractive index changes in the dielectric
environment surrounding the graphene and subwavelength
dielectric grating. This refractive index sensor would be
tunable since the plasmon resonance frequency is tunable by
electrostatic gating.
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APPENDIX A: LINEAR RESPONSE THEORY
AND CONDUCTIVITY

In this paper we treat graphene within linear response
theory; the unperturbed graphene Hamiltonian is [9]

Ĥ0 = vF �σ · �k =
(

0 vF (kx − iky)
vF (kx + iky) 0

)
(A1)

with the graphene sheet confined to the xy plane and vF being
the Fermi velocity of graphene. We use � = 1 in the paper. We
assume that intervalley scattering is absent so both graphene
valleys are independent of each other. Similarly we assume
spin up and down to be independent of each other; hence
spin and valley degrees of freedom are both degenerate and
contribute a factor 2 each in the final answer.

The real space Dyson equation is

[ε − Ĥ0] ◦ Ĝ0 = δ̂, (A2)

where ◦ means integration/summation over all internal vari-
ables. Solving Dyson’s equation for graphene we obtain the
unperturbed Green’s function for one valley [1,61]

Ĝ0(�k,ε) = 1

2

∑
λ=±1

1

ε − λvF k

(
1 λe−iφk

λeiφk 1

)
, (A3)

where k = |�k| and φk = arg(kx + iky).
We now perturb the graphene Hamiltonian with an external

longitudinal electric field. For a longitudinal electric field we
can write the electric field in terms of a potential as �E = i �qφ.
We write the perturbation Hamiltonian as (notice that this
perturbation is spin and valley independent)

δĤ (x) = −e
∑

n

φn(x)e−iωt+iqnx

(
1 0
0 1

)

=
∑

n

ie

qn

En(x)e−iωt+iqnx

(
1 0
0 1

)
, (A4)

where we sum over many perturbation wavelengths since we
anticipate that the grating will induce a perturbation at multiple
qn. The Dyson equation with the perturbation becomes

[ε̂ − Ĥ0 − δĤ ] ◦ Ĝ = δ̂. (A5)

In linear response theory the full Green’s function is linearly
perturbed by the perturbation so we write the full Green’s
function as Ĝ = Ĝ0 + δĜ. Inserting this ansatz in Eq. (A5),
to zeroth and first order in the perturbation we get

(ε̂ − Ĥ0) ◦ Ĝ0 = δ̂ (A6)

(ε̂ − Ĥ0) ◦ δĜ − δĤ ◦ Ĝ0 = 0, (A7)

where the higher order term in the perturbation is omitted since
we are doing linear response theory. From these equations we
immediately see that to linear order the perturbation to the
Green’s function can be written

δĜ(xt,x ′t ′) = Ĝ0 ◦ δĤ ◦ Ĝ0 (A8)

which means that to linear order in the perturbation the
correction to the Green’s function is determined by the
unperturbed Green’s function together with the perturbation.
For fermions we can write the density response from the
perturbation as [62]

〈δn̂(x,t)〉 = −iTr[δĜ(xt,xt+)] (A9)
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and evaluating the equal argument Green’s function perturba-
tion starting from Eq. (A8) we obtain

δĜ(xt,xt+) =
∑

n

∑
iεm

∫
d�k Ĝ0(�k + �qn,iεm + iωm)

× Ĝ0(�k,iεm)
ieEn

qn

eiqnx−iωt , (A10)

where �qn = qnx̂. Inserting this expression into Eq. (A9),
performing the Matsubara summation over iεm [55] and doing
the trace in sublattice space we obtain

〈δn̂(x,t)〉 =
∑

n

〈δn̂n(x,t)〉 (A11)

〈δn̂n(x,t)〉 = igsgv

∑
λλ′

∫
d�k fλ,k − fλ′,k+qn

iωm − λ′vF |k + qn| + λvF k

× 1

2

(
1 + λλ′ cos

(
φk+qn

− φk

))eEn

qn

eiqnx−iωt ,

(A12)

where fk,λ is the Fermi function and we have inserted gs and
gv for spin and valley degeneracy. The continuity equation

e∂t 〈nn(x,t)〉 = −∇ · 〈jn(x,t)〉 (A13)

⇒ eω

qn

〈nn(qn,ω)〉 = 〈jn(qn,ω)〉 (A14)

gives us the current as

〈j (q,ω)〉 =
∑

n

〈jn(q,ω)〉 (A15)

〈jn(q,ω)〉 = σ (q,ω)δ(q − qn)En (A16)

σ (q,ω) = igsgvωe2

q2

×
∑
λλ′

∫
d�k fλ,k − fλ′,k+q

iωm − λ′vF |�k + �q| + λvF k

× 1

2
(1 + λλ′ cos(φk+q − φk)). (A17)

These equations tell us that for each mode qn of the pertur-
bation there is an associated current component at the same
wave number, and the total current is obtained by adding all
these contributions. Performing analytic continuation on the
conductivity (iωm → ω + iη) and defining the polarizability
we obtain the final answer

σ (q,ω) = ie2ω

q2
�(q,ω) (A18)

�(q,ω) = lim
η→0+

gsgv

2

∫
d�k

∑
λ,λ′

fλ,k − fλ′,k′

ω + iη − λ′vF |�k + �q| + λvF k

× (1 + λλ′ cos φk,k′), (A19)

where �k′ = �k + �q, �(q,ω) is the polarizability (density-
density correlation function) and φk,k′ = φk+q − φk .

The only thing left to do is to compute the polarizability
integral in Eq. (A19). This was computed in Refs. [12,13]
for zero temperature, and this was later generalized to finite

temperatures in Ref. [58]. In the paper we refer to the result
in equations (A18) and (A19) as the nonlocal RPA result or
simply the RPA result.

In this paper we also use the conductivity at zero wave
vector where the answer simplifies to [63,64]

σ (ω) = 
[σ (ω)] + i�[σ (ω)] (A20)


[σ (ω)] = e2

4
G(ω/2) (A21)

�[σ (ω)] = e2

4

(
8T

ωπ
ln

[
2 cosh

(
μ

2T

)]
+ 4ω

π

∫ ∞

0

G(x) − G(ω/2)

ω2 − 4x2
dx

)
(A22)

G(x) = sinh(x/T )

cosh(μ/T ) + cosh(x/T )
, (A23)

where μ is the chemical potential and T is the temperature. In
the paper we refer to equations (A20)–(A23) as the local RPA
result or the local RPA conductivity.

APPENDIX B: SCATTERING MATRIX METHOD

We use a scattering matrix method [39] to investigate the
optical properties of the subwavelength dielectric grating-
graphene structure. This is a convenient way to solve electro-
magnetic scattering problems because it allows the problem
to be subdivided into smaller pieces, if necessary, and then
recombined to obtain the solution to the full problem. In
this Appendix we use units where μ0 = ε0 = c = � = 1 and
e2 = 4πα, where α ≈ 1/137 is the fine structure constant.

Our structure consists of several distinct regions, see Fig. 7.
The upper region, region 1, is a semi-infinite half space from
which the EM radiation is incident; underneath is the periodic

FIG. 7. Figure showing the different regions considered in the
scattering problem. Region 2 is the thin air film, and the shaded areas
represent the periodic dielectric function.
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subwavelength dielectric grating (subwavelength dielectric
grating). Region 2 is an infinitely thin air film, and region 3 is
a semi-infinite half space that fills the bottom half space into
which the transmitted radiation is propagating. The graphene
is here considered as an infinitely thin conducting sheet
underneath the subwavelength dielectric grating and appears
as a modified boundary condition when matching the waves
between the thin air film and the semi-infinite half space.

The scattering matrix method is based on Fourier decom-
posing the electric and magnetic fields, and by matching the
boundary conditions we relate the Fourier amplitudes between
the different regions. The periodicity is set by the grating
region; here we take the dielectric function to be a periodic
step function between the values εr = 1 and εr = 3 in the x

direction, with total periodicity set by the distance d. Putting
the dielectric step of width d/2 in the middle the Fourier series
expansion of the dielectric function is

ε(x) = ε0 + ε1

2
−

∑
j∈odd

aj e
ikj x (B1)

aj = ε1 − ε0

πj
sin

(
πj

2

)
(B2)

kj = 2πj

d
. (B3)

We restrict our treatment to normal incidence with the incident
electric field in the x direction and the incident magnetic field
in the y direction. In our setup this makes the incident electric
field parallel to the periodic axis and we call it longitudinal
to the periodicity. It is important to point out that Ex and Hy

are enough to describe propagating modes. However, since we
will consider also evanescent modes we must also include an
Ez component in our treatment.

1. Fields in free space

In order to find expressions for free space fields we need
two of Maxwell’s equations, namely

∇ × �E + ∂t
�B = 0 (B4)

∇ × �H − ∂t
�D = 0, (B5)

where the space and time dependence of the fields is not written
explicitly. By applying a rotation to one of the above equations
and then inserting the other in the resulting equation we can
obtain the dispersion relation for a Maxwell field as

ω2 = β2 + q2, (B6)

where q is now in the x,y direction which spans the graphene
plane, and β is in the z direction perpendicular to the graphene
plane. Notice that a mode is evanescent in the z direction if
ω2 < q2 since this forces β to be imaginary.

Using equations (B4) and (B5) with harmonic time depen-
dence we obtain (remember that μ0 = ε0 = 1 so that �E = �D
and �H = �B)

∇ × �E = iω �H (B7)

∇ × �H = −iω �E. (B8)

Writing these equations out in their components (for Ex , Ez,
and Hy) we get

∂zEx − ∂xEz = iωHy (B9)

∂xHy = −iωEz (B10)

∂zHy = iωEx, (B11)

and using the second equation to eliminate Ez in the first one
we get

iωHy + i

ω
∂2
xHy = ∂zEx. (B12)

We now write out the electric and magnetic fields as Fourier
sums

E±
x =

∑
j

�±
j eikj x e±iβj z (B13)

H±
y =

∑
j

�±
j eikj x e±iβj z, (B14)

where + (−) denotes waves propagating in the positive
(negative) z direction, and from Eq. (B6)

β2
j = ω2 − k2

j . (B15)

Now we plug the above Fourier expansions into Eq. (B12) and
multiply by e−ikj x and integrate over x to project out equations
for the amplitudes obtaining(

ω − k2
j

ω

)
�±

j = ±βj�
±
j . (B16)

Now, inverting the prefactor on the left and remembering that
βj is defined by Eq. (B15) we obtain a relationship between
the magnetic field amplitudes �j and electric field amplitudes
�j as

�±
j = ± 1√

1 − k2
j /ω

2
�±

j . (B17)

This relationship means that we can fully determine the
magnetic field if we know the electric field and vice versa.
We choose to work with the electric field amplitudes �j ’s as
our fundamental objects. We write

�±
j = ±T0,j�

±
j , (B18)

where

T0,j = 1√
1 − k2

j /ω
2
. (B19)

We now introduce �Em = (....E−n....E0....En....)T which is a
vector containing all electric field amplitudes and similarly
�Hm = (....H−n....H0....Hn....)T for the magnetic field. In the

same manner we write the unknown Fourier expansion
coefficients ��±

m = (....�±
n ....�±

0 ....�±
n ....)T , and we may then

write the matrix relationship( �Em

�Hm

)
=

(
S0 S0

T0 −T0

)( ��+
m��−
m

)
, (B20)
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where T0 is a diagonal matrix with T0,j on the diagonal and
S0 is the unit matrix. Reintroducing the spatial dependence in
Eq. (B20) we get the expression for the fields in free space as( �Em(x,z)

�Hm(x,z)

)
=

(
S0 S0

T0 −T0

)( ��+
m(x,z)

��−
m(x,z)

)
, (B21)

where

��±
m(x,z)

= (...�±
−m ei(k−mx±β−mz)..�±

0 e±iωz..�±
m ei(kmx±βmz)...)T .

(B22)

We point out that the electric field in equations (B20) and
(B21) is the component along the x axis and the magnetic field
is the field along the y axis.

2. Wave matching at the graphene interface

In order to compute the S matrix for the graphene sheet
we must wave match across a conducting interface with the
boundary conditions [65]

�Hy(0−) − �Hy(0+) = jx = σ �Ex(0±) (B23)

�Ex(0−) − �Ex(0+) = 0, (B24)

where + denotes the fields above the graphene sheet and −
the fields below. In terms of field amplitudes, see Fig. 7, these
boundary conditions become

�−
2 + �+

2 = �−
3 (B25)

�−
2 − �+

2 = (
S0 + T −1

0 σ
)
�−

3 . (B26)

By adding and subtracting these two equations we get

2�−
2 = (

2S0 + T −1
0 σ

)
�+

3 (B27)

2�+
2 = −T −1

0 σ�−
3 (B28)

from which we can solve

�−
3 = (

S0 + 1
2T −1

0 σ
)−1

�−
2 (B29)

�+
2 = −(

2S0 + T −1
0 σ

)−1
T −1

0 σ�−
2 . (B30)

Also, since the graphene scattering problem has inversion
symmetry around z = 0, the reflection and transmission
amplitudes from the other side are identical. This gives us
the final S matrix for a graphene sheet as

Sgraphene =
(

2M −M T −1
0 σ

−M T −1
0 σ 2M

)
(B31)

M = (
2S0 + T −1

0 σ
)−1

, (B32)

where σ is a diagonal matrix with σ (kj ,ω) on the diagonal.

3. Fields in the grating

Following Ref. [39] we rewrite Maxwell’s equations inside the
grating into an eigenproblem for Ex . We use equations (B5)

and (B4) (no currents inside the grating) with harmonic time
dependence giving us

∇ × �E = iω �H (B33)

∇ × �H = −i ε(x) �E︸ ︷︷ ︸
�D

, (B34)

and the difference between this and the free space expression
is the periodic dielectric function ε(x). We only have the
components Ex , Ez, and Hy , and our system is translationally
invariant in the y direction so all fields are y independent.
Inserting this in the above equations gives us the following
three equations

∂zEx − ∂xEz = iωHy (B35)

∂xHy = −iωε(x)Ez (B36)

−∂zHy = −iωε(x)Ex. (B37)

Using the second of these we get an expression for Ez as

Ez = iε−1(x)

ω
∂xHy, (B38)

and plugging this back into the other two we obtain

∂zEx = iωHy + i

ω
∂x(ε−1(x)∂xHy) (B39)

∂zHy = iωε(x)Ex. (B40)

We now Fourier expand all fields, including ε−1(x), giving
us the following expressions∑

j

∂zEje
ikj x = iω

∑
j

Hje
ikj x

− i

ω

∑
j,l

ε−1
j El(kj + kl)kle

i(kj +kl )x (B41)∑
j

∂zHje
ikj x = iω

∑
j,l

εjEle
i(kj +kl )x, (B42)

where the fields are expanded with kj given by Eq. (B3).
In order to project out equations for the Fourier coefficients

we apply
∫

dx e−iknx to both equations giving us

∂zEn = iω
∑

l

δn,lHl − i

ω

∑
l

ε−1
n−lknklHl (B43)

∂zHn = iω
∑

l

εn−lEl, (B44)

which can be recast into matrix form as

∂z
�En = T

n,l
1

�Hl (B45)

∂z
�Hn = T

n,l
2

�El, (B46)

where as before �En = (....E−m....E0....Em....)T and �Hn =
(....H−m....H0....Hm....)T are column vectors containing the
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field amplitudes and

T
l,n

1 = iωδn,l − i

ω
ε−1
n−lknkl (B47)

T
l,n

2 = iωεn−l (B48)

are matrices. Combining these equations we obtain the
eigenproblem for �El as

∂2
z

�El = T
l,n

1 T
n,m

2︸ ︷︷ ︸
P l,m

�Em. (B49)

Now, to solve this we introduce

Ẽm = S−1
a

�El ⇔ �El = SaẼm, (B50)

where Sa is a matrix which has the eigenvectors of P as its
columns. Ẽm is also a vector, but we have dropped the arrow
for brevity. Multiplying Eq. (B49) with S−1

a from the left and
inserting a unity on the RHS we get

∂2
z S−1

a
�El = S−1

a P SaS
−1
a︸ ︷︷ ︸

S0

�Em, (B51)

where S0 denotes the unit matrix. According to Eq. (B50) this
can be written in terms of Ẽm as

∂2
z Ẽl = S−1

a PSa︸ ︷︷ ︸
D

Ẽm, (B52)

and the matrix D contains the eigenvalues of P on its diagonal
[66]. For convenience we define a new diagonal matrix

γ 2 = −D,

where the diagonal matrix γ has γm on its diagonal. We can
now write the solution for Ẽ(z) as

Ẽm(z) = Ẽ+
meiγmz + Ẽ−

me−iγmz, (B53)

and according to Eq. (B50) the proper electric field is

�Em(z) = Sa(Ẽ+
meiγmz + Ẽ−

me−iγmz), (B54)

and according to Eq. (B45) the magnetic field is

�Hm(z) = iT −1
1 Saγm︸ ︷︷ ︸

Ta

(Ẽ+
meiγmz − Ẽ−

me−iγmz) (B55)

from which we define

Ta = iT −1
1 Saγ.

We now define new z dependent vectors

Ẽ+
m(z) = (....Ẽ+

−meiγ−mz....Ẽ+
0 eiγ0z....Ẽ+

meiγmz....)T

Ẽ−
m(z) = (....Ẽ−

−me−iγ−mz....Ẽ−
0 e−iγ0z....Ẽ−

me−iγmz....)T ,

and we can finally write down the matrix expression( �Em(z)
�Hm(z)

)
=

(
Sa Sa

Ta −Ta

)(
Ẽ+

m(z)
Ẽ−

m(z)

)
(B56)

which is the solution for the fields inside the grating.

4. Wave matching in the grating

To find the S matrix of the grating we start with the matching
across the plane z = h, see Fig. 7, which gives(

S0 S0

T0 −T0

)( ��+
1��−
1

)
=

(
Sa Sa

Ta −Ta

)(
Ẽ+(h)
Ẽ−(h)

)
, (B57)

and we also know how to propagate the field inside the grating
from z = h to z = 0, namely(

Ẽ+(h)
Ẽ−(h)

)
=

(
eiγ h 0

0 e−iγ h

)(
Ẽ+(0)
Ẽ−(0)

)
. (B58)

The matching across z = 0 into the thin air film is done
similarly(

S0 S0

T0 −T0

)( ��+
2��−
2

)
=

(
Sa Sa

Ta −Ta

)(
Ẽ+(0)
Ẽ−(0)

)
. (B59)

Now we insert Eq. (B58) into (B57) and in the resulting
equation we plug the expression for (Ẽ+(0),Ẽ−(0))T obtained
from Eq. (B59). Then we make sure to remove the numerically
unstable behavior from the resulting equation by multiplying
so that we only have eiγ h (and not e−iγ h). The result is(

S−1
a + T −1

a T0 S−1
a − T −1

a T0

eiγ h
(
S−1

a − T −1
a T0

)
eiγ h

(
S−1

a + T −1
a T0

))( ��+
1

��−
1

)

=
(

eiγ h
(
S−1

a + T −1
a T0

)
eiγ h

(
S−1

a − T −1
a T0

)
S−1

a − T −1
a T0 S−1

a + T −1
a T0

)( ��+
2

��−
2

)
,

(B60)

and defining new variables we write this as(
p m

eiγhm eiγhp

)( ��+
1��−
1

)
=

(
eiγ hp eiγ hm

m p

)( ��+
2��−
2

)
,

(B61)

where

p = S−1
a + T −1

a T0 (B62)

m = S−1
a − T −1

a T0. (B63)

We can now rewrite this on S-matrix form(
�−

2

�+
1

)
= Sgrating

(
�−

1

�+
2

)
, (B64)

where

Sgrating

=
(

Qeiγh(p − mp−1m) Q(eiγ hmp−1eiγ hp − m)

Q(eiγ hmp−1eiγ hp − m) Qeiγh(p − mp−1m)

)
(B65)

with

Q = (p − eiγ hmp−1eiγ hm)−1. (B66)

5. Combining two S matrices

Finally we now seek the total S matrix of both the grating
structure and the graphene interface, i.e., the S matrix obtained
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by combining equations (B31) and (B65). Writing

Sgrating =
(

t1 r1

r1 t1

)
(B67)

Sgraphene =
(

t2 r2

r2 t2

)
(B68)

and remembering how they are defined, see Fig. 7, we can
write down the relationships(

�−
2

�+
1

)
= Sgrating

(
�−

1

�+
2

)
(B69)(

�−
3

�+
2

)
= Sgraphene

(
�−

2

�+
3

)
(B70)

and the S-matrix we seek is the total S-matrix that relates(
�−

3

�+
1

)
= S

(
�−

1

�+
3

)
(B71)

which means we must eliminate �±
2 . Eliminating both [67] we

obtain the total S matrix as

Stot =
(

t2q1t1 r2 + t2r1q2t2
r1 + t1r2q1t1 t1q2t2

)
(B72)

with

q1 = (S0 − r1r2)−1 (B73)

q2 = (S0 − r2r1)−1. (B74)

Equations (B72)–(B74) represent the final answer in our
scattering matrix method. The answer is a block matrix where
each block is N × N , N being the number of Fourier modes
used in the expansion of the fields and the grating dielectric
function. Since the S matrix relates incoming fields with
outgoing fields it is now simple to multiply the S matrix with
the incoming field amplitudes and read out the reflected and
transmitted fields. We point out that in this paper we work in
a regime such that there is only one propagating mode in the
reflected field and one propagating mode in the transmitted
field. All other modes are evanescent and as such they do
not carry any energy away from the structure. To investigate
the power flow in the direction perpendicular to the graphene,
the z direction, it is thus only necessary to determine one
field component amplitude for the reflected field and one
for the transmitted field. This is the reflection amplitude r

and the transmission amplitude t used in the paper to calculate
the reflectance, transmittance, and absorbance.
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