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Abstract
Electromagnetic metasurfaces are broadly defined as optically thin lay-

ers that are structured on the subwavelength scale. In general, metasurfaces
thus consist of nanoparticles, or other kinds of ”meta-atom”, arranged in
some pattern where both the individual particle sizes and the inter-particle
distances are much smaller than the wavelength. With advances in nanofab-
rication, it has become feasible to precisely engineer metasurface constituent
elements to fulfil certain functions.

This thesis, focuses on the properties of metasurfaces assembled by col-
loidal lithography. In contrast to most metasurfaces studied in the litera-
ture, samples produced by colloidal lithography lack long-range periodic-
ity. Two different approaches to metasurface design are investigated. In ap-
pended papers I and II, the individual elements are plasmonic gold nanopar-
ticles while appended paper III deals with the geometric resonances sup-
ported in silicon nanoparticles. The investigated systems are able to con-
vert propagating electromagnetic fields into localized ones and vice-versa.
Hence, we can measure information about local properties in the far-field.

In paper I, the individual particles were progressively tilted with re-
spect to the substrate normal, resulting in an overall directional response.
This directionality was manifested in enhanced fluorescence emission in
particular directions.

In paper II, the ability of anisotropic individual particles to alter the
polarization of the incoming light beam was utilized to develop a sensing
scheme based on the detection of rotation of polarization. The change in
rotation and ellipticity of the light was shown to be sensitive to the local
refractive index around the particles. Refractometric biosensing was per-
formed by tracking these changes in real time.

The interaction between the incident light and geometric electric and
magnetic resonances was studied in paper III. At certain illumination con-
ditions, it was shown that the interference between interface reflection and
the coherent scattering from the electric and magnetic dipole resonances
gave rise to almost complete light absorption independent of polarization.

The ability to design metasurfaces with specific properties is of impor-
tance for future applications. The results presented in this thesis contribute
to the understanding of the properties of the individual particles that com-
pose a metasurface and how structuring of these particles affects its overall
properties.

Keywords: metasurfaces, plasmonics, geometric resonances, high-index
nanophotonics, colloidal lithography, nanostructures
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Chapter 1

Introduction to metasurfaces

The interaction between light and matter is one of the most important and
ubiquitous concepts in our everyday lives. Light interacts with objects
around us and the photoreceptors in our eyes. This interaction shapes how
we perceive the world through sight.

Recent advances in nanotechnology have allowed for the fabrication of
tailored structures at the nanoscale. The control of light by means of nanos-
tructured surfaces has resulted in many new real-life applications. Exam-
ples of such applications include biological sensors, gas detectors and solar
cells [1–3]. The objective is to design new materials able to either manip-
ulate the light wavefront in certain ways or to use properties of the single
constituent elements to realize remarkable functionalities.

In effect, visible light interacting with nanoparticles is completely anal-
ogous to micro- and radio waves interacting with antennas. The function of
an antenna is to convert propagating waves into localized electric signals or
vice versa. In some contexts, nanoparticles are therefore referred to as ”op-
tical antennas”. They are able to convert visible light into enhanced near-
fields as well as transmit information about local properties into the far-
field. Researchers attempting to design optical antennas can benefit greatly
from decades of research in radio frequency antenna engineering.

It is a common practice to combine several radio antenna elements into
an antenna array. This gives great control of the shape of the radiation pat-
tern. Deliberate assembly of nanoparticles into different patterns has be-
come the focus of considerable recent research. Through various nanofab-
rication techniques, it is possible to assemble many nanoparticles smaller
than the wavelength of visible light into a pattern such that the inter-particle
distances are also subwavelength. The resulting ”antenna assembly” is re-
ferred to as a metasurface. A characteristic property of metasurfaces is that
they are able to abruptly change the properties of the incident light field
over a subwavelength distance scale. Controllable changes of the polariza-
tion, amplitude or phase of light can be obtained through careful design
[4].

Metallic nanoparticles with plasmonic resonances in the visible or in-
frared spectral range can act as optical antennas and offer opportunities to
engineer light-matter interactions at the nanoscale. Examples range from
light bending, focusing and polarization control [5–7] to optical holography
[8]. Other than directly altering the properties of light, plasmonic meta-
surfaces offer great opportunities in sensing of refractive index changes or
using Surface-enhanced Raman Spectroscopy [2, 9–12].
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In addition to plasmonic metasurfaces, extensive attention has been ded-
icated to metasurfaces composed of nanostructures fabricated from high in-
dex dielectric materials such as silicon or germanium. These nanoparticles
possess tunable electric and magnetic geometric dipole resonances in the
visible and near infrared spectral range. The resonant behaviour in high
index nanoparticles has been harnessed for applications in phase manipu-
lation, sensing, surface-enhanced spectroscopies and subwavelength imag-
ing [13–16].

Most metasurfaces studied in the literature are periodic arrangements
of subwavelength antennas. Such metasurfaces are generally easier to de-
scribe and lend themselves to electromagnetic simulation using periodic
boundary conditions. In this thesis, we focus on metasurfaces fabricated
with colloidal lithography [17]. As a consequence of the fabrication pro-
cedure, samples produced using this technique lack long-range periodicity
while still having a well defined nearest neighbour distance. It is the aim
of this thesis to elucidate the optical properties of such metasurfaces by an-
alyzing the individual nanoantenna and the collective behaviour. Metasur-
faces composed of metallic and high-index nanoparticles are considered.

Chapter 2 deals with metallic nanoparticles and their plasmonic prop-
erties. A general background of the optical properties of metals is followed
by a description of the behaviour of plasmonic nanoparticles. Finally, it
is explained how the optical properties of plasmonic nanoparticles can be
used for sensing based on refractive index change.

In Chapter 3, the resonant properties of high index dielectric nanoparti-
cles are explained using the exact Mie solution for spheres. This is followed
by a description of the optical properties of silicon nanoparticles, specifi-
cally nanopillars on top of a glass substrate.

After having probed general optical properties of the different individ-
ual metamaterial constituent elements considered, attention is turned in
Chapter 4 to methods used for explaining the optical properties of meta-
surfaces.

Finally, Chapter 5 provides a summary of the presented work along
with an outlook for future my metasurface research.
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Chapter 2

Plasmonics

The field of plasmonics has been a very active area of research for the last
twenty years. A plasmonic excitation is an oscillation of the free conduction
electrons in a metal. One distinguishes between a surface plasmon polari-
ton (SPP) and a localized surface plasmon resonance (LSPR). An SPP is a
charge oscillation that propagates along the interface between a metal and
a dielectric, while an LSPR oscillation lives at the surface of a nanoparticle.

LSPR oscillations couple extremely well to light and their interaction
cross sections can greatly exceed their geometrical cross sections. The spec-
tral position (colour) of these resonances is greatly dependent on the ge-
ometric shape and size of the nanoparticles as well as the properties of
their immediate surroundings. Colloidal solutions of metal nanoparticles
with the right sizes typically have vibrant and beautiful colours, some-
thing which was utilized in making stained glass windows for medieval
churches.

The first appearances of a mathematical description of plasmonic waves
date back to the end of the 19th century and early 20th century. For SPPs,
with Sommerfeld’s work on radio waves [18] and for LSPRs, with Mie’s
description of resonances in small particles [19]. It took the work of Ugo
Fano [20] to connect this theoretical work to observed effects in the visible
wavelength range.

The interaction of light with plasmonic nanostructures has been exten-
sively researched in the last decades. Applications of such structures in-
clude the sensing based on refractive index changes [1, 9, 21] discussed in
Section 2.3, Surface-enhanced Raman Scattering (SERS) even down to sin-
gle molecule detection [12, 22] as well as improved solar cells, a review of
which can be found in Ref. [3].

2.1 Drude model

The linear optical properties of any material are described by the frequency
dependent dielectric function, ε(ω) (since the magnetic response µ(ω), is
negligible at optical frequencies). For dielectric materials, this is often (con-
fusingly) referred to as the dielectric constant since it is real, positive and
tends to be only weakly frequency dependent in the visible spectral region.
The optical properties of metals have a more complicated dependence on
frequency. Specifically, metals reflect incident light of microwave and radio
frequencies but absorb light at near-infrared and visible frequencies. One
of the simplest approximations of the complex dielectric function of metals
is the Drude model (due to Paul Drude [23]). In this model, the conduction
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electrons are modelled as a free electron gas under the influence of a driv-
ing electric field. The one-dimensional equation of motion takes the form
of a driven, damped harmonic oscillator. We have

meẍ(t) +meγẋ(t) = −eE(x, t) , (2.1)

where me, γ, e and E are the electron mass, the damping frequency (char-
acteristic collision frequency), electron charge and the driving electric field,
respectively. If we assume that the wavelength of the driving field is much
larger than the relevant length scales of electron oscillation, we can disre-
gard its position dependence. This approximation is valid for light of lower
energy than extreme UV or soft x-rays. Furthermore, assuming a harmonic
time dependence of the field and position, we can perform a Fourier trans-
form and write

−ω2x(ω)− iωγx(ω) = − e

me
E0(ω) , (2.2)

where ω is the angular frequency of the driving field and obtain

x(ω) =
e/me

ω2 + iγω
E0(ω) . (2.3)

With the concentration of electrons n, and the dipole moment per electron
pe(ω) = −ex(ω), we can thus define a macroscopic polarization, or dipole
moment per unit volume as

P (ω) = − ne2/me

ω2 + iγω
E0(ω) . (2.4)

With the assumption of a homogeneous and isotropic material, the polar-
ization is P (ω) = ε0(ε(ω)− 1)E0(ω), and we can identify the Drude dielec-
tric function as

ε(ω) = 1− ne2/meε0

ω2 + iγω
= 1−

ω2
p

ω2 + iγω
, (2.5)

where we have introduced the plasma frequency ωp =
√
ne2/meε0. This

simple model captures the most important effects of metallic optical prop-
erties. However, since the Drude model only considers the free conduc-
tion electrons it fails to take into account, for example, optical transitions
from the valence band to the conduction band. These transitions contribute
significantly to absorption and are especially important in the visible fre-
quency region for noble metals such as gold.

2.2 Absorption and scattering

If we send an incident field toward an arbitrary particle and place a detector
at infinity on the other side, some of the incident light will be lost. The total
light lost is called extinction. From conservation of energy, we know that
the scattered field from the particle must cancel the incident field at the
detector with precisely an amount equal to the total extinction. Following
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this line of reasoning leads to the demonstration of the optical theorem,
which provides a very general expression for the extinction cross section
[24]

σext =
1

km|E0|2
Im
{(
E∗0 · e

)
θ=0

}
, (2.6)

where km =
√
εmω/c0 is the wave number of the medium, e is the scat-

tering amplitude, and the incident field has a general polarization, Einc =
E0eikmz . The scattering amplitude e is defined through the scattered far-
field as

Escat =
eikmr

4πr
e . (2.7)

The extinction cross section has the unit of area and is interpreted as an
effective size of the particle in its interaction with light. For plasmonic
nanoparticles, the extinction cross section can greatly exceed the geomet-
ric cross section implying that they interact extremely strongly with light.

The light lost in extinction is a sum of the light that is absorbed within
the particle and the scattering in all directions other than the forward direc-
tion. The total scattering can be found through integrating the scattered far
field on a large sphere surrounding the particle [24]

σsca =
1

(4π)2|E0|2

∫
Ω
|e|2 dΩ . (2.8)

The total amount of light lost in extinction must be the sum of light lost
in scattering and in absorption. Thus, the absorption cross section can be
found as

σabs = σext − σsca . (2.9)

The definitions above are valid for any type of particle of any size. In order
to elucidate the optical behaviour of metallic nanoparticles it is instructive
to employ the electrostatics approximation. We assume, in the rest of the
chapter, that our particle of interest is much smaller than the wavelength of
the optical field. This allows us to disregard the position dependence of the
field.

2.2.1 Particles smaller than the wavelength

Polarizability of a small sphere

We consider a sphere of radius a, with a � λ and dielectric function ε(ω)
in a homogeneous medium with relative dielectric constant εm. The sphere
is subjected to a static electric field E0 = E0ẑ. Since our region of interest
contains no charge distribution, we can solve the Laplace equation for the
potential. Doing so results in the following expressions [24, 25] for the po-
tential inside and outside the sphere (in spherical coordinates centered in
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the sphere)

Φinside =− 3εm
ε+ 2εm

E0r cos θ , (2.10)

Φoutside =− E0r cos θ +
ε− εm
ε+ 2εm

E0a
3 cos θ

r
. (2.11)

Let us now turn our attention to the potential outside the sphere. The first
term is the potential corresponding to the static field and the second term
is actually the potential from an electric dipole with dipole moment

p(ω) = 4πε0εma
3 ε(ω)− εm
ε(ω) + 2εm

E0(ω) . (2.12)

The external field is said to induce a dipole in the sphere. We thus define the
sphere’s static polarizability, αs,

αs = 4πε0εma
3 ε− εm
ε+ 2εm

, (2.13)

such that p = αsE0. Here we have dropped the (ω) functional dependence
on the dielectric function of the sphere for brevity. Note that the polarizabil-
ity defined here has units of [ε0]m3, or Asm2/V while some authors choose
to not include the ε0εm in the polarizability, simply giving it the units of
volume.

Let us now consider a small sphere in vacuum, such that εm = 1. In
this case, the real part of the denominator vanishes when Re{ε + 2} = 0,
or Re ε = −2. The frequency where the condition is fulfilled and Im ε ≈ 0
is sometimes referred to as the Fröhlich frequency. At this frequency, the
sphere has a resonant polarizability, often referred to as a Localized Surface
Plasmon Resonance (LSPR). In order to fulfil the condition, it is required
that the sphere has a permittivity with a negative real part, something that
is typically encountered in metals (for frequencies below the plasma fre-
quency, ωp). For this reason, LSPRs are typically associated with metal
nanoparticles. For noble metals, such as gold and silver, the Fröhlich con-
dition is fulfilled for visible frequencies.

In the next sections, we extend the sphere polarizability in Eq. (2.13) to
more general circumstances.

Radiation reaction

When the external field is not quite static but has a finite frequency, the
polarizability in Eq. (2.13) is not quite exact [26]. To realize this, consider
a single non-absorbing (ε real) sphere in a non-absorbing medium illumi-
nated by a plane wave. The sphere will scatter the radiation and the far field
in the forward direction will have been attenuated. The sphere is therefore
required to have a dipole moment which has components out of phase with
the incident plane wave. In other words, the polarizability must be complex
(but Eq. (2.13) with a real ε is not).

To deal with the dipole scattering, we introduce a ”radiative reaction”
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term analogous to the treatment in [25]. The idea is to add a radiative reac-
tion field to the expression for the total field

Etot(r0) = E0(r0) +Erad(r0) . (2.14)

The trick is to require that the work done byErad is balanced by the energy
radiated by a dipole.

The total rate of work done by the radiative reaction field inside the
volume V is given by following integral [25]〈

dW rad

dt

〉
=

1

2
Re

∫
V

d3r j∗(r) ·Erad(r) , (2.15)

where j(r) is the current distribution. For a point dipole, p, at r = r0, it is
given by j(r) = −iωpδ(3)(r − r0) and the total power radiated by a dipole
is [25]

P rad(ω) =
k3
m

12π

ω

ε0εm
|p|2 . (2.16)

Balancing Eqns. (2.15) and (2.16), we can identify

Erad(r0) =
ik3
m

6πε0εm
p . (2.17)

For external fields with λ� a, we can still make the approximation that the
field remains static across the particle volume and use the polarizability in
(2.13). Using the total field for the dipole moment yields

p = αsEtot = αs

(
E0(r0) +

ik3
m

6πε0εm
p

)
. (2.18)

Solving for p allows us to define a modified polarizability α such that p =
αE0 that takes this radiation reaction into account

α =
αs

1− ik3
mα

s/(6πε0εm)
. (2.19)

Depolarization

Another effect that is usually corrected for in the case of an external field
with a finite frequency is the finite size of the scatterer. We still assume that
the wavelength of the external field is much larger than the radius of the
sphere. However, there is a correction to the total field at the center of the
sphere due to the presence of polarized matter around it, we have

Etot(r0) = E0(r0) +Edep(r0) . (2.20)

One can derive a form for this depolarization field up to order k3
m [27] by

assuming a homogeneous polarization of the sphere and calculating the
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contribution to the field at the center of the sphere from each volume ele-
ment, then

Edep(r0) =
ik3
m

6πε0εm
p+

k2
m

4πε0εm
p . (2.21)

Defining a modified polarizability by solving for p yields

α =
αs

1− ik3
mα

s/(6πε0εm)− k2
mα

s/(4πε0εma)
. (2.22)

Note that this modified polarizability also includes the radiation reaction
term obtained in the previous section. This is because taking into account
the retarded dipole fields from each volume element also accounts for their
radiation loss.

This correction is usually called the MLWA (Modified Long-Wavelength
Approximation). The effects of the MLWA modifications are secondary for
small particles but start playing a crucial role for particles of sizes of the
order of a ∼ 30 nm and illumination with visible light. In particular, the
resonances broaden and shift towards lower energies.

Anisotropic particles

So far, we have only considered the optical response of spherical shapes. It
turns out that it is difficult to analytically obtain the form of the potential
in all but very few cases. In the case of ellipsoidal symmetry, however, it
is possible to obtain polarizabilities. In this case, when the spherical sym-
metry is broken, the polarizability becomes a tensor. For an ellipsoid with
semi-axes a1 ≥ a2 ≥ a3 in a static field (compare to the spherical polariz-
ability in Eq. (2.13)), the diagonal polarizability tensor is [24]

αs
ii =

4πε0εma1a2a3

3

ε− εm
εm + Li(ε− εm)

, (2.23)

where i = 1, 2, 3 and Li is called the geometric factor. It is given by

Li =
a1a2a3

2

∫ ∞
0

dq
(a2
i + q)

√
(a2

1 + q)(a2
2 + q)(a2

3 + q)
, (2.24)

and they obey the constraint

L1 + L2 + L3 = 1 . (2.25)

For a sphere, a1 = a2 = a3 and we have L1 = L2 = L3 = 1
3 . The integral

above is well-behaved and rapidly converging. Analytical, closed-form ex-
pressions exist, however, for the special cases of prolate (a1 > a2 = a3,
”cigar-shaped”) and oblate (a1 = a2 > a3, ”pancake-shaped”) spheroids
[24].

In an analogous way to that of spheres, one usually defines a modified
polarizability for ellipsoids in the MLWA [28] as

αii =
αs
ii

1− ik3
mα

s
ii/(6πε0εm)− k2

mα
s
ii/(4πε0εmai)

. (2.26)
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This modified polarizability was used in appended papers I and II to model
the effects of anisotropy.

The effects of this anisotropy is a splitting of the resonance modes. For
a sphere, a single, 3-fold degenerate resonance is present due to symmetry.
When the spherical symmetry is broken, this degeneracy is lifted and dis-
tinct resonances appear in the new eigendirections. In particular, for con-
stant volume, the resonance in the elongated direction shifts toward lower
energies due to a reduction in the restoring force, and vice versa for the
compressed direction.

Optical cross sections

In previous sections, we presented different ways of obtaining the dipole
moment for subwavelength structures through their polarizability (tensor).

The optical cross sections in Eqns. (2.6) and (2.8) can then be evaluated
using the scattering amplitude from a dipole source. The far field scattering
amplitude from a dipole, p is given by [25]

e =
k2
m

ε0εm
(r̂ × p )× r̂ . (2.27)

Using the appropriate dipole polarizability to express the dipole moment
as p = α~

~

·E0, we obtain

σext =
km
|E0|2

Im

{
E∗0 ·

α~

~

ε0εm
·E0

}
, (2.28)

where we used the fact that E0 and r̂ are perpendicular in the forward
direction. For the scattering cross section, eq. (2.8) results in

σsca =
k4
m

(4πε0εm)2|E0|2

∫
Ω

∣∣p− (r̂ · p )r̂
∣∣2 dΩ . (2.29)

Since the integral is over the entire solid angle, it must be independent on
the dipole’s orientation and we can without loss of generality choose this
to be in the z-direction. Using r̂ · ẑ = cos θ, we obtain

σsca =
k4
m

6π|E0|2

∣∣∣∣ α~

~

ε0εm
·E0

∣∣∣∣2 . (2.30)

Recall from eq. (2.9) that the absorption cross section can be found through
the extinction and scattering as

σabs = σext − σsca . (2.31)

2.3 Plasmonics-assisted refractometric sensing

The optical response of a plasmonic nanoparticle is greatly dependent on
its immediate dielectric environment. This can be qualitatively understood
by once again looking at the polarizability for a small sphere, Eq. (2.13),
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repeated here

αs(ω) = 4πε0εma
3 ε(ω)− εm
ε(ω) + 2εm

, (2.13)

where ε(ω), εm are the dielectric functions of the sphere and its surround-
ing medium, respectively. As discussed in Sec. 2.2.1, the resonance occurs
where the real part of the denominator vanishes, Re{ε(ω) + 2εm} = 0. Us-
ing the Drude model for the permittivity of a metal sphere, Eq. (2.5), we
get

ωres =

√
ω2
p

1 + 2εm
− γ2 . (2.32)

We can clearly see that a change in the refractive index, nm =
√
εm, of the

surrounding medium changes the frequency of the resonance. In particular,
an increase in the refractive index causes a redshift of the resonance.

The SPP, the propagating counterpart to the LSPR discussed above is
analogously sensitive to its local dielectric environment. This property was
first used as a biosensor in the beginning of the 1980s [29, 30]. The method
has since evolved enormously and sensing devices are commercially avail-
able. SPP-based sensing was reviewed in Ref. [31].

For localized surface plasmon resonances (LSPRs), the first experimen-
tal demonstration of biosensing came in 1998 [1]. A review of LSPR-based
biosensing can be found in Ref. [21].

A direct comparison between the two methods for refractometric sens-
ing was performed in Ref. [32] showing similar performance.

For anisotropic nanostructures, there exist distinct plasmon resonances
in the different principal directions (see e.g. the ellipsoidal polarizability in
Eq. (2.23)). As a result, incident light polarized along a direction that excites
both these resonances will accumulate a polarization rotation and elliptic-
ity. A local refractive index change affects the different plasmon resonances
differently and a change in rotation and ellipticity can be measured. In ap-
pended paper II, this effect was used to demonstrate a bulk refractive index
sensing scheme as well as real-time molecular sensing.
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Chapter 3

High-index nanophotonics

The early research on metasurfaces was mainly related to localized plasmon
resonances as discussed in Chapter 2. The light cannot be confined for long
periods of time in these resonances, however, due to large Ohmic loss. This
loss also leads to local heating of the nanoparticles which can be useful
for certain applications such as drug release [33] or tumour treatment [34].
The local heating can in many cases be detrimental, however. In recent
years, a lot of research has been devoted to metasurfaces and metamaterials
composed of nanoparticles made from high-refractive index materials such
as silicon [35, 36]. These materials have very low absorptive loss and can
thus be very useful in cases where high quality resonances are desired or
local heating is unwanted.

Dielectric nanoparticles with high refractive index support electric and
magnetic geometric resonances [36–38] within the visible and near-infrared
wavelength range. The properties of high index nanoparticles have very re-
cently been used for various applications including refractive index sensing
[14], directionality [13, 39, 40] and subwavelength imaging [16].

In this chapter, we aim to shed some light on the optical properties of
subwavelength particles composed of high-index dielectrics.

3.1 Mie resonances

The problem of the optical response of an arbitrary sphere can be solved an-
alytically. The solution was presented by Gustav Mie in 1908 [19] and thus
bears the name Mie theory. By solving the Maxwell equations exactly in
spherical symmetry, expressions for the electric and magnetic fields in any
point in space can be found. Thus, the scattering, absorption and extinction
for a sphere of radius a can be calculated from converging infinite series of
multipoles according to [24]

σext =
2π

k2
m

∞∑
n=1

(2n+ 1)Re{an + bn} , (3.1)

σsca =
2π

k2
m

∞∑
n=1

(2n+ 1)
(
|an|2 + |bn|2

)
, (3.2)
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where an, bn are called scattering coefficients and are expressed in terms of
spherical Bessel functions as

an =
µmm

2jn(mx)
[
xjn(x)

]′ − µsjn(x)
[
mxjn(mx)

]′
µmm2jn(mx)

[
xh

(1)
n (x)

]′
− µsh(1)

n (x)
[
mxjn(mx)

]′ , (3.3)

bn =
µsjn(mx)

[
xjn(x)

]′ − µmjn(x)
[
mxjn(mx)

]′
µsjn(mx)

[
xh

(1)
n (x)

]′
− µmh(1)

n (x)
[
mxjn(mx)

]′ , (3.4)

where x = kma is the size parameter, m = km/ks is the relative refractive
index, km, µm, ks, µs are the wavenumbers and permeabilities for the sur-
rounding medium and the sphere, respectively.

Although these expressions are exact if not truncated, they are not trans-
parent and the physics in them is obscured. We note that the first scattering
coefficients, a1 and b1, correspond to electric and magnetic dipoles, respec-
tively. The corresponding dipole polarizabilities for plane wave incidence
can be found by normalizing by the correct partial-wave amplitude of the
incident wave [36, 41] , we have

αe = i
6πε0εm
k3
m

a1 , (3.5)

αm = i
6π

k3
m

b1 . (3.6)

The above polarizabilities exactly describe the electric and magnetic dipole
response for an arbitrary sphere. For the plasmonic nanoparticles discussed
in Chapter 2, the electric dipole response is often sufficient. In particular,
one can note that Eq. (3.5) reduces to the polarizability of a sphere in a static
field, Eq. (2.13) in the limit km → 0. Typically, one uses this approximation
(with the corrections discussed in Sec. 2.2.1) while still taking into account
the frequency dependence of the dielectric function. This allows one to
capture most of the physics and avoid drowning in Bessel functions.

3.2 Silicon nanostructures

For spheres made of high refractive index materials such as silicon (n ≈ 4
in the visible) the electric and magnetic Mie dipole resonances show up in
the visible. Figure 3.1 shows the scattering efficiency (scattering cross sec-
tion normalized by geometric area) calculated using Eq. (3.2). The red and
blue curves show the contributions from the electric and magnetic dipole
scattering, a1 and b1, respectively. The dashed purple curve shows the sum
of electric and magnetic contributions while the black curve shows the full
Mie sum, truncated at convergence. It is clear that a description using only
electric and magnetic dipole scattering is sufficient in this regime.

In paper III, we studied metasurfaces composed of silicon nanopillars
on top of a glass substrate. These were fabricated from polycrystalline sili-
con wafers using colloidal lithography. The dielectric function for the poly-
crystalline silicon was measured using ellipsometry. Figure 3.2 shows the
measured dielectric function and corresponding refractive index along with
data taken from Ref. [42] for monocrystalline silicon.



3.2. Silicon nanostructures 13

Wavelength (nm)

S
p

h
e

re
 r

a
d

iu
s 

(n
m

)

1

2

3

4

5

6

7

8

9

450 500 550 600 650 700 750
Wavelength (nm)

0

2

4

6

8

10

S
ca

!
e

ri
n

g
 E

ffi
ci

e
n

cy
 

(
sc

a
/

a
2

)

40

60

80

100

120

140

400 500 600 700 800

Electric dipole
Electri

c dipoleMagne#c dipole

Magne#c dipole

FIGURE 3.1: (Left) The scattering efficiency for a crystalline
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using Mie theory. (Right) The scattering efficiency of silicon
spheres of different radius calculated using Mie theory us-
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FIGURE 3.3: (a) Photograph of the fabricated metasurfaces.
(b) Tilted view SEM-image of typical metasurface. (c) SEM
images of the measured metasurfaces. The scale bar corre-
sponds to 500 nm. (d) Measured extinction for the samples
with silicon nanopillars of different diameters. The electric

and magnetic dipole resonances are clearly visible.

The imaginary part of the dielectric function governs absorption in the
material. For monocrystalline silicon, the imaginary part is essentially zero
above λ = 500 nm and it is widely regarded as a dielectric material in this
regime. The band-gap of silicon at room temperature is Eg = 1.124 eV
[43], so for higher wavelengths than λ ≈ 1100 nm the silicon electrons do
not absorb any light (for higher wavelengths there can be absorption by
phonons).

The higher absorption in the polycrystalline silicon is mainly due to
losses at grain boundaries but may also be due to impurities.

The fabricated samples were characterized using scanning electron mi-
croscopy (SEM) and optical spectroscopy (as discussed in Sec. 4.5), see Fig.
3.3. The extinction spectra in Fig. 3.3(d) show resonances in the visible and
near infrared spectral range that are of the same character as the geometric
Mie resonances in spheres shown in Fig. 3.1.

The separation into electric and magnetic dipole polarizabilities is usu-
ally done for dielectric particles of any shape in this size regime (D ∼
80− 200 nm). Here, the optical response is dominated by the Mie modes of
electric and magnetic dipole character in the visible and near infrared.

The electric and magnetic dipole moments of any structure can be cal-
culated from the following [25]

p =

∫
V
P (r) d3r =

∫
V
ε0

(
ε(r)− 1

)
E(r) d3r , (3.7)

m =
1

2

∫
V
r × J(r) d3r =

−iω
2

∫
V
ε0

(
ε(r)− 1

)
r ×E(r) d3r , (3.8)

where P (r) is the polarization, J(r) is the current density. We have as-
sumed no free sources, so J(r) = −iωP (r) is the displacement current
density. The electric and magnetic polarizabilities can then be identified
through p = α~

~

e ·Eexc andm = α~

~

m ·Hexc whereEexc,Hexc are the exciting
fields (the fields that would exist at the centre of the particle in its absence).

Figure 3.4 shows the scattering efficiency for a crystalline silicon sphere
of radius a = 80 nm. The solid lines are calculated from Mie theory, Eq.
(3.2) using only the lowest order scattering coefficients, a1 (red solid line)
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con used in both cases was taken from Ref. [42].

and b1 (blue solid line). The dashed lines show the scattering efficiency
calculated from polarizabilities extracted through Eqns. (3.7) and (3.8). The
electric fields in this case were extracted from a full electromagnetic wave
simulation using the Finite Difference Time-Domain (FDTD) method (see
Sec. 4.4).

The modal decomposition using Eqns. (3.7) and (3.8) with fields from
FDTD was used in appended paper III to describe the response of the in-
dividual silicon nanopillars on top of a glass substrate. The presence of
the substrate induces coupling effects between the different modes [44] and
some mixing can be observed (see also appended paper III).

Fig. 3.5 shows the scattering efficiency at normal incidence for polycrys-
talline nanopillars of different radii and diameters on top of a glass sub-
strate calculated using FDTD with the dielectric function measured using
ellipsometry (see red curves in Fig. 3.2). The resonance positions for the
electric and magnetic dipole modes are clearly less sensitive to the height
of the nanopillar than to its radius. In addition, the electric and magnetic
resonances scale differently. This allows for the possibility of placing the
electric and magnetic resonances at specific wavelengths through precise
engineering of the nanoparticle dimensions.
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Chapter 4

Methods

The work presented in this thesis is mainly focused on analytical consid-
erations and numerical simulations. However, some optical spectroscopy
measurements have been performed.

The main methods used have been a Green’s function approach to the
radiation of a dipole in the presence of an interface, an analytical effective
medium theory and computational full wave electromagnetic simulations
using the Finite Difference Time-Domain (FDTD) method. The effective
medium, or island-film, theory was used to model the optical response of
metasurfaces and FDTD was used to characterize the optical response of
single nanoparticles. A background and description of these methods will
be the focus of this chapter. In addition, a brief description of the Coupled
Dipole Approximation (CDA), although not employed in the appended pa-
pers, is included for completeness.

4.1 Dipole fields in the presence of an interface

The metasurface samples studied in this work are mainly fabricated with
the Hole-Mask Colloidal Lithography technique [17]. Such samples are typ-
ically composed of nanoparticles patterned on top of a glass slide. Since
these nanoparticles are in most cases smaller than the wavelength of visi-
bile light, the approximations made in Section 2.2.1 are generally applica-
ble and the particles are treated as dipoles. Consequently, it is important
to understand how electric dipoles scatter when in presence of a dielectric
interface.

We follow a similar procedure to [45] and start by noting that the electric
field at a point r from a current distribution j is given by

E(r) = iωµ0µj

∫
d3r′G~

~

(r, r ′) · j(r ′) , (4.1)

where G~

~

(r, r ′) is the Green’s function tensor of the surrounding environ-
ment and µj is the relative permeability of the medium. For a point dipole
in with strength p0 at r = r0, we have j = −iωp0δ

(3)(r − r0) and the field
becomes

E(r) = ω2µ0µjG~

~

(r, r0) · p0 . (4.2)

To get an expression for the dipole scattering, we thus need to identify the
Green’s function tensor of the environment.

We introduce a single interface at z = 0, dividing regions of space with
permittivities and permeabilities εj , µj . Let j = 1 for z > 0 and j = 2 for
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FIGURE 4.1: Spatial configuration of the dipole above a pla-
nar interface. The dipole with strength p0 is located at r0

z < 0. We also assume that the sources are located in medium 1, so that
z0 > 0. The parallel momentum, q‖, is conserved along the interface as a
consequence of the boundary conditions (Snell’s law) and we denote the
z-component of the wave number in medium j by pj . With these notations,
we have kj =

√
εjω/c0 and k2

j = q2
‖ + p2

j .
In the case of a layered structure, or specifically a single interface, the

background is translationally invariant in the parallel directions x and y, or
r‖. This means that the Green’s function is also translationally invariant in
these directions and has a spatial dependence of the formG~

~

(r, r ′) = G~

~

(r‖−
r‖
′, z, z′). It can thus be Fourier transformed in the parallel directions. This

allows us to express the electric field in Eq. (4.2) in terms of the Fourier
transform of the Green’s Function (GFFT), we have

E(r) =ω2µ0µj

∫ d2q‖

(2π)2
G~

~

(q‖, z, z0) · p0 eiq‖·R‖ , (4.3)

where we introduced R‖ = r‖ − r0,‖. The point of introducing the Fourier
transform is to write the field in terms of a superposition of plane waves,
in Eq. (4.3). This is because it is well known how plane waves interact with
an interface, through Fresnel reflection and refraction, so we can treat each
of these plane waves separately.

We introduce a direction of propagation for the field and define its wave
vector, ~q τj , as follows

q±j = q‖ ± pj ẑ = (qx, qy,±pj) , (4.4)

where τ = + denotes upward propagation (z > z0) and τ = − denotes
downward propagation (z < z0). The corresponding unit vector to ~q τj is
q̂τj = ~q τj /kj . The z-component of the wave number can be expressed as
pj = kj cos θj , where θj is the angle of incidence or refraction, measured
from the substrate normal, ẑ. Note that θj becomes complex in the case of
evanescent waves (as in the case of total internal reflection). At this point,
it is also convenient to introduce the unit vectors for s- and p-polarization,
ŝτj and p̂τj . These vectors are defined with respect to planes normal to z. We
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have

ŝ±j =
ẑ × q̂±j
|ẑ × q̂±j |

=
1

q‖
(−qy, qx, 0) , (4.5)

and

p̂±j = ŝ±j × q̂
±
j =

1

kj

(
±qx
q‖
pj , ±

qy
q‖
pj , −q‖

)
. (4.6)

Since the unit vector for s-polarization is independent of direction of prop-
agation, we will henceforth drop its τ -superscript. The triad {q̂τj , p̂τj , ŝj}
forms a basis for R3, meaning

q̂τj ⊗ q̂τj + p̂τj ⊗ p̂τj + ŝj ⊗ ŝj = 1 , (4.7)

where⊗ denotes the dyadic (or outer) product. For column vectors, v⊗v =
vvT . With these definitions, it can be shown that (see e.g. [46]) the GFFT
for a homogeneous medium (that is, not our layered environment) is

G~

~

τ
h(q‖, z, z0) =

i
2pj

(
p̂τj ⊗ p̂τj + ŝj ⊗ ŝj

)
eipj |z−z0| . (4.8)

The dipole will emit a field composed of a superposition of plane waves.
These plane waves will then reflect from and transmit through the interface.
Treating each plane wave of each polarization separately, we can identify
the fields above and below the interface. Above, it will be a sum of a direct
field and a reflected field and below it will simply be a transmitted field.
We have

Ej(r) =

(
Ep

Es

)
=

iω2µ0µj
2

∫ d2q‖

(2π)2

(
Mp

j (q‖) · p0

M s
j(q‖) · p0

)
eiq‖·R‖eipj |z| , (4.9)

where the vectors Mp/s
j (q‖) contain the information about the interaction

with the interface. They are, explicitly

Mp
1(q‖) =

1

p1

(
p̂+

1 e−ip1z0 + rp(q‖)p̂
−
1 eip1z0

)
, (4.10)

M s
1(q‖) =

1

p1

(
e−ip1z0 + rs(q‖)eip1z0

)
ŝ1 , (4.11)

Mp
2(q‖) =

1

p2

p2

p1
tp(q‖)eip1z0 p̂−1 , (4.12)

and

M s
2(q‖) =

1

p2

p2

p1
ts(q‖)eip1z0 ŝ1 . (4.13)

Here, rs/p and ts/p are the regular Fresnel coefficients for reflection and
transmission. Note that these depend on the parallel momentum (in other
words, the angle). This method can easily be generalized to a situation with
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multiple layers of dielectrics beneath the dipole source. One then needs to
extract the reflection and transmission coefficients for all layers, through
a transfer matrix method (see e.g. [47]). One also needs to add a phase
compensation to the fields in the lowest medium to account for the total
thickness of the layered structure [45].

Far fields

In the previous section, we derived the form of the electric field from a
dipole above an interface. What is interesting for an experiment though, is
the radiation pattern – the field that propagates to the far field.

For large r, we can obtain the asymptotic form of the integral in Eq. (4.3)
using the method of stationary phase, or saddle point method (see eg. [48]).
We get

Ej,far(r) =

(
Epfar

Esfar

)
=
ω2µ0µj

4π

eikjr

r
pj

(
Mp

j (q
0
‖) · p0

M s
j(q

0
‖) · p0

)
, (4.14)

where q0
‖ is the parallel momentum corresponding to the direction of obser-

vation, i.e. r. Special care needs to be taken when looking at the transmitted
fields, since in that case the θ-angle refers to the ”angle of refraction” in the
Fresnel coefficient.

These expressions were employed in appended paper I to model the
directional scattering of tilted plasmonic gold nanopillars on top of a glass
substrate.

We turn for a moment to the specific case of the metasurface samples
where the top medium is air (n1 = 1) and the lower medium is glass
(n2 = 1.52). One interesting thing to note about this type of dipole radi-
ation is that some number of the plane waves in the superposition in Eq.
(4.3) are evanescent in air. Having a higher refractive index, the glass can
support a larger range of parallel momenta, however, and some of those
aforementioned plane waves can become propagating in the glass. This ra-
diation is called ”forbidden”, since it propagates above the critical angle,
θc. Since the evanescent waves decay exponentially in air, the forbidden
radiation is highly dependent on the distance of the dipole to the interface,
z0, see Fig. 4.2.

The reverse of this effect, by reciprocity, is used in total internal reflec-
tion microscopy to enhance spatial contrast [49]. When illuminating an in-
terface at an angle above the critical angle, all transmitted waves are evanes-
cent. However, if there is a for example a fluorophore close enough to the
interface, it can be excited by the evanescent waves and fluoresce into the
air side. Due to the strong dependence on z0, only fluorophores very close
to the surface will give a signal.

4.2 Island-film theory

From the Maxwell equations it follows that the electric and magnetic fields
at either side of the boundary between two different media have certain
boundary conditions. Applying vector calculus theorems allows one to
identify these boundary conditions [25]. The standard Fresnel coefficients
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FIGURE 4.2: Far field radiation patterns of a 30◦ tilted
dipole in air above a planar glass (n2 = 1.52) interface. The
two images show the dipole at different distances from the
interface. Notice that the radiation into the ”allowed” zone
is independent of z0 while the radiation into the ”forbid-

den” zone is not.

for reflection and transmission result from solving these boundary condi-
tions in the absence of any sources.

A typical metasurface is an array of nanoparticles patterned on top of
such a boundary between dielectric media (typically air and glass). One can
then model the nanoparticles as an infinitesimally thin film of polarizable
islands [50]. The presence of this film modifies the field boundary condi-
tions, and solving those allows one to obtain new Fresnel coefficients that
include contributions from the nanoparticle inclusions.

This model, when including only electric polarization, has been used
extensively to model the optical response of thin layers [51–54].

We divide space into two regions with permittivities and permeabilities
ε1, µ1 and ε2, µ2, respectively. The boundary conditions for the components
tangential to the interface are, when disregarding any out-of-plane polar-
ization and magnetization [24, 51]

ẑ ×
(
E2 −E1

)
= µ0

∂M s
‖

∂t
, (4.15)

ẑ ×
(
H2 −H1

)
= −

∂P s
‖

∂t
. (4.16)

Here, we have chosen ẑ as a normal vector to the interface directed into
medium 1, M s

‖ and P s
‖ are surface magnetizations and surface polariza-

tions.
The choice to neglect the z-components is definitely justified in the case

of metasurfaces with very thin particles, such as plasmonic nanodisks stud-
ied in previous works [53, 55]. For the case of the thicker silicon nanopil-
lars studied in paper III, this approximation is less justified. However, ex-
periments are well described by this model despite the omission of the z-
components. A complete model taking all components into account is in
the process of being developed.

We choose to use the surface excess quantities in eqns. (4.15) and (4.16)
to model the nanoparticles present at the interface. Each nanoparticle has
polarizabilities defined such that its electric and magnetic dipole moments
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are

p = α~

~

e ·Eexc , (4.17)
m = α~

~

m ·Hexc . (4.18)

whereEexc andHexc are the exciting electric and magnetic fields at the site
of the particle, respectively. Denoting the particle density on the surface
by ρ, the surface polarization (dipole moment per unit area) and surface
magnetization are

P s
‖ = ραe

‖E
exc
‖ , (4.19)

M s
‖ = ραm

‖ H
exc
‖ , (4.20)

where we assumed that the nanoparticles are isotropic in-plane so that
the polarizability tensor becomes scalar. The boundary conditions in eqns.
(4.15) and (4.16) become

ẑ ×
(
E2 −E1

)
= −iωµ0ρα

m
‖ H

exc
‖ , (4.21)

ẑ ×
(
H2 −H1

)
= iωραe

‖E
exc
‖ , (4.22)

where we have assumed a harmonic time-dependence such that ∂/∂t →
−iω×.

We now consider a situation plane-wave impinging on the interface
from medium 1 so that

Einc = Eieiq‖·r‖−ip1z−iωt (4.23)

H inc = H ieiq‖·r‖−ip1z−iωt = 1/Z1q̂
−
1 ×Einc (4.24)

with analogous expressions for the reflected and transmitted fields. Here,
Z1 =

√
µ0µ1/ε0ε1 is the impedance in medium 1. The unit vectors q±j , ŝ±j

and p̂±j for wave propagation in the direction of ±z, as well as s- and p-
polarization, are defined in the same way as in Sec. 4.1, Eqns. (4.4), (4.5)
and (4.6). In both media, we have q2

‖ + p2
j = k2

j = εjµjω
2/c2

0.
Precisely at the interface, z = 0, all field are in phase and we have E1 =

Einc + Eref = Ei + Er and E2 = Etr = Et and analogously for the H-
fields. Since the electric and magnetic fields are discontinuous across the
infinitesimally thin interface, a reasonable choice for the parallel part of
the exciting fields is the mean value of the fields in either medium. The
boundary conditions in eqns. (4.21) and (4.22) become

ẑ ×
[
Et − (Ei +Er)

]
=
−iωµ0ρα

m
‖

2

(
H i
‖ +Hr

‖ +Ht
‖
)
, (4.25)

ẑ ×
[
Ht − (H i +Hr)

]
=

iωραe
‖

2

(
Ei
‖ +Er

‖ +Et
‖) . (4.26)

We can now proceed to solve these boundary conditions to obtain reflec-
tion and transmission coefficients for s-polarized (TE) and p-polarized (TM)
incidence separately. For each case, the boundary conditions each yield
one equation. We introduce coefficients rs = Er/Ei and ts = Et/Ei and
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analogously for p-polarization. The boundary conditions in the case of s-
polarized incidence yield

ts − (1 + rs) =
iραm
‖

2

(
p1

µ1

(
1− rs

)
+
p2

µ2
ts
)
, (4.27)

and

p2

µ2
ts +

p1

µ1

(
− 1 + rs

)
=

iω2µ0ρα
e
‖

2
(1 + rs + ts) . (4.28)

For the case of p-polarized incidence, they are

p2

k2
tp − p1

k1
(1− rp) =

iραm
‖

2

(
k1

µ1

(
1 + rp

)
+
k2

µ2
tp
)
, (4.29)

and

k2

µ2
tp − k1

µ1
(1 + rp) =

iω2µ0ρα
e
‖

2

(
p1

k1

(
1− rp

)
+
p2

k2
tp
)
. (4.30)

Solving these equations results the following expressions for the reflection
and transmission coefficients

rs =

(p1µ2 − p2µ1)

(
1−

k20ρ
2αe

‖α
m
‖

4ε0

)
− ip1p2ρα

m
‖ + ik2

0µ1µ2ρα
e
‖/ε0

(p1µ2 + p2µ1)

(
1−

k20ρ
2αe

‖α
m
‖

4ε0

)
− ip1p2ραm

‖ − ik2
0µ1µ2ραe

‖/ε0

, (4.31)

ts =

2p1µ2

(
1 +

k20ρ
2αe

‖α
m
‖

4ε0

)
(p1µ2 + p2µ1)

(
1−

k20ρ
2αe

‖α
m
‖

4ε0

)
− ip1p2ραm

‖ − ik2
0µ1µ2ραe

‖/ε0

, (4.32)

and

rp =

(ε2p1µ1−ε1p2µ2)

(
1−

k20ρ
2αe

‖α
m
‖

4ε0

)
+ ik2

0ε1ε2ρα
m
‖ − iµ1µ2p1p2ρα

e
‖/ε0

(ε2p1µ1+ε1p2µ2)

(
1−

k20ρ
2αe

‖α
m
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4ε0
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− ik2

0ε1ε2ραm
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‖/ε0

, (4.33)

tp =

2
√
ε1ε2p1µ2

(
1 +

k20ρ
2αe

‖α
m
‖

4ε0

)
(ε2p1µ1+ε1p2µ2)

(
1−

k20ρ
2αe

‖α
m
‖

4ε0

)
− ik2

0ε1ε2ραm
‖ − iµ1µ2p1p2ραe

‖/ε0

. (4.34)

The translation into angles of incidence and refraction is done through p1 =
k1 cos θi and p2 = k2 cos θt where θi and θt are measured from substrate
normal in their respective media.

From these equations, one can see that the total reflection transmission
from the metasurface is a superposition of contributions from the interface
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itself (the first terms in either numerator or denominator correspond to the
standard Fresnel coefficients) and contributions from the scattering of the
electric dipoles and the magnetic dipoles.

4.3 Coupled-Dipole Approximation (CDA)

In the previous chapters, we have focused on the properties of a single
nanoparticle. When many such particles are brought together, for exam-
ple on top of a metasurface or in a colloidal solution, interaction between
the particles can become important. In the previous section, we described a
method to characterize a metasurface using surface averaged polarizations
and magnetizations. While it is possible to define effective polarizabilities
for the particles that take the average interparticle interaction into account,
one cannot in this model capture any effects that depend on the precise
location of the nanoparticles.

In general, each particle in an ensemble is located in the superposition of
the incident field and the scattered field from each other particle. This inter-
action between particles is responsible for the extreme field enhancements
that arise in the gap between two closely placed nanostructures. Many ap-
plications make use of this strong field enhancement. Examples include
surface-enhanced Raman spectroscopy [12, 22, 56] and enhanced fluores-
cence [57].

Some of this interaction can be taken into account through the so-called
coupled dipole approximation (CDA) [26, 58, 59]. In this picture, each
nanoparticle is regarded as a point dipole in the presence of the incident
field and the retarded dipole field from all other nanoparticles. The dipole
moment for dipole i becomes

pi = α~

~

i ·
(
Einc,i + ω2µ0µm

∑
j 6=i
G~

~

(ri, rj) · pj
)
, (4.35)

where α~

~

i is the polarizability tensor (with any depolarization taken into
account) of the ith dipole,Einc,i is the incident field at the location of dipole
i and ω2µ0µmG~

~

(ri, rj) · pj is the scattered field from dipole j at the location
of dipole i, withG~

~

(ri, rj) being the Greens’ function tensor of the medium.
If we define a tensor,A~

~

, such that

A~

~

ij =

{
α~

~

−1
i for j = i ,

−ω2µ0µmG~

~

(ri, rj) for j 6= i ,
(4.36)

the equation for the dipole moments can be written as a linear system of
equations according to

N∑
j=1

A~

~

ij · pj = Einc,i . (4.37)
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For a homogeneous medium, we have [25, 46]

G~

~

h(ri,rj) =(
k2
mR

2 + ikmR− 1

k2
mR

2
1 +

3− 3ikmR− k2
mR

2

k2
mR

2
R̂⊗ R̂

)
eikmR

4πR
, (4.38)

whereR = rj−ri and⊗ denotes the dyadic (or outer) product. For column
vectors, v ⊗ v = vvT .

The approximation of treating each nanoparticle as a point dipole is a
valid one for small enough particles that are not too closely spaced [60]. In
these cases, higher multipole orders come into play.

The CDA model provides an approximation of the optical dipolar re-
sponse of an array of nanoparticles. The strength of the model resides in
the fact that it reduces the scattering problem to the solution of a system
of linear equations. This problem is so ubiquitous that many efficient al-
gorithms have been developed to tackle it. With the constant advances in
computing power, larger and larger systems can be solved efficiently.

4.4 Finite Difference Time-Domain method (FDTD)

The finite difference time-domain method introduced by Yee in 1968 [61] is
a powerful technique which allows for the approximate solution of electro-
magnetic problems. The method is based on solving the time-dependent
Maxwell equations in the wake of an electromagnetic pulse in the time-
domain. The solution is iterated in time until a steady state is reached in
the electromagnetic fields. In the work presented in this thesis, the com-
mercially available software FDTD Solutions (Lumerical Inc., Canada) has
been used for calculations of optical properties of plasmonic as well as di-
electric structures.

In the software, the time-dependent Maxwell equations are solved in a
simulation region in which the scatterers are defined as geometrical objects
with a certain dielectric function. At the edge of the simulation region, a set
of boundary conditions are employed, typically either periodic or absorb-
ing. The absorbing boundary conditions are meant to simulate a situation
where the outgoing fields propagate to infinity and stop interacting with
the scatterers.

A few things are worth noting about FDTD that stand in contrast to
other methods typically used (e.g. the Finite Element Method (FEM)):

• Since FDTD is a time-domain method, injection of a broadband pulse
makes the optical response for a spectrum of frequencies available
from a single simulation through Fourier transforms. The broadband
response of nanoparticles and metasurfaces is often of interest, mak-
ing this a very useful property.

• The dielectric functions cannot be directly imported from tabulated,
experimental values in the frequency domain. These need to be fitted
using a combination of functions (for example Drude or Lorentzian
functions). The dielectric functions need to fulfil the Kramers-Kronig
relations (causality) [25]. However, a combination of these functions
can most often be fitted to experimental data in the spectral region
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of interest. Most commercial software implementations handle this
fitting internally.

• It is not straightforward to simulate oblique plane wave incidence
when the translational symmetry in the z-direction is broken by a sub-
strate. This is because the plane wave source injects fields that have a
constant in plane wave-vector k‖ at all frequencies. This results in a
frequency dependent incidence angle. This can be solved by perform-
ing several simulations for different angles of incidence.

4.5 Optical measurements

Metasurfaces are generally composed of nanoparticles smaller than the in-
cident light wavelength. In addition, they are patterned such that the inter-
particle distances are subwavelength. The scattered field from all nanopar-
ticles is only exactly in phase in the forward direction and specular reflec-
tion direction (kscat

‖ = kinc
‖ ). As a result, rather than scattering like a collec-

tion of individual dipole scatterers, the far-field from such an arrangement
is concentrated in these directions. Diffuse scattering from typical meta-
surfaces fabricated by colloidal lithography is strongly suppressed, albeit
measurable, as shown in paper III and Ref. [32]. Most of the scattering in-
formation about the metasurfaces can thus be obtained by measuring trans-
mission and reflection.

Measuring the light transmitted through a metasurface yields the ex-
tinction. The light which is not transmitted is either absorbed or scattered
(mostly reflected). The extinction is thus given by

E = 1− T , (4.39)

where T is the transmittance through the sample. For this to correspond to
the extinction from the particles alone, one needs to reference the transmis-
sion against a bare glass slide to account for the reflection from the interface
as well as the spectrum of the lamp and any properties of the optical com-
ponents.

The extinction is typically measured at normal incidence, see Fig. 4.3(a),
although any angle dependence is easily probed by tilting the sample. In
this configuration, one can also measure the reflection at normal incidence
by adding a 50/50 beamsplitter.

Figure 4.3(b) shows the experimental set-up for measuring reflection
from a metasurface. The sample is mounted on a hemispherical prism us-
ing refractive index matching oil.

Both these measurement set-ups were used to characterize metasurfaces
of silicon nanopillars in appended paper III. In these experiments, reference
was taken using a silver mirror and thus the metasurface (glass interface +
nanoparticles) is considered as a single entity.



4.5. Optical measurements 27

la
m

p

dete
ct

or

hemispherical

prism

(a) (b)

pola
riz

er

θ

lamp

detector

transmission

detector

reflec"on

50/50 beamspli$er

polarizer

FIGURE 4.3: (a) Normal incidence reflection and transmis-
sion measurements. (b) Experimental set-up for measuring

specular reflection.





29

Chapter 5

Summary and outlook

As we have seen in the work presented in this thesis, the interaction be-
tween light and nanostructured matter exhibit many interesting effects that
are useful for many applications.

It has been the focus of this thesis to elucidate the properties of meta-
surfaces. Properties of metasurfaces composed of either plasmonic or high-
index nanoparticles have been explored, both at the level of individual par-
ticles and their collective behaviour. Chapters 2 and 3 dealt with the prop-
erties of the single plasmonic and high-index nanoparticle scatterers, re-
spectively. Assembling the particles into metasurfaces introduces collective
properties, both in terms of far-field coherent scattering and near-field cou-
pling. The thin homogeneous film approach presented through the island-
film theory in Sec. 4.2 addresses the collective scattering by introducing
modified coefficients for reflection and transmission of plane waves. How-
ever, any inter-particle coupling that depends on the exact location of the
scatterers is not captured by this model.

By employing the Coupled Dipole Approximation (Sec. 4.3) to find the
optical response of a small part of a metasurface and propagate the result-
ing dipole scattering into the far-field, one can take some of the particle-
particle interaction into account. One potential future direction is to com-
pare these results to the island-film theory to give an indication of the va-
lidity of the thin-film approximation in different particle density regimes.

In the implementation of the island-film theory discussed in Chapter 3,
a few approximations and simplifications were made. Firstly, the out-of-
plane components of the polarizability of the nanoparticles were neglected.
This approximation is valid for thin particles, where the out-of-plane com-
ponents are weak and shifted to higher energies. For thicker particles, how-
ever, the contribution from the z-component can become important. Sec-
ondly, the particles studied were symmetric in-plane, so the polarizabilities
were scalar. An extension of the model to include the out-of-plane polariza-
tions and magnetizations as well as the potential for anisotropic particles
would reduce the tractability of the expressions, but would be useful for
continued modelling.

The low cost, high throughput fabrication method used to produce the
silicon nanopillars studied in paper III can easily be extended to metasur-
faces composed of structures with different geometries. Realized examples
include chiral crescents and dimer structures (see Figure 5.1). This adap-
tation enables the continued study of various silicon metasurfaces and we
plan to study these geometries in detail and use them for different applica-
tions and light management.
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fabricated with colloidal lithography from polycrystalline
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cent nanostructures. (Bottom) SEM images of silicon nan-

odimers. The scale bar corresponds to 500 nm.

In addition, combining the potentially high-quality factor resonances
found in high-index nanoparticles with the strong field enhancements of
plasmonic nanoparticles may open doors to new applications. With the
help of methods such as FDTD, we plan explore these combined geometries
in an effort to unveil novel effects such as directionality, increased sensor
efficiency and exotic near-field coupling.

In conclusion, metasurface research is bustling with activity and real-
ization of many new and interesting functionalities is within the reach of
current nanofabrication techniques.
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