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Abstract 

Passenger cars are a major emitter of global warming gases which has led to tighter 

regulations being imposed on car manufacturers. An efficient way to reduce emissions is to 

reduce the weight of the cars. Composite materials, due to their high strength and energy 

absorption to weight ratio, are a suitable material choice to reduce the weight without 

affecting passenger safety. A major challenge today is the fast development times and low 

costs required by the automotive industry. An efficient design phase using more virtual tools 

and less physical testing allows time and cost-savings during the design phase.  

Fibres oriented longitudinally with the load and subjected to compression fail mainly by 

kinking, which is the damage mode responsible for most of the energy absorption. In this 

thesis the focus is on developing a physically based fibre kinking model for crash of 

composites.  

Fibre kinking is shear dominated, i.e. strongly influenced by the properties of the matrix as 

well as the alignment level of the fibres and the transverse loads. Modelling the complex 

physical mechanisms involved in crash at the microscale will result in prohibitively expensive 

simulations for the automotive industry. Therefore, in the present thesis, we homogenize the 

material while capturing the physical mechanisms involved, such as fibre rotation. The model 

parameters are physically meaningful and avoid cumbersome tests to obtain input for the 

model. Furthermore, the model is implemented in commercial Finite Element (FE) software 

together with a mesh objective methodology. The results show that the proposed model can be 

used to predict the whole kinking response in a 3D framework and thus account for the 

correct energy absorption. 

Keywords: Crushing, kinking, friction, damage mechanics, FEA  
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Thesis 

This licentiate thesis includes a brief description of motivation and challenges of crash 

modelling of composites as well as the following appended papers: 

 

Paper A  Renaud Gutkin; Sérgio Costa, Robin Olsson. A physically based model for kink-

band growth and longitudinal crushing of composites under 3D stress states 

accounting for friction. Composite Science and Technology, (2016) 

 

Paper B Sérgio Costa; Renaud Gutkin; Robin Olsson. Mesh objective implementation of 

a fibre kinking model for damage growth with friction. Composite Structures, 

(2016), submitted 

 

 

The appended papers were prepared in collaboration with the co-authors. 

Paper A: Gutkin developed the model. Costa implemented the model in Matlab, performed 

development tests and participated actively in the writing.  

 

Paper B: Costa did the model implementation in FE software and studies on mesh objectivity 

with the supervision of the co-authors. Costa wrote the paper with the assistance of Gutkin 

and Olsson.  
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1. Introduction 

1.1. Background 

Over the past fifty years the use of Carbon Fibre Reinforced Plastics (CFRP), commonly 

called composites, has been increasing substantially in some industries, such as the aeronautic 

industry, Figure 1. 

 

Figure 1. Growth of composites usage in Airbus aircrafts 

The usage of composites was previously associated with high performance applications where 

their use is not principally cost-driven and have limited production volumes, such as 

aerospace and sports cars. Due to the tighter regulations on emissions imposed in the car 

industry composites have also been envisaged for mainstream cars as a means to reduce 

weight and thereby fuel consumption. In fact, composites possess some of the necessary 

characteristics to outperform the current materials used in the automotive industry: high 

specific stiffness, strength and energy absorption. The main challenge is that the automotive 

industry requires higher volumes and lower prices. 

Combustion engine cars need to reduce their pollutants exhaust emissions, thus automakers 

seek effective methods for fuel reduction. Improving the engine is becoming too expensive, 

forcing the car manufactures to look for other solutions such as weight reduction. 

Approximately three-fourths of the energy consumption is related to vehicle weight [1]. Thus, 

reducing weight will result in lower emissions. 

Another alternative to reduce emission is to use electric cars which do not have CO2 

emissions. However, range anxiety is a major concern for most of the costumers, making 

weight reduction equally important. Over the past decades cars are becoming heavier due to 

additional features. Removing these features will be a backward step in safety, comfort or 

handling, which is not a considered an option among the automakers. For the purpose of 

reducing the weight of the vehicle efficiently it is necessary to replace the steel by composite 
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materials in structural parts [1]. Even though producing 1 kg of steel is causes less emission 

than 1 kg of CFRP, in the long run, due to the lower vehicle emissions, composites 

outperform steel, Figure 2. 

    

Figure 2. Lightweight potential of composites in the automotive industry, adapted from [2] 

1.2. Composites materials towards crash 

The establishment of composite materials in the automotive market sector depends mainly on 

(I) Improving the manufacturing process; (II) Increasing the understanding of composite 

components during vehicle crashes; (III) Develop a material database with relevant 

parameters; (IV) Enhance predictive (crash) models to avoid costly overdesign [1,3]. 

Designing components using Computer Aided Engineering (CAE) will allow significant cost 

savings and optimal design for crash. Thus, reliable CAE methods will also allow wider 

application in mid range cars and not as presently only in the luxury and sport cars segment, 

Figure 3. 

 

Figure 3.Composite body structure of two high-en cars with metal rear and front bumpers: (a) 

Lamborghini aventador [4]; (b) Porshe 918 [5] 
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Although in the luxury segment, composites are becoming more used, the crash absorbers are 

not made out of composites, in spite of the fact that composites outperform metals in energy 

absorption, Figure 4. 

 

Figure 4. Average energy absorption of corrugated composite panels with cross-ply lay-up 

with aluminium and steel crash box, adapted from [6] 

Crushing describes the continued compressive loading of the material beyond its compressive 

strength limit. A crash involves gross deformations of a structure under compressive loading 

beyond its elastic limit, and generally involves a combination of elastic deformations and 

crushing or yielding, as well as other failure modes, e.g. delamination. In order to protect the 

passengers (in a eventual car crash), the aim is to have a stable crushing with a low peak load 

and a high average crush load resulting in low initial impact force and high energy absorption. 

The car components should be designed to fail in a controlled manner. Using physical 

observation and CAE with physically based models will allow for the optimal design. Since 

crash takes only a split of a second it is difficult to follow even using high speed cameras. 

Therefore, most of the research made on crash modelling actually is based on crush 

modelling. By compressing a coupon in a quasi-static manner it becomes possible to follow 

and register the failure mechanisms. The drawback of a quasi-static approach is that some 

materials are strain-rate dependent, as in the case of thermoplastic polymer reinforced 

composites, [7,8]. Strain rate effects were not investigated in the current work.  

1.3. UD prepreg vs. NCF 

Unidirectional (UD) prepreg composites have excellent properties per unit weight but their 

manufacturing and poor drapability does not make them the most suitable option for the 

automotive industry. Textile composites have lower manufacturing times because there are no 

pre-impregnated plies to be stacked together and faster manufacturing is also possible with 
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infusion. Several types of textile reinforcements have been proposed, e.g. woven, braided, 

knitted and NCF with stitched reinforcements. NCF are textile composites (almost) without 

crimp or weaviness, resulting in better mechanical properties. A drawback with NCF 

compared with UD prepreg is that the fibre tows still have some waviness, which triggers 

failure mechanisms like kinking. UD prepreg plies are transversely isotropic, Figure 5(a), 

while Non-Crimp Fabrics (NCFs) are orthotropic and heterogeneous on different scales, 

microscale, mesoscale and macroscale, [9]. Observing the geometry of an NCF one can 

notice: agglomerates of fibres in a fibre bundle, stitching yarns interlaced in the fibre bundles, 

small waviness (crimp) of the fibres, Figure 5(b).  

 

Figure 5. Representation of a composite ply: (a) UD pre-impregnated; (b) Textile uni-weave 

NCF, [10] 

NCF composites are good candidates for the automotive industry due to their relatively high 

mechanical properties and low manufacturing times. NCFs also have excellent drapability 

which fulfils automotive industry needs to manufacture complex shapes, [11].  

All the failure mechanisms observed in conventional unidirectional prepreg composites are 

present in NCF. The fibre misalignment in prepreg tape composites should be present inside 

the fibre tows of NCF, plus fibre tow waviness. Thus, the compressive strength of NCF is 

about half of the tensile strength. The layers of fibre tows require homogenization of elastic 

properties [9]. The stitching yarn will have an influence by keeping the fibre tows together.  

Non-crimp fabrics offer a good trade off between properties and costs and are suited for large 

scale production, making them an excellent candidate material for the car industry. In this 

thesis the focus is on UD prepreg but the future work will be on NCF.  

1.4. Ply and inter-ply damage 

Due to the complexity involved in crushing of composites it is necessary to identify and 

distinguish the different mechanisms. Failure in composites may be distinguished either by 

failure of its components – intralaminar or translaminar failure – or in their interfaces – 

interlaminar failure. At the ply level, fibre failure (translaminar) and matrix cracking 

1
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(intralaminar) are found depending on the loading and the fibre orientation. Interface failure 

may be either between fibres and matrix (debonding) or between plies (delamination or 

interlaminar failure). The mechanisms are depicted in Figure 6. 

  

Figure 6. Ply-level fracture mechanisms exhibited by continuous fibre-reinforced composites, 

[12] 

It is of high importance to account for delamination in crush simulations due to the likelihood 

of this failure mode and its influence on the crashworthiness. Interlaminar stresses are related 

to the angle between neighbouring plies, so a smooth variation of angle is preferable between 

plies in composite design. Delamination failure modes can be classified in Mode I, Mode II or 

mixed mode, according to the load direction.  

The stitching in the NCF improves their delamination toughness, i.e. delamination growth. 

However the stitching seems to have little influence on delamination initiation, i.e. 

interlaminar strength [13]. 

Compressive failure in composites is the most complex, but highly relevant for crash 

modelling and industry in general. Therefore, it has been treated in more than 10 000 papers 

that have been published in the fields of materials science, mechanics, and engineering in the 

last decade [14].  

1.5. Crash simulation of automotive structures 

Modelling crash is essential to improve the design and ensure the crashworthiness of the 

automotive structures in a short time frame and budget. Current simulations are not predictive 

for crash of composites. Feraboli and colleagues [15] created a protocol for crashworthiness 

certification using the foundations of (i) the Building Block Approach (BBA) adapted to 

crashworthiness and (ii) based on analysis supported by test evidence. The more the 

development relies on analysis, the less expensive it becomes, [16]. A reliable crash model is 

required in order to rely more on the analysis and have less experiments, with the aim to 

shorten development times and reduce costs. A material model available in LS-Dyna (MAT 
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54) was used extensively by Feraboli with extra difficulties since the model does not have the 

capability to produce a predicted load-displacement curve based on the material properties 

gathered from coupon level tests. 

In order to maximize the energy absorption of composite materials a significant amount of 

fibres must be oriented longitudinally with the loading directions. In this orientation fibres fail 

mainly by kinking which provides good energy absorption but causing difficulties in 

predicting the response. Currently, there are no numerical models able to capture all the 

mechanisms involved in the whole kinking response of fibre composite materials. Therefore, 

we propose a model able to capture the physical mechanisms involved during kink-band 

growth, such as friction, fibre rotation and transverse stresses.    
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2. Mechanisms observed during crash 

Crash of composite structures is combinations of complex phenomena that can be triggered 

by one failure mechanism but evolve into another and continuously interact. During damage 

evolution matrix cracking can evolve into delamination, Figure 7(a) and/or fibre kinking, 

Figure 7(b). These interactions often depend on the properties of the constituents which 

complicates the analysis and the modelling. 

 

Figure 7. Interaction between failure modes: (a) Between matrix cracking and delamination 

(b)Between matrix cracking and fibre kinking, adapted from [17] 

2.1. Corrugated panels 

Corrugated panels are often used in the literature for crash tests mainly to reduce the risk of 

global buckling and furthermore they can stand by themselves [18]. Grauers et al, [6] 

performed compression tests in order to study the energy absorbing mechanisms. The 

specimens tested were corrugated NCF laminates with a [0/90]3S stacking sequence made of 

UD fabric and epoxy. The specimens tested fail partly in bending, and partly in pure 

compression (by crushing) with a mode I delamination separating these two regions, Figure 

8(a). The part failing by bending has lower energy absorption and thus the aim is to eliminate 

bending failure and/or delaminations in compression. The part failing by compression absorbs 

more energy trough kink band formation, Figure 8(b). Looking at a single bundle, Figure 8(c), 

the kink bands induce interlaminar cracks at the interface. 

Delamination

Matrix 
cracking

(a)

Fibre kinking

(b)
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Figure 8. Micrographs through the thickness with different amplifications: (a) Bending failure 

and compressive failure; (b) Kink bands in several bundles with intermediate matrix 

cracking; (c) Kink bands through a single bundle, adapted from [6] 

2.2. Flat specimens 

Using flat specimens to study crushing behaviour one can avoid the influence of the structure 

on the crash response. In that context Bru et. al studied the influence of several crash triggers 

in the crash response of flat specimens [19,20]. In contrast to self standing specimens such as 

the corrugated panel, this experiment is able to reduce the amount of bending failure 

(splaying) and therefore identify the crush stress of a zero degree ply, Figure 9. 

 

Figure 9. Crash of flat coupons: (a) Experimental set-up; (b) Micrograph of the cross section 

showing kink band formation, adapted from [20]  
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2.3. Energy absorption during crash 

The legislation for automobiles requires that vehicles are designed such that, in the event of 

an impact at speeds up to 15.5 m/s (35 mph) with a solid, immovable object, the occupants in 

the passenger compartment should not experience a resulting force that produces a net 

deceleration greater than 20 g, [21]. To fulfil the requirements, the initial peak load must be 

avoided and large deformations must be obtained. To do so, a trigger is necessary to initiate 

the crushing, either by a geometric feature or by taking advantage of a fibre lay-up with lower 

properties. Furthermore, an optimal design must avoid delamination and give raise to 

intralaminar mechanisms that absorb the most energy, such as kink band formation. 

For a given fibre lay-up different tube geometries will have different energy absorption [22]. 

Circular tubes have the highest Specific Energy Absorption (SEA), followed by square tubes 

and finally rectangular ones. It is also claimed that the optimum composite crash box absorbs 

about 17% more energy than the optimum aluminium tube while it has about 26% less 

weight.  

Therefore, energy absorption is dependent on many parameters such as: fibre and matrix type, 

fibre architecture, lay-up, specimen geometry, processing conditions, fibre volume fraction 

and testing speed. The SEA during crash is defined as [23]: 

















 











A

F

A

Fdx

m

Fdx
SEA  (1) 

where F is the applied force between  and   , the initial and final crushing positions 

respectively and m is the mass of the crushed material. This expression was approximated and 

simplified by taking advantage of the average crush load F over the studied interval.  
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3. Modelling damage  

It is impossible to manufacture a composite without any imperfections, e.g. residual stress 

generated by manufacturing, misaligned fibres and voids during impregnation. Those 

imperfections degrade the mechanical properties and often lead to permature failure. To 

obtain the experimental information on the sequence of failure events is fundamental to 

develop predictive models. In contrast to metals, where the isotropic nature allows the use of 

relatively simple constitutive relations to predict their behaviour, composites require 

separation of the failure modes. For example in Figure 10 one can observe varying failure 

load and fracture planes () according to the fibre orientation. These differences are driven by 

different mechanisms that the criteria by NASA Langley Research Center (LaRC) seem to 

account for, such as the increase in shear strength caused by transverse compression. 

  

Figure 10. Compressive strength as a function of ply orientation for FRP [24] 

3.1. Failure initiation 

The effective use of composite materials in load-carrying structures depends on the ability to 

obtain reliable predictions of the onset and propagation of the different failure mechanisms. 

Indeed, this has been the subject of a great number of research studies in the literature for 

several years [25–28]. Physically based failure criteria can predict the failure mode and also 

provide details about the failure process. The failure modes can be distinguished in 4 main 

modes, Figure 11. 
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Figure 11. Intralaminar failure mode: (a) Transverse tension; (b) Transverse compression; (c) 

Longitudinal tension; (d) Longitudinal compression;  

The LaRC failure criteria have been performing well at the world wide failure exercise. This 

model innovates by being a set of 3D failure criteria with emphasis on onset of fibre kinking. 

For longitudinal compression these failure criteria added two notions for failure initiation that 

guided our presented papers for damage growth. One idea is the evaluation of a matrix failure 

criterion in the misaligned fiber direction [29] and the other is consideration of the 

competition between matrix cracking and instability due to shear nonlinearity for the 

prediction of the compressive strength [28]. 

Fibre longitudinal tension is particularly simple compared to the other failure modes due to 

the lack of interaction between the different stress components.  

Transverse failure modes occur when the load is normal to the fibre direction and it is 

dominated by matrix properties, [30]. For a pure compressive load, the fracture plane 

typically occurs at an angle of 53
o 

±3
o
, Figure 12. The deviation of this angle from a pure 

shear case with a 45
o
 is due to the friction stress occurring on microcracks in formation, [30]. 

Fracture results from the stresses created in the fracture plane, thus, increasing the 

compressive stress. For transverse compression the fracture plane is determined when the 

failure index, mcf  reaches unity. 

 

Figure 12. Coordinate system (123) rotated to the fracture plane system (LNT) 
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The LaRC contribution for transverse compression was a quadratic failure criterion 

accounting for friction when a compressive stress exists on the fracture surfaces [28]. Once 

the angle of the fracture plane ( in Figure 12) is obtained for pure compression, the 

transverse friction coefficient can be related to  according to: 

 
 


2tan

1
T  (2) 

Furthermore, the transverse shear strength is then defined as 

  
 
 
















2tan

cos
sin)cos(CT YS  (3) 

According to Puck and Schürmann [30] the longitudinal friction coefficient is estimated as   
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L
TL

S

S
   (4) 

The equations of LaRC criteria for failure initiation of the matrix dominated failure modes are 

summarized in Table 1.  

Table 1. Physically based criteria (LaRC) for matrix failure and fibre kinking 
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   (6) 

The equations for matrix and fibre failure are the same but evaluated in different fracture 

planes. Matrix failure is evaluated in the potential fracture plane ( in Figure 12) and fibre 

kinking is evaluated in the kink-band plane ( in Figure 19). The in-situ effects were later 

included [28]. 

3.2. Foundations of the available damage models 

The approaches for failure prediction presented in the literature can be divided into: failure 

initiation criteria, fracture mechanics, plasticity and Continuum Damage Mechanics (CDM). 

Many years of research resulted in reasonable predictions for failure initiation in composite 

materials, [31]. However, in crash simulations, models are lacking physical foundations, e.g. 

MAT 54, which assumes a total reduction of elastic properties at damage initiation, an is still 

used in industry and research, [3]. The damage mechanics approach is the most investigated 

in recent years, being applied to damage modelling efficiently. Depending on the model 

definitions, several damage variables can be defined, being activated when failure initiates, 

according to an existing criterion and degrading the material stiffness. 
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An in-plane model based on damage mechanics for UD composites was proposed by 

Ladeveze and Le Dantec [32]. Laminate damage is modelled at the ply level with two internal 

damage variables d and d’ degrading the in-plane shear modulus and the transversal stiffness 

respectively. 

The definition of a damage variable, d, allows the relevant stress components to be degraded. 

Once a failure criterion reaches one, the damage variable is activated and acts on its 

respective failure mode by degrading the stress. The damage variables increase monotonically 

from 0, at failure onset ( o  , representing the intact material) to 1 representing the fully 

damaged state ( f  ). 

The toughness of composite materials will depend on the crack growth mode and the failure 

mode. For example for pure fibre tensile failure (positive     acting alone), the fracture 

toughness is the mode I translaminar fracture mode, cG . For a (bi-)linear material model with 

linear softening, the final strain is calculated using the expression below: 

co

c
f

l

G




2
  (7) 

The characteristic element length (  ) is necessary to avoid mesh dependency and o is the 

material strength. The fracture toughness is obtained from physical experiments for each 

failure mode; it defines final strain and drives damage growth. Once the final strain is known 

it is possible to derive the evolution of the damage variable. Once again, for a (bi-)linear 

model with linear softening, the total strain   must be in accordance with the respective 

failure mode. 

)(
1

of

o
fd









  (8) 

Based on CDM models the applied stress is the result of the effective stress, ef degraded by 

a damage variable as below:  

  efd   1  (9) 

Each failure mode has a damage variable associated. The three failure modes in LaRC, i.e. 

matrix fracture, fibre-kinking and fibre tension require a respective damage variable. Once a 

failure criterion is met, the damage variable is activated and acts on its respective failure 

mode by degrading the associated stress components.  

3.3. Modelling transverse damage growth in compression 

From the previous sections, for example in equation (6), it is clear that failure initiation is 

shear dominated and influenced by friction. During crack growth, bigger crack surfaces are 
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forming, Figure 13(a) making it more important to account for friction. The compressive 

stress can be decomposed into a shear component and normal component influencing the 

amount of friction, Figure 13(b).  

 

Figure 13. Transverse compression: (a) Matrix failure; (b) Representation with projection of 

the stresses in the fracture plane, adapted from [33] 

Gutkin and Pinho combined damage and friction to model transverse compressive damage 

growth, [33]. Coupling damage with contact friction on the microcracks, partly accounts for 

some of the nonlinear response in shear. Taking advantage of the sticking/slipping behaviour 

it is possible to model the typical hysteresis loops observed in Figure 14. 

 

Figure 14. Shear response experiments and simulation, adapted from [34] 

The damaged area cannot carry stresses in tension, but in compression the contact between 

the microcracks creates friction directly proportional to the state of damage. In one dimension 

as 

frictiondGd   )1(  (10) 

where the friction term follows Coulomb’s law. Identifying and modelling the shear response 

is fundamental for reliable modelling of the compressive damage modes. Furthermore, the 

matrix has a very important role during kink-band formation as it supports the fibres and 

controls their rotation.   
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4. Fibre kinking  

4.1. Mechanisms of kink-band formation 

Carbon fibre composites fail in compression by kink-band formation throughout the range 10-

60% of fibre volume fraction [35]. Microbuckling of the fibre is the origin of fibre failure 

according to the first studies on the area, [36]. Argon [37] proposed that an initial fibre 

misalignment introduces shear stresses, which rotate fibres, thus increasing shear stresses in a 

progressive loop until failure is reached. Existing imperfections such as initial fibre 

misalignment, waviness and voids affect greatly the compressive strength. Fibre kinking 

failure is assumed to be a shear-dominated failure mode in a misaligned frame, under 

significant longitudinal compression.  

Kink-band formation is a sequence of several stages, from formation, propagation and 

broadening, [38]. The mechanisms of kink band formation are difficult to investigate due to 

the unstable nature of the failure process and the impossibility to see the microscale while 

compressing the specimen. Gutkin and al. [39] developed a test jig to test UD and cross-ply 

carbon/epoxy specimens in an SEM chamber under loading. From both UD and cross-ply 

specimens, it appears that failure initiates by compressive shear failure of the fibres at the 

notch tip, Figure 15. In this region, shear-driven fibre compressive failure is promoted by the 

large compressive stresses with small rotation of the fibres. After some propagation, the 

failure mechanism changes to kink-band formation.  

 

Figure 15. Compressive fracture process showing three different failure patterns, adapted 

from [39] 
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Micromechanical FE models are another useful alternative in the understanding of the kink 

band growth as in [40,41]. Kink band formation is not an in-plane mechanism and it becomes 

necessary to consider multi-axial stress states. Transverse compression is beneficial in raising 

the longitudinal strength of the composite while transverse tension lowers it, [42]. Therefore, 

predictive models need to account for the refereed mechanisms without modelling fibres 

individually (micromechanical). 

The kink-band is usually a well defined band not perpendicular with the fibres, Figure 16(a). 

In this plane all the stresses and strains should be projected, Figure 16(b). The matrix 

supporting the fibres in the kink-band is more degraded than outside the band, thus cracks 

start to appear, Figure 16(c). These shear cracks are partially in compression and therefore 

friction develops.  

 

Figure 16. Kink band formation: (a) Experimentally; (b) Resolved normal and shear 

components of the traction vector in the fracture plane, [33]; (c) Representation with 

associated angles and influence of stress components. 

The size effects in compression are also present in kinking formation and should be addressed 

[43]. Therefore a failure criterion based on an energy balance might be more appropriate [44]. 

4.2. Fibre lock up and breakage  

The fibre lock-up angle defines the angle when fibres are not able to rotate further, typically 

about 40° [45], although there is no consensus on this value in the literature. Fibre lock-up 

occurs when the fibres enter in contact with each other and stop rotating, Figure 17.  
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Figure 17. Representation of fibre lock-up in-plane 

For high fibre rotations tensile stresses are produced in an angle to the fibre and an opening 

crack which eventually coalesce to form a split [46]. The interaction with splitting can also be 

further investigated using micromechanical models [47]. In many cases, the splits are open, 

which indicates that they were formed under tensile traction acting on their fracture plane 

[44]. The proposed model, even without being micromechanical is able to predict the raise of 

tensile transverse strains around the kink band, Figure 18(a).  

Once the kink-band propagates through the whole width of the specimen, kink band 

broadening occurs [35]. Band broadening can also occur after fibre lock-up being represented 

by a constant friction stress on the crack flanks [45]. The kink-band spreads in the fibre 

direction into the unkinked material [38]. This phenomenon is also captured by the proposed 

mesoscale model, Figure 18(b).  

 

Figure 18. FE results of the proposed model: (a) Transverse strain; (b) Damage variable 

representing the kink band broadening 

In the current work the material is homogenised, i.e. the properties of the fibres and the matrix 

are not considered separately. Homogenization is performed to gain speed, but it needs to 

capture the mechanisms at the microscale without losing information. The orthotropic 

characteristics of NCF materials are also not fully considered and will be evaluated in the 

upcoming work. 
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5. Summary of the appended papers 

5.1. Fibre kinking model with progressive damage and friction – Paper A 

For computational efficiency, a homogenization at the ply level needs to be done. In Paper A 

we propose a physically based model for kink-band growth under a 3D stress state. The 

kinking theory proposed by Fleck and later extended to 3D by Pinho et al. [48] is developed 

further to predict the whole crush response. The same constitutive formulation is used for 

fibre kinking and for longitudinal shear and transverse responses. The kink-band plane, Figure 

19(a), is obtained by: 
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The  plane corresponds to maximum principal stress in the plane (2, 3). Then, stresses and 

strains are rotated to the kink-band plane (r) where 23  is zero. The final equilibrium is solved 

in the m coordinate system, following the rotation of the fibres, Figure 19(b).  

 

Figure 19. Illustration of a 3D kinking model: (a) Formation of the kink-band plane; (b) 

Stresses and strains acting in the kink-band plane. 

The fibre kinking response is found from solving simultaneously the stress equilibrium, Eq. 

(12), between applied global stresses and nonlinear local stresses resulting from the nonlinear 

constitutive law of the material in the kink-band Eq. (13). The actual rotation of the fibres in 

the kink-band is resolved from the strain compatibility in Eq. (14) 
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5.2. FE implementation and mesh objectivity of the model – Paper B 

In order to predict the crash response, it is necessary to have a fibre kinking model in an FE 

framework that captures the mechanisms of kinking. The model described in Paper A was 

implemented into a user subroutine (VUMAT) in the commercial FE code ABAQUS. This 

model must be mesh-size-independent in order to correctly account for the energy dissipation. 

In Paper B we describe the implementation and two methods for mesh objectivity with good 

results. 

The numerical way to solve the stress equilibrium and stress compatibility equations 

simultaneously in an FE framework is presented. The results show that the current model is 

mesh-size-independent even for distorted meshes. The current numerical model can be used to 

predict the kinking response accounting for the correct energy absorption.  

The current model builds upon previous development coupling damage with the friction
 

induced at crack closure. It is combined with fibre kinking theory to provide a 3D constitutive 

law which gives the full response from initiation to crushing in longitudinal compression.  

In order to solve the stress equilibrium and the strain compatibility it is necessary to use a 

root-finding method, e.g. the bisection method. The challenge with damage models is that 

they have a softening response, which makes it necessary to deal with the strain softening 

behaviour. Two methods were proposed, called Method 1 and Method 2. For method 2, the 

strain in the kink-band is distributed (smeared) over the whole element. When softening starts, 

i.e. when the peak stress has been reached, the strain in the kink-band is smeared over the 

entire element.  

The fibre kinking model was successfully implemented and validated for a distorted mesh, 

showing successful mesh convergence.  

  



 

20 

 

6. Conclusions and outlook 

By using composites one can take advantage of their excellent performance of energy 

absorption during crash events. In order to implement composites in structural components of 

mainstream cars it is necessary to overcome two major barriers, high price and lack of 

knowledge. Since the high price is partly due to long development times based on many 

experiments, a predictive simulation will be the solution for an optimized design at lower 

costs. Therefore, modelling damage onset and growth of composites is of crucial importance 

to introduce composite materials in mainstream vehicles.  

In the present thesis we have seen the importance and the progress in understanding of 

compressive failure modes with focus on kink band growth. We have also seen the difficulties 

associated with the investigation of the damage mechanism and the importance of avoiding 

delaminations in crash. 

We learn that the only models able to predict the full kink band response were 

micromechanical models not suitable to model large structures. Thus, in subsequent papers we 

present a homogenized mesoscale model and its implementation in commercial FE software.  

6.1. What is missing on the modelling side? 

Even though substantial progress was made with this work, there are missing mechanisms to 

include in the model. It is necessary to model the behaviour for large strains in longitudinal 

compression.  

NCFs are very promising due to their balance of mechanical properties and manufacturing 

speed, but less knowledge is available about this type of composites and more experiments 

are needed for characterization and information about the failure modes in order to develop a 

physically sound damage model. 

The essential considerations to adapt a material model for UD prepreg to NCF composites, 

based on their geometry, are: change in out-of-plane strengths due to the additional effects of 

the stitching yarn, decrease of in-plane strengths due to the in-plane fibre waviness, and 

account for orthotropic material behaviour instead of transverse isotropy.  
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