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Coupling of plasmonic nanopore pairs: facing dipoles
attract each other

Takumi Sannomiya1, Hikaru Saito2, Juliane Junesch3 and Naoki Yamamoto1

Control of the optical properties of nano-plasmonic structures is essential for next-generation optical circuits and high-throughput

biosensing platforms. Realization of such nano-optical devices requires optical couplings of various nanostructured elements and

field confinement at the nanoscale. In particular, symmetric coupling modes, also referred to as dark modes, have recently

received considerable attention because these modes can confine light energy to small spaces. Although the coupling behavior

of plasmonic nanoparticles has been relatively well studied, couplings of inverse structures, that is, holes and pores, remain

partially unexplored. Even for the most fundamental coupling system of two dipolar holes, comparison of the symmetric and anti-

symmetric coupling modes has not been performed. Here we present, for the first time, a systematic study of the symmetric

and anti-symmetric coupling of nanopore pairs using cathodoluminescence by scanning transmission electron microscopy and

electromagnetic simulation. The symmetric coupling mode, approximated as a pair of facing dipoles, is observed at a lower

energy than that of the anti-symmetric coupling mode, indicating that the facing dipoles attract each other. The anti-symmetric

coupling mode splits into the inner- and outer-edge localized modes as the coupling distance decreases. These coupling

behaviors cannot be fully explained as inverses of coupled disks. Symmetric and anti-symmetric coupling modes are also

observed in a short-range ordered pore array, where one pore supports multiple local resonance modes, depending on the

distance to the neighboring pore. Accessibility to the observed symmetric modes by far field is also discussed, which is important for

nanophotonic device applications.
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INTRODUCTION

Nano-optical devices are expected to become the next generation of
computing circuits, high-throughput optical biosensors and energy
harvesters. Especially, plasmonic nanostructures are promising ele-
ments because they can be down-sized below the wavelength. In real
devices, each plasmonic element from the input to the output should
be optically coupled to perform a certain function. For several years,
symmetric coupling modes (also referred to as ‘dark modes’) with
symmetric charge distribution, which in principle cannot be excited by
plane-wave illumination along the symmetry axis, have been drawing
attention because they can support more confined fields and have
higher Q-factors than the anti-symmetric (so-called ‘bright’) modes.
Possible applications include high-sensitivity sensors, lasing, light
emission enhancement and miniaturized plasmonic waveguides1–6.
To utilize these advantages, coupled nanoparticle systems, including
nanodisks and nanorods, have been intensively studied1–6. Previous
studies have demonstrated that the symmetric mode of plasmonic
particle pairs has a higher energy than the anti-symmetric mode and
that the coupling energy increases as the inter-particle distance
decreases, which can be explained by repulsive dipoles1,2,5,6. In
contrast, investigations of the coupling of nanoholes and nanopores

have been limited to the anti-symmetric coupling modes in the array
configuration, and symmetric modes have not been discussed,
although various promising applications using nanopores and nano-
holes in sensing and optoelectronics have been proposed1–4,7–11.
Whereas anti-symmetric modes (‘bright modes’) of arrays, chains
and isolated single holes are relatively well studied, pairs have not been
studied, although they are the most fundamental and simplest
coupling models7–13. The limitation for investigating symmetric
modes is related to the measurement method; simple, far-field
instrumentation cannot selectively resolve these modes because the
symmetry of the excited mode is limited by the symmetry of the plane
wave with far-field excitation. In this study, we investigate, for the first
time, the symmetric and anti-symmetric coupling of plasmonic
nanopore pairs and reveal the unique coupling behavior of hole/pore
systems. We employed cathodoluminescence (CL) and electron energy
loss spectroscopy (EELS) using a Cs-corrected scanning transmission
electron microscope (STEM), where a focused electron beam of 1 nm
in diameter serves as a point source to selectively excite the modes
according to the symmetry and beam position14–18. In CL imaging, the
radiative electromagnetic local density of state (EMLDOS) can be
mapped, which corresponds to the electric field distribution along the
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electron path19–21. The far-field light intensity is detected in CL
measurement, indicating that the detected modes are actually acces-
sible by far field on the basis of optical reciprocity, whereas detection
by EELS in STEM is not directly related to far-field light interaction.
Because so-called ‘dark modes’ can be detected as radiated light at high
angles in CL measurement, we use the term ‘symmetric’ rather than
'dark mode' in this study.

MATERIALS AND METHODS

Cathodoluminescence
In our CL-STEM system, the radiated light is collimated by a parabolic
mirror placed around the specimen and is detected by a spectrometer
(Figure 1a). With a large solid angle of light collection by the parabolic
mirror around the specimen (solid angle: 3π), except for the shading
by the sample holder, symmetric modes can be detected14,15,22. In this
study, the polarization is perpendicular to the electron and light
optical axes, as shown in Figure 1a. This polarization setting filters out
a large portion of the field component along the axis of the optical
detection, probably due to the combination of beaming from
nanoholes and angle-dependent dipolar radiation13,23. A JEM-2100F
(JEOL, Tokyo, Japan) transmission electron microscope with a
Schottky field emission electron source was used, and the acceleration
voltage of the electron beam was 80 kV. The equipped Cs-corrected
system allows a large convergence angle of the electron beam of
~ 20 mrad and a beam current of 5 nA, with ~ 1-nm beam diameter.

Nanopore fabrication
Nanopore samples were prepared as previously described24. In short,
nanopores were fabricated by colloidal lithography and film transfer
by wet-etching of the sacrificial layer. To achieve very close separation
of nanopore pairs and to obtain high spatial resolution in STEM, we
chose ultra-thin, free-standing film structures. For the measurement of
single and coupled pairs of nanopores, 135 nm nanopores in an
AlN(8 nm)/Au(16 nm)/AlN(8 nm) trilayer membrane were used
(Figure 1b). With this sandwich layer structure, it is possible to obtain
very thin and stable metal layers, even at high temperatures25,26. To
achieve separated structures with small gaps for pairs, the carbon-
mediated method was applied24. For the investigation of short-range
ordered (SRO) nanopores, AlN(10 nm)/Au(12 nm)/AlN(6 nm) tri-
layer films with 120 nm nanopores were fabricated using the direct-
etching method, which is suited for dense pore packing24. The AlN
layers work both as a buffer layer and to stabilize the gold film. The
dimensions were chosen so that the resonance is in the visible–near-
infrared wavelength. To tune the resonance in the measurable
wavelength range and to investigate the coupling of nanopores
through surface plasmons (SPs), the dispersion relation and the
propagation length of the bonding (or short-range) mode SP, which
is predominantly excited by a fast electron beam, were calculated
(Figure 1c and 1d)25,27,28. The lossy property of SP dissipates the
nanohole resonances and reduces the Q-factor and field confinement.
Due to this dissipation, the high mode density of ~ 2.2 eV does not
directly contribute to the CL signal.

Simulation
Simulation was performed to analyze the resonance modes found in
the experimental measurement and their behavior. Because the CL
and EELS signals correspond to the radiative and full EMLDOS along
the electron path (z axis), the calculated field intensity in the z
direction with far-field excitation roughly represents the CL signal
based on the reciprocity. The electromagnetic field calculation was
conducted by the finite-difference time-domain (FDTD) method
using the CrystalWave software package (Photon Design,
Oxford, UK). FDTD can identify the dominant resonance mode by
a pulse excitation wave and can avoid undesired SP reflection from the
truncation edges by analyzing the field after the pulse has passed but
before the reflection reappears (more details can be found in the
Supplementary Information). This reflection becomes non-negligible
for isolated structures in metallic films, which gives inaccurate results
in frequency domain methods. Because the radiated light is detected in
the CL measurement, we excited all modes, including the symmetric
modes, by plane-wave illumination and detected the perpendicular
field close to the sample as the reciprocal of the CL measurement. The
anti-symmetric mode is excited by a plane wave with a normal
incidence to the film plane with the electric field polarized along the
coupling axis. Two detectors were set at the inner and outer edges to
detect the inner- and outer-edge modes. The symmetric mode is
excited by two plane waves tilted by 30° from normal to the coupling
axis directions. Both plane waves are polarized along the coupling axis
and illuminated with the same phase to maintain the symmetry, and
the perpendicular electric field is detected at the center.

RESULTS AND DISCUSSION

Coupled nanopore pairs
As an initial investigation of single and coupled pairs of nanopores,
135 nm nanopores in an AlN(8 nm)/Au(16 nm)/AlN(8 nm) trilayer
membrane were measured (Figure 1b). Figure 2 presents the STEM
bright-field images, panchromatic photon maps (non-filtered) and
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Figure 1 Illustration of CL-STEM measurement and nanopore charcteristics.
(a) Schematic illustration of the CL-STEM setup. The polarization direction
is shown by the arrow. (b) Illustration of the nanopore specimen with the
diameter of 135 nm. (c) Dispersion relation of the bonding (short-range) SP
mode of the AlN(8 nm)/Au(16 nm)/AlN(8 nm) trilayer structure. The light
lines are presented as dotted lines. (d) Corresponding propagation length of
the SP.
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spectral line profiles of the measured nanopore pairs with different
‘gap’ distances as well as those of a single nanopore. The panchromatic
images show that the polarization setup, shown in Figure 1a, mostly
extracts the polarization perpendicular to the optical detection axis
and electron path (the same polarization is also on the specimen in
Figure 1a and the horizontal axis in Figure 2). The details of the
polarization dependence of the nanoholes are currently under
investigation. The spectral line profiles shown in the lower row in
Figure 2 are measured along the center of the pores. The extracted
one-dimensional spectra are found in the Supplementary Information.
The constant energy band near the wavelength of ~ 400 nm is
attributed to the inter-band transition of gold. The CL spectra of
nanopore pairs with different gap distances reveal that the wavelength
of the resonance excited at the inner edge of the gap (the inner-edge
mode) exhibits a positive correlation with the gap distance, whereas
this tendency of the outer-edge mode, excited at the outer edge, is less
steep, although showing a similar gap dependence (Figure 3). The
inner-edge mode is regarded as an anti-symmetric coupling mode or a
so-called bright coupling mode because this mode cannot be excited
by the beam placed at the center8,9,15. In comparison with the SP
wavelength (Figure 1c), the nanopores are located too close to each
other, and the pores are considered to be optically coupled through
the near field (Supplementary Information). Similar to the inner-edge
mode, the outer-edge mode can also be excited by anti-symmetric
beam position, which should also be an anti-symmetric mode.
In addition to these anti-symmetric modes appearing at the edge of

the pores, a symmetric coupling mode is excited when the electron
beam is incident at the center of the gap6,29. The symmetric mode can
also be weakly excited by illuminating the edges when the gap is small.
This symmetric mode always appears at a longer wavelength than the
anti-symmetric coupling modes (Figure 3). The resonance wavelength
of the symmetric mode shows a slight inverse dependence on the gap
distance and is more strongly excited when the gap distance is smaller.
The symmetric mode still exists even when the gap distance is negative
(thus, when the pores are connected). In contrast, the inner-edge,
anti-symmetric mode becomes weaker as the gap distance decreases
and completely disappears when the pores are connected.
We also performed EELS measurements, which supported the

modes found in the CL measurement (Supplementary Information).
The EELS (full EMLDOS) measurement confirms that the modes
found in the CL (radiative EMLDOS) measurement are not

significantly influenced by the interference in radiation21. To further
confirm the inner- and outer-edge modes, we examined a more
mode-separated nanopore pair with larger pore sizes, where CL
mapping for the mode separation can be more clearly performed
than with a system with inner- and outer-edge modes at close energies.
We observed the outer-edge mode with low CL intensity distribution
at the gap at a longer wavelength, and the inner-edge mode with
highly localized field in the gap at a shorter wavelength
(Supplementary Information). These complementary measurements
confirm the presence and relation of the symmetric mode as well as
anti-symmetric inner- and outer-edge modes.
To elucidate and analyze the experimental results, we performed

FDTD simulations, as presented in Figures 4 and 5. We first simulated
a single pore, as shown in Figure 4. The resonance wavelength of the
single pore roughly matches the experimental result. The deviation
could be due to the difference of the dielectric constant of the metal
and dimensional errors, including the edge shapes and thickness30.
The electric field patterns (Ez, Ex) confirm that the SP bonding mode
(or short-range SP mode) is dominant. Inside the pore, the electric
field is polarized in the x direction, showing a typical x-polarized
electric dipole. The magnetic field curls around this electric dipole at
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the pore position. Far-field patterns and comparison with a simple
electric dipole are shown in the Supplementary Information.
In Figure 5, the simulation results of coupled pores are shown. The

anti-symmetric mode spectra detected at the inner-edge and outer-
edge positions (blue and red lines in Figure 5a) show resonance peaks
at a wavelength close to that of the single mode at the gap distance of
200 nm. These two anti-symmetric modes start to blueshift, and the
difference of the peak wavelengths increases as the gap distance
decreases. The inner-edge mode blueshifts more than the outer-edge
mode. The symmetric mode starts to appear and becomes stronger as
the gap distance decreases, which is opposite to the anti-symmetric
modes. The symmetric mode resonance always appears at longer
wavelengths than that of the anti-symmetric or single modes. The
simulated in-plane field pattern of the symmetric mode is similar to
the wave propagation of the breathing mode31. Although the simula-
tion of the spectra qualitatively reproduces the experimental results,
the quantitative differences originate from slight differences in
dimensions, fabrication errors or differences in the material constants
of gold and aluminum nitride32. In addition, the intensity analysis also
shows agreement of the experiment and simulation (Supplementary
Information). The simulation results show that the symmetric modes

can be excited by oblique plane-wave incidence, although we took
advantage of the symmetric illumination by two in-phase plane waves
to avoid excitation of the anti-symmetric modes. This result also
indicates that symmetric modes can be detected by far-field optical
measurement with symmetric excitation and detection. However, due
to coupling with the propagating waves, the observed symmetric mode
does not necessarily have sharper peaks than the anti-symmetric mode
(low Q-factors), which also makes the determination of the resonance
erroneous.
To better understand the two different anti-symmetric modes,

namely, the inner- and outer-edge modes, the perpendicular electric
field (Ez) patterns are plotted in Figure 5b. From the reciprocity of the
CL signal, Ez corresponds to the CL signal15,19–21. The three images
with solid line frames show the electric field patterns of the bright
inner-edge mode, bright outer-edge mode and symmetric mode at the
peak wavelengths indicated by the arrows in Figure 5a. The field
intensity of the inner-edge mode is strongly localized at the inner edge,
and each pore behaves like a dipole. In contrast, the field of the outer-
edge mode is propagating outside the pore and has very low intensity
at the gap position. Judging from the field pattern close to the pore,
this mode may be considered as coupling of the quadrupoles formed
around each pore. We found another weak, outer-edge, anti-
symmetric mode from dipoles at a much longer wavelength in the
simulated spectrum (dashed blue arrow in Figure 5a and frame in
Figure 5b, also in the Supplementary Information).
Because the inner-edge mode is strongly localized at the gap and the

outer-edge mode has almost no field at the gap for small gap distances,
we assumed that the local structure determines the resonance mode
rather than the whole structure of the nanopore pair. To extract only
the features of the gap, we modeled a structure without outer edges,
consisting of two semi-infinitely long slits (details in the
Supplementary Information). The simulated spectra of this ‘only-gap
structure’ match the spectral responses of the inner-edge mode, and
the field patterns resemble each other. This result indicates that the
gap structure only determines the inner-edge mode, with minimal
influence of the outer edge. On the basis of the idea of this mode
localization, the inner-edge mode can be interpreted as a thin metal
strip. Then, the gap distance dependence of the energy of the inner-
edge mode can be understood from charge distributions of thin-film
plasmons33,34. As an extreme case of the outer-edge mode, we
modeled a single slit with the same width as the outer edge-to-edge
distance (Supplementary Information). This structure reproduced
similar resonances and field pattern as the outer-edge mode.
For intuitive understanding and simpler analysis, hole or pore

structures are often treated as inverse particles because particles are
better understood as interacting dipole charges35,36. For the best
simplicity, a thin metal film is considered as an infinitely thin perfect
electric conductor (PEC). With this thin-film approximation and by
applying Babinet’s principle, the symmetric coupling of pores corre-
sponds to the anti-parallel coupling of disk particles with a side-to-side
alignment of dipoles (see upper inset of Figure 6)5,37,38. Such anti-
parallel configuration has lower energy than the parallel coupling
configuration. With this approximation, the relation between the
symmetric and anti-symmetric modes can be intuitively understood.
However, this exchange of the electric and magnetic fields using
Babinet’s principle does not simply convert the system to electric
dipole disks, according to the field patterns at the pore, as shown in
Figure 4 (the magnetic field is curling around the electric dipole). The
coupled disks regarded as inverse structures cannot explain the
separate inner- and outer-edge coupling modes, as summarized in
Figure 6. We note that the coupling energies found in this study do
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not fully agree with the previously proposed models for the chain
configuration, where not all of the modes were resolved and analyzed
due to complexity39. For such coupled plasmonic nanopores in a thin
membrane, inversing the pore structures to disks does not completely

explain the coupling behavior, although it partially facilitates the
interpretation. To fully understand the plasmonic structure with
propagating SPs, it is important to consider the local modes. There-
fore, nanoscopic optical observation is essential.

Local coupling in SRO arrays
Because the resonance modes can be localized when the pores are
close to each other, we investigated a system consisting of multiple
pores with various distances, which comprises a SRO nanopore array37.
We used an AlN(10 nm)/Au(12 nm)/AlN(6 nm) trilayer with a pore
diameter of 120 nm (Figure 7a). The line profiles across adjacent
nanopores in Figure 7a exhibit both symmetric and anti-symmetric
modes, similar to the nanopore pairs discussed above (Figure 2). One
pore shows different resonance wavelengths at the left and right edges
when the distances between the left and right neighbors are different.
This difference resembles the strong localization of the inner-edge
mode, which is insensitive to the outside environment, as discussed
previously for pairs. The resonance wavelengths plotted in Figure 7b
exhibit the same trend observed for the isolated nanopore pairs shown
in Figure 3: the symmetric mode (the gap center excitation) is located
at a lower energy than the anti-symmetric mode (the inner-edge
excitation), and its resonance wavelength demonstrates a slight inverse
dependence on the gap distance, whereas that of the anti-symmetric
mode becomes strongly redshifted as the gap distance increases. The
shift of the resonance wavelengths with the gap distance is rapid
compared with that observed for the isolated pairs (Figure 3),
which can be attributed to the shorter SP wavelength in this layer
system (Supplementary Information). These two modes correspond to
the ω+ and ω− modes with different node positions in a long-range
periodic array, which cause the energy gap in the photonic band
structure40.

CONCLUSIONS

We have shown the unique coupling behavior of coupled plasmonic
nanopores using Cs-corrected CL-STEM. The symmetric coupling
mode exhibits a lower-energy resonance than the anti-symmetric
mode, and the resonance wavelength of the anti-symmetric mode
exhibits a strong positive correlation with the gap distance. The inner-
edge, anti-symmetric coupling mode is strongly localized at the gap,
which explains the local resonance modes in SRO plasmonic pores. In
contrast, the outer-edge mode has almost no field at the gap. Babinet’s
principle, assuming inverse structures in thin PEC films, does not fully
explain such coupling of plasmonic nanopores, although the qualita-
tive comparison of the symmetric and anti-symmetric modes is still
valid. Such understanding of field localization of symmetric and anti-
symmetric modes and the relation of the coupling energy provides an
important foundation for designing structures to confine light
field at the nanoscale1–4. Furthermore, it is shown that a nanoscopic
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observation, such as STEM-CL measurement, is essential to analyze
field localization and resonance modes. The insights of nanopore
couplings obtained here would be useful for sensor applications taking
advantage of pore shapes as well as for sub-wavelength photonic
devices41,42. We have also shown that the observed coupling modes are
accessible by obliquely incident plane waves, which suggests possibi-
lities to couple the far-field light sources (or detectors) to symmetric
modes and to optically measure symmetric modes selectively by far-
field instrumentation.
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