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Abstract
An important objective in the development of targeted therapies is to identify the popula-

tions where the treatment under consideration has positive benefit risk balance. We con-

sider pivotal clinical trials, where the efficacy of a treatment is tested in an overall

population and/or in a pre-specified subpopulation. Based on a decision theoretic frame-

work we derive optimized trial designs by maximizing utility functions. Features to be opti-

mized include the sample size and the population in which the trial is performed (the full

population or the targeted subgroup only) as well as the underlying multiple test procedure.

The approach accounts for prior knowledge of the efficacy of the drug in the considered

populations using a two dimensional prior distribution. The considered utility functions

account for the costs of the clinical trial as well as the expected benefit when demonstrating

efficacy in the different subpopulations. We model utility functions from a sponsor’s as well

as from a public health perspective, reflecting actual civil interests. Examples of optimized

trial designs obtained by numerical optimization are presented for both perspectives.

1 Introduction

In the development of targeted therapies the investigation of potentially predictive biomarkers
is critical. If efficacy is limited to an identifiable subgroup of patients, developing a therapy for
an unselected patient population is ethically problematic and will also require unnecessarily
large sample sizes because of a diluted treatment effect. On the other hand, erroneously
restricting a drug development program to a subpopulation is also unethical, as it excludes
patients from an effective treatment. Furthermore, it will entail a financial loss for the sponsor
because of unnecessary costs of biomarker development and screening and the lower preva-
lence of the future patient population.
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Several one and two stage clinical trial designs have been proposed in which the treatment
effect is tested in an overall population as well as in a subgroup of biomarker positive patients
[1–6] (see [7] for a recent review). To account for the resulting multiple comparisons, tailored
multiplicity adjustments have been developed [8–16]. Alpha allocation has also been optimized
using interim trial data and/or data external to the trial, with respect to a utility function, pro-
viding an early example of the use of decision analysis [2].

In this paper we use a comprehensive decision theoretic approach to derive optimal trial
designs for the development of targeted therapies. Especially, the framework allows us to assess
when it is favourable to investigate the biomarker in a clinical trial and when it is actually more
efficient to disregard the biomarker and to proceed with a classical trial design. This extends
earlier decision theoretic methods that focused on the selection of the population for clinical
trials incorporating a biomarker [17–22].

Consider a setting where a single potentially predictive binary biomarker has been identified
in advance, separating the full population F into biomarker positive (S) and biomarker negative
(S0) patients and there is prior evidence suggesting that the treatment effectmay bemore pro-
nounced (or only present) in the biomarker positive group. Let λS and λS0, satisfying λS + λS0 = 1,
be the prevalences of biomarker positive and biomarker negative patients in the full population.
For this situation we consider three design options for a pivotal clinical trial: (i) The classical
design that does not account for the biomarker status and tests for a treatment effect in the full
population only, (ii) the stratified design that also recruits patients from the full population but
where the biomarker status of each patient is determined and the treatment effect is tested in the
full population and the subpopulation, and, (iii) the enrichment design, where patients are
screened for the biomarker status and only biomarker positive patients are included in the trial.

The choice of trial design will in general not only be based on power arguments, but on the
overall expected utility of different designs, accounting for the potential rewards and costs.
Rewards can be quantified by the sales revenue, from a sponsor’s view, or by a measure of the
overall health benefit, from a public health view. The costs of the trial are determined by fixed
and per patient costs as well as investments in biomarker development and the determination
of the biomarker status for the patients in the trial. Based on a decision theoretic framework,
we first optimize each of the three trial designs by choosing optimal sample sizes (and an opti-
mizedmultiple testing procedure for the stratified design). Then, the optimal design can be
selected among the three optimised designs based on their expected utilities. The optimal
design choice depends on the type of utility function used (sponsor’s view or public health
view), the reward and cost parameters, the prior distribution on the effect sizes and the preva-
lence of the biomarker positive subgroup.

2 Testing Problem and Considered Trial Designs

Let Δ(δS, δS0) denote the treatment effects for the primary efficacy endpoint in the subgroup
and its complement, respectively. Furthermore, let π(Δ) denote a prior distribution on Δ. We
focus on priors that satisfy π(Δ) = 0 for δS< δS0. This accounts for settings where there is some
evidence that the effect size in the biomarker positive treatment group may be larger than in
the biomarker negative group but not the other way around.

For simplicity, we assume that the basis of marketing authorization is a single pivotal trial.
We further assume that a necessary condition for regulators to approve a drug for the popula-
tions S or F is the demonstration of a significant treatment effect in the respective population
by a suitable multiple testing procedure controlling the familywise error rate (FWER) at level α
in the strong sense. Consider the two null hypotheses

HS : dS � 0 and HF : dF � 0;
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where δF = λS δS + λS0 δS0, and let, for some trial design d, ψd = (ψS,d, ψF,d) denote a multiple
testing procedure such that ψi,d = 1 (0) if there is a statistically significant (no significant) treat-
ment effect in population i = S, F.

We consider three types of trial designs, the classical, the stratified and the enrichment
design. LetD ¼ fCn;Sn;aS

;Enjn � nmin; aS 2 ½0; a�g denote the set of considered trial designs,
where Cn;Sn;aS

;En are defined below:
ClassicaldesignCn refers to a classical parallel group design with per group sample size n

recruiting patients from the full population and testingHF only. HF is tested by a non-stratified
test cF;Cn

and we set cS;Cn
¼ 0.

StratifiedDesignSn;aS
refers to a stratified design, which differs from the classical design in

that analysis is stratified by the biomarker status and both hypothesesHF andHS are tested
with a weighted multiple testing procedure with parameter αS. As multiple testing procedure
we apply the closed Spiessens-Debois’ test [8, 13]. This test combines the Spiessens-Debois’ test
for the rejection of the intersection hypothesisHS \ HF with the closed testing principle so as
to obtain a test for the rejection of eitherHS orHF (or both). Let pS and pF denote unadjusted
p-values for testingHS andHF, respectively. Here we assume that HF is tested with a test strati-
fied for the biomarker (in contrast to the classical design, where a non-stratified test is used as
no biomarker information is available). For αS, αF� 0, the closed Spiessens-Debois’ test then
rejectsHS if pS� α and either pS< αS or pF< αF. Similarly, it rejectsHF if pF� α and either pS
< αS or pF< αF. To control the familywise error rate at level α in the strong sense, the signifi-
cance levels αS and αF need to satisfy

PHS\HF
ðpS � aS _ pF � aFÞ � a : ð1Þ

Thus, the significance level αF is determined by Eq (1) if αS� α is given. Note that the corre-
sponding function αF(αS) depends on the subgroup prevalence λS.

We assume that in the stratified design, marketing authorization in the population F is not
only determined by the treatment effect in F, but that regulators additionally require some evi-
dence that there is a treatment effect in both S and S0, so that the rejection ofHF is not
completely dominated by a treatment effect in a single subgroup only. Thus, we assume that
the regulators’ decision rule corresponds to a hypothesis test whereHF is only rejected, if, in
addition, the p-values pS and pS0 of tests for efficacy in the two subgroups fall below corre-
sponding thresholds τS and τS0. The resulting modified Spiessens-Debois’ test (cS;Sn;aS

;cF;Sn;aS
Þ

rejectsHS if {pS� α} ^ {pS� αS _ pF� αF} and rejectsHF if {pF� α} ^ {pS� αS _ pF� αF} ^
{pS� τS ^ pS0 � τS0}. Note that this test is strictly conservative, because the consistency thresh-
olds τS and τS0 are not considered in the level α condition.
EnrichmentDesign En refers to an enrichment design, which differs from the classical

design in that only patients from the subpopulation are recruited and onlyHS is tested. In the
enrichment design,HS is tested by a test denoted by cS;En

and we set cF;En
¼ 0.

3 Utility Functions

We define utility functions that quantify the potential rewards for each of the possible trial out-
comes as well as the cost of the trial. To model the rewards, we distinguish between the sponsor
and the public health view, leading to different utility functions for the two perspectives:

U ðvÞðdÞ ¼
X

i¼S;S0
φðvÞi;d � Cd; ð2Þ

where v = Sponsor for the sponsor and v = Public for the public health view, d 2 D denotes the
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trial design, φðvÞi;d the reward due to the trial outcome in subgroup i = S, S0 and Cd the cost of the
trial. The cost functionsCd of the different trial designs d 2 D are sums of fixed costs and costs
per recruited patient in the trial. Note that the per-group sample size nmay vary among the
three designs and below we will determine optimal sample sizes for each type of design.

For the classical design the cost function is given by

CCn
¼ csetup þ 2ncper� patient;

where the setup costs of the trial csetup are fixed costs and cper-patient are the marginal costs per
patient. In the stratified design there are additional fixed costs cbiomarker to develop the bio-
marker and additional per patient costs to determine the biomarker status cscreening. Thus, the
cost function of the stratified design is given by

CSn;aS
¼ csetup þ cbiomarker þ 2nðcper� patient þ cscreeningÞ:

For the enrichment design the fixed costs are the same as for the stratified design. However, to
recruit only biomarker positive patients one has to screen (on average) 2n/λS patients from the
full population until 2n biomarker positive patients are identified. Given that the screening and
determination of the biomarker status induces costs cscreening the cost function is given by

CEn
¼ csetup þ cbiomarker þ 2n cper� patient þ cscreening=lS

� �
:

3.1 The Sponsor’s Utility Function

For the sponsor, the utility is the Net Present Value (NPV), which is defined as the reward
(sales revenue) minus the trial costs. We model the sponsor’s reward as a function of (i) the
outcome of the regulatory approval process, (ii) the price the sponsor can achieve, and (iii) the
size of the population the drug is licensed for.

To model (i) and (ii) we define reward functions φðSponsorÞi for i = S, S0 that specify the reward
obtained in the respective population. The reward functionmay depend on the observeddata,
the design of the pivotal trial d and the prevalence of the subgroup. We model the reward as
the product of the price of the drug for the treatment of a single patient times the market size.
Given an overall market sizeN, the market sizes of the two subgroups are λS N and λS0 N,
respectively. Furthermore, we assume that the payers are willing to pay more if a larger treat-
ment effect was observed. If the drug is authorized for neither subgroup, both reward functions
are set to zero. If the drug is authorized for the subgroup S only, the reward for the complement
S0 is set to zero. If the drug is authorized for the full population, we assume that the same price
is charged in both subgroups.

We assume that (given that the respective hypothesis test rejects and the observed effect size
exceeds a clinically relevant threshold) the price increases linearly with the observed effect size.
Then the reward functions for the subgroups S and S0 are

φðSponsorÞS;d ¼

lS N rS cS;d ðd̂S;d � mSÞ
þ if cF;d ¼ 0

lS N rF cF;d ðd̂F;d � mFÞ
þ otherwise

8
<

:

φðSponsorÞS0;d ¼ lS0 N rF cF;d ðd̂F;d � mFÞ
þ
;

ð3Þ

where μi denotes a minimal clinically relevant effect size for population i = S, F and (�)+ denotes
the positive part. d̂S;d and d̂F;d are the estimates of δS and δF obtained from the trial data. The
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constants ri for i = S, F are the marginal prices (the change in price if the observed effect size
increases by one unit) and N denotes the total market size, which for the sponsor is defined as
the number of future patients within the patent life of the therapy in the unselected, full popu-
lation. Note that, given that efficacy is shown in the full population, a common treatment effect
estimate d̂F is used in the price function. Then the overall reward within the patent life of the
therapy is given by φðSponsorÞS;d þ φðSponsorÞS0;d .

3.2 Public Health Utility Function

With the public health utility functionwe model the utility of trial designs under the assump-
tion that the drug is developed by public health authorities. Therefore, the utility of a trial is
given by the total health benefit to the society (adjusted by the production cost of the drug)
minus the cost of running the trial.We assume that the benefit of the drug is measured on a
monetary scale representing the expected, accumulated (over the whole treated population)
treatment effect. Costs are assumed to be the same as under the sponsor view. The reward func-
tions for the subgroups S and S0 are given by

φðPublicÞS;d ¼

lS N rS cS;d ðdS � mSÞ if cF;d ¼ 0

lS N rF cF;d ðdF � mFÞ otherwise

8
<

:

φðPublicÞS0 ;d ¼ lS0 N rF cF;d ðdF � mFÞ;

ð4Þ

The first term in the utility function Eq (2) denotes the total benefits summed over the
whole population, which are assumed to be proportional to the effect size (adjusted for a mini-
mal relevant threshold), if the drug is authorized. The constants ri for i = S, F are the marginal
benefits (the change in benefit if the effect size increases by one unit), and N denotes the size of
the future (unselected) patient population. Note that the benefit depends on the actual effect
sizes δi and not on the corresponding trial estimates d̂ i;d, implying that the benefit may be nega-
tive if the effect size is low. A consequence of this model choice is that a public health authority
will take into account the risk of false positive approvals when optimizing its trial design. Such
considerations are absent when a sponsor is optimizing, since we have assumed that only the
estimated effects enter its utility function.

3.3 Optimizing the Expected Utility

Recall that π denotes a prior distribution on the effect sizes Δ. For a given utility functionU(v)

and set of trial designsD the design optimizing the expected utility is given by

d� 2 argmaxd2D Ep U ðvÞðdÞ
� �

; ð5Þ

where

Ep½U
ðvÞðdÞ� ¼

Z

EΔ½U
ðvÞðdÞ� dpðΔÞ; ð6Þ

Note that the expectation is first taken over the data distribution given the effect sizes Δ and
then over the prior distribution π.

4 Numerical Examples

We consider parallel group designs for the comparison of means of a continuous outcome. We
assume that the responses in the control and experimental treatment arms k = C, T in
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subgroups j = S, S0 are normally distributed with mean θk,j and variance σ2. However, utilizing
the central limit theorem, the model can be modified to account for many other situations. The
mean treatment effects in the two subgroups are given by δj = θT,j − θC,j. In the classical and the
enrichment design non-stratified z-tests are performed to testHF andHS, respectively. In the
stratified test, an elementary p-value pS is computed from a z-test forHS based on the observa-
tions in S and a p-value pF from a stratified z-test forHF stratifying by biomarker status. Then
the closed Spiessens and Debois test is performed to adjust for multiplicity. We set σ = 1.

To be able to compute the expected utilities by numerical integration and not to have to rely
on simulations, we approximated the sampling distributions for both the classical and the strat-
ified designs by normal distributions (for the enrichment design the z-test statistic is exactly
normally distributed). For the classical design, each subject recruited to the trial belongs to S
with probability λS. Therefore, each observation in group i = T, C is with probability λS distrib-
uted as N(θi,S, σ2) and with probability λS0 distributed as N(θi,S0, σ2). If the biomarker is either
prognostic (such that θC,S 6¼ θC,S0) or predictive (such that δS 6¼ δS0) the overall treatment effect
estimate d̂F for the classical design is not exactly normal, but, for sufficiently large sample sizes,
approximately normal by the central limit theorem. Because the observations are drawn from a
mixture distribution, the standard deviation of d̂F increases with the absolute differences
|θi,S − θi,S0|, i = T,C. For simplicity, in the numerical examples we assume that the biomarker is
predictive only but not prognostic (i.e., θC,S = θC,S0, see Appendix A for further details). For the
stratified design, we assume that the subgroup estimates, d̂S and d̂S0 , are constructed as the sam-
ple means of exactly λS n (resp. λS0 n) observations per group from the subgroups S and S0.
However, if patients are not selected for the trial based on biomarker status, the number of sub-
jects from each subgroup is binomially distributed, though, for large n, the random sample
sizes have only little impact and the approximation becomes accurate. Therefore, in the numer-
ical investigations, we introduced a minimal sample size of nmin = 50 patients per treatment
arm. For the contour plot (in Subsection 4.1.3) optimization was performed by evaluating the
objective function for a grid of candidate sample sizes (and αF values for the stratified design).
For the optimizations in the other plots, a further optimization step was applied by optimizing
the objective functions with the R Version 3.2.4 procedure optim [23] using grid points as start-
ing values.

The one-sided significance level is set to α = 0.025 and the consistency thresholds in the
multiple test for the stratified design to τS, τS0 = 0.3. We consider discrete prior distributions
πδS,i,δS0 ,i on a grid (δS,i, δS0,i),i = 1, . . ., l of effect sizes and specify two priors corresponding to sce-
narios where there is either only weak or strong prior evidence that the biomarker is predictive.
The prior distributions used in the examples are defined in Table 1 and depend on an effect
size parameter δ. In the examples below we set δ = 0.3 with the exception of Subsection 4.1.3
where optimal designs for other choices of δ are explored.

The reward and cost parameters in the sponsor and the public health utility function are
specified via the following three cases:

Table 1. Prior distributions corresponding to scenarios where there is either only weak or strong

prior evidence that the biomarker is predictive. The constant δ > 0 parametrizes the effect sizes in the

prior.

δS 0 δ δ δ
δS’ 0 0 δ/2 δ

“weak biomarker prior” 0.2 0.2 0.3 0.3

“strong biomarker prior” 0.2 0.6 0.1 0.1

doi:10.1371/journal.pone.0163726.t001
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Case 1 Corresponds to a large market, where the biomarker costs are negligible, i.e.NrS =NrF =
10,000 Million US Dollars (MUSD) per unit of efficacy and cscreening = cbiomarker = 0.

Case 2 Corresponds to a small market, where the biomarker costs are still negligible, i.e.NrF =
NrS = 1000 MUSD per unit of efficacy.

Case 3We add biomarker and screening costs, cscreening = 5000 USD per patient and cbiomarker =
10 MUSD. The reward parametersNrS and NrF are the same as in Case 2.

For all three cases we choose cper-patient = 0.05 MUSD and csetup = 1 MUSD. Note that the
setup costs are assumed to be the same for the enrichment, classical and stratified design and
therefore have no impact on the order of their expected utilities. However, they do have an
impact on the sign of the utility, and thus whether any trial design is superior to no trial at all.
In the reward functions Eqs (3) and (4) we set the minimal clinical relevant thresholds to μS =
μF = 0.1, which is a third of the effect size δ = 0.3 used in the prior distributions in Section 4.1.1
and 4.1.2.

4.1 Results

We discuss the optimal designs for the weak and the strong biomarker prior and the three
cases specifying the cost and reward parameters.
4.1.1 Optimization under theWeak Biomarker Prior.
Largemarket, no biomarker costs (Case 1) The optimized utilities and corresponding opti-

mal classical, stratified and enriched designs are shown in Fig 1.
Optimal utility. For the sponsor utility function, the stratified design has the largest expected

utility, except for low prevalences where the classical design is optimal. The latter is on first
sight surprising, because in Case 1 we assume no biomarker costs. However, in the stratified
design (in contrast to the classical design), to show efficacy in the full population, we require
that pS and pS0 do not exceed τS = τS0 = 0.3 (in addition to rejection ofHF in the multiple testing
procedure). Thus, for low prevalences the sample size of the stratified design needs to be sub-
stantially increased to reach a sufficient power to show efficacy in F and therefore its expected
utility is lower.

For the public health utility functionwe observe a similar pattern. However, for large λS the
expected utility of the classical design is almost identical to that of the stratified design. This
holds because the power to rejectHS in the optimized stratified design approaches the power to
rejectHF in the classical design and the rewards obtained for authorization in populations S
and F are similar. Why is the stratified design for the sponsor view still optimal in this case?
This results from the fact that the size of the reward in the sponsor view depends on the
observed rather than the true treatment effect: for trial outcomes whereHF can be rejected in
the classical design but, due to the variability of estimates, d̂S is large but d̂S0 is small (and thus
d̂F < d̂S) the reward for a market authorization in Smay become larger than the reward in F.
However, while the classical design leads to rejection ofHF in such cases, the stratified design
rejectsHS and notHF because of the consistency threshold.

Optimal sample size.Overall, the optimized sample sizes for the public health utility func-
tion are larger than for the sponsor utility function. They are lowest for the enrichment design,
and—for smaller prevalences—largest for the stratified design. For the latter, the sample size
increases sharply for low prevalences. This is due to the fact that a sufficient sample size in the
subgroup is required to achieve adequate power for the rejection of bothHS andHF (for the lat-
ter due to the consistency threshold τS). Furthermore, the relationship of the optimal sample
size and the prevalence is qualitatively different for the three designs. For both utility functions
the optimal sample size is increasing in the prevalence for the enrichment design (because the
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Fig 1. Weak biomarker prior and a large market with no biomarker costs (Case 1). Optimized expected utilities and sample sizes for

the enrichment, classical and stratified design as functions of the prevalence for λS 2 [0.05, 0.95]. For the stratified design, optimized

levels αS and αF for the multiple testing procedure are given. The last row shows the overall probability (averaged over the prior) that a

significant treatment effect in HS or HF can be shown (and, for the stratified design, that the thresholds τS and τS0 are crossed). The priors

are defined as in Table 1 with δ = 0.3.

doi:10.1371/journal.pone.0163726.g001
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gain when demonstrating efficacy in S increases), decreasing for the stratified design (because,
as noted above, a sufficient sample size in S is required for the rejection ofHS and for the rejec-
tion ofHF) and non-monotone for the classical design (essentially because the effect size in
population F is increasing in λS such that for small λS the expected utility does not sufficiently
increase with the sample size to compensate the additional costs, while for large λS a smaller
sample size is sufficient to achieve adequate power).

Significance levels. In the intersection hypothesis test of the optimal multiple testing proce-
dure in the stratified design αS is larger than αF for almost all prevalences. To make up for the
lower sample sizes in the subgroup, the optimal design uses a larger αS than αF. For increasing
prevalences, the correlation of the test statistics used to testHS andHF increases such that less
multiplicity correction is required and both αS and αF increase.

Power. We define the power corresponding to a specific trial design as the overall probabil-
ity (averaged over the prior) of regulatory approval in any population. This is a slight generali-
zation of the traditional concept of power, which in the current context may be defined as the
probability of regulatory approval conditional on a specific pair of subgroup effects. The power
obtained by averaging over a prior has also been referred to as assurance [24]. The curves
shown in Fig 1 correspond to the optimal designs. It can be seen that the power is largest for
the enrichment design, followed by the stratified and the classical design and that it increases
with the prevalence.

Note that for the stratified design, the probability to obtain marketing authorization inHF is
largest for intermediate values of λS and much lower than for the classical design if λS is large
(even though the optimized sample sizes are similar in this case). This is due to the application
of the consistency thresholds which are a more difficult to meet if one of the subgroups S or S0

is small.
Small market, no biomarker costs (Case 2) Case 2 differs from Case 1 only in that the

rewardsNrF and NrS are reduced by a factor 10. Because of the lower rewards the optimized
expected utilities are smaller compared to Case 1 (see Fig 2 for the expected utilities and opti-
mized design parameters). They decrease evenmore than by a factor 10 as the trial costs are
not reduced proportionally.

However, the optimized sample sizes (and consequently the overall probabilities to show
efficacy in the respective populations) are substantially smaller than in Case 1. Overall, the
expected utilities follow a similar pattern as in Case 1 but the range of prevalences where the
classical design has a higher expected utility is larger than in Case 1 for both the sponsor and
the public health utility functions. The assumption of a smaller market qualitatively changes
the optimized sample size of the stratified designs as a function of the prevalence. For low prev-
alences the optimized sample size is much lower than in Case 1: because the reward is lower, it
does not pay off to invest in a large overall sample size to meet the threshold τS in the subpopu-
lation. This is also reflected in the optimized significance levels αS and αF, which give more
weight toHF than in Case 1.
Small market with biomarker costs (Case 3)Note that the addition of biomarker costs has

no impact on the expected utility of the optimal classical design (as it does not require the bio-
marker). However, the expected utilities of the enrichment and the stratified design become
smaller compared to Case 2 because of the additional costs. Therefore, the classical design now
dominates the stratified design for a broader range of (small) values of λS and the stratified
design becomes optimal only for larger values of λS (see Fig A in S1 File). In the public health
view, the classical design dominates the stratified design also for very large values of λS: even
though the classical design leads to lower expected rewards compared to the stratified design
(since the latter is more likely to lead to market authorization for too large a population), this is
compensated by the lower costs because no biomarker is required. In the sponsor view in
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Fig 2. Weak biomarker prior and a small market with no biomarker costs (Case 2). See the legend of Fig 1.

doi:10.1371/journal.pone.0163726.g002
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contrast, the difference between the expected rewards of the stratified and the classical design is
larger because it is determined by observed treatment effects (see also the discussion of
expected utilities in Case 1, where a similar pattern is observed).Therefore, the stratified design
dominates also for large values of λS. Moreover, the biomarker costs lead to a reduction in sam-
ple size compared to Case 2.
4.1.2 Optimization under the Strong Biomarker Prior. First, note that the expected util-

ity and optimal sample size of the enrichment design is the same for the weak and the strong
biomarker prior because the prior distribution on the treatment effect in S is identical in both.
Largemarket, no biomarker costs (Case 1) For the sponsor’s utility function the stratified

design is still optimal, with the exception of very low prevalences (see Fig B in S1 File). In con-
trast, for the public health utility function, the enrichment and the stratified design have almost
identical expected utilities unless the prevalence is small.
Small market, no biomarker costs (Case 2)While, as in Case 1, the stratified design is opti-

mal for the sponsor view for all but very low prevalences, the difference between the expected
utilities of the stratified and enrichment design is small.

In contrast, for the public health utility function the enrichment design achieves the highest
expected utility (see Fig 3). Furthermore, for very low prevalences, none of the trial designs has
a positive expected utility in the public health view and the optimal strategy is to perform no
trial at all. For the sponsor view it is still optimal to perform a trial in the unselected population,
albeit with the minimal sample size if the prevalence is small. This is due to the assumption
that the NPV depends on the observed effect sizes, which implies that the sponsor benefits
from a high variability of the treatment effect estimates.

Note that the optimal test in the stratified design gives most weight onHF for low and onHS

for large prevalences. This holds for both the public health and the sponsor utility function.
Small market, biomarker costs (Case 3) The pattern is very similar to Case 2, however, the

range of λS values where the classical (for the sponsor utility) or no trial (for the public health
utility) are optimal becomes larger (see Fig C in S1 File).
4.1.3 OptimizedDesigns for Varying Effect Sizes. Fig 4 shows the optimal design as

function of the prevalence λS and the effect size parameter δ which parametrizes the effect sizes
in the weak and strong biomarker priors in Table 1. Under the sponsor view, either the classical
or the stratified design is optimal while the enrichment design never maximizes the expected
utility. Surprisingly, even for δ = 0, it is never optimal from a sponsor point of view to conduct
no study at all in the scenarios investigated. This is due to the fact that a false positive, even
though unlikely, may lead to a large reward. Therefore the optimal sample size is the minimal
sample size nmin in these scenarios. This choice minimizes the costs and maximizes the vari-
ability of estimates.

For the public health view in contrast, for very low effect sizes, the optimal decision is to per-
form no trial at all. Under the weak biomarker prior, the enrichment design is optimal under
the public health view only in the scenarios without biomarker costs, for small δ and large
enough prevalences (such that the population that will benefit from a new treatment in the
future is large enough). For larger effect sizes the classical design is optimal for very low and
very large prevalences and the stratified design otherwise.

Under the strong biomarker prior and intermediate δ, the public health utility is optimized
by the enrichment design (unless the prevalence is too low and the classical design dominates).
For larger δ the stratified design is optimal, again with the exception of very low prevalences. In
addition, in the scenario with biomarker costs the classical design becomes optimal for large
prevalences.
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Fig 3. Strong biomarker prior and a small market with no biomarker costs (Case 2). See the legend of Fig 1.

doi:10.1371/journal.pone.0163726.g003
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Fig 4. Optimal designs for different combinations of the prevalence λS 2 [0.05, 0.95] and effect size parameter δ 2 [0, 1]. Optimized

designs for the sponsor and the public health authority are shown for both the weak and the strong biomarker prior (as defined in Table 1)

under the three different cost structures defined by Cases 1, 2 and 3. The colour in a specific point indicates the type of the optimal design.

Grey areas correspond to regions where all optimized designs have negative utilities, implying that the optimal choice is to perform no trial.

doi:10.1371/journal.pone.0163726.g004
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5 Discussion

The current study suggests decision-theoreticmodels for optimizing confirmatory biomarker
trials, both from a sponsor and a public health perspective. Furthermore, it explores the poten-
tial discrepancies between the two perspectives.

The optimized designs depend sensitively on the particular configuration of parameter val-
ues. Besides the priors on the effect sizes, the assumptions on the market size and costs have a
substantial impact on the optimized designs. Therefore, formulating simple rules of thumb for
trial designs is hardly feasible. However, a few general observations can be made. The opti-
mized sample sizes for the public health utility function are consistently larger than for the
sponsor utility (assuming the same costs, market size and reward parameters rF, rS in both util-
ity functions). This finding is likely due to the fact that sponsor benefit is based on the estimate
of the benefit in the trial, whereas the public health benefit depends on the actual benefit. Thus
the public health perspective implies a higher standard for the evidence. This finding provides
a quantitative basis for the qualitative observation that health authorities tend to require a
higher standard of evidence than desired by some sponsors. Mechanism design theory could
potentially be applied to try to create mechanisms which align the incentives more completely.

Furthermore, for very low prevalences, the classical design outperforms the designs that are
based on the biomarker. However, in these scenarios the expected utility for all designs can be
negative in the public health perspective and so weakly positive in the sponsor perspective that
the sponsor would allocate its resources elsewhere as well.

We find that in the sponsor view the enrichment designs never maximize the NPV in the
considered scenarios. This is due to the fact that the sponsor may benefit from an authorization
in the larger population even if the treatment is effective in the subpopulation only. For similar
reasons, even under the global null hypothesis the strategy to perform a trial (with minimum
sample size) gives a positive NPV in the sponsor view (a phenomenon that was observed also
in other contexts [25]).

In the public health view the enrichment designs are optimal for a range of scenarios. Espe-
cially, if there is sufficient prior medical understanding that the biomarker negative subpopula-
tion is unlikely to be positively affected by the drug, it can be a waste of resources to conduct
the trial in this population. Ethical considerations reinforce this, as it can be argued that genu-
ine informed consent [26] implies that patients should not be randomised if their expected util-
ity is higher on standard of care than on randomised trial medication. On the other hand, in
particularwhen subpopulations can be expected to be similar in efficacy, it is not always worth-
while to conduct biomarker screening. In fact, there is an increased risk in a stratified trial that
the treatment is rejected in the biomarker negative subpopulation due to chance. Still, in situa-
tions with genuine uncertainty about the relative efficacy in the two subpopulations, biomarker
determination and stratified designs may have a large value. An obvious extension of our
model is to allow for trial adaptations, potentially closing the biomarker negative part of the
trial at an interim, in case results are negative [27, 28].

When applying the presented framework to practical design decisions, the different model
components should be scrutinized. In the numerical example we have assumed for simplicity
that the biomarker is not prognostic but in practice this will often not be the case. If the bio-
marker is also prognostic, the variability of the effect size estimates will be increasedwith a con-
sequent decrease in the expected utility of the classical design.

As regards the market size for the sponsor, N denotes the number of patients, determined
by the patent life, for which full payment will be received upon regulatory approval. On the
other hand, for the public health authority, N denotes the total number of future patients. In an
extendedmodel,N could be fixed to always be the total number of future patients and a factor
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could be added next toN for the sponsor. This factor would then represent the fraction of
patients corresponding to the patent life, and could be made to depend on the choice of trial
design in various ways. For example, in the enrichment design we accounted only for the
screening costs arising from the determination of the biomarker status of patients. However, if
the restriction of the trial population leads to slower recruitment and consequently a later
authorization of the drug, the result will be a reduction of the market size and the remaining
patent life. This, in turn, may reduce the potential reward in different ways for the two perspec-
tives. Another simplificationmade in our framework is the assumption of a zero discount rate
for the sponsor. In practice, a commercial sponsor would use a non-zero rate to discount future
revenues, which would lead to a further reduction of its expected utility as compared to a public
health authority.

In the consideredmodel we assumed that the subgroup prevalences in the trial are the same
as in the total patient population. However, unless the recruitment is stratified by subgroup,
the actual prevalence in the trial will be stochastic. Furthermore, the propensity to participate
in the trial may vary between subpopulations. While our results are generally robust to random
variations in the prevalence, varying propensities for trial participationmay lead to a biased
estimation of the effect size in the full population in the classical design (and also the stratified
design, if an overall effect estimate based on observedprevalences is computed). The question
of generalizability of trial results to general patient populations is however not specific to the
development of targeted therapies but a more general issue.

We did not explicitly incorporate a benefit risk evaluation of the treatment into the model.
However, the parameters μS and μF in the reward functions (see Eqs (3) and (4)) can be inter-
preted as the minimal treatment effects that compensate the “costs” of the treatment, as the
burden of treatment, side effects and monetary costs. While these are considered as given in
our model, they could alternatively be estimated from clinical trial data.

We modelled the sponsor and public health utility as essentially linear functions of the
observed and true effect size, respectively. From a commercial perspective this can be reason-
able for scenarios where no alternative treatment options are available. However, if competitor
products are on the market, the model may need to be modified because the market share, in
terms of number of doses prescribed, and not only the price or benefit per patient may depend
on the effect size. This can be incorporated by models where the market share is a function of
the posterior distribution of efficacy (and possibly safety) parameters [29, 30]. Another aspect
of our model for reimbursement concerns the pricing. Although NICE in the UK indicates that
they, in our situation, would accept a price proportional to net benefit, payers in other coun-
tries may use other price models, possibly closer to a constant price. As an alternative to our
linear sales model, an aggregated commercial model could be plugged in and similar optimiza-
tion could be performed.

Finally, we note that the case of a very low prevalence, small market size and no biomarker
costs mimics the situation of a rare disease, except there is no complementary subgroup S0.
Therefore, our results could be seen to suggest that the investigation of rare diseases is not rec-
ommended in either perspective. Consequently, the question arises if research in rare diseases
should receive special priority and be subsidised by society such that drug development occurs
even though the expected utility to society is negative, or in some case weakly positive but less
positive than other alternative expenditures. However, this argument raises ethical questions
because the purely utilitarian viewpoint that underlies the decision theoretic framework does
not account for other ethical principles as fairness and justice. Similar issues arise for small sub-
groups of common diseases, an increasing issue in cancer given the fact it being subdivided
into many small molecular subclasses. In the case of cancer, increased benefit due to matching
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betweenmolecular subgroups and targeted therapies may mollify this issue, but this remains to
be seen in individual cases, so that the ethical and public policy dilemmamay still be present.

Appendix

A Computation of Expected Utilities

We derive the expected utilities for a given effect size Δ for the enrichment, the classical and
the stratified design. The overall expected utilities are then obtained by integrating over the
prior distribution.
EnrichmentDesign. For the enrichment design,cF;En

¼ φðSponsorÞS0 ;En
¼ 0. Thus, the utility is

given by

U ðSponsorÞðEnÞ ¼ φðSponsorÞS;En
� CEn

¼ lS N rS cS;En
ðd̂S;En

� mSÞ
þ
� CEn

:

Integrating over the resulting truncated normal distribution, the expected utility given Δ is
given by

EΔ½U
ðSponsorÞðEnÞ� ¼ lS N rS ð1 � FðkÞÞðdS � mSÞ þ V½d̂S;En

�
1=2
�ðkÞ

� �
� CEn

;

where ϕ denotes the density and F denotes the cumulative distribution function of the stan-
dard normal distribution,V½d̂S;En

� ¼ 2s2=n and

k ¼ max F� 1ð1 � aÞV½d̂S;En
�
1=2
; mS

� �
� dS

h i
=V½d̂S;En

�
1=2
:

Similarly, for the public health view utility functionwe obtain

EΔ½U
ðPublicÞðEnÞ� ¼ lS N rS ðdS � mSÞ 1 � F F� 1 1 � að Þ � dS V½d̂S;En

�
� 1=2

� �� �
� CEn

:

ClassicalDesign. In the classical design,cS;Cn
¼ 0, φðSponsorÞS;Cn

¼ φðSponsorÞS0 ;Cn
and

U ðSponsorÞðCnÞ ¼ φðSponsorÞS;Cn
þ φðSponsorÞS0;Cn

� CCn
¼ N rF cF;Cn

ðd̂F;Cn
� mFÞ

þ
� CCn

If the mean response in S and S0 differ, it follows that the observations in the experimental
treatment and control group follow a mixture distribution of two normal distributions. There-
fore, the variance of d̂F;Cn

in the classical design is given by

V½d̂F;Cn
� ¼ ð2s2 þ lS lS0 ððyT;S � yT;S0 Þ

2
þ ðyC;S � yC;S0 Þ

2
ÞÞ=n:

Thus, the expected utility given effect sizes Δ for the classical design is given by

EΔ½U
ðSponsorÞðCnÞ� ¼ N rF ð1 � FðkÞÞðdF � mFÞ þ V½d̂F;Cn

�
1=2
�ðkÞ

� �
� CCn

;

where δF = λS δS + λS0 δS0 and k ¼ ðmax ðF� 1ð1 � aÞV½d̂F;Cn
�
1=2
; mFÞ � dFÞ=V½d̂F;Cn

�
1=2. Simi-

larly, for the public health utility function,

EΔ½U
ðPublicÞðCnÞ� ¼ N rF ðdF � mFÞ 1 � F F� 1 1 � að Þ � dFV½d̂F;Cn

�
� 1=2

� �� �
� CCn

:
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StratifiedDesign. The utility of the stratified design is given by

U ðSponsorÞðSn;aS
Þ ¼ � CSn;aS

þ
lS N rS cS;Sn;aS

ðd̂S;Sn;aS
� mSÞ

þ if cF;Sn;aS
¼ 0

N rF cF;Sn;aS
ðd̂F;Sn;aS

� mFÞ
þ otherwise:

8
<

:

The utility of the stratified design depends on the stratified treatment effect estimate in the full
population (in the following we shorten the notation by dropping the design index,
d̂F :¼ d̂F;Sn;aS

; d̂S :¼ d̂S;Sn;aS
; d̂S0 :¼ d̂S0 ;Sn;aS

;cF :¼ cF;Sn;aS
;cS :¼ cS;Sn;aS

) which is a weighted

sum of d̂S and d̂S0 . The expected utility given the effect sizes Δ is given by

EΔ½U
ðSponsorÞðSn;aS

Þ� ¼ N rF EΔ cF d̂F � mF

� �þh i
þ lS N rS EΔ 1 � cFð ÞcS d̂S � mS

� �þh i
� CSn;aS

:

and can be computed by numeric integration: LetAF(n, αS; σ, α, λS, τS, τS0, μF) denote the region
inR2 where cFðd̂FðZS;ZS0 Þ � mFÞ

þ
> 0 and let AS(n, αS; σ, α, λS, τS,τS0, μS) be the region where

ð1 � cFÞcSðd̂SðZSÞ � mSÞ
þ
> 0, where d̂FðZS;ZS0 Þ is the stratified treatment effect estimate and

ZS, ZS0 the z-statistics computed from the observations in S and S0 respectively. Then

EΔ cF d̂FðzS; zS0 Þ � mF

� �þh i
¼

Z Z

AF

d̂FðzS; zS0 Þ � mF

� �
�ðzSÞ�ðzS0 Þ dzS dzS0 ;

and

EΔ 1 � cFð ÞcS d̂SðZSÞ � mS

� �þh i
¼

Z Z

AS

d̂SðzSÞ � mS

� �
�ðzSÞ�ðzS0 Þ dzS dzS0 :

The shapes of the regions AF and AS depend on the specific values of the parameters and the
design variables (αS, αF, τS, τS0 and n). However, the regions may in all cases be describedby
means of a finite number of straight lines, implying that the expected values above can be com-
puted using standard software for numerical quadrature in two dimensions. But since the inte-
grands are linear in zS0 and ZS0 follows a normal distribution, one-dimensional integration may
be carried out analytically in the zS0-direction before applying a numerical method. This leads
to faster numerical evaluations, which is useful when investigating how the optimal solution
changes over the parameter space.

For the public health view the expected utility given Δmay be written as

EΔ½U
ðPublicÞðSn;aS

Þ� ¼ N rF ðdF � mFÞ EΔ cF½ � þ lS N rS ðdS � mSÞ EΔ 1 � cFð ÞcS½ � � CSn;aS
:

The numerical evaluation is similar to the evaluation of the conditional expectation of the util-
ity of the stratified design for the sponsor’s view.
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20. Kirchner M, Kieser M, Götte H, Schüler A. Utility-based optimization of phase II/III programs. Statistics

in Medicine. 2016; 35(2). doi: 10.1002/sim.6624 PMID: 26256550

21. Krisam J, Kieser M. Optimal Decision Rules for Biomarker-Based Subgroup Selection for a Targeted

Therapy in Oncology. Int J Mol Sci. 2015; 16(5):10354–75. doi: 10.3390/ijms160510354 PMID:

25961947

Optimizing Trial Designs for Targeted Therapies

PLOS ONE | DOI:10.1371/journal.pone.0163726 September 29, 2016 18 / 19

http://dx.doi.org/10.1080/10543400902802458
http://dx.doi.org/10.1080/10543400902802458
http://www.ncbi.nlm.nih.gov/pubmed/19384694
http://dx.doi.org/10.1198/sbr.2009.0039
http://dx.doi.org/10.1093/jnci/djp477
http://www.ncbi.nlm.nih.gov/pubmed/20075367
http://dx.doi.org/10.4155/cli.11.152
http://dx.doi.org/10.1200/JCO.2012.43.3946
http://www.ncbi.nlm.nih.gov/pubmed/22869885
http://dx.doi.org/10.1007/s00439-012-1188-9
http://www.ncbi.nlm.nih.gov/pubmed/22752797
http://dx.doi.org/10.1080/10543406.2015.1092034
http://www.ncbi.nlm.nih.gov/pubmed/26378339
http://dx.doi.org/10.1002/sim.2825
http://www.ncbi.nlm.nih.gov/pubmed/17266164
http://dx.doi.org/10.1002/sim.3461
http://www.ncbi.nlm.nih.gov/pubmed/18985704
http://dx.doi.org/10.1002/sim.3495
http://www.ncbi.nlm.nih.gov/pubmed/19051220
http://dx.doi.org/10.1002/sim.3513
http://www.ncbi.nlm.nih.gov/pubmed/19142850
http://dx.doi.org/10.1198/sbr.2010.08039
http://dx.doi.org/10.1198/sbr.2010.08039
http://dx.doi.org/10.1016/j.cct.2010.08.011
http://www.ncbi.nlm.nih.gov/pubmed/20832503
http://dx.doi.org/10.1002/bimj.201000239
http://www.ncbi.nlm.nih.gov/pubmed/21837623
http://dx.doi.org/10.1198/sbr.2010.09014
http://dx.doi.org/10.1198/sbr.2010.09014
http://dx.doi.org/10.1002/bimj.201200065
http://www.ncbi.nlm.nih.gov/pubmed/23585158
http://dx.doi.org/10.1038/nrd3550
http://dx.doi.org/10.1038/nrd3550
http://www.ncbi.nlm.nih.gov/pubmed/21959287
http://dx.doi.org/10.1080/10543406.2013.856018
http://www.ncbi.nlm.nih.gov/pubmed/24392985
http://dx.doi.org/10.1080/10543406.2014.929583
http://dx.doi.org/10.1080/10543406.2014.929583
http://www.ncbi.nlm.nih.gov/pubmed/24914474
http://dx.doi.org/10.1002/sim.6624
http://www.ncbi.nlm.nih.gov/pubmed/26256550
http://dx.doi.org/10.3390/ijms160510354
http://www.ncbi.nlm.nih.gov/pubmed/25961947


22. Graf AC, Posch M, Koenig F. Adaptive designs for subpopulation analysis optimizing utility functions.

Biometrical Journal. 2015; 57:76–89. doi: 10.1002/bimj.201300257 PMID: 25399844

23. R Core Team. R: A Language and Environment for Statistical Computing; 2016. Available from:

https://www.R-project.org/.

24. O’Hagan A, Stevens JW, Campbell MJ. Assurance in clinical trial design. Pharmaceutical Statistics.

2005; 4:187–201. doi: 10.1002/pst.175

25. Posch M, Bauer P. Adaptive budgets in clinical trials. Statistics in Biopharmaceutical Research. 2013;

5:282–292. doi: 10.1080/19466315.2013.783504

26. Burman CF, Carlberg A. Future Challenges in Design and Ethics of Clinical Trials. In: Pharmaceutical

Sciences Encyclopedia. vol. 51; 2010. p. 1–28. doi: 10.1002/9780470571224.pse250

27. Brannath W, Zuber E, Branson M, Bretz F, Gallo P, Posch M, et al. Confirmatory adaptive designs with

Bayesian decision tools for a targeted therapy in oncology. Statistics in Medicine. 2009; 28:1445–

1463. doi: 10.1002/sim.3559 PMID: 19266565

28. Bauer P, Bretz F, Dragalin V, König F, Wassmer G. Twenty-five years of confirmatory adaptive

designs: opportunities and pitfalls. Statistics in Medicine. 2016; 35:325–347. doi: 10.1002/sim.6472

PMID: 25778935

29. Gittins J, Pezeshk H. A behavioral Bayes method for determining the size of a clinical trial. Drug Infor-

mation Journal. 2000; 34:355–363. doi: 10.1177/009286150003400204

30. Kikuchi T, Pezeshk H, Gittins J. A Bayesian cost-benefit approach to the determination of sample size

in clinical trials. Statistics in Medicine. 2008; 27(1). doi: 10.1002/sim.2965 PMID: 17566967

Optimizing Trial Designs for Targeted Therapies

PLOS ONE | DOI:10.1371/journal.pone.0163726 September 29, 2016 19 / 19

http://dx.doi.org/10.1002/bimj.201300257
http://www.ncbi.nlm.nih.gov/pubmed/25399844
https://www.R-project.org/
http://dx.doi.org/10.1002/pst.175
http://dx.doi.org/10.1080/19466315.2013.783504
http://dx.doi.org/10.1002/9780470571224.pse250
http://dx.doi.org/10.1002/sim.3559
http://www.ncbi.nlm.nih.gov/pubmed/19266565
http://dx.doi.org/10.1002/sim.6472
http://www.ncbi.nlm.nih.gov/pubmed/25778935
http://dx.doi.org/10.1177/009286150003400204
http://dx.doi.org/10.1002/sim.2965
http://www.ncbi.nlm.nih.gov/pubmed/17566967

