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Abstract

This thesis focuses on small signal stability analysis of VSC-HVDC sys-
tems, emphasizing the system stability robustness with regard to the con-

nected AC-grid and the distributed parameter DC-grid model respectively.
In addition, for strong AC-grid connected systems, analytical eigenvalue

expressions are provided to investigate the impact of physical or control pa-
rameters on the system stability for both two-terminal and multi-terminal

VSC-HVDC systems.

The VSC-HVDC system with a distributed parameter DC-cable model
can be described by two cascaded blocks. The first block is a transfer

function that will be different, due to which input and output variables that
are considered. The second block is a feedback loop, where the forward path

is a rational function and the return path is a dissipative infinite dimensional
function, that remains the same in all cases. The stability is then analyzed

using the Nyquist criterion in a straight forward manner. Examples with
different operating points P20 and different SCRs of the connected AC-grids

have been studied, showing that the VSC-HVDC system with a single Π-
section cable model is sufficient to evaluate system stability, independently

of the DC-cable length and impedance density.
Based on the mixed small gain and passivity theorem, this thesis pro-

vides a theoretical method to evaluate a sufficient stability condition for a
two terminal VSC-HVDC system with respect to the connected AC-grid.

The result is that, for the frequency band where the converter admittance

matrix is not passive, the negative closed loop system is stable if the loop
gain is strictly less than one. On the basis of such a theorem, the suf-

ficient stability conditions are provided, showing that at the DC-voltage
controlled converter side, the system robustness can be increased by design-

ing iref = P ref/E0 instead of iref = P ref/E. In addition, the active power
controlled converter can be designed to have passive converter admittance

for all frequencies and thus the system is stable under all kinds of AC-grid.

Keywords: VSC-HVDC system, distributed parameter cable model, AC-
grid interaction, Nyquist stability analysis, small gain theorem, passivity

theorem, symbolic eigenvalue expressions.
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Introductory chapters





Chapter 1

Overview

1.1 Background and motivation

Voltage source converter based high voltage direct current (VSC-HVDC)

transmission systems have now been in operation since 1997 as it is a reli-
able and flexible method of power transmission [1]. In principle, the oper-

ation of VSCs does not rely on the strength of the connected AC systems
compared with the thyristor-based line commuted converter (LCC-HVDC)

transmission technology. Furthermore, it provides independent control of

the reactive power at the two ends and independently of the active power
transfer over the DC transmission [2]. A typical application of a VSC-HVDC

system would be the integration of renewable energy resources over large
geographical areas, due to the benefits of high transmission power capacity

and low losses [3].

Stability analysis of a VSC-HVDC system is typically achieved by calcu-
lating the values of system poles, where the DC-grid is modeled by a single

Π-section no matter the transmission distance [4,5]. It is often sufficient, at
least when considering dynamics of short cables and low frequencies. How-

ever, if more general results are required, for example in submarine (due to
increased impedance density) or long distance cables, it would be more ap-

propriate to use a distributed parameter cable model together with transfer
functions (or finite order state-space) in the linearized VSC-models.

Aside from performing as a reliable and controllable power transmission

between networks, in turn, the VSC-HVDC system also brings interaction
between the system components such as the converter and the AC-grid.

Current existing methods to analyze the stability of grid connected convert-
ers are impedance based analysis, where the system is characterized as a

negative feedback system of grid impedance and converter admittance [6–8].
On the contrary to the root locus and characteristic equation based stabil-

ity analysis, the impedance based stability analysis requires less detailed

1



Chapter 1. Overview

information of both converter controller and grid impedance. In addition,

it provides a general stability condition based on the Nyquist criterion.
However, in [6], only the passivity theorem is applied to analyze system

stability which is hard to achieve in the lower frequency band, especially for
the converter with positive input power.

The passivity theorem guarantees stability of a feedback interconnection

of two linear time invariant (LTI) input to output stable subsystems if, for
instance, both of the subsystems are passive, and one of them is strictly

passive [9]. Another important result in stability assessment is the small
gain theorem, where the feedback interconnection of two stable subsystems

is stable when the product of the gains of those two stable subsystems is
strictly less than one. Since there exist many situations where both the

passivity and the small gain theorems are not compatible respectively, the
idea of merging those two theorems would be potentially extremely useful.

The “mixed” small gain and passivity theorem is proposed in [10, 11].

However, the subsystems are required to be causal, input and output strict-
ly passive over the frequency band that the small gain theorem does not

hold. The requirement of a system to be input and output strictly passive,
especially in the high frequency band, is severe and no strictly proper sys-

tem satisfies this demand for all frequencies [12]. Therefore, it is important
to give a less conservative condition regarding the passivity and thus fur-

ther suited to analyze the stability of a two-terminal VSC-HVDC system
embedded in weak AC-grids.

Poorly-damped resonances between converter stations and DC-cables

can as well appear both in two-terminal and multi-terminal VSC-HVDC
systems [13,14]. Such problems are typically approached by using numerical

analysis to determine the actual values of the system’s poles [15]. Howev-
er, acquiring analytical expressions for these poles has the benefit of better

understanding which selected parameters of the system can affect the fre-
quency and damping characteristics of its eigenvalues. Hence, it is valuable

if such symbolic descriptions can be obtained for a poorly-damped VSC-
HVDC link, highlighting the relationship between the system parameters

and its poorly-damped poles.

1.2 Main contribution of the thesis

The purpose of this thesis is to study the robust stability of VSC-HVDC sys-
tem with respect to different DC-cable models and the connected AC-grid

dynamics. In addition, the poorly-damped conditions caused by the inter-
action of converter and DC-grid is studied by the approximated symbolic

eigenvalues. To the best of the author’s knowledge, the main contributions

2



1.3. Thesis outline

of this thesis are the following:

1. A mathematical model for small-signal stability analysis of a two

terminal VSC-HVDC system with a distributed parameter DC-cable
model has been presented. Due to the symmetric properties of the ca-

ble model, the block diagram of each input output combination could
be described by a transfer function g0(s) cascaded with a feedback loop

g1(s)/(1 + g1(s)h1(s)), where g0(s) is stable with reasonable design of
the DC voltage PI-controller and the forward path of the feedback

loop, g1(s), is a rational function of ‘s’ and the return path h1(s)
is dissipative of infinite order. Using this approach, the small-signal

stability has been analyzed by use of the Nyquist criterion.

2. The stability analysis of two terminal VSC-HVDC systems embedded
in weak AC-grids can be separated into two parts: the active power

controlled VSC and the VSC-HVDC system while the active power
controlled VSC is under steady state. On the basis of the “mixed”

small gain and passivity theorem, a theoretical method to evaluate a
sufficient stability condition for such two terminal VSC-HVDC sys-

tems with respect to the AC-grid weakness has been provided.

3. Symbolic approximative eigenvalue expressions have been proposed,

which help to characterize poorly-damped conditions that may appear
on the DC-side of a two-terminal VSC-HVDC system, while the inter-

action with the AC-side is neglected considering the presence of strong

AC-grids. In addition, by applying a symbolic-isolation method, the
order of a multi-terminal VSC-HVDC system can be reduced to an

equivalent two-terminal VSC-HVDC system, which enables the pro-
posed method to be applied.

1.3 Thesis outline

The remaining chapters of this thesis are organized as follows:

Chapter 2 describes the VSC-HVDC system topology, the controllers of

VSC, the AC- as well as the DC-grid dynamics, which all in all pro-
vides a theoretical base for the VSC-HVDC system stability analysis.

Chapter 3 shows the block diagram of the constructed VSC-HVDC sys-
tem dynamics, which has the form of a forward combination of trans-

fer functions cascaded by a feedback system. Numerical analysis of
VSC-HVDC systems with a distributed parameter DC-cable model

embedded in both strong and weak AC-environment are studied.
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Chapter 1. Overview

Chapter 4 presents a modification of the “mixed” small gain and passivity

theorem. In addition, the modified theorem is applied to evaluate a
sufficient stability condition for a two terminal VSC-HVDC system

with respect to the connected AC-grid weakness.

Chapter 5 provides the simplified 4th order state space model of a strong

AC-grid connected two-terminal VSC-HVDC system and its symbol-
ically approximative eigenvalues, which can directly demonstrate the

impact of physical or control parameters on the system stability. Fur-
thermore, on account of a symbolic-isolation method, the result is

applied to multi-terminal VSC-HVDC systems as well.

Chapter 6 gives brief summaries of the included papers.
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Chapter 2

VSC-HVDC system

The intention of this chapter is to provide the reader with a VSC-HVDC
transmission scheme and the main control technologies applied to the VSC.

Following to that, the most important elements of a VSC is presented.

Then, the principles of the inner current control loop, the active power and
DC voltage control loops, the reactive power and AC-voltage control loops,

and the phase locked loop (PLL) are described in some detail. Finally, the
DC-cable model and the AC-grid dynamics are presented.

2.1 Introduction

The system under study is depicted in Fig. 1. The source voltage, the
point of common coupling (PCC) voltage, the converter voltage and the

converter input current are denoted by vs, E, vc and i respectively. Weak

AC-grids are modeled by the impedance matrices Z1(s) and Z2(s) at the
synchronous frame respectively. The so-called synchronous frame is oriented

to be in alignment with the voltage direction, due to the PLL [16]. The PLL
dynamics will be considered to build converter grid interconnection.

vs1 vs2

C1

vDC1
vDC2

icap1
icap2

iDC1
iDC2

Cable

C2

AC

Network 1

AC

Network 2

DC voltage ontrolled

VSC 1

Active power controlled

VSC 2

Z1(s) Z2(s)

Phase

reactor

Phase

reactor

E1 E2

R1L1 R2 L2

vc1 vc2

i1
i2

PCC PCC

Figure 2.1: Standard HVDC-VSC system embedded in a weak AC-
environment.

At the AC-side of the VSCs, the series inductances (L1, L2) and resis-

tances (R1, R2) represent the AC phase reactors and (indirectly) the power
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Chapter 2. VSC-HVDC system

losses in the converters as well. The phase reactors serve the function both

of stabilizing the AC current and to enable the control of active and reac-
tive output power from the VSC separately. The DC shunt capacitors at

the terminals are denoted by C1, C2 respectively, which serve the purpose
of stabilizing the DC voltage and to reduce the ripple introduced by the

harmonics injected by the VSC [2].

In standard VSC-HVDC systems, one converter station (VSC1) is as-

signed the duty as the DC voltage controller to secure the stability of the
DC-Bus voltage; the other station (VSC2) operates as the active power

controller to guarantee and balance the power exchanges [17]. Moreover, in
each VSC, it is possible to control the grid voltage at the AC-side, which in

this thesis is further discussed.

If the DC-cable is modeled by a single Π-section, the stability of the

system can be investigated by an eigenvalue calculation. However, the high
frequency information is not necessarily well interpreted by the single Π-

section cable model and thus potentially inconvenient to analyze the real
dynamic influence of the DC-cable. Consequently, the VSC-HVDC system

using a distributed parameter cable model is formulated as well.

The strength of the connected AC-grid relative to the power rating of

the HVDC link is described by the value of short circuit ratio (SCR). SCR

is calculated as the value of AC-grid admittance at fundamental frequency
[18]. In this thesis, the connected AC-grid will be modeled as series RgLg-

circuits.

2.2 VSC control system

In this subsection, the VSC model is derived in the so-called power invariant
dq reference frame [19], where the frame is chosen to be in align with the

PCC voltage direction and thus the steady state of the q-axis converter
measured PCC voltage is zero i.e. Ecq10 = Ecq20 = 0. The two VSCs are

assumed to be ideal and symmetrical, having a switching frequency around
1 [kHz]. In the following, the units for voltage, current and active power are

[kV], [kA] and [MW] respectively and all reference signals x are expressed
as xref , the differential operator with respect to time is denoted ‘p’ and the

Laplace transform of a time domain variable x(t) is denoted x̃(s).

The AC-grid frequency is assumed to be constant i.e. ω0 = 2πf0 and

f0 = 50 [Hz]. Since the VSCs are assumed symmetric, the variables and
parameters in this subsection are not subscribed by the numbers 1 and 2,

used to denote the different VSCs.

The local controller of the VSC is separated into two cascaded parts:

inner current controller and outer controller. The inner current controller is

6



2.2. VSC control system

to speed up the current dynamics and provides the voltage reference (vrefcd

and vrefcq ) to the pulse width modulator (PWM). The d-axis outer controller
is used to track the reference of either the DC voltage or the active power

and generates the d-axis current reference (irefd ) to the inner current loop;
The q-axis outer controller is used to decrease the voltage drop of the PCC

voltage [20] and it therefore generates a reference for the q-axis current
(irefq ).

2.2.1 Vector current control method

The principle of the VSC controller is to control the magnitude and phase
of the fundamental frequency component of the AC voltage at the valve side

of the series inductive interface (vc), in such a way that the converter input
current (i) through the phase reactor has the desired phase and magnitude

as well. With the vector control method, three phase currents are trans-
formed to d- and q-axis quantities based on the Park transformation [19].

Similarly, the desired current d- and q-quantities can be calculated by the
desired current magnitude and phase in the three phase system. Since the

dq-frame is chosen to be in align with the PCC voltage, the active pow-
er P ref and the reactive power Qref are thus determined by icd and icq
separately [2].

Applying the voltage Kirchhoff law to the phase reactor at the AC-side
of the VSC:

L · di
abc

dt
= −R · iabc + Eabc − vabcc (2.1)

where the relation between the abc (three phase) and dq reference frames
is given by Park’s transformation:

xabc = P−1xdq0 (2.2)

P =
2

3





cos(ωt) cos(ωt− 2π
3
) cos(ωt+ 2π

3
)

− sin(ωt) − sin(ωt− 2π
3
) − sin(ωt+ 2π

3
)

1
2

1
2

1
2





Applying the Park transformation to eq.(2.1), the dq-frame model of

current dynamics is obtained:

L · dicd
dt

= −R · icd + ω0L · icq + Ecd − vcd (2.3)

L · dicq
dt

= −R · icq − ω0L · icd + Ecq − vcq (2.4)

The current control signal consists of a feedback signal from a PI-

controller and two feed-forward signals, i.e. the filtered PCC voltage and

7



Chapter 2. VSC-HVDC system

the cross coupling current [21]. The reference voltages (vrefcd , vrefcq ) are given

by:

ṽrefcd = −(kp +
ki
s
)(̃irefd − ĩcd) +

af
s+ af

Ẽcd + ω0L · ĩcq (2.5)

ṽrefcq = −(kp +
ki
s
)(̃irefq − ĩcq) +

af
s+ af

Ẽcq − ω0L · ĩcd (2.6)

Due to the switching action of PWM inside the converter, a delay of half
a switching period appears, where Tsw = 1/(2fsw) = 0.5 [ms]. After having

designed the inner current loop relatively slow, the delay is reasonable to
ignore in the analysis of system dynamics i.e. vrefcd ≈ vcd and vrefcq ≈ vcq [6].

Consequently, the dynamics between the d- and q-axis is decoupled at the
inner current loop.

The PI-parameters are designed as kp = acL and ki = acR, where ac is

the design bandwidth of the inner current loop. Hence the phase reactor
pole of −R/L is thus canceled by the inner current PI-controller. Note that

the unavoidable uncertainties, ∆L and ∆R in the AC-side model parame-
ters, L and R, are assumed to be quite small (|∆L|/L ≪ 1, etc). Hence,

these uncertainties will have only a minor impact on the inner current loop
performance. In addition, since the outer loop design bandwidth is usu-

ally designed to be at least ten times smaller than ac, the effect caused

by the inner loop parameter uncertainty does not influence the entire sys-
tem dynamics significantly. Therefore, the design of the inner current loop

PI-controller based on model parameters is well justified.

Consequently, the linearized inner current closed loop in the Laplace
domain is given by:

∆ĩcd(s) =
ac

s+ ac
∆ĩrefd (s) +

s2

(Ls+R)(s+ ac)(s+ af)
∆Ẽcd

= gc(s)∆ĩrefd (s) + yi(s)∆Ẽcd (2.7)

∆ĩcq(s) = gc(s)∆ĩrefq (s) + yi(s)∆Ẽcq (2.8)

Note that the low pass filter (LPF) of the feed-forward PCC voltage is

used to filter out the high frequency resonance at the AC-side. Therefore,

when strong AC-grid is considered, the bandwidth af can be designed to be
large and thus yi(s) ≈ 0.

2.2.2 Direct voltage controller

The DC voltage is determined by the capacitor charging power that is the

difference between the input active power to the VSC (assuming that the

8



2.2. VSC control system

VSC in itself is power lossless) and the DC load power:

d

dt
(
1

2
C · v2dc) = P − Pload (2.9)

The corresponding linearized power balance close to the operating point is:

⇒ C · vdc0 ·
d∆vdc
dt

= ∆P −∆Pload (2.10)

Therefore, the linearized expression of the input active power and the

DC load power are required, where the complex conjugate value of x is
denoted by x∗:

P = Re{(E0 +∆Ecd + j∆Ecq)(id0 +∆icd + j(iq0 +∆icq))
∗}

≈ E0id0
︸ ︷︷ ︸

P0

+E0∆icd + id0∆Ecd + iq0∆Ecq
︸ ︷︷ ︸

∆P

(2.11)

Pload = (vdc0 +∆vdc)(idc0 +∆idc)

≈ vdc0idc0
︸ ︷︷ ︸

Pload0

+ vdc0∆idc + idc0∆vdc
︸ ︷︷ ︸

∆Pload

(2.12)

Equation (2.11) shows that ∆P is proportional to ∆icd and independent
of ∆icq. Therefore, the output of the DC voltage controller i.e. the d-

axis reference current, can be provided through the reference input active
power. The reference input active power is the sum of the output from a PI-

controller operating on the error of the DC voltage square and the filtered
feed forward DC load power (with bandwidth adf ):

P ref = (kpd +
kid
p
) · ν +

adf
p+ adf

Pload (2.13)

ν =
(vrefdc )2 − v2dc

2
(2.14)

∆P̃ ref = vdc0Fd(s)(∆ṽrefdc −∆ṽdc) + Ff(s)∆P̃load (2.15)

Fd(s) = kpd +
kid
s

and Ff(s) =
adf

s+ adf

Traditionally, the reference current is designed as [3]:

irefd = P ref/(Fv(s) ·Ec) and Fv(s) =
af

s + af
(2.16)

∆irefd =
1

E0

∆P ref − Fv(s)
P0

E2
0

∆Ecd (2.17)

As seen from eq.(2.17), a negative admittance −P0/E
2
0 appears for the

positive input power, relating changes in the measured PCC voltage to the

9



Chapter 2. VSC-HVDC system

changes in the d-axis reference current. This may deteriorate the stability

of the interconnected converter and AC-grid system. Thus, we propose
that the d-axis reference current is designed as below, hence removing the

negative admittance:

irefd = P ref/E0 (2.18)

∆irefd = ∆P ref/E0 (2.19)

After ignoring both the LPF in eq.(2.15) and the inner current loop

dynamics i.e. ∆icd = ∆irefd , designing the PI-controller parameters as kpd =
2Ĉζωnd and kid = Ĉω2

nd, the transfer function from ∆ṽrefdc to ∆ṽdc is:

∆ṽdc

∆ṽrefdc

≈ 2ζωnd
Ĉ
C
s+ ω2

nd
Ĉ
C

s2 + 2ζωnd
Ĉ
C
s+ ω2

nd
Ĉ
C

(2.20)

Ĉ is the estimated DC shunt capacitance and C is the actual physical

shunt capacitance. The damping ratio ζ and natural frequency ωnd are

amplified by

√

Ĉ/C compared to the designed parameters. Since the phys-

ical shunt capacitance C contains an impact from the DC-cable distributed
shunt capacitance, and is assumed to be a bit larger than Ĉ; then ζ and ωnd

should be a bit higher than the designed value in order to compensate for
the error. In this thesis, the influence of such parameter uncertainty of C is

not considered. ζ and ωnd are chosen to be 1 and 0.4ad, which guarantees
that the DC voltage loop bandwidth of eq.(2.20) is ad.

2.2.3 Active power controller

For the outer controller of transmitted active power, again a PI-controller
is used. The controller parameters are designed by inner current loop pole

cancelation i.e. kpp = ap/ac, kip = ap. The bandwidth of the outer loop is
chosen as ap = 0.2ad. Therefore, the DC voltage would not display large

oscillations during the variations of transmitted active power. The linearized
differential equations (where Ec0 = E0) of the active power control loop are

derived as follows:

irefd = (kpp +
kip
p
)(P ref − P )/Ec (2.21)

⇒ ∆ĩrefd =
1

E0
(kpp +

kip
s
)(∆P̃ ref −∆P̃ ) (2.22)

2.2.4 Reactive power and AC voltage controller

The idea of the AC voltage or reactive power controller is to compensate

for the AC voltage drop i.e. to increase the reactive power at PCC when

10



2.2. VSC control system

the AC voltage is lower than the reference PCC voltage [20]. In this thesis,

both the d- and q-axis PCC voltages are regulated by the q-axis current
and ∆irefq is expressed as:

∆ĩrefq = Kad(s) · (∆Ẽref −∆Ẽcd) +Kaq(s) · (∆Ẽq
ref −∆Ẽcq)

= Kad(s) · (∆Ẽref −∆Ẽcd)−Kaq(s) ·∆Ẽcq (2.23)

The design of the controllers Kad(s) and Kaq(s) will be further discussed

in Chapter 3 and 4.

2.2.5 Phase Locked Loop

Phase locked loop is applied to track the rotating phase angle θref , which is

used for transforming the converter dq-frame from the stationary αβ-frame.
At steady state, the converter dq-frame coincides with the grid dq-frame.

Es, E and Ec are the PCC voltages in the αβ-frame, grid dq-frame and
converter dq-frame respectively. θref and θ are the grid phase angle and

converter phase angle (tracked through PLL).
At steady state, θ = θref . The frame transformation gives: Es = ejθ

ref

E

and Es = ejθEc. Introducing ∆θ = θ − θref , obviously Ec is expressed as
Ec = e−j∆θE.

Since the phase angle and the AC frequency cannot be measured direct-
ly, the measured sinusoidal PCC voltage is used to track the phase angle

together with one PI-controller (Fpll(s) = kp,pll +
ki,pll
s

). The block diagram
of the nonlinear PLL is shown at Fig. 2.2. At steady state, ∆θ = 0 and

the imaginary part (q-axis) of the PCC voltage in the converter dq-frame

is zero as well, i.e. at steady state, Ec = E0. The linearized equations are
given as follows, where e−j∆θ ≈ 1− j ·∆θ if |∆θ| ≤ ε, where ε is small.

Ec = E · e−j∆θ ≈ (E0 +∆E) · (1− j ·∆θ)

≈ E0 +∆E − jE0 ·∆θ (2.24)

∆ω =

(

kp,pll +
ki,pll
p

)

· Im{Ec} = Fpll(p) · (Im{∆E} − E0 ·∆θ) (2.25)

d∆θ

dt
=

d(θ − θref)

dt
= ω − ωref

= ω0 + Fpll(p) · (Im{∆E} − E0 ·∆θ)− ωref (2.26)

If ωref = ω0, a P-controller is enough to reach zero steady state error,
which implies that the integral action of the PI-controller is used to com-

pensate for the grid frequency approximation. In this thesis, we assume
that ωref = ω0 and design ki,pll = 0, kp,pll = apll/E0. The transfer function

from Im{∆E} to ∆θ is given as follows, where the bandwidth of the PLL,

11



Chapter 2. VSC-HVDC system

Es = ejθ
ref

E Ec = e−j∆θEIm{·} |Ec| · sin(∆θ)

PI controller

kp,pll +
ki,pll
s

∆ω ω

ω0

1
se−jθ

θ

Figure 2.2: Model of Phase Locked Loop.

apll, should satisfy: apll ≤ 0.1ac, where ac is the bandwidth of the inner

current loop [22].

∆θ̃

Im{∆Ẽ}
= Gpll(s) =

apll/E0

s+ apll
(2.27)

As discussed above, at steady state, the converter dq-frame coincides
with the grid dq-frame, i.e. Ec0 = E0 and ic0 = i0. Besides, Ec = e−j∆θE

and i = ej∆θic. After considering the transfer function Gpll(s) and the
approximation e−j∆θ ≈ 1 − j · ∆θ, the linearized relations are given as

follows:

∆Ec = ∆E − jE0 ·∆θ = ∆E − jE0 ·Gpll(p) · Im{∆E} (2.28)

∆i = ∆ic + ji0 ·∆θ = ∆ic + ji0 ·Gpll(p) · Im{∆E} (2.29)

In the Laplace form, the relations are given as follows. Note that the

variable x in dq-frame is a complex number and can be expressed as x =

xd + j · xq, where the subscriptions d, q represent the real and imaginary
part respectively:

∆Ẽcd = ∆Ẽd (2.30)

∆Ẽcq = (1−E0Gpll(s)) ·∆Ẽq (2.31)

∆ĩd = ∆ĩcd − iq0Gpll(s) ·∆Ẽq = ∆ĩcd +
Q0

E0
Gpll(s) ·∆Ẽq (2.32)

∆ĩq = ∆ĩcq + id0Gpll(s) ·∆Ẽq = ∆ĩcd +
P0

E0
Gpll(s) ·∆Ẽq (2.33)

The equilibriums of the PLL are ∆ω = 0 and ∆θ = kπ (k is odd implies
unstable equilibrium and k is even implies stable equilibrium), thus the

initial value of ∆θ should be bounded within [−π, π] in order to reach
equilibrium ∆ω = 0 and ∆θ = 0. For the strong AC-grid case, the PLL

dynamics is ignored, which implies Gpll(s) ≈ 1/E0.
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2.3. AC-grid model

2.3 AC-grid model

The AC-grid model is not unique. In this thesis, the AC-grid is modeled by
the series RgLg-circuit. The strength of the AC-grid is represented by the

short circuit ratio (SCR), which is the ratio between short circuit power and
rated power. If the base power unit is set as the rated power, SCR = 1/Zg,

where Zg is the AC-grid impedance in per unit [23].

For the series connected AC-grid, since the transmission line typically

has a Q-value (ωLg/Rg) that exceeds 10, the grid resistance Rg can be ig-
nored when calculating SCR, i.e. SCR ≈ 1/(ωLg) where ωLg is the grid

reactance in per unit. For a strong grid, Lg is ignored, implying that SCR
approaches infinity. The least SCR value which has been practically expe-

rienced by the end of year 2004 is 1.3 [2]. There is no particular limit on
SCR, however, as the transmittable maximum active power is limited by a

smaller SCR [24].

The dynamics of the series RgLg-circuit modeled in the synchronous

dq-frame is:

∆ṽsd −∆Ẽd = (Lgs+Rg)∆ĩd − ω0Lg∆ĩq (2.34)

∆ṽsq −∆Ẽq = ω0Lg∆ĩd + (Lgs +Rg)∆ĩq (2.35)

2.4 DC-grid model

2.4.1 Distributed parameter DC-cable model

The conventional method of approximating a transmission line is to replace

the line by cascaded lumped RLCG-sections, which is shown in Fig. 2.3.
The terminal voltage and current are represented by vdc1, vdc2, idc1 and

idc2. The cable parameters are given by rc, lc, cc, gc and d, which are
the cable densities of resistance, inductance, capacitance, conductance, and

cable length.

Cable

vdc2(t)=vdc(d,t)

idc2(t)=-idc(d,t)

vdc1(t)=vdc(0,t)

idc1(t)=idc(0,t)

vdc(x,t)

idc(x,t)

vdc(x+ x,t)

idc(x+ x,t)

rc x lc x

cc xgc x RLGC-section

Figure 2.3: DC-cable model: idc1 = idc(0, t) and idc2 = −idc(d, t).
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Chapter 2. VSC-HVDC system

Define the current from the AC- to the DC-side as a positive current.

At arbitrary distance ‘x’ from terminal 1, the voltage vdc and current idc
obey the following two equations:

vdc(x+∆x, t) = vdc(x, t)− rc∆x · idc(x, t)− lc∆x · ∂idc(x, t)
∂t

idc(x+∆x, t) = idc(x, t)− gc∆x · vdc(x+∆x, t)− cc∆x · ∂vdc(x+∆x, t)

∂t

vdc(x+∆x, t)− vdc(x, t)

∆x
= −rc · idc(x, t)− lc ·

∂idc(x, t)

∂t
(2.36)

idc(x+∆x, t)− idc(x, t)

∆x
= −gc · vdc(x+∆x, t)− cc ·

∂vdc(x+∆x, t)

∂t
(2.37)

As ∆x → 0, there are:

lim
∆x→0

vdc(x+∆x, t)− vdc(x, t)

∆x
=

∂vdc(x, t)

∂x
(2.38)

lim
∆x→0

idc(x+∆x, t)− idc(x, t)

∆x
=

∂idc(x, t)

∂x
(2.39)

lim
∆x→0

∂vdc(x+∆x, t)

∂t
=

∂vdc(x, t)

∂t
(2.40)

lim
∆x→0

vdc(x+∆x, t) = vdc(x, t) (2.41)

With infinitely small distance ∆x, by eq.(2.38 - 2.41), eq.(2.36, 2.37)
can be rewritten as follows:

∂vdc(x, t)

∂x
+ rc · idc(x, t) + lc ·

∂idc(x, t)

∂t
= 0

∂idc(x, t)

∂x
+ gc · vdc(x, t) + cc ·

∂vdc(x, t)

∂t
= 0

Taking Laplace transforms of each term in the above equations, gives:

dṽdc(x, s)

dx
+ (rc + lc · s) · ĩdc(x, s) = 0 (2.42)

dĩdc(x, s)

dx
+ (gc + cc · s) · ṽdc(x, s) = 0 (2.43)

Differentiate each term in eq.(2.42) with respect to x and replace dĩdc/dx
by use of eq.(2.43). The Laplace transformed version of the damped wave

equation is then obtained:

d2ṽdc(x, s)

dx2
− (rc + lc · s)(gc + cc · s) · ṽdc(x, s) = 0 (2.44)
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2.4. DC-grid model

Introducing γ(s) and Y0(s), the characteristic wave complex damping

factor and the characteristic wave admittance for the transmission line,
respectively. They are defined by:

Y0(s) =

√
cc · s+ gc
lc · s+ rc

(2.45)

γ(s) = d ·
√

(cc · s + gc)(lc · s+ rc) (2.46)

Letting A(s), B(s) be constants of integration, the solutions of eq.(2.42)
and eq.(2.43) are given as:

ṽdc(x, s) = A(s) cosh(γ(s) · x) +B(s) sinh(γ(s) · x) (2.47)

ĩdc(x, s) = − 1

(rc + lc · s)
dṽdc(x, s)

dx

= − 1

(rc + lc · s)
(A(s)γ(s) sinh(γ(s) · x) +B(s)γ(s) cosh(γ(s) · x))

(2.48)

A(s) and B(s) are then determined by the boundary conditions:

ṽdc(0, s) = ṽdc1(s) = A(s)

⇒ A(s) = ṽdc1(s) (2.49)

ṽdc(d, s) = ṽdc2(s) = A(s) cosh(γ(s) · d) +B(s) sinh(γ(s) · d)

⇒ B(s) = − coth(γ(s) · d) · ṽdc1(s) +
1

sinh(γ(s) · d) ṽdc2(s) (2.50)

With the relations of ĩdc1(s) = ĩdc(0, s) and ĩdc2(s) = −ĩdc(d, s), the
terminal voltage and current satisfying the following relations, where Γ(s) =

d · γ(s):

ĩdc1(s) = Y0(s) coth(Γ(s))

︸ ︷︷ ︸

h1(s)

·ṽdc1(s)− Y0(s)
1

sinh(Γ(s))
︸ ︷︷ ︸

h2(s)

·ṽdc2(s) (2.51)

ĩdc2(s) = −Y0(s)
1

sinh(Γ(s))
· ṽdc1(s) + Y0(s) coth(Γ(s)) · ṽdc2(s) (2.52)

Equivalently, the relation between the terminal terms can be written in

the matrix form as:
(
ĩdc1(s)

ĩdc2(s)

)

=

(
h1(s) −h2(s)

−h2(s) h1(s)

)

·
(
ṽdc1(s)

ṽdc2(s)

)

(2.53)

It is worth to be mentioned that h2
1(s)− h2

2(s) = Y 2
0 (s) =

cc·s+gc
lc·s+rc

, where

h1(s) and h2(s) are the short cut admittances at each side.
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Chapter 2. VSC-HVDC system

2.4.2 Single Π-section DC-cable model

The single Π-section DC-cable model is depicted in Fig. 2.4.

Rdc Ldc CdcCdc

idc1 idc2

vdc1 vdc2

Figure 2.4: Single Π-section DC-cable model: Cdc = d · cc/2, Ldc = d · lc and
Rdc = d · rc.

Similarly, the relation between the terminal voltages and currents can

be written in the matrix form as:
(
ĩdc1(s)

ĩdc2(s)

)

=

(
hπ1(s) −hπ2(s)

−hπ2(s) hπ1(s)

)

·
(
ṽdc1(s)

ṽdc2(s)

)

(2.54)

where, hπ1(s) = ccs · d/2 + 1/(lcs+ rc)/d

hπ2(s) = 1/(lcs+ rc)/d
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Chapter 3

Nyquist stability analysis of
system with a distributed
parameter DC-cable model

In this chapter, the two terminal VSC-HVDC system embedded in strong

or weak AC-environments is considered and transformed into the block di-
agram in Fig. 3.

Input
g1(s)

h1(s)

+
- Output

g0(s)

Figure 3.1: Block diagram of a VSC-HVDC system with a distributed pa-
rameter DC-cable model: g0 is the forward transfer function, g1h1 is the

open loop function of the feedback loop g1/(1 + g1h1).

The first block, g0(s), is a transfer function that will differ depending on
what input and output variables are considered, but which is in all realistic

cases stable. The second block, g1(s)/(1 + g1(s)h1(s)), is a feedback loop
where the forward path, g1(s), is a rational function and the return path,

h1(s), is a dissipative infinite dimensional function, remaining the same in
all cases. The stability is then analyzed, using the Nyquist criterion, in

a straightforward manner. Numerical examples are as well given in this
section. The physical and control parameters used for simulation are listed

in Tab. 1 and Tab. 1.
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Table 3.1: Bandwidth design of VSC-HVDC system

Inner current loop ac 4p.u. 400π [rad/s]

Active power outer loop ap 0.1p.u. 10π [rad/s]

DC voltage outer loop ad 0.4p.u. 40π [rad/s]

PLL loop apll 0.4p.u. 40π [rad/s]

LPF of AC voltage af 0.4p.u. 40π [rad/s]

LPF of DC load power adf 0.4p.u. 40π [rad/s]

Table 3.2: Parameter of VSC-HVDC system

Cable distance d 50 km

Cable inductance density lc 0.189 mH/km

Cable capacitance density cc 0.207 µF/km

Cable resistance density rc 0.0376 Ω/km

Cable conductance density gc 0 S/km

Phase reactor inductance L 53 mH

Phase reactor resistance R 0.167 Ω

DC shunt capacitor (τs = 2.5 ms) C 33 µF

Rated AC voltage (dq-frame) vsd0 200 kV

Rated DC voltage vdc0 300 kV

Rated transmission power P0 600 MW

System frequency f0 50 Hz

Weak AC-grid inductance Lg 53.1 mH

Weak AC-grid resistance Rg 1.11 Ω

3.1 Block diagram

In this thesis, the converter (VSC) comprising the switching valves is sur-
rounded by the phase reactor at the AC-side and the shunt capacitor at the

DC-side. Therefore, there are five input signals at each converter for small
signal stability analysis, i.e. the AC source voltage (in the dq-frame) ∆vsd
and ∆vsq, the d-axis reference signal ∆P ref or ∆vrefdc , the q-axis reference
signal ∆Eref and one internal input signal ∆idc (perform as a state variable

for the entire VSC-HVDC system).

When the converter is embedded in strong AC-grid, it is not necessary

to control the AC voltage and thus reasonable to assume that both ∆vsq
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3.1. Block diagram

and ∆Eref are zero. There are three input signals for each converter i.e. the

d-axis AC source voltage ∆vsd, the d-axis reference signal ∆P ref or ∆vrefdc

and one internal input signal ∆idc.

3.1.1 Weak AC-grid environment

As discussed in subsection 2.1, in two-terminal VSC-HVDC systems, one

converter station (VSC1) is assigned the duty as DC voltage controller with
input signal ∆vrefdc1 and the other station (VSC2) operates as the active

power controller with input signal ∆P ref
2 . Choose the DC voltage as the

converter system output. The preliminary transfer functions from those five

inputs to the DC voltages are given by:

∆ṽdc1 =g11(s)∆ṽrefdc1 + g12(s)∆Ẽref
1 + g13(s)∆ṽsd1 + g14(s)∆ṽsq1+

+ g15(s)∆ĩdc1 (3.1)

∆ṽdc2 =g21(s)∆P̃ ref
2 + g22(s)∆Ẽref

2 + g23(s)∆ṽsd2 + g24(s)∆ṽsq2+

+ g25(s)∆ĩdc2 (3.2)

where, the transfer functions gij(s) can be calculated through the state

space model given by eq.(3.18) in section 3.2.2.
Combining the relationship between the DC terminal currents and volt-

ages given by eq.(2.53), the two-terminal VSC-HVDC system transfer func-
tion matrix is readily obtained from:

Λ(s)

[
∆ṽdc1
∆ṽdc2

]

= Φ(s) ∗ u (3.3)

Λ(s) =

[
1− g15h1 g15h2

g25h2 1− g25h1

]

Φ(s) =

[
g11 g12 0 0 g13 g14 0 0

0 0 g21 g22 0 0 g23 g24

]

where, uT = [∆ṽrefdc1 ∆Ẽref
1 ∆P̃ ref

2 ∆Ẽref
2 ∆ṽsd1 ∆ṽsq1 ∆ṽsd2 ∆ṽsq2]. The

MIMO transfer function from inputs to outputs is given as follows, where
adj(Λ) denotes the adjoint matrix of Λ:

[
∆ṽdc1
∆ṽdc2

]

= Λ−1Φ · u =
1

det Λ
adj(Λ)Φ · u

=
− g15+g25

1+Y 2
0
g15g25

1− g15+g25
1+Y 2

0
g15g25

· h1
︸ ︷︷ ︸

Feedback loop
g1

1+g1h1

−1

g15 + g25
G(s)

︸ ︷︷ ︸

Forward function g0

∗u (3.4)
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G(s) = adj(Λ)Φ (3.5)

=

[
g11(1− g25h1) g12(1− g25h1) −g21g15h2 −g22g15h2

−g11g25h2 −g12g25h2 g21(1− g15h1) g22(1− g25h1)

g13(1− g25h1) g14(1− g25h1) −g23g15h2 −g24g15h2

−g13g25h2 −g14g25h2 g23(1− g25h1) g24(1− g25h1)

]

The feedback loop g1/(1 + g1h1) remains the same for all combinations
of input and output signals. Since the DC-cable system is dissipative, all

poles of h1 have negative real part and are thus stable. The number of
unstable poles of the open loop function of the feedback system, g1h1, is

then determined by the rational function g1. Consequently, the Nyquist
stability criterion can be applied to analyze the feedback system stability.

The forward path function g0 is one element of −G/(g15 + g25), which

varies with different input and output signals. Since g0 will always be a
linear non-feedback combination of rational functions and of h1 or h2 (h1

and h2 have stable poles), the stability of g0 is determined by a limited
number of poles.

Consequently, by transformation into the block diagram in Fig. 3, the

VSC-HVDC system stability can be analyzed by the above criteria.

3.1.2 Strong AC-grid environment

While the connected AC-grids are well balanced and strong i.e. the nom-
inal AC-grid voltage is as most subject to small variations, and hence the

dynamics of the PLL is ignored. In addition, since the q-axis current has no
impact on the dynamics at the DC-side (due to d- and q-dynamics decou-

pling at the inner current loop), the q-axis reference current signal, ∆irefq ,
is thus assumed to be zero.

As before, choose the DC voltage as the converter output, the prelimi-

nary transfer functions from the remaining three inputs to its DC terminal
voltage are given by:

∆ṽdc1 = ĝ11(s)∆ṽrefdc1 + ĝ13(s)∆ṽsd1 + ĝ15(s)∆ĩdc1 (3.6)

∆ṽdc2 = ĝ21(s)∆P̃ ref
2 + ĝ23(s)∆ṽsd2 + ĝ25(s)∆ĩdc2 (3.7)

where, the corresponding transfer functions of the strong AC-grid case are
denoted by ĝij, i = 1, 2, j = 1, 3, 5. Combining the DC-grid dynamics

eq.(2.53), the transfer functions from inputs ûT = [∆ṽrefdc1 ∆P̃ ref
2 ∆ṽsd1 ∆ṽsd2]
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3.2. Stability analysis

to [∆ṽdc1 ∆ṽdc2]
T are:

[
∆ṽdc1
∆ṽdc2

]

=
− ĝ15+ĝ25

1+Y 2
0
ĝ15ĝ25

1− ĝ15+ĝ25
1+Y 2

0
ĝ15ĝ25

· h1
︸ ︷︷ ︸

Feedback loop
ĝ1

1+ĝ1h1

−1

ĝ15 + ĝ25
Ĝ(s)

︸ ︷︷ ︸

Forward function ĝ0

∗û (3.8)

Ĝ(s) =

[
ĝ11(1− ĝ25h1) −ĝ21ĝ15h2 ĝ13(1− ĝ25h1) −ĝ23ĝ15h2

−ĝ11ĝ25h2 ĝ21(1− ĝ15h1) −ĝ13ĝ25h2 ĝ23(1− ĝ15h1)

]

For both weak and strong AC-environment, the transfer functions of a
two-terminal VSC-HVDC system, using a distributed parameter DC-cable

model, can always be written into the form g0 · g1/(1 + g1h1). The forward
function g0 is determined by the choice of input and output signal, while

the feedback loop is invariant of this choice. Using this approach, the small-
signal stability of the infinite dimensional system can in principle always be

analyzed by the Nyquist criterion.

3.2 Stability analysis

In order to guarantee the stability of the entire system, both the feedback

loop and the outer forward path should be stable. Even though the forward
path transfer function g0(s) is determined by an input-output combination,

it will always be a linear non-feedback combination of rational functions
and of h1 or h2. Thus, the stability of g0 is determined by the sign of the

real parts of a limited number of poles. The stability of the feedback loop
is analyzed by use of the Nyquist stability criterion.

Assuming that the closed path C enclosing all of the right half complex
s-plane has the clockwise positive direction, we can apply the Nyquist crite-

rion: The number of anti-clockwise encirclements around the point -1 in the
g1(s)h1(s)-plane should, for a stable closed loop system, equal the number

of open loop unstable poles of g1(s), as h1(s) is already an input to output
stable function [25].

For the active power controlled converter (VSC2), the transfer function
g25(s) from ∆idc2 to ∆vdc2 is the same as the converter connected to a strong

AC-grid (i.e. g25(s) = ĝ25(s)). Therefore, the feedback loop stability is not
influenced by the weak AC-grid dynamics at the active power controlled

converter. Similarly, the stability of the active power controlled converter
could be analyzed without considering the DC-side influence. Consequently,

the stability analysis of two terminal VSC-HVDC systems embedded in a
weak AC-grid can be separated into two parts: the active power controlled

converter and the VSC-HVDC system while the active power controlled
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Chapter 3. Nyquist stability analysis of system with a distributed...

converter is under steady state. The stability of the first part is further

discussed in chapter 4 and the second part is analyzed in this subsection .

3.2.1 VSC-HVDC system connected with a strong AC-

grid

For a VSC-HVDC system embedded in strong AC-grid, the preliminary

transfer functions from the input signals ûT = [∆ṽrefdc1 ∆P̃ ref
2 ∆ṽsd1 ∆ṽsd2]

to the DC voltages ∆vdc1 and ∆vdc2 are given by eq.(3.8) and the preliminary

transfer functions are given as follows, where both af and adf are assumed
to be infinity (i.e. there is no LPF for both the DC load power and the AC

voltage) and the d-axis reference current is designed as eq.(2.17):

ĝ11 =
acωndC1(2ζs+ ωnd)

C1s2(s+ ac) + acωndC1(2ζs+ ωnd) +
idc10
vdc10

s2
(3.9)

ĝ13 =

P10

E10vdc10
s2

C1s2(s+ ac) + acωndC1(2ζs+ ωnd) +
idc10
vdc10

s2
(3.10)

ĝ15 = − s2

C1s2(s+ ac) + acωndC1(2ζs+ ωnd) +
idc10
vdc10

s2
(3.11)

ĝ21 =
ap

(C2vdc20s+ idc20)(s+ ap)
(3.12)

ĝ23 =
P20

E20
s

(C2vdc20s+ idc20)(s+ ap)
(3.13)

ĝ25 = − vDC20

C2vdc20s+ idc20
(3.14)

For each single input single output system, the forward path function ĝ0
is one element of −Ĝ/(ĝ15 + ĝ25). From eq.(3.9) to eq.(3.14), it shows that
ĝ11, ĝ13, ĝ15 have similar pole polynomial and similarly for ĝ21, ĝ23 and ĝ25
except one stable pole −ap. In addition, h1 and h2 are stable. The stability
of the forward path depends on the zero polynomial Q3(s) of ĝ15 + ĝ25:

Q3(s) = (C1 + C2)s
3 + (C1ac +

idc10
vdc10

+
idc20
vdc20

)s2 + ackpds+ ackid (3.15)

To guarantee that the zeros of Q3(s) are located in the left half plane,
the following inequality, resulting from the Routh stability criterion [25],

must hold:

C1ac +
idc10
vdc10

+ idc20
vdc20

C1 + C2
>

kid
kpd

=
ωnd

2ζ
= 0.2ad (3.16)
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3.2. Stability analysis

At steady state idc10 = −idc20, and to minimize transmission losses, the

DC voltage drop between two terminals should be kept small. Moreover,
the bandwidth of the inner current loop ac is designed to be ten times larger

than the DC voltage loop i.e. ac = 10ad. Therefore the inequality eq.(3.16)
holds for all reasonable designs of PI-controllers and the forward path ĝ0
for all input-output combinations are thus stable in case of strong AC-grid
environment. The stability of the strong AC grid connected VSC-HVDC

system is thus determined by the feedback system ĝ1/(1 + ĝ1h1).
In the feedback loop, ĝ1(s) is a rational function with respect to ‘s’ and

h1(s) is input to output stable. Therefore, the number of unstable poles of
the open loop transfer function ĝ1h1 is determined by ĝ1, where ĝ1 is:

ĝ1(s) =
Q3(s)(lcs+ rc)

P5(s)

P5(s) = (lcs+ rc)(C2s +
idc20
vdc20

)[C1s
3 + (C1ac +

idc10
vdc10

)s2 + ackpds+ ackid]+

+ s2(ccs+ gc)

In the case study setup, the physical and the control parameters of the

VSC-HVDC system are listed in Tab. 1 and Tab. 1. There are two cases
that will be discussed in this subsection: one example is using the rectifier

(AC→DC) as DC voltage controller (standard situation) and the other is
using the inverter (DC→AC) as DC voltage controller.

• Rectifier performs as the DC voltage controller

If the rectifier controls the DC voltage and the inverter controls the trans-

mitted active power, the steady states are vdc10 = 300 [kV] and P20 = −600
[MW]. The poles of ĝ1(s) with different cable distances d = 50, 150, 450 [k-

m] are given in Table 3.3. For all three cable distances, there is one unstable
pole of the open loop transfer function ĝ1(s)h1(s).

Table 3.3: Poles of ĝ1(s) with P20=-600MW

d Poles of g1(s)

50 23.9 -3.3+3.4j -3.3-3.4j -206.8+954j -206.8-954j

150 25.3 -3.3+3.5j -3.3-3.5j -204.5+951j -204.5-951j

450 31.3 -3.3+3.5j -3.3-3.5j -194.7+938j -194.7-938j

The Nyquist plots of the transfer functions ĝ1(jω)h1(jω) with different
cable distances are given in Fig. 3.2. It shows that for all three cases,

ĝ1(jω)h1(jω) anti-clockwise encircles the critical point (-1,0) once, which is
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Chapter 3. Nyquist stability analysis of system with a distributed...

equal to the number of unstable poles of ĝ1(s)h1(s). Consequently, for the

different cable distances, d = 50, 150, 450 [km], the VSC-HVDC system
remains stable at the operational point vdc10 = 300 [kV] and P20 = −600

[MW]. (For other operating points of both DC-voltage and active power,
the VSC-HVDC system still appears to be stable.)
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Figure 3.2: Nyquist plot of ĝ1(jω)h1(jω) with P20 = −600MW : blue solid
curve is d=50 km; red dashed curve is d=150 km; black dashed dotted curve

is d=450 km; the critical point (-1,0) is marked by a red dot.

• Inverter performs as the DC voltage controller

If instead the inverter controls the DC voltage and the rectifier controls

the transmitted active power, the steady states are vdc10 = 300 [kV] and
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3.2. Stability analysis

P20 = 600 [MW]. The poles of ĝ1(s) with different cable distances are given

in Table 3.4. For all three cases, there are two unstable poles of the open
loop transfer function ĝ1(s)h1(s).

Table 3.4: Poles of ĝ1(s) with P20 = 600 [MW]

d Poles of ĝ1(s)

50 1.2+11.5j 1.2-11.5j -3.6 -198+994j -198-994j

150 1.1+11.3j 1.1-11.3j -3.6 -195+995j -195-995j

450 0.95+10.6j 0.95-10.6j -3.6 -190+996j -190-996j
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Figure 3.3: Nyquist plot of ĝ1(jω)h1(jω) with P20 = 600MW
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The Nyquist plots of the transfer functions ĝ1(jω)h1(jω) with different

cable distances are given in Fig. 3.3. It shows that for all three cases,
ĝ1(jω)h1(jω) anti-clockwise encircles the critical point (-1,0) twice, which

is equal to the number of unstable poles of ĝ1(s)h1(s). Consequently, for
the different cable distances, d = 50, 150, 450 [km], the VSC-HVDC system

remains stable when vdc10 = 300 [kV] and P20 = 600 [MW].
According to above analysis, the VSC-HVDC system embedded in a

strong AC grid will be stable for three different cable distances d = 50,
150, 450 [km]. The corresponding conclusion can be made when using the

single Π-section cable model. The distributed parameter cable model, hence
justifies the use of the single Π-model in most situations.

3.2.2 VSC-HVDC system connected with a weak AC-

grid

As concluded above, the stability of the active power controlled VSC would
not influence the stability of the feedback loop g1/(1+g1h1) since g25 = ĝ25.

In this subsection, it is assumed that the active power controlled VSC is
under steady state. On the other terminal, the DC-voltage controlled VSC

is connected to a weak AC-grid, which is modeled by a series LgRg-circuit.
In the synchronous coordinates, the AC grid dynamics are given by eq.(2.34-

2.35).
The comparison stability result between a VSC-HVDC system with one

single Π-section DC-cable model and with distributed DC-cable model is

presented in this subsection, where the LPF of the AC-voltage is not con-
sidered (i.e. af → ∞ and yi(s) ≈ 0) and the d-axis reference current is de-

signed as eq.(2.17), the q-axis outer control loop is designed by Kad(s) = kpa
and Kaq(s) = 0.

• Single Π-section DC-cable model:

While the DC-cable is modeled by one single Π-section, the VSC-HVDC
system embedded in weak AC-grid at the DC-voltage controlled converter

side, could be modeled by an eighth-order state space model. The state
variables are xT

dv = [∆icd ∆icq ∆vdc1 xdv4 xdv5 xpll ∆idc ∆vdc2], where xdv4

is the integral action of the DC-voltage controller, xdv5 is the dynamics of
the LPF of the forward DC load power and ∆vdc2 is the DC-voltage at

the active power controlled converter side. The input variables are uT
dv =

[∆vrefdc1 ∆Eref ∆vsd ∆vsq] and the disturbance input variables are wT =

[∆Ed ∆Eq]. u
ref
dv are the first two reference signals of the input vector udv.

Combine the inner current loop dynamics eq.(2.7-2.8), the DC-voltage

dynamics eq.(2.10), the DC-voltage controlled outer loop dynamics eq.(2.15,
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3.2. Stability analysis

2.17), the PLL dynamics eq.(2.30-2.33), the DC-current dynamics due to

series RdcLdc-circuit and the active power controlled VSC dynamics given
by g25(s), the state-space model of the VSC-HVDC system with a single

Π-section DC-cable model is given by eq.(3.17), where Ctot = C + Cdc and
Cdc = d · cc/2.

ẋdv = A1 · xdv +Bu1 · uref
dv +Bw1 · w

w = Cw1 · xdv +Dw1 · udv (3.17)

A1 =
















−ac 0 −kpd
vdc10
E10

ac kid
vdc10
E10

ac
0 −ac 0 0

E10

Ctotvdc10
0 − idc0

Ctotvdc10
0

0 0 −1 0

adfE10
Cdc

Ctot
0 adf idc0

C
Ctot

0

0 0 0 0

0 0 1
Ldc

0

0 0 0 0

ac
E10

0 0 0

0 0 0 0

0 Q10/E10

Ctotvdc10
− 1

Ctot
0

0 0 0 0

−adf adfE10
Cdc

Ctot

Q10

E2
10

adfvdc10
C

Ctot
0

0 −apll 0 0

0 0 −Rdc

Ldc
− 1

Ldc

0 0 1
Ctot

idc0
Ctotvdc20

















BT
u1 =

[
kpd

vdc10
E10

ac 0 0 1 0 0 0 0

0 ackpa 0 0 0 0 0 0

]

BT
w1 =

[

−ac
P10

E2
10

−ackpa
P10/E10

Ctotvdc10
0 adf

Cdc

Ctot

P10

E2
10

0 0 0

0 0 − Q10/E10

Ctotvdc10
0 −adf

Cdc

Ctot

Q10

E2
10

apll 0 0

]

Cw1 =
Lg

k1

[

1 + apllLg
P10

E2
10

−apllLg
Q10

E2
10

acLgkpa 1− acLg
P10

E2
10

]

·
[

ac − Rg

Lg
ω0 kpd

vdc10
E10

ac

−ω0 ac − Rg

Lg
0
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]

k1 = 1 + Lg(apll − ac)
P10
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Chapter 3. Nyquist stability analysis of system with a distributed...

A1, Bu1 and Bd1 do not depend on the AC-grid SCR, however that Cd1

and Dd1 depend on it. The parameters of the DC-cable are listed in Tab. 1
and Tab. 1, where Ldc = lc ∗ d and Rdc = rc ∗ d. The stability of the VSC-

HVDC system with a single Π-section DC cable model can be analyzed by
the eigenvalues of A1 +∆A1 and ∆A1 = Bw1Cw1.

It’s straight forward to be calculated that for SCR < 4, provided the
parameter values in Tab. 1 and Tab. 1, the VSC-HVDC system will become

unstable due to the weak AC-grid impedance but not for the case with
higher SCR. The reason for the system instability is that k1 → ∞ and thus

||∆A1||∞ → ∞ when SCR = 1/Lg [p.u.] is around ac i.e. 4 [p.u.].

• Distributed parameter DC-cable model:

While the DC-cable is modeled by eq.(2.53), it is hard to use eigenvalue

analysis to study the system stability since there are an infinite number of
poles. Therefore, the Nyquist criterion is applied to analyze the stability of

the system in the block diagram in Fig. 3.

As claimed in subsection 3.1, the VSC-HVDC system can be described

by two cascaded systems: one is a forward combination of transfer func-
tions, which depends on the considered input and output. The second is a

feedback loop which is unique for all input-output combinations. When the
active power controlled converter is operated under steady state, the trans-

fer function at VSC2 is simplified as ∆vdc2 = g25(s)∆idc2, which would not
induce an unstable forward function g0(s). For the DC-voltage controlled

VSC, the forward function stability will be analyzed by a case study.

In the case study setup, the VSC-HVDC system parameters and nominal
steady states are listed in Tab. 1 and Tab. 1. However, change the cable

inductance density to be 10.2 [mH/km] (other parameters as in Tab. 1 and
Tab. 1), which renders the single Π-section cable model based VSC-HVDC

system unstable and the SCR of the AC-grid is still chosen to be 4. For
the case with distributed parameter DC-cable model, the forward function

stability and the function g15 are determined by the new state-space model,
where xdvn is the first six components of xdv, the input signal is ∆idc and

the output signal is ∆vdc,

ẋdvn = A2 · xdvn +B2 ·∆idc

∆vdc1 = C2 · xdvn (3.18)

g15 = C2(sI −A2)
−1B2 (3.19)

where A2 is the sub-square matrix of A1 + ∆A1 with the first 6 columns

and first 6 rows and Cdc = 0 [µF] (since the cable capacitance should not
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3.2. Stability analysis

be included in the VSC dynamics itself), and B2, C2 are:

BT
2 =

[
0 0 − 1

C
0 adfvdc10 0

]

C2 =
[
0 0 1 0 0 0

]

It is straight forward to prove that the above system eq.(3.18) is mini-

mum order, i.e. the system is both controllable and observable. Therefore,
the stability of the forward function g0 =

−1
g15+g25

G(s) is determined by the

zeros of g15 + g25. The expression of g25 is given by eq.(3.14), as g25 = ĝ25
and the expression of g15 is given by eq.(3.19). In this case study, the ze-

ros of g15 + g25 are −30, −41 ± 66j, −119, −1265, −466180 and thus the
forward function g0(s) is always stable regardless of the input and output

signals. Note that the system zero with large magnitude (z = −466180) is
due to the fact that k1 is small when SCR is around 4.

The feedback loop stability is studied by the Nyquist criterion. The
number of unstable poles of g1h1 is determined by g1 = − g15+g25

1+Y 2
0
g15g25

due

to that h1(s) is dissipative, containing an infinite number of stable poles.
The poles of g1 are: 173, -0.98, −25 ± 22j, -119, -434, -1125 and -449937.

Obviously, there is one unstable pole of the open loop function of g1/(1 +
g1h1). In order to guarantee the stability of the closed loop function, the

Nyquist plot should anti-clockwise encircle the critical point (-1,0) once.
For the single Π-section cable model, the equivalent cable function of h1(s)

is depicted by hπ1(s) = ccs · d/2 + 1/(lcs+ rc)/d. The Nyquist curve of the
open loop function g1h1(jω) and g1hπ1(jω) is given by Fig. 7.

Fig. 7 (a) shows that in the low frequency band, both cable models
provide similar Nyquist curves. However, in this study case, the Fig. 7 (b)

shows that for the distributed parameter cable model, the Nyquist curve

will anti-clockwise encircle the critical point (-1,0) but for the single Π-
section cable model, the Nyquist curve will clockwise encircle the critical

point once. Therefore, the VSC-HVDC system with distributed parameter
DC cable is stable but the VSC-HVDC system with one single Π-section

DC cable model has two unstable poles i.e. 0.7±1.78j, which are calculated
by the eigenvalue of the weak AC-grid connected VSC-HVDC system state

matrix A1 +∆A1.
This is because, for ω < 1/(d

√

lccc/2) = ωrf (resonance frequency of

the single Π-section model), |h1(jω)| > |hπ1(jω)| implying that the VSC-
HVDC system with the distributed parameter cable model has a larger gain

margin.
Fig. 8. shows that if the VSC-HVDC system with the single Π-section

model is stable, then the phase crossover frequency must be lower than ωrf

where h1(jω) is similar to hπ1(jω) and since g1h1 has a larger gain margin,

the VSC-HVDC system with the distributed parameter cable model is also
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Figure 3.4: Nyquist plot of g1(jω)h1(jω): one Π-section DC-cable model

(red curve); distributed parameter DC-cable model (blue curve).

stable. Consequently, if the VSC-HVDC system with a single Π-section

model is stable, it is sufficient for the VSC-HVDC system with distributed
parameter cable model to be stable but not vice versa.

For different operating points P20 and for different SCRs, the open loop

function g1h1 always has one unstable pole, which implies that the Nyquist
curve should anti-clockwise encircle the critical point (-1,0) once, so that the

closed loop VSC-HVDC system is stable. As shown in Fig. 7, the Nyquist
curve should cross the negative real axis at the left of (-1,0) in order to

anti-clockwise encircle the critical point. Therefore, the larger magnitude
of |g1h1(jωpc)| is, the better stability robustness the system will have. ωpc

is the phase crossover frequency, i.e. the angle of g1h1(jωpc) is -180 [deg].

Fig. 9 illustrates the difference in loop transfer function gain, for the
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two cases (distributed model and Π-section model) at ωpc, ω
π
pc, respectively.

Positive difference values imply that |g1h1(jωpc)| > |g1hπ1(jω
π
pc)|. It shows

that the VSC-HVDC system with one Π-section DC cable model always has

worse stability robustness for different operating points P20 and for different
SCRs. Consequently, the VSC-HVDC system with a single Π-section DC

cable is a safe choice in the evaluation of system stability under different
P20 and SCR.
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Chapter 4

Robust stability analysis

As shown in subsection 3.2.2, the interconnected AC-grid may adversely

decrease the VSC-HVDC system robustness and cause instability. There-
fore, in this section, the stability of grid connected converters are analyzed

based on the small gain theorem and the passivity theorem, where the sys-
tem is characterized as a negative feedback system of grid impedance and

converter admittance as shown in Fig. 4.1.

N1(s)
u1

+−

e1

+
+

y1

u2
N2(s) e2y2

Figure 4.1: Block diagram of the grid connected converter system: converter
admittance system N1(s) and AC-grid impedance system N2(s).

4.1 Mixed small gain and passivity theorem

The small gain theorem and the passivity theorem are two of the most im-

portant results in the input-output stability theory of interconnected sys-
tems. However, there exist many situations where both the passivity and

the small gain theorems are not compatible respectively, the idea of merg-
ing those two theorems is potentially extremely useful. In this section, a

modified “mixed” small gain and passivity theorem is proposed and will be
further applied to give sufficient conditions for the stability of a two-terminal

VSC-HVDC system embedded in weak AC-grids.
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Chapter 4. Robust stability analysis

The small gain theorem and the passivity theorem are given as follows

[9, 26–30]:

Theorem 1 (Small gain theorem)
Consider a system with a stable loop transfer function L(s). Then the closed-

loop system is stable if

||L(jω)|| < 1, ∀ω ∈ R

where ||L|| denotes any matrix norm satisfying ||N1N2|| < ||N1|| · ||N2||.

Theorem 2 (Passivity theorem)

Consider two linear time invariant (LTI) stable subsystems N1 and N2 in
negative feedback configuration, as shown in Fig. 4.1. The closed-loop sys-

tem is asymptotically stable if both subsystems are passive and at least one of
them is strictly passive. N1(s) is passive if and only if N1(jω)+NH

1 (jω) ≥ 0,

for ∀ω and is strictly passive if and only if N1(jω) +NH
1 (jω) ≥ δ > 0, for

∀ω. NH
i (jω) is the Hermitian transpose of Ni(jω).

For LTI systems, both the small gain theorem and the passivity theo-
rem follow from the classical Nyquist criterion, which claims that for stable

subsystems as depicted in Fig. 4.1, the Nyquist curve of the loop function
L(s) = N1(s)N2(s) should not encircle the critical point in order to guaran-

tee the input-output stability of the negative feedback system. Therefore,
assume that there are no internal right half plane (RHP) pole-zero cancela-

tion in the loop function L(s), i.e. L(s) contains no unstable hidden modes,
then the generalized (MIMO) Nyquist theorem is formulated [31]:

Theorem 3 (Generalized MIMO Nyquist theorem)
Assume that there are no open-loop RHP poles in the loop gain L(s). Then

the closed-loop system (I+L(s))−1 is stable if and only if the Nyquist plot of
det(I + L(s)) (i) makes no anti-clockwise encirclements of the origin, and

(ii) does not pass through the origin.

It is obvious that in the generalized MIMO Nyquist theorem, both N1(s)
andN2(s) can be non-proper but stable, so that there are no hidden unstable

poles in N1(s) and N2(s) due to cancelation. Since the “mixed” small
gain and passivity theorem follows from the classical Nyquist arguments,

there is no need to require both subsystems to be proper as shown in [10,
11]. In addition, the high frequency dynamics of the system studied in [10]

destroy the passivity property and thus the system stability is established
if gains are small in the high frequency band and passivity holds in the low

frequency band which is contrary to our study case (i.e. passivity holds in
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4.1. Mixed small gain and passivity theorem

the high frequency band and gains are small in the low frequency band).

Consequently, the new proposed “mixed” small gain and passivity theorem
does not require both subsystems to be causal.

Another strong condition of the “mixed” small gain and passivity the-
orem presented in [10, 11] is that both subsystems has to be input and

output strictly passive in the frequency interval Ωp, where N(jω) is in-
put and output strictly passive in the frequency band Ωp if ∃k, l > 0

such that −kNH(jω)N(jω) + NH(jω) + N(jω) − lI ≥ 0 for ∀ω ∈ Ωp.
It is obvious that, for strictly proper system, it is not input and output

strictly proper for ω → ∞. However, if Ωp only contains bounded fre-
quency bands (i.e. ±∞ 6∈ Ωp), then input and output strict passivity is

equivalent to strict passivity, i.e. NH(jω) + N(jω) > 0 if and only if
−kNH(jω)N(jω) + NH(jω) + N(jω) − lI ≥ 0 for ∀ω ∈ Ωp. Therefore,

in this thesis, the condition of input and output strictly passivity for both
subsystems N1(s) and N2(s) is released as both of them are passive and at

least one of them is strictly passive (which is the same as the condition of

the passivity theorem).
The resulting “mixed” small gain and passivity theorem, modified ac-

cording to the reasons given above is:

Theorem 4 (“Mixed” small gain and passivity theorem)

Suppose that in the open-loop gain L(s) = N1(s)N2(s), N1(s) and N2(s) are
stable rational square transfer function matrices. In addition, there exist

two distinct sets of frequency bands: (a) one set denoted by Ωp that consists
of frequency intervals over which Ni(jω)+NH

i (jω) ≥ 0, i = 1, 2 and at least

one of them is strictly positive. (b) one set denoted by Ωs that consists of
frequency intervals over which σ̄(N1(jω))σ̄(N2(jω)) < 1. Then the negative

feedback loop (Fig. 4.1) is stable if Ωp ∪ Ωs = R ∪ ±∞.

In order to prove Theorem 4, the required observation is given as below:

Lemma 1 (Observation 5 in [11])

Suppose that the Nyquist plot of det(I + L(s)) encircles the origin at least
once. Then there must exist at least one κ0 > 1 and one ω0 for which

det(I + 1
κ0
L(jω0)) = 0.

Proof: For an asymptotically stable system (I+L(s)−1), it must satisfied that

det(I +L(0)−1) 6= 0. Assume that det(I +L(0)−1) > 0 and that the Nyquist
plot of det(I + L(s)) encircles the origin at least once, then the Nyquist

plot of det(I + L(s)) must cross the negative real axis at leat once. (If
det(I + L(0)−1) < 0, then neither small gain nor passivity conditions will

hold.)
It implies that there exists at least one positive real number ε > 0 and

one frequency ω0, such that det(I+L(jω0)) = −ε < 0. The invertible matrix
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Chapter 4. Robust stability analysis

Q(s) consists of the eigenvectors of L(s) and λi(s) are the eigenvalues of

L(s). Then:

det(I + L(s)) = det(Q(s)−1 · (I + L(s)) ·Q(s))

= det(I +Q(s)−1L(s))Q(s))

= Πn
i=1(1 + λi(s))

⇒ det(I + L(jω0)) = Πn
i=1(1 + λi(jω0)) < 0

Therefore, it exists at leat one λj such that 1 + λj(jω0) = −k < 0, where
k is a positive real number. Note that for all conjugate eigenvalue pair

λm(jω0), λn(jω0), it has (1+λn(jω0))(1+λm(jω0)) is a positive real number
and thus the negative term in det(I + L(jω0)) must comes from the real

eigenvalue λj(jω0) but not the complex one.

In addition, since 1 + λj(jω0) = −k < 0, choose κ0 = 1 + k > 1, it
follows that 1 + 1

κ0
λj(jω0) = 0 and thus det(I + 1

κ0
L(jω0)) = 0. 2

Thus, a sufficient condition for a stable closed-loop system (I +L(s))−1

is that, for all κ ≥ 1 and all ω ∈ R ∪ ±∞, det(I + 1
κ
L(jω)) 6= 0 provided

that the open-loop gain L(s) is stable (according to Theorem 3). Our aim

is to show the conditions of N1(s) and N2(s) given in Theorem 4, such that
L(s) = N1(s)N2(s) satisfies the sufficient condition. It is obvious that N1(s)

or N2(s) can be non-causal but stable, provided there is no hidden unstable
pole in N1(s) or N2(s) due to cancelation. Note that the similar proof can

be found in [11, 32].
Proof of Theorem 4:

Part (a): ∀ω ∈ Ωp, assume that N1(jω) + NH
1 (jω) > 0 and N2(jω) +

NH
2 (jω) ≥ 0. Then we want to prove that for all κ ≥ 1 and all ω ∈ Ωp,

det(I + 1
κ
L(jω)) 6= 0.

Since N1(jω) + NH
1 (jω) > 0, N1(jω) is nonsingular for ∀ω ∈ Ωp [33].

Then for ∀ω ∈ Ωp, it follows:

N−1
1 (jω) +N−H

1 (jω) > 0 and det(N−1
1 (jω)) 6= 0 ⇒

N−1
1 (jω) +

1

κ
N2(jω) +N−H

1 (jω) +
1

κ
NH

2 (jω) > 0, ∀κ ∈ [1,∞) ⇒

det(N−1
1 (jω) +

1

κ
N2(jω)) = det(N−1

1 (jω)) det(I +
1

κ
N1(jω)N2(jω)) 6= 0

∴ det(I +
1

κ
N1(jω)N2(jω)) 6= 0, ∀κ ∈ [1,∞)

Part (b): ∀ω ∈ Ωs, we want to prove that if σ̄(N1(jω))σ̄(N2(jω)) < 1, then

for all κ ≥ 1 and all ω ∈ Ωs, det(I +
1
κ
L(jω)) 6= 0.
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4.2. Active power controlled converter

For any κ ≥ 1, it follows:

σ(I +
1

κ
L(jω)) = min

||x||2=1
||(I + 1

κ
L(jω)) · x||2

≥ min
||x||2=1

(||x||2 − ||1
κ
L(jω) · x||2)

≥ 1−max(||1
κ
L(jω) · x||2)

≥ 1− σ̄(
1

κ
L(jω))

As κ ≥ 1, we have that:

σ̄(
1

κ
L(jω)) ≤ σ̄(L(jω)) ≤ σ̄(N1(jω))σ̄(N2(jω)) < 1

Therefore, σ(I + 1
κ
L(jω)) > 0 and det(I + 1

κ
L(jω)) 6= 0 for ∀ω ∈ Ωp and

∀κ ≥ 1.
Consequently, if Ωp∪Ωs = R∪±∞, then for all κ ≥ 1 and all ω ∈ R∪±∞,

det(I + 1
κ
L(jω)) 6= 0. According to Theorem 3 and Lemma 1, the closed

loop (1 + L(s))−1 is stable. 2

Note that the passivity theorem holds when Ωp = R∪±∞ and the small
gain theorem holds when Ωs = R∪±∞ [9,26–30]. In this subsection, based

on classical Nyquist theorem, the proof of a stability result for a negative

feedback interconnection of stable LTI systems (Fig. 4.1) with mixed small
gain and passivity properties is provided. When compared with [11], the

causality (rational LTI systems are causal if and only if they are proper)
of the subsystems is not required and there is no need to demand input

and output strict passivity to hold for both subsystems but only passivity
and at least one to be strictly passive. The reason why we provide a soft

condition for system passivity and causality, is that in the high frequency
band (ω → ∞), we want a strictly proper subsystem to be passive and for

a series RgLg-circuit, which is not causal (proper) in the transfer function
from ∆i to ∆E.

4.2 Active power controlled converter

The block diagram of the active power controlled converter embedded in
a weak AC-grid is shown in Fig. 4.2. It shows that the stability of the

AC-side dynamics of the active power controlled converter is independent
of the DC-side dynamics and thus the stability of G(s) is not considered in

this subsection. The system of active power controlled converter interacting
with weak AC-grid is stable if the negative feedback loop YpZ2 is stable and

Gp1, Gp2 are stable.
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Yp(s)

Converter admittance

∆vs2

+
−

∆E2

+ Gp1(s)b

Z2(s)

AC-grid impedance

∆i2

Gp2(s)

[

∆P ref
2

∆Eref
2

]

G(s)

∆u

∆y∆P2

Active power controlled converter (AC-side) DC voltage controlled
converter and DC-grid (DC-side)

Figure 4.2: Block diagram of the two-terminal VSC-HVDC system connect-

ed with weak AC-grids, where Gp1(s), Gp2(s), G(s) are the transfer function
matrices with respect to different input/output signals.

Combining the eq.(2.7, 2.8), (2.11), (2.22, 2.23), (2.30-2.35), results in
the transfer functions shown in Fig. 4.2:

Z2(s) =

[
Lgs+Rg −ω0Lg

ω0Lg Lgs+Rg

]

(4.1)

Yp(s) =

[
s

s+ap
yi(s)− P20

E2
20

ap
s+ap

Q20

E2
20

ap
s+ap

s
s+apll

+ Q20

E2
20

apll
s+apll

− ac
s+ac

Kad(s)
s

s+apll
yi(s) +

P20

E2
20

apll
s+apll

−Kaq(s)
ac

s+ac
s

s+apll

]

(4.2)

Gp2 =

[ 1
E20

ap
s+ap

0

0 gcKad(s)

]

(4.3)

It is obvious that for positive design bandwidths ac, ap, apll, there are
no unstable poles in Gp2(s), Z2(s), Yp(s). The output active power ∆P2

is proportional to ∆i2 and ∆E2 respectively (eq.(2.11)) and thus if the
feedback loop system is stable, the output active power is bounded as well.

Consequently, the stability of the active power controlled converter (VSC2)

is determined by the feedback loop (1 + L(s))−1, L(s) = Yp(s)Z2(s).

Since the AC-grid model is always strictly positive real if it contains a

non-zero resistance Rg, according to Theorem 4 (“mixed” small gain and
passivity theorem), the closed loop system (1 + Yp(s)Z2(s))

−1 is stable if

Yp(s) is passive or, for the non-passive frequency band, the product of the
gains of Yp(s)Z2(s) is strictly less than one.

Yp(s) is passive if and only if Yp(jω) + Y H
p (jω) ≥ 0 [9], which implies
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4.2. Active power controlled converter

that:

Yp(jω) =

[
Yp11(jω) Yp12(jω)
Yp21(jω) Yp22(jω)

]

Yp(jω) + Y H
p (jω) =

[
Re{Yp11(jω)} Yp12(jω) + Y ∗

p21(jω)

Y ∗
p12(jω) + Yp21(jω) Re{Yp22(jω)}

]

≥ 0

A Hermitian matrix Yp(jω) + Y H
p (jω) is semi-positive definite if and

only if the determinants of all leading principal sub-matrices of Yp(jω) +

Y H
p (jω) are non-negative, i.e. Re{Yp11(jω)} ≥ 0, Re{Yp22(jω)} ≥ 0 and

det(Yp(jω) + Y H
p (jω)) ≥ 0 [34].

Assume that Q20 = 0 (which is a realistic assumption, since the VSCs
are most often operated with a unity power factor [6]) and the input active

power at VSC2 is negative i.e. P20 < 0 (which is reasonable since the
converter having the lower steady state DC-voltage is set as the active power

controller and has negative input power). In addition, by designing yi = 0
(i.e. af → ∞, the LPF for the converter voltage of the inner current loop

is ignored), the converter admittance matrix Yp(s) is:

Yp(s) =

[

−P20

E2
20

ap
s+ap

0

− ac
s+ac

Kad(s)
P20

E2
20

apll
s+apll

−Kaq(s)
ac

s+ac
s

s+apll

]

It shows that when Kaq(s) = 0, the real part of Yp11(jω) and Yp22(jω)
always have different signs, which implies that the converter dynamics is not

passive for all frequencies. Therefore, introducing Kaq(s) = 2P20

E2
20

apll
ac

(1+ ac
s
),

which compensates for the dynamics caused by the PLL and will guarantee
that the real parts of Yp11(jω) and Yp22(jω) are positive when the inverter

controls the transmitted active power.
In addition, in order to ensure that det(Yp(jω) + Y H

p (jω)) ≥ 0, Kad(s)

can be designed as Kad(s) = −k P20

E2
20

avd
s+avd

with any positive k ≤ 1 and avd =
apapll
ac

. Consequently, the converter admittance is passive for all frequencies.

According to Theorem 2 (passivity theorem), the negative feedback system
is stable if Yp(s) is passive and Z2(s) is strictly passive, i.e. Ωp = R ∪
±∞. Thus the active power controlled converter (VSC2) is stable under all
connected AC-grids.

Such result is contributed by the new q-axis outer controller, which
contains two parts: the low-pass filtered d-axis PCC voltage differences,

used to compensate for the AC-voltage drop and a PI-controller on the
q-axis PCC voltage, counteracting the PLL dynamics. The comparison

between different controllers are shown by the step response from ∆P ref
2

to ∆P2 in Fig. 4.3. It shows that when the connected AC-grid is strong

i.e. SCR = 3, the step responses are similar between different q-axis outer
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Chapter 4. Robust stability analysis

controller (solid red and solid blue curve). However, when the connected

AC-grid becomes weaker i.e. SCR = 0.95, the new q-axis outer controller
enables the stability of the grid interconnected converter.
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Figure 4.3: Step response from ∆P ref
2 to ∆P2: red curves represent q-axis

outer controller designed as Kad(s) = 0.001 avd
s+avd

and Kaq(s) = 2P20

E2
20

apll
ac

(1 +
ac
s
), blue curves represent q-axis outer controller designed as Kad(s) = 0.001

andKaq(s) = 0; solid curves represent the case with SCR = 3 and the dashed

curves represent the case with SCR = 0.95.

4.3 DC voltage controlled converter

As we discussed in section 3.2.2, the active power transmission ∆P2 is as-

sumed to be zero while the stability of the DC-voltage controlled converter
interacting with both AC- and DC-grid is analyzed. In addition, since the

external reference signals ∆vrefdc1 and ∆Eref
1 are independent of the system

states, the system stability will not be affected by those signals and they

can thus be assumed zero.
In this subsection, the DC-cable is modeled as a Π-section, which is

shown to be sufficient to analyze the system stability [35]. The active power
controlled converter under steady state is modeled as a negative resistance

R20 = v2dc20/P20 (as P20 < 0). The transfer function from ∆vdc1 to ∆idc is:

∆ĩdc
∆ṽdc1

= Gdc(s) =
1

Ldcs+Rdc +
R20

1+R20Ctot·s

(4.4)

In order to study the converter-grid interaction, the system is thus de-

picted as a negative feedback loop of the AC-grid impedance matrix Z1(s)
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4.3. DC voltage controlled converter

and the converter admittance matrix Y (s) (including the DC-grid dynam-

ics), which is shown in Fig. 4. Note that the stability of Y (s) is equivalent
to the stability of a VSC-HVDC system connected with strong AC-grid,

which has been shown to be stable with reasonable designs of local con-
trollers in section 3.2.1. Provided that Y (s) is stable, the stability of the

converter-grid interacting system can be further analyzed by Theorem 4.

Y (s)
∆vs1

+−

∆E1 ∆i1

Z1(s) ∆i1

Figure 4.4: Block diagram of the DC voltage controlled converter interacting
with both AC- and DC-grid

Combining the eq.(2.7,2.8), (2.10-2.15), (2.19), (2.23), (2.30-2.35), the
converter admittance matrix Y (s) and the AC-grid impedance matrix Z1(s)

are:

Z1(s) =

[
Lgs+Rg −ω0Lg

ω0Lg Lgs +Rg

]

(4.5)

Y (s) =

[
Y11(s) Y12(s)
Y21(s) Y22(s)

]

(4.6)

Q5(s) = Ctotvdc10s+ (idc0 + vdc10Gdc)(1− gcFf) + vdc10gcFd

Y11(s) =
1

Q5(s)

{
P10

E2
10

gc[Ff (idc0 + vdc10Gdc)− vdc10Fd]+

+(yi −
P10

E2
10

gcFe)(Ctotvdc10s+ idc0 + vdc10Gdc)

}

Y12(s) =
Q10

E2
10

apll
s+ apll

+
Q10

E2
10

s

s+ apll

1

Q5(s)
gc {vdc10Fd − Ff (idc0 + vdc10Gdc)}

Y21(s) = −gc(s)Kad(s)

Y22(s) = (yi(s)− gcKaq(s))
s

s+ apll
+

P10

E2
10

apll
s+ apll

When Q10 = 0, it is obvious that Y12(s) = 0. By setting Kad(s) to be a

small enough constant, i.e. Kad(s) ≈ 0 and thus Y21(s) ≈ 0, the converter
admittance matrix Y (s) is then simplified to a diagonal matrix. Therefore,

Y (s) is passive if and only if the real parts of both Y11(jω) and Y22(jω) are
non-negative and the gain of Y (s) is the maximum value of |Y11(jω)| and
|Y22(jω)| [34].
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Chapter 4. Robust stability analysis

Contrary to the active power controller converter, the PLL dynamics

provide a term with positive real part in Y22(jω) i.e.
P10

E2
10

apll
s+apll

. Therefore,

there is no need to compensate for the effect of the PLL dynamics and thus

the design Kaq(s) = 0 is chosen.
Equation (2.10) and (2.11) show that at steady state with ∆Pload = 0,

then ∆P = 0 and thus ∆id = − P0

E2
0

∆Ed. This implies that with P0 > 0, the

impedance Y11(jω) has negative real part in the low frequency band and

Y11(0) = −P0/E
2
0 . Consequently, for the DC-voltage controlled converter,

it is impossible to obtain passivity for all frequencies.

According to Theorem 4, since the grid impedance Z1(s) is strictly pas-
sive for all frequencies, the closed loop system is stable if the loop gain is

smaller than one when Y (s) is not passive i.e. either Y11(jω) or Y22(jω) has
negative real part. The parameters for the case study made are listed in

Tab. 1 and Tab. 1.

Impact of DC-grid length:

In this subsection, the sufficient stability condition with respect to the AC-

grid short circuit ratio (SCR ≈ 1/Lg [p.u.]) is given under different DC-
cable lengths, i.e. ∆Pload1 = 0, and d= 50 [km], 200 [km]. Assuming

∆Pload1 = 0 and combining with eq.(4.4), we will obtain:

∆P̃load1 = vdc10∆ĩdc + idc0∆ṽdc1 = (vdc10Gdc(s) + idc0)∆ṽdc1 = 0

⇔ vdc10Gdc + idc0 = 0

Thus, Y (s) =





yi(s)Ctots−
P10

E2
10

gc(s)Fd(s)

Ctots+gc(s)Fd(s)
0

0 yi(s)
s

s+apll
+ P10

E2
10

apll
s+apll





The loop gain of L(s) = Y (s)Z1(s) satisfies:

σ̄(Z1(jω)) =







√

R2
g + L2

g(ω + ω0)2 ≈ 1
SCR

ω+ω0

ω0
, for ω ≥ 0

√

R2
g + L2

g(ω − ω0)2, for ω < 0

σ̄(Y (jω)) = max(|Y11(jω)|, |Y22(jω)|)

σ̄(L(jω)) ≤ κ =
√

R2
g + L2

g(ω + ω0)2 ·max(|Y11(jω)|, |Y22(jω)|), for ω ≥ 0

It shows that the upper bound of the loop gain (κ) is linearly propor-

tional to 1/SCR. Therefore, we can first assume that SCR = 1 and the
resulting maximum κ in the frequency band where passivity does not hold

is the stability sufficient condition of the AC-grid SCR.
The frequency characteristics of Y11(jω) and Y22(jω) are shown in Fig. 5,

where values of all system parameters and steady state entries are set to
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4.3. DC voltage controlled converter

be constantly equal to the values provided in Tab. 1 and Tab. 1, with the

exception of DC cable length.

Figure 4.5: Frequency characteristic of Y11(jω) and Y22(jω) with different
DC dynamics

It shows that Y22(jω) has positive real part for all frequencies and

Y11(jω) has positive real part in the high frequency band i.e. ω ∈ [ωp,∞)
and Re{Y11(jωp)} = 0. Therefore, the closed loop system is stable if the

gain κ is lower than 1 for ω ∈ [0, ωp]. When ∆Pload1 = 0, ωp = 0.531 [p.u.]

and the system is stable for SCR > 1.56. For the case with 50, 200 [km]
cable length, ωp = 0.24 [p.u.] and the system is stable for SCR > 2.46, 2.87

respectively. It implies that the influence of the DC grid dynamics is not
ignorable and the longer the DC cable length, the stronger AC-environment

is required to guarantee system stability.

Impact of converter controller design:

In this subsection, the sufficient stability condition is compared between
cases with different DC-voltage controller i.e. iref = P ref/E or iref =

P ref/E0 and different bandwidth of the LPF for the AC voltage (af).

The comparison result is shown in Fig. 6, where all the non-specified
system parameters and steady state entries are set to be constantly equal

to the values given in Tab. 1 and Tab. 1.

It shows that by designing iref = P ref/E0 instead of iref = P ref/E, ωp

decreases from 0.38 [p.u.] to 0.24 [p.u.], in addition, the sufficient condition

of a stable closed loop system is improved from SCR = 2.7 to SCR = 2.46.
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Chapter 4. Robust stability analysis

Figure 4.6: Frequency characteristic of Y11(jω) and Y22(jω) with different
converter controllers

Therefore, by designing iref = P ref/E0, the system robustness with respect

to a weak AC-grid is improved.

In addition, by setting af = 4 [p.u.] (ten times higher), the upper

boundary of the loop gain can be decreased but the frequency region of a
non-passive converter admittance is also increased. This indicates that if

there is a significant resonance at the AC-grid in the low frequency band,

it is recommended to introduce an LPF at the measured converter PCC
voltage. Otherwise this is not required. The resonance aspect is further

discussed in [6].

After designing the outer DC voltage controller as a P-controller with

Kpd = Ctotad, the upper bound of the loop gain can be decreased from SCR
= 2.46 to SCR = 1.63, even though the frequency region of non-passive

converter admittance is increased from ωp = 0.24 [p.u.] to ωp = 0.275
[p.u.]. Therefore, a P-controller is better than a PI-controller with respect

to the system stability robustness.

Note that the “mixed” small gain and passivity theorem might not be

the best choice to analyze the stability of series RgLg-circuit interconnected
DC-voltage controlled converter due to that the uncertainty of the AC-gird

is linearly proportional to 1/SCR. However, the “mixed” small gain and pas-
sivity theorem can be applied to analyze the stability of grid interconnected

converter with other AC-grid topologies, such as AC-grid with parallel res-
onance (inductor shunt with capacitor) or with series resonance (inductor

series with capacitor).

44



Chapter 5

Analytical investigation of
poorly damped conditions

In this section, a method are proposed to obtain approximative analytical

expression for eigenvalues of a two-terminal VSC-HVDC system, while the
interaction with the AC-side is neglected assuming the presence of strong

AC-grids. The symbolic eigenvalues efficiently characterize poorly-damped
conditions that may appear on the DC-side of a VSC-HVDC system. Con-

sequently, the interaction between the controller parameters of the terminals
and the physical properties of the DC-cable can be better understood and

evaluated.
In addition, by applying the symbolic-isolation method [36], the state

space model order of a multi-terminal VSC-HVDC system (MTDC) can
be reduced to four and thus enables the proposed method to derive the

approximate eigenvalues of the MTDC system in symbolic expressions as
well.

The VSC-HVDC system model under study is simplified as a fourth
order state space model, which is shown to be a sufficient description of a

two-terminal connection [37]. The state space model is calculated based on

the following assumptions:

• The connected AC-grids are well balanced and strong, which implies
that the nominal AC-grid voltage is as most subject to small varia-

tions, in this section they are ignored (i.e. ∆Ed ≈ 0, ∆Eq ≈ 0) and
the dynamics of the PLL and the LPF for feed forward PCC voltage

are ignored.

• Since the q-axis current (iq) has no impact on the dynamics at the
DC-side (after d- and q-dynamics decoupling), irefq is thus assumed to

be zero.

• The inner current loop dynamics is ignored, i.e. ∆icd = ∆irefd .
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Chapter 5. Analytical investigation of poorly damped conditions

• The DC-voltage controller is simplified as a P-controller, i.e. kid = 0

and kpd = C · ad, where C is the DC-shunt capacitor of the converter.

• The active power controlled VSC is assumed to be operated under

steady state. If not, the dynamics caused by the AC-side of the active
power controlled VSC is considered as an disturbance input to the

DC-side dynamics.

Combining the dynamics of the DC-voltage controlled VSC eq.(2.10) -

(2.17), the active power controlled VSC together with DC cable eq.(4.4),

the two-terminal VSC-HVDC system can be interpreted as a fourth order
state space model, where Ctot = C + cc · d/2 = C + Cdc and ∆ifload is the

filtered load power normalized by vdc10, i.e. ∆ĩfload = Ff(s)∆P̃load/vdc10 :

d

dt
xs = As · xs +Bs ·∆vrefdc1 (5.1)

ys = Cs · xs =
[
0 1 0 0

]
· xs = ∆vdc1 (5.2)

xT
s =

[

∆ifload ∆vdc1 ∆idc ∆vdc2
]

As =








−adf
C

Ctot
adf

Cidc10−adCdcCvdc10
Ctotvdc10

adf
C

Ctot
0

1
Ctot

−adCvdc10+idc10
Ctotvdc10

− 1
Ctot

0

0 1
Ldc

−Rdc

Ldc
− 1

Ldc

0 0 1
Ctot

− P20

Ctotv2dc20








BT
s =

[
adfad

CdcC
Ctot

ad
C

Ctot
0 0

]

It is easy to show that the state space model is of minimum order,
implying that the system poles are the eigenvalues of the state matrix As.

The suggested method to analytically describe the poles of the system will
thus operate on the symbolic state matrix As, in an effort to extract the

desired approximate analytical expressions.

5.1 Symbolic eigenvalue expressions

The characteristic polynomial of the 4× 4 matrix As can be regarded as a

product of two second order polynomials p1(λ) and p2(λ). We are in fact
most interested in p1(λ), which is poorly damped and its roots are strongly

dependent of the DC-cable length. p2(λ), whose roots are well damped and
may even be real, is to a low extent dependent of the DC-cable length.

Consequently, p2(λ) can be approximately calculated by assuming that the

DC-cable length is zero.
Letting the DC-cable length to approach zero, the fourth order system

will exactly reduce to a second order system. The characteristic polynomial
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5.1. Symbolic eigenvalue expressions

of the new 2× 2 state matrix As2 can be assumed to approximate the well

damped polynomial p2(λ), i.e. p2(λ) ≈ p̂2(λ). Therefore, we can use p̂2(λ)
to calculate an approximated poorly damped polynomial p̂1(λ) ≈ p1(λ).

To reduce the visual complexity, As is re-written as:

As =







−a b a 0
1

Ctot
−e − 1

Ctot
0

0 1
Ldc

−Rdc

Ldc
− 1

Ldc

0 0 1
Ctot

f







where a = adf
C

Ctot
, b = adf

Cidc10 − adCdcCvdc10
Ctotvdc10

,

e =
adCvdc10 + idc10

Ctotvdc10
, f = − P20

Ctotv2dc20
(5.3)

5.1.1 Well damped polynomial p2(λ)

If the DC-cable length is zero, then ∆vdc1 = ∆vdc2, ∆v̇dc1 = ∆v̇dc2 and the

dynamics of the current passing through the DC-cable, ∆idc, is removed.
The new second order autonomous state space model is:

[
ẋ1

ẋ2

]

=

[ −a
2

b− aCtot

2
(e+ f)

1
2Ctot

−e−f
2

] [
x1

x2

]

= As2

[
x1

x2

]

(5.4)

The characteristic function of As2 is:

p̂2(λ) = det(λI − As2) = λ2 + 0.5(a+ e− f)λ+ 0.5(ae− b/Ctot) (5.5)

5.1.2 Poorly damped polynomial p1(λ)

The characteristic polynomial of the fourth order state matrix As is given

below, where k1 and k2 are the first and second order coefficient respectively:

det(λI − As) = λ4 + (a + e− f +
Rdc

Ldc

)λ3 + k2λ
2 + k1λ+

+ (ae− b

Ctot

)(
1

LdcCtot

− f
Rdc

Ldc

) (5.6)

Let λ1,2 be the roots of polynomial p1(λ) and λ3,4 be the roots of poly-

nomial p2(λ). They satisfy:

λ1 + λ2 + λ3 + λ4 = −(a + e− f +
Rdc

Ldc
) (5.7)

λ1 · λ2 · λ3 · λ4 = (ae− b

Ctot
)(

1

LdcCtot
− f

Rdc

Ldc
) (5.8)
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Combining eq.(5.7)-(5.8) with the approximated polynomial p̂2(λ) eq.(5.5),

results in:

λ3 + λ4 ≈ −1

2
(a+ e− f); λ3 · λ4 ≈

1

2
(ae− b

Ctot

)

⇒ λ1 + λ2 = −1

2
(a+ e− f + 2

Rdc

Ldc

) (5.9)

λ1 · λ2 = 2(
1

LdcCtot

− f
Rdc

Ldc

) (5.10)

The approximate poorly damped polynomial is:

p̂1(λ) ≈ (λ− λ1)(λ− λ2)

≈ λ2 +
1

2
(a+ e− f + 2

Rdc

Ldc
)λ+ 2(

1

LdcCtot
− f

Rdc

Ldc
) (5.11)

5.1.3 Accuracy of the approximations

In this section, the eigenvalues λnum of the VSC-HVDC system, found be

numerical extracting them from As, are compared to the symbolic eigen-
values λsym expressed by eq.(5.5) and eq.(5.11). Different scenarios are

investigated where the values of all the system’s parameters and steady-
state entries are set to be constantly equal to the values of Tab. 5.1, with

the exception of certain parameters that are allowed to vary. The motive for
doing so is to observe the accuracy of the analytical expressions compared

to the numerical eigenvalues, for different values of the selected parameters.
Seven scenarios are considered:

1. Variation of adf between 10− 600 rad/s.

2. Variation of ad between 10− 600 rad/s.

3. Variation of ad = adf between 10− 600 rad/s.

4. Variation of the cable length between 10− 600 km.

5. Variation of the active power transmitted at station 2 from −1000 to
0 MW.

6. Variation of the converter DC-shunt capacitor C1 = C2 = C between

4.9−146.5 µF (equivalent capacitor charging time constant τs changes
between 1− 30 ms).

7. Variation of the DC-cable impedance density lc increases from 0.316
to 1.415 mH/km while the capacitance density cc decreases from 0.138

to 0.0139 µF/km.
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Note that the seventh scenario corresponds to that the DC transmission

lines change from DC-cables to overhead lines. It is due to that the DC-
cable poles are normally laid very close to each other and therefore have a

relatively high capacitance and low inductance per km. On the contrary,
overhead transmission line poles are located in a relative distance from

each other and as a result they have a relatively high inductance and low
capacitance per km [37].

Table 5.1: Parameters of VSC-HVDC system

Cable distance d 100 km

Cable inductance density lc 0.316 mH/km

Cable capacitance density cc 0.138 µF/km

Cable resistance density rc 0.03 Ω/km

DC shunt capacitor (τs = 4.1 ms) C 20 µF

Rated DC voltage vdc0 640 kV

Rated transmission power Pb 1000 MW

Bandwidth of DC-voltage controller ad 300 rad/s (0.95 p.u.)

Bandwidth of DC-load power filter adf 300 rad/s (0.95 p.u.)

The nominal algebraic error is shown in Tab. 2. The first four columns

show the nominal algebraic error of the real and imaginary part respectively:

εreal = |(Re[λnum]− Re[λsym])/Re[λnum]| · 100% (5.12)

εimag = |(Im[λnum]− Im[λsym])/Im[λnum]| · 100% (5.13)

The last two columns show the nominal algebraic error of the pole mag-

nitude, which is the same as the difference of the system natural frequency
for complex poles:

εmag = ||λnum| − |λsym|/|λnum|| · 100% = |(ωn,num − ωn,sym)/ωn,num| · 100%
(5.14)

The movement of the eigenvalues of As with varied adf (bandwidth of the

LPF of the DC load power) is shown in Fig. 5.1. The nominal algebraic error
of the well damped pole pair is plotted with adf ∈ [40, 600] rad/s. This

is because the eigenvalues of the well damped pole pair become complex
when adf is larger than 35 rad/s. The error plots will only illustrate the

approximation difference of complex pole pairs.

Similarly, the error plots of the well damped pole pair with varied ad
(bandwidth of the DC-voltage control loop) in Fig. 5.2 are also shown with
ad ∈ [40, 600] rad/s and the well damped pole pair becomes complex when

ad is larger than 35 rad/s. Note that for a poorly damped pole pair, since
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the imaginary part is much larger than the real part, the magnitude error

curves are close to the imaginary part error curves (shown in the fourth
figure in Fig. 5.1 - Fig. 5.7.

The comparison results show that the maximum relative error appears
in the real part of scn. 4, which can be decreased from 20.63% to 7.42% if

the studied maximum cable length decreases from 600 km to 300 km. In
addition, the maximum relative errors for both a well and a poorly damped

pole pair slightly exceeds 10% in scn. 7. It is due to the fact that the relative
errors of approximated eigenvalues dramatically depend on the magnitude of

the exact eigenvalues. Therefore, when the magnitude of exact eigenvalues
decreases, the relative error will increase.

Except of scn. 4, the maximum errors of the approximated result are

bounded by 12% and in average are lower than 6.39%. In general, the
method provide compact expressions that closely fit the numerically calcu-

lated eigenvalues of the system, with relatively small error. The eigenvalue
movements under different scenarios are shown in Fig. 5.1 - Fig. 5.7.

Table 5.2: Numerical difference between eigenvalues of As and the roots of

of p̂1(λ), p̂2(λ) [%]

Scenarios
Real Imaginary Magnitude

Max Average Max Average Max Average

Scn. 1 0.86 0.59 1.55 0.76 1.51 0.72

Scn. 2 0.86 0.59 1.55 0.74 1.51 0.72

Scn. 3 2.64 1.00 2.43 0.84 2.26 0.80

Scn. 4 8.05 4.02 4.04 1.25 4.27 1.34

Scn. 5 0.75 0.74 0.63 0.25 0.61 0.24

Scn. 6 3.62 1.88 3.16 1.65 2.51 1.44

Scn. 7 6.95 1.89 10.63 4.76 10.49 4.68

a) The pole pair λ1,2 that has larger ratio of Im{λ}/Re{λ}

Scenarios
Real Imaginary Magnitude

Max Average Max Average Max Average

Scn. 1 1.16 0.85 3.15 1.80 1.48 0.73

Scn. 2 1.16 0.85 3.15 1.80 1.48 0.73

Scn. 3 5.33 1.58 5.12 2.03 2.21 0.79

Scn. 4 20.63 8.49 2.06 1.21 4.46 1.37

Scn. 5 1.09 1.07 1.53 0.96 0.61 0.24

Scn. 6 5.23 2.67 8.17 4.41 2.45 1.41

Scn. 7 6.51 1.95 12.03 6.39 9.49 4.40

b) The pole pair λ3,4 that has smaller ratio of Im{λ}/Re{λ}

50



5.1. Symbolic eigenvalue expressions

−220 −200 −180 −160 −140 −120 −100 −80 −60 −40 −20 0

−1500

−1000

−500

0

500

1000

1500

Real

Im
ag

in
ar

y
Eigenvalue movement of scn. 1: adf ∈  [10 600] rad/s

Approximate eig. λsym

Exact eig. λnum

Starting point
Ending point

−220 −200 −180 −160 −140 −120 −100
1490

1500

1510

1520

1530
poorly damped pole

Real

Im
ag

in
ar

y

−150 −100 −50 0
−200

−100

0

100

200

well damped pole pair

Real

Im
ag

in
ar

y

0 200 400 600
0

0.5

1

1.5

N
om

in
al

 a
lg

eb
ra

ic
 e

rr
or

 [%
]

po
or

ly
 d

am
pe

d 
po

le
 p

ai
r

adf [rad/s]
0 200 400 600

0

1

2

3

N
om

in
al

 a
lg

eb
ra

ic
 e

rr
or

 [%
]

w
el

l d
am

pe
d 

po
le

 p
ai

r

adf [rad/s]

real
imag.
mag.

Figure 5.1: Eigenvalue movement and approximation error studies on scn.
1, where adf is varied within [10 600] rad/s.
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Figure 5.2: Eigenvalue movement and approximation error studies on scn.
2, where ad is varied within [10 600] rad/s.
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Figure 5.3: Eigenvalue movement and approximation error studies on scn.
3, where adf = ad and varies within [10 600] rad/s.
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Figure 5.4: Eigenvalue movement and approximation error studies on scn.

4, where the DC-cable distance d is varied within [10 600] km.
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Figure 5.5: Eigenvalue movement and approximation error studies on scn.
5, where the stead state of the transmitted active power at VSC2 P20 is

varied within [-1000 0] MW (AC→DC is the positive direction).
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Figure 5.6: Eigenvalue movement and approximation error studies on scn.
6, where the DC-shunt capacitor is varied within [4.9 146.5] µF (equivalent

capacitor charging time constant τs is varied within [1 30] ms).
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Figure 5.7: Eigenvalue movement and approximation error studies on sc-
n. 7, where the DC-cable inductance density lc increases from 0.316 to

1.415 mH/km while the capacitance density cc decrease from 0.138 to 0.0139
µF/km..

57



Chapter 5. Analytical investigation of poorly damped conditions

5.2 System properties

After achieving approximate symbolic expressions for the system poles, the

impact of physical and of control parameters are evaluated in this section.

5.2.1 Trends of the real parts of the eigenvalues

From eq.(5.5) and eq.(5.11), it is known that if the roots are complex then
the real part of the system eigenvalues are given as follows, where the ap-

proximation is based on the fact that the difference between terminal volt-
ages are so small that they can be neglected compared with the other terms.

λ1 + λ2 = 2 ∗ Re{λ1,2} = −0.5(a + d− e + 2Rdc/Ldc)

= −1

2
[
C

Ctot
(ad + adf ) +

idc0
Ctot

(
1

vdc10
− 1

vdc20
)]− Rdc

Ldc

≈ − C

2Ctot
(ad + adf )−

Rdc

Ldc
(5.15)

λ3 + λ4 = 2 ∗ Re{λ3,4}

= −0.5(a + d− e) = −1

2
[
C

Ctot

(ad + adf )−
P20

Ctot

(
1

v2dc10
− 1

v2dc20
)]

≈ − C

2Ctot
(ad + adf ) (5.16)

It shows that:

1 By increasing ad or adf , all system eigenvalues will move to the left,
away from the imaginary axis with the corresponding rate of change

C/Ctot/4. This is verified by Fig. 5.1 - Fig. 5.3, i.e. when either ad
or adf increases, both well and poorly damped pole pairs move away
from imaginary axis at the same rate.

2 By increasing the cable length or decreasing the magnitude of DC-
shunt capacitor C, the ratio of C/Ctot will decrease and thus the real

part of all the system eigenvalues will decrease i.e. system eigenvalues
move towards the imaginary axis as shown in Fig. 5.4 and Fig. 5.6.

3 By increasing the ratio between the cable resistance density and the
inductance density, the real part of the poorly-damped system eigen-

values will move (to the left) away from the imaginary axis. Howev-
er, the real part of the well-damped system eigenvalues pair will not

change very much.
4 Since the difference between the terminal steady state voltages is too

small, the operating point of transmitted active power P20 will not
play an important role with respect to the real part of the system

eigenvalues. It is shown in Fig. 5.5, where the real part of both well
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5.2. System properties

and poorly damped pole pair will not change dramatically even if P20

increases from -1000 to 0 MW.

5.2.2 Trends of the natural frequencies of the eigen-
values

From eq.(5.5) and eq.(5.11), it is known that if the roots are complex, the
natural frequencies of the system eigenvalues are the given as follows, where

the approximation is based on the fact that the transmission losses (Rdc) is
much lower than the load (vdc20/idc0):

λ1 · λ2 = |λ1,2|2 = ω2
n1 =

2

LdcCtot
(1− Rdcidc0

vdc20
) ≈ 2

LdcCtot
(5.17)

λ3 · λ4 = |λ3,4|2 = ω2
n2 =

1

2

C

Ctot
adadf (5.18)

It shows that:

1 The natural frequency of the poorly damped pole pair (ωn1) is domi-
nated by the shunt capacitor and cable inductance. ωn1 is decreased

by increasing the total shunt capacitor Ctot or increasing the cable
inductance. It is verified by Fig. 5.4 and Fig. 5.6, where the magni-

tude of the poorly damped pole pair decreases dramatically if either

the DC-shunt capacitor increases (and thus Ctot increases) or the DC-
cable distance increases (and thus Ldc increases).

2 For the well damped pole pair, the natural frequency ωn2 mainly de-
pends on the choice of control system bandwidths ad and adf , which

is shown in Fig. 5.1 - Fig. 5.3.
3 Since the coefficients of both approximated pole polynomials (eq.5.5

and eq.5.11) are positive for all physical and control parameters, the
VSC-HVDC system under study is always stable. Due to the fact

that large relative errors appear at scn. 4 (d ∈ [10, 600] km), it may
have unstable poles when the DC-transmission line is extremely long

but also suffer from large DC-voltage drops. Consequently, for reason-
able DC transmission distances, the two-terminal VSC-HVDC system

under study is always stable with all physical and control parameters.

5.2.3 Trends of the damping ratios and characteristic

frequencies

For a second order polynomial λ2 + k1 · λ+ k2 = 0 with two complex roots,
the characteristic frequency is ω0 =

√

k2 − k2
1/4 and the damping ratio is

ζ = k1/
√
4k2. It implies that by increasing k1 and decreasing k2, the system
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Chapter 5. Analytical investigation of poorly damped conditions

characteristic frequency decreases and the damping ratio increases and thus

the system has better dynamic performance.

For the poorly damped pole pair λ1,2, we have:

k1 ≈
C

2Ctot
(ad + adf ) +

Rdc

Ldc
; k2 ≈

2

LdcCtot

ζ1 ≈ [
Cc

2Ctot
(ad + adf ) +

Rdc

Ldc
]

√

LdcCtot

8
(5.19)

ω2
0 ≈

2

LdcCtot
− 1

4
[

C

2Ctot
(ad + adf ) +

Rdc

Ldc
]2 (5.20)

1 We can increase the poorly damped system damping ratio by increas-
ing the VSC shunt capacitor C (which is shown in Fig. 5.6) or the

system bandwidths ad, adf (which is shown in Fig. 5.1 - Fig. 5.3). For
fixed cable resistance Rdc, ζ1 decreases when Ldc increases (which is

shown in Fig. 5.7).
2 Since k2 ≫ k2

1/4, the characteristic frequency of poorly damped sys-

tem decreases when either the DC-cable inductance lc increases or the
converter shunt capacitor C increases.

For the well damped pole pair λ3,4, we have:

k1 ≈
C

2Ctot
(ad + adf ); k2 =

1

2

C

Ctot
adadf

ζ2 ≈
√

C

Ctot

ad + adf
√

8adadf
=

1

2

√

C

Ctot

√

1 +
1

2
(
ad
adf

+
adf
ad

) (5.21)

ω2
0 ≈ 1

2

C

Ctot
adadf −

1

16
[
C

Ctot
(ad + adf )]

2 (5.22)

1 It is known that ad/adf + adf/ad ≥ 2 where the equality holds when

ad = adf . Therefore, ζ2 ≥
√

C/2/Ctot, and with a larger difference
between ad and adf , the damping ratio of the well damped pole pair

will increase. This is well illustrated in Fig. 5.1 - Fig. 5.3. When
ad = adf (Fig. 5.3), the eigenvalue movements with different ad and af
is in a line where they have similar damping ratios. However, when
only one of ad and adf changes and the other one is kept constant,

the damping ratio of the well damped system will decrease first until

ad = adf = 300 rad/s and then decrease as the difference between ad
and adf increases.

2 The characteristic frequency of well damped system increases when
ad and adf increase.
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5.3. Symbolic eigenvalues of a MTDC system

5.3 Symbolic eigenvalues of a MTDC system

In this subsection, the proposed method will be applied to an MTDC sys-

tem. Assuming that, within an MTDC system, there is only one converter
controlling the DC-voltage and the other converters control their transmit-

ted active power between the AC- and DC-grid nodes.
The MTDC system can be described as: one DC-voltage controlled VSC

with its shunt capacitor (2nd order system Gvsc(s)); one RLCR0 DC-grid
(Gdc(s)), where R0 describes the active power controlled VSC and, at the

converters’ steady states, Rj0 = v2dcj0/Pj0 of the jth VSC. The block diagram
of an autonomous MTDC system is depicted in Fig.3.

∆vdc1Gvsc(s)

Gdc(s)

∆idc1

Figure 5.8: Block diagram of the MTDC system with zero input signals

In addition, the parameters of the DC-grid are assumed to be fully

known and the parameters at the DC-controlled VSC have free values. The
purpose is then to understand the influence of the design bandwidths (ad,

adf ), and the chosen shunt capacitor (C1) on the dynamics of ∆vdc1 within
an MTDC system.

5.3.1 Symbolic-Isolation method

If only the DC-voltage controlled VSC contains symbolic design param-

eters, we can treat it as a port and reduce the DC-grid by a standard
model-reduction approach such as based on the Arnoldi Algorithm [38]. S-

ince this model order reduction algorithm in the state space do not change
the input/output port structure and only one port is needed, the isolated

symbolic method [36] is simple and straight forward to apply here.
For the linear DC-grid dynamic system, the input signal is the voltage

of the DC-voltage controlled VSC (∆vdc1) and the output is the DC-current

flow into the DC-grid (∆idc1). The DC-grid model can be described as
follows, where udcm = ∆vdc1, ydcm = ∆idc1 and assume xdcm ∈ R

q. Bdcm,

Cdcm and Gdcm are constant matrices of appropriate dimensions.

Cdcm
dxdcm

dt
+Gdcmxdcm = Bdcmudcm (5.23)

ydcm = Fdcmxdcm (5.24)
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Chapter 5. Analytical investigation of poorly damped conditions

In order to apply the symbolic solution, obtained in the subsection 5.1,

the DC-grid system has to be model reduced into a second order system,
where the new dynamic states zdcm are calculated based on xdcm = Vdcmzdcm.

The transformation matrix Vdcm ∈ R
q×2 is then calculated based on the

block Arnoldi algorithm [39]:

Arnoldi Algorithm

i Solve v̄1 from: Gdcmv̄1 = Bdcm.

ii Compute h11 = ||v̄1|| and v1 = v̄1/h11.

iii Solve v̄2 from: Gdcmv̄2 = Cdcmv1.

iv Compute h12 = vT1 v̄2, w2 = v̄2−v1h12, h22 = ||w2|| and v2 = w2/h22.

v Finally Vdcm = [v1 v2]

The new second order state space model of the DC-grid is then given

as follows, where C̄dcm = V T
dcmCdcmVdcm, Ḡdcm = V T

dcmGdcmVdcm, B̄dcm =
V T
dcmBdcm and F̄dcm = FdcmVdcm:

dzdcm
dt

= −C̄−1
dcmḠdcmzdcm + C̄−1

dcmB̄dcm∆vdc1 (5.25)

=

[
az11 az12
az21 az22

]

zdcm +

[
bz1
bz2

]

∆vdc1

∆idc1 = F̄dcmzdcm =
[
cz1 cz2

]
zdcm (5.26)

In order to make the 4th order state matrix of the reduced order MTDC
system to have the same structure as As, a similarity transformation is

required for the above 2nd order system. The similarity matrix is T, where
z̄dcm = Tzdcm:

T =

[
cz1 cz2

k · bz2 −k · bz1

]

k = −az12c
2
z1 − a21c

2
z2 + cz1cz2(az22 − az11)

(bz1cz1 + bz2cz2)2
(5.27)

5.3.2 Study case: three-terminal VSC-HVDC system

The study system is depicted in Fig. 4, where station 1 controls the DC-
voltage and the remaining converters control the transmitted active power.

Each of the DC-lines is modeled as a single Π-section with parameters given
in Tab. 5.1.
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Line 2

Line 1
Station 1

Line 3

DC-grid

Station 2 Station 3

Figure 5.9: Study case 1: ‘Y’-shape three-terminal VSC-HVDC system

Table 5.3: DC-grids dynamic parameters

Property Value

Rated DC-voltage of station 1,2,3 640 [kV]

Operating point of active power of station 2 -600 [MW]

Operating point of active power of station 3 -400 [MW]

Shunt capacitor of station 2,3 20 [µF]

Distance of Line 1,2 100 [km]

Distance of Line 3 200 [km]

For fixed set points of vdc10, Pj0, j = 2, 3 and cable length (which are

shown in Tab. 3), the equivalent resistances Rj0 are countable, i.e. R20 =
−667 [Ω] and R30 = −1003 [Ω].

In the study case, the state space model matrices are given below, where
Ldcj , Rdcj, Cdcj are the inductance, resistance, capacitance (one in each side

of the cable) of the j-th line and Cj is the shunt capacitor of the j-th VSC.

xT
dcm =

[
idc1 vdc idc2 vdc2 idc3 vdc3

]
;

Cdcm = diag{Ldc1, Cdc1 + Cdc2 + Cdc3, Ldc2, Cdc2 + C2, Ldc3, Cdc3 + C3}

Gdcm =












Rdc1 1 0 0 0 0

−1 0 −1 0 −1 0
0 1 Rdc2 −1 0 0

0 0 1 1
R20

0 0

0 1 0 0 Rdc3 −1

0 0 0 0 1 1
R30












Bdcm =











1

0
0

0
0

0











Fdcm =
[
1 0 0 0 0 0

]
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The poles of the above DC-grid system are located strictly in the left

half plane. Therefore, the system in this study case is stable but not pas-
sive. (Note that the DC-grid involves active elements in contrast to the

transmission line only.)

The transformation matrix Vdcm is applied here to reduce the DC-grid
dynamic system into a 2nd order system. After similarity transformation,

using the matrix T eq.(35), the numerical second order state space model
is:

d

dt
zdcm =

[
−94.8 −22.8

11315 28.3

]

zdcm +

[
22.8

0

]

∆vdc1

∆idc1 =
[
1 0

]
zdcm (5.28)

The bode plot comparison is given in Fig. 5. It shows that the reduced
2nd order model characterizes the original system well for ω < 700 [rad/s].
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Figure 5.10: Study case 1: Bode plot comparison
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5.3. Symbolic eigenvalues of a MTDC system

5.3.3 Extended method for multi-terminal VSC-HVDC
system

After the model order reduction of DC-grid dynamics, the state space model

of the MTDC system is:

d

dt
x̂ = Âs · x̂+ B̂s ·∆vrefdc1 (5.29)

ŷ = Ĉs · x̂ =
[
0 1 0 0

]
· x̂ = ∆vdc1 (5.30)

x̂T =
[

∆ifload ∆vdc1 ∆îdc ∆v̂dc
]

Âs =







−adf
C1

Ctot
adf

C1idc10−adCdcC1vdc10
Ctotvdc10

adf
C1

Ctot
0

1
Ctot

−adC1vdc10+idc10
Ctotvdc10

− 1
Ctot

0

0 22.8 −94.8 −22.8
0 0 11315 28.32







B̂T
s =

[
adfad

CdcC1

Ctot
ad

C1

Ctot
0 0

]

With the proposed method, the characteristic polynomial of Âs can be
approximated as follows, where a, b, e are defined in eq.(5.3), c1 is the shut

capacitor at station 1 i.e. c1 = Ctot and in this study case, c2 = 88.4 · 10−6,
Rdc/Ldc = 94.8, f = 28.32:

det(λI − Âs) = p̂1(λ)p̂2(λ)

p̂1(λ) = λ2 +

(
c2(a + e)− c1f

c1 + c2
+

Rdc

Ldc

)

λ+
c1 + c2

c1
(

1

Ldcc2
− f

Rdc

Ldc
)

p̂2(λ) = λ2 +
c1(a+ e)− c2f

c1 + c2
λ+

(aec1 − b)

c1 + c2

Compared with the two-terminal VSC-HVDC system with parameters
given in Tab. 5.1, both the shunt capacitor at station 2 and the ratio of

Ldc/Rdc increase, implying that the damping ratio of the poorly damped
pole pair will increase. In addition, the poorly damped poles move further

away from the imaginary axis and the well damped poles move towards the
imaginary axis. The numerical result for the system poles is given in Tab. 4,

which as well supports our conclusion. Consequently, the MTDC has better
damping performance compared with the two terminal VSC-HVDC system

for the poorly damped pole pair but worse damping performance for the
well damped pole pair.

Note that the system parameters of the two-terminal VSC-HVDC study
case is listed in Tab. 5.1, where the DC-cable length is 100 km. Replacing the

active power controlled converter in the two-terminal VSC-HVDC system
by another two connected DC-cables and active power controlled converters

at the terminal respectively, the MTDC system is constructed as shown
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Table 5.4: Eigenvalues of MTDC system

Study case Eigenvalues

Two-terminal -158+1511i -158-1511i -110+147i -110-147i

MTDC
-66+781i -66-781i -77-1972i -77+1972i

-178+1061i -178-1061i -48+112i -48-112i

4th order MTDC -254+1037i -254-1037i -48+112i -48-112i

in Fig. 4. The MTDC system has two dynamic states of the DC-voltage
controlled converter and six states of the connected DC-grid, where those

eight eigenvalues of the MTDC system are listed in Tab. 4. The 4th order
MTDC system is calculated by reducing the sixth order DC-grid model to a

second order system, which implies that the variations of the well damped
pole pair (dominated by the control parameters ad and adf ) after model

reduction are ignorable.

66



Chapter 6

Summary of included papers

This chapter provides a brief summary of the papers that constitute the

base for this thesis. Full versions of the papers are included in Part II. The
papers have been reformatted to increase readability and to comply with

the layout of the rest of the thesis.

Paper 1

Y. Song and C. Breitholtz, Nyquist stability analysis of a VSC-

HVDC system using a distributed parameter DC-cable model,
19th IFAC World Congress, August 2014, Cape Town, South

Africa.

In this paper a two terminal VSC-HVDC system embedded in a strong

grid AC-environment is considered, emphasizing modeling, controller design
and small-signal stability analysis.

Under assumption of strong grid AC-environment, the dynamics of the

PLL and the q-axis of the converter measured input current are ignored.
The VSC is modeled as a third order system for the DC-voltage controlled

side and as a second order system for the active power controlled side.
Traditionally, DC-cables are most often modeled by a single Π-section and

the VSC-HVDC system is consequently modeled as a sixth order system,
where the system stability can be investigated through eigenvalue calcu-

lation. However, when using Π-section cable model for higher frequencies
or in case of transmission over long distances and higher cable impedance

density such as submarine cables, approximation accuracy aspects ought to
be considered. In this paper, a distributed parameter cable model, based on

the damped wave equation, is used to overcome this potential limitation.
The VSC-HVDC system with a distributed parameter DC-cable model

can be described by two cascaded blocks. The first block is a transfer func-
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tion that will be different, due to which input and output variables that are

considered, but is in all realistic cases stable. The second block is a feedback
loop, where the forward path is a rational function and the return path is a

dissipative infinite dimensional function, that remains the same in all cases.
For a VSC-HVDC system with a single Π-section cable model, the return

path of the feedback loop is a first order improper transfer function, which
has similar characteristic frequency properties as the distributed parameter

cable model in the low frequency band. The stability for both cable models
is then analyzed, using the Nyquist criterion in a straight forward manner.

Two examples have been illustrated, showing that in both cases with

either the rectifier or the inverter working as DC voltage controller, the
VSC-HVDC system with distributed parameter cable model is stable for

three different cable distances d=50km, 150km, 450km. Similarly, the VSC-
HVDC system with a single Π-section cable model is also stable under the

above study cases.

Paper 2

Y. Song and C. Breitholtz, Nyquist Stability Analysis of an AC-
grid connected VSC-HVDC System Using a Distributed Param-

eter DC-cable Model,IEEE Trans. on Power Delivery, vol. 31,

no. 2, pp. 898 - 907, April 2016.

In this paper a two terminal VSC-HVDC system embedded in a weak

grid AC-environment, represented by an inductance and a resistance in
series, is considered. Modeling, controller design and small-signal stability

analysis are emphasized.

Under assumption of weak grid AC-environment, the dynamics of the
PLL and the AC-grid have to be considered. The d-axis and q-axis currents

are coupled due to the AC-grid dynamics. For the active power controlled
VSC, the feedback loop stability would not be influenced by the weak AC-

grid. Similarly, the stability of the active power controlled VSC could be
analyzed without considering the DC-side influence. Consequently, the sta-

bility analysis of two terminal VSC-HVDC systems embedded in a weak
AC-grid can be separated into two parts: the active power controlled VSC

and the VSC-HVDC system while the active power controlled VSC is under

steady state.

The stability of the first part is analyzed by the small gain theorem,

which shows that for SCR > 2.7, provided the parameter values are taken
from Table 1, the active power controlled VSC embedded in a weak AC-

environment will always be stable. The second part is analyzed by the
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Nyquist criterion. Similar to the strong AC-grid case, the system can be

described by two cascaded blocks. The first block is a transfer function
that will be different, due to which input and output variables that are

considered but is in all realistic cases stable. The second block is a feedback
loop, where the forward path is a rational function and the return path is a

dissipative infinite dimensional function, that remains the same in all cases.
Note that all the blocks, however, will be somewhat more complicated than

in the strong AC-grid case.

One typical case has been investigated. Examples with different oper-
ating points P20 and different SCRs of the connected AC-grids have been

studied, showing that the VSC-HVDC system with a single Π-section cable
model is sufficient to prove system stability, independently of the DC-cable

length and impedance density.

Paper 3

Y. Song and C. Breitholtz, On passivity based measures of ro-

bustness for a VSC-HVDC system connected to weak AC-grids,
to be submitted for possible journal publication, 2016.

In this paper, a modified “mixed” small gain and passivity theorem

is proposed, which is applied to analyze the stability robustness of a two
terminal VSC-HVDC system embedded in a weak grid AC-environment.

Modeling, controller design and small-signal stability analysis based on a
modified “mixed” small gain and passivity theorem are emphasized.

For constant power control of electrical devices, such as in a VSC-HVDC

system, the input power P = E · i to the converter is controlled to a con-
stant value, the linearized relationship between input current ∆i and the

PCC voltage ∆E is given as follows, where ∆P is assumed zero due to the
constant power control:

E =
P

i
⇒ ∆E =

1

P0
∆P − P0

i20
∆i = −P0

i20
∆i

Therefore, for positive input power, the converter admittance system

(from ∆E to ∆i) is not passive in the low frequency band. However, the
interconnected AC-grid is always passive and even dissipative for non-zero

AC-grid resistance, which enable the passivity theorem as an attractive and
powerful tool to analyze the system stability but not fully applicable due

to passivity invalidation of the converter admittance. Another important
result in the stability theorem of feedback interconnection of two input to

output stable LTI systems is the small gain theorem. However, the upper
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boundary of the AC-grid impedance system is not bounded for series RgLg-

circuit.

Consequently, the idea of merging those two theorems would be poten-

tially extremely useful. The modified “mixed” small gain and passivity
theorem shows that the negative feedback interconnection of two stable

LTI systems is input to output stable if in a certain frequency band, both

subsystems are passive and at least one of them is strictly passive; in the
remaining frequency bands, the loop gain is strictly less than one.

The stability analysis of two terminal VSC-HVDC systems embedded in
a weak AC-grid can be separated into two parts: the active power controlled

VSC and the VSC-HVDC system while the active power controlled VSC is

under steady state. It shows that, by designing the q-axis outer controller
to compensate for the PLL dynamics, the active power controlled converter

(the first part) can be designed to have passive converter admittance for all
frequencies and thus the system is stable under all kinds of connected AC-

grids. In addition, at the DC-voltage controlled converter side (the second
part), the stability sufficient condition with respect to the AC-grid SCR is

studied based on the mixed small gain and passivity theorem. It shows that
the system robustness can be increased by designing iref = P ref/E0 instead

of iref = P ref/E.

Paper 4

Y. Song, C. Breitholtz, G. Stamatiou, and M. Bongiorno, Ana-
lytical investigation of poorly damped conditions in VSC-HVDC

systems, accepted for presentation at the 55th IEEE Conference
on Decision and Control, Las Vegas, USA, Dec, 2016.

In this paper, strong AC-grid connected VSC-HVDC systems are stud-

ied, which implies that the dynamics of the PLL and the q-axis of the con-
verter measured input current are ignored. In addition, by designing the

DC-voltage controller as a P-controller and assuming the active power con-
trolled converter to operate at steady state, the two-terminal VSC-HVDC

system can be described as a fourth-order state space model (minimum or-
der). Symbolic eigenvalue expression and the impact of physical and control

parameters on the system stability are emphasized.

The characteristic polynomial of the 4×4 state matrix As can be seen as
a product of two second order polynomials p1(λ) and p2(λ). It shows that

p1(λ) has poorly damped roots, which are strongly dependent of the DC-
cable length; p2(λ) has well damped roots (and may even be real), which are

to a low extent dependent of the DC-cable length. Consequently, by letting
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the DC-cable length to approach zero, the system will reduce to a second

order system where the characteristic polynomial of the new 2 × 2 state
matrix can be assumed to approximate the well damped polynomial p2(λ).

Therefore, the approximated poorly damped polynomial is calculated by
p1(λ) ≈ det(λI −As)/p2(λ).

The approximated symbolic expressions of p1(λ) and p2(λ) are given
as follows, which are used to analyze the impact of physical and control

parameters on the pole movements.

p1(λ) ≈ λ2 + [
C

2Ctot
(ad + adf ) +

Rdc

Ldc
]λ+

2

LdcCtot

p2(λ) ≈ λ2 +
C

2Ctot

(ad + adf )λ+
1

2

C

Ctot

adadf

For an MTDC system, it is assumed that there is only one convert-
er controlling the DC-voltage and the remaining converters control their

transmitted active power between the AC- and DC-grids. In addition, the
DC-voltage controlled VSC keeps symbolic physical and controller param-

eters, while the remaining converters and the DC-grid parameters are as-

sumed numerically known. The symbolic-isolation method is applied to
reduce the system order into four and thus enables the proposed method to

derive the approximate eigenvalues of the system in symbolic expressions.
A three-terminal VSC-HVDC system is investigated as an example,

which shows that, compared to the two-terminal VSC-HVDC case, the
MTDC has better damping performance compared with the two terminal

VSC-HVDC system for the poorly damped pole pair but worse damping
performance for the well damped pole pair.
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