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estimate the size of SDH. This is promising for developing 
MWT to be used for prehospital diagnosis of intracranial 
bleedings.
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1  Introduction

Traumatic brain injury (TBI) is termed “the silent epi-
demic.” It strikes up to 2  % of the population each year 
and is the leading cause of death and severe disability 
among young people [3, 10]. Furthermore, it affects many 
elderly, who are more vulnerable due to widespread use 
of anticoagulant medications and lower brain plasticity  
[31, 33]. Road traffic injury, sports injuries, assaults and 
combat operations commonly produce TBI, and elderly 
are often exposed to accidental falls [3, 6, 10, 33]. Intrac-
ranial bleedings constitute the most important compli-
cation of TBI [3]. Larger bleedings must be evacuated 
promptly to save the lives of these patients and mitigate 
injury [3, 34]. Unfortunately, many patients are treated too 
late [4, 16, 34]. Patients without clear symptoms, such as 
decreased level of consciousness, are often undertriaged 
in the prehospital phase [13]. Delay of treatment due to 
patients initially being transported to a non-trauma center, 
to be later transferred to a trauma center, causes substantial 
mortality [13, 16]. Therefore, there is a need for methods 
for the prehospital setting to predict the need for lifesav-
ing interventions from clinical observations, as demon-
strated by Liu et al. [18] using vital sign measurements and 
a machine-learning algorithm, and to directly detect occult 
injury such as intracranial bleedings.

Abstract  Traumatic brain injury is the leading cause 
of death and severe disability for young people and a 
major public health problem for elderly. Many patients 
with intracranial bleeding are treated too late, because 
they initially show no symptoms of severe injury and are 
not transported to a trauma center. There is a need for a 
method to detect intracranial bleedings in the prehospital 
setting. In this study, we investigate whether broadband 
microwave technology (MWT) in conjunction with a diag-
nostic algorithm can detect subdural hematoma (SDH). 
A human cranium phantom and numerical simulations of 
SDH are used. Four phantoms with SDH 0, 40, 70 and 
110 mL are measured with a MWT instrument. The simu-
lated dataset consists of 1500 observations. Classification 
accuracy is assessed using fivefold cross-validation, and a 
validation dataset never used for training. The total accu-
racy is 100 and 82–96 % for phantom measurements and 
simulated data, respectively. Sensitivity and specificity for 
bleeding detection were 100 and 96  %, respectively, for 
the simulated data. SDH of different sizes is differenti-
ated. The classifier requires training dataset size in order 
of 150 observations per class to achieve high accuracy. We 
conclude that the results indicate that MWT can detect and 
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The clinical standard for detecting intracranial bleedings 
is computed tomography (CT) [10]. The main disadvantage 
with CT is that it is not well suited for field use. Although 
mobile units with CT have been developed for examining 
stroke patients [35], it would be advantageous to incorpo-
rate devices for detecting intracranial bleedings in ordinary 
road and air ambulances. One candidate is a recently devel-
oped handheld instrument using near-infrared spectroscopy, 
the Infrascanner [17, 28, 30]. Its principle for detection is 
to compare the amount of light absorption for the left and 
right brain hemispheres, by four point measurements on 
opposite sides of the skull. Strong asymmetry is likely due 
to a hematoma on the side with largest absorption, since 
extravascular blood contains tenfold the concentration of 
hemoglobin compared to intravascular blood [17]. In a 
multicenter study including 365 patients, of whom 96 were 
confirmed to have intracranial hemorrhage, detection sen-
sitivity of 88 % and specificity of 91 % were shown [28]. 
This result applied for bleedings larger than 3.5 mL, closer 
than 2.5 cm from the surface of the brain. If all bleedings 
were included, the sensitivity decreased to 69 % [28]. The 
disadvantages with the Infrascanner are that it cannot give 
detailed information about location and size of hematoma 
[28]. It cannot detect bleedings deep inside the brain, such 
as deep-sited intraparenchymal or intraventricular hem-
orrhage, due to the limited penetration depth of approxi-
mately 2.5 cm [28]. Another possible future candidate is 
electrical impedance tomography. Oh et  al.  [24] showed 
using epidural electrodes placed on exposed cortex of anes-
thetized rats that somatosensory evoked responses could be 
recorded with an SNR of >50 at 225 Hz. That study could 
pave the way for imaging fast neural activity in the brain, 
which could be used for detecting and monitoring TBI [24]. 
However, a shortcoming of electrical impedance tomogra-
phy is that the cranium has electrically insulating properties 
that limit current penetration and impede deep imaging of 
the brain without using implanted electrodes [20].

We propose the use of broadband microwave technology 
(MWT) [27], in conjunction with a diagnostic algorithm, 
to detect and classify different types of intracranial bleed-
ings. Recently, Persson et  al.  [26] showed that MWT can 
distinguish hemorrhagic stroke from ischemic stroke, in the 
two first proof-of-principle clinical studies. Twenty and 25 
patients with acute stroke were included, respectively. The 
patients were measured with an antenna system worn on 
the head. The article demonstrated areas under the receiver 
operating characteristic curves of 0.85 and 0.88, respec-
tively, using a machine-learning algorithm based on singu-
lar value decomposition (SVD). At 90 % detection sensitiv-
ity for hemorrhagic stroke, the specificity was 65 %, for the 
second clinical study [26].

MWT can detect bleedings due to the dielectric contrast 
between blood and brain matter [9, 26]. MWT could suite 

for field use since cheap, fast and portable systems working 
in the time domain are emerging [26, 27, 38]. An advan-
tage with MWT is that it employs low-power (∼1  mW) 
microwave signals. MWT has the potential to detect lesions 
deep inside the brain, since microwaves will penetrate the 
skull and brain, and transmission signals between antennas 
on opposite sides of the head can be utilized [26]. Further-
more, a patient could potentially be monitored in real time, 
to follow-up on the progression of injury. Such monitoring 
is not appropriate with CT, i.e., due to excessive ionizing 
radiation. Our long-term goal is to incorporate MWT into 
road and air ambulances, to increase the precision of triage 
and decrease the time to treatment for trauma and stroke 
patients.

In the future, it may also be possible to image the brain 
and visualize stroke and TBI lesions [11, 12, 14, 19, 21, 22, 
32, 36, 37]. Contemporary systems do not provide detailed 
anatomical images compared to CT, but may still be valu-
able for detection of intracranial hemorrhage, see, e.g.,  
[21, 22]. Current imaging algorithms are not sufficiently 
fast to enable prehospital use without use of a priori infor-
mation [19]. Mobashsher et al. [21] showed that a portable 
wideband microwave system with a custom unidirectional 
antenna has potential to visualize intracranial bleedings. 
They used a realistic phantom fabricated by a 3D printer. 
The research group has presented several further studies 
on improvements of image reconstruction to achieve fast 
and accurate imaging [11, 12, 36, 37]. Recently, Mahmood 
et al. [19] showed that a priori information from magnetic 
resonance imaging and automatic segmentation of tissue 
types can be used to facilitate rapid imaging of intracranial 
bleedings.

The advantage of a machine-learning approach as com-
pared to imaging is that a classification algorithm can gen-
erate a diagnosis in real time without need for physician/
operator image interpretation. The disadvantages are that 
not as detailed information about the lesion is presented, 
and that an accurate classifier may require a large set of 
training data. We have shown that MWT has potential to 
localize traumatic intracranial bleedings using a diagnostic 
algorithm [5]. That study focused fully on localization of 
bleedings. It did not evaluate detection accuracy.

In this study, we assess the potential of MWT for detect-
ing traumatic intracranial bleedings, using a microwave 
helmet and a classification algorithm based on SVD. We 
focus on subdural hematoma (SDH), which has very high 
mortality: 50–85  % [10]. It is the traumatic intracranial 
bleeding that most commonly requires surgical evacua-
tion [10]. We model SDH by constructing a phantom in a 
human cranium. Furthermore, we perform numerical simu-
lations to mimic expected inter-variability from microwave 
measurements on an SDH patient population, by modeling 
SDH of several different sizes, at different locations, in 
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crania of varying sizes, with a layer of cerebrospinal fluid 
(CSF) of varying thickness.

2 � Methods

2.1 � Phantom construction

Solutions for mimicking the dielectric properties of blood 
and gray brain matter were created by mixing water, sugar, 
agar (Agar fine powder, Sigma-Aldrich, St.  Louis, USA) 
and salt, in proportions according to Table 1. The agar was 
used to make the solutions solidify into a relatively stiff 
gel. Formaldehyde  (Formaldehyde solution 37 wt%  H2O, 
Sigma-Aldrich) was added, 3 mL per L of phantom solu-
tion, to protect the phantoms from mold. Small quantity 
of red color  (Röd hushållsfärg, Dr.  Oetker Sverige AB, 
Mölndal, Sweden) was added to the bleeding phantom. 
Prior to adding agar, the dielectric properties were measured 
using a network analyzer (PNA, Agilent E8362B, Agilent 
Technologies, Santa Clara, CA, USA) and a dielectric probe 
kit (Agilent 85070E). They were similar to published val-
ues [8, 9], see Fig. 1. Measurements of dielectric properties 
were done before adding agar, because it was easier to avoid 
air between the probe tip and the measurement object when 
the solutions were in liquid state. The dielectric properties 
will not change substantially by adding agar [29]. After add-
ing agar, the solutions were heated to 70–80 ◦C. They were 
kept at that temperature for 4–5 min while stirring.

A human cranium that was divided at the upper part of 
the skull was used to contain the brain phantom. The cra-
nium was sealed by tape. The liquid brain matter solution 
was poured into the cranium via foramen magnum. After 
the solution had solidified, the upper part of the skull was 
removed and the integrity of the brain phantom was veri-
fied. The cranium was then sealed again, and measurements 
were performed (explained in Sect. 2.2), which were used 
as reference for simulating the case of a healthy patient, 
i.e., without any bleeding. Afterward, a model of SDH was 
constructed by cutting away a crescent-shaped [3] portion 
of the brain phantom with a scalpel and refill with blood 
phantom solution, see Fig. 2. The blood phantom solution 
was poured into place when it was in a semisolid state, so 
it filled out the cutaway part completely and the surface 
could be molded to follow the shape of the brain’s surface. 
It was then allowed to solidify completely. After measure-
ments, the bleeding was cut away and a larger bleeding 
was constructed. This was repeated for each new bleeding 
size. In total, four phantoms were created using the same 
brain phantom as base, one without bleeding and three with 
bleeding sizes of approximately 40 mL (thickness 0.5 cm), 

Fig. 1   Measurements of 
dielectric properties of phantom 
solutions compared to published 
values [1]. The shading in 
the legend box denotes traces 
belonging to the right-hand side 
axis. B blood, GM gray matter, 
Pub published values. The mean 
of measurements on several 
phantom solutions is shown 
(n denotes number). Standard 
deviations were small compared 
to the differences between blood 
and gray matter; they have been 
omitted for clarity
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Table 1   Recipes for blood and gray matter phantoms (volume per-
cent)

Ingredients Blood (%) Gray matter (%)

Water (deionized) 67.8 57.9

Sugar 26 36

Agar 6 6

Salt 0.2 0.1

Fig. 2   Model of SDH of approximate size 110 mL. The upper part of 
the skull was removed when the photograph was taken
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70 mL (thickness 1 cm) and 110 mL (thickness 1.5 cm). 
The aim was to create realistic shapes and sizes. Focus 
was on obtaining target thickness (the maximum distance 
from the inner surface of the cranium to the edge of the 
bleeding). The thickness was measured with a ruler. The 
sizes corresponded to clinically relevant SDH of different 
degrees of severity. Surgical evacuation is recommended if 
the SDH is thicker than 1 cm [3].

2.2 � Phantom measurements

A microwave helmet with 12  broadband antennas [27] 
was connected to a network analyzer with a built-in 
switching matrix  (Strokefinder  R10, Medfield  Diagnos-
tics  AB, Gothenburg, Sweden), see Fig.  3. To ensure 
good electromagnetic coupling to the measurement 
object, water bags were attached to the antennas using 
dual-stitching tape. The helmet was hung upside down, 
the cranium was inserted into the helmet, and the water 
bags were then filled. Two of the antennas at the neck 
were not used, since they did not obtain close contact 
with the (relatively small) cranium. To simulate meas-
urements on patients, where the helmet position will 
vary, we took the cranium out of the helmet, emptied 
the water bags and repositioned the cranium in the hel-
met after every third measurement. Thirty measure-
ments were performed on each phantom, for a total of 
120 measurements. The frequency range 0.1–3.0 GHz 
was measured, at a step size of 7.25 MHz. Each antenna 
in turn acted as transmitter. The complex amplitude of 
the scattering parameters Sij was measured, where Sii are 
reflection coefficients and Sij transmission coefficients, 
and i and j are antenna indices. The measurements j < i 
were disregarded due to reciprocity, Sij = Sji. In total, 
there were 55 channels for the ten antennas. All meas-
urements were performed within 48 h from phantom 
construction.

2.3 � Numerical simulations

To investigate“ness of the classification, with respect to patient 
inter-variability, a 2D numerical simulation of the measure-
ment setup was performed (Fig. 4). It was based on the finite 
element method [15] and implemented in MATLAB (version 
R2012a, MathWorks Inc., Natick, MA, USA). Eight antennas 
were used, resembling a 2D slice of the measurement setup. 
To match the broad frequency band excitation for the labora-
tory measurements, the antennas were modeled as parallel-
plate waveguides, filled with a material with relative permit-
tivity 20 (conductivity zero). The water bags connecting the 
port openings to the skull were introduced in the final model, 
which resulted in a substantial increase in the power transmit-
ted into the head. We used values for the frequency-dependent 
dielectric properties of the skull bone and CSF from [1, 8]. 
Values for gray matter and blood matched the measurements 
of the phantom. Values for water was calculated using a Debye 
model  [23]. Five parameters were included in the model:

1.	 Bleeding size: Crescent-shaped bleedings with thick-
nesses of 0.2, 0.5, 1, 2 and 2.5 cm.

2.	 Bleeding positions: Ten positions evenly spaced along 
the brain–cranium interface. Adjacent positions over-
lapped for bleedings thicker than 0.5 cm. For practical 
reasons, we utilized the geometrical symmetry to reduce 
the total simulation time. Bleedings were first created on 
the right side of the brain only. Bleedings on the left side 
were created by reusing the already computed scattering 
parameters of the right side simulations.

3.	 Head size: Seven sizes were modeled. The original 
head was an ellipse of size 18.2× 14.8 cm, equal to the 
dimensions of the human cranium used for the labo-
ratory phantom. We modeled head sizes of ±6 %, in 
steps of 2 %, from the original head size.

Network
Analyzer

Microwave helmet

Switchbox

Fig. 3   Schematic drawing of the experimental setup

Fig. 4   2D simulation model for patient inter-variability robustness 
investigation. The bleedings depicted have a thickness of 2 cm
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4.	 CSF: The thickness of the layer beneath the skull bone 
was varied randomly between 2 and 5 mm. In addi-
tion, a small elliptic CSF region in the interior of the 
brain was added. This elliptic region was included to 
coarsely mimic inhomogeneities in the center of the 
brain that are expected from the ventricular system.

5.	 Helmet position: The head was rotated randomly 
between ±6◦ relative to the antenna array. This corre-
sponds to a maximal rotation of the helmet of approxi-
mately ±1 cm relative to a patient’s forehead.

A dataset with 250 observations per bleeding size and 250 
observations without bleeding was created, for a total of 
1500 observations. Each observation was randomly drawn, 
without replacement, from a large dataset with approxi-
mately even distributions of bleeding sizes, head sizes and 
helmet positions. Thus, each class of bleedings, i.e., each 
bleeding size, was composed of many different geometric 
scenarios, mimicking patient measurements.

To evaluate classifier performance on unseen data, an 
additional dataset, here referred to as the validation dataset, 
was created. The same procedure as described above was 
used but with different parameter values for bleeding size 
and head size, spanning approximately the same ranges 
as for the original data, i.e., the dataset described above. 
The classifier was trained on the original data, and we then 
tested whether the case of “no bleeding” could be differen-
tiated from bleedings of any size, for the validation dataset.

2.4 � Data preprocessing and analysis

The magnitude and phase of the raw reflection Sii and trans-
mission coefficients Sij were plotted for visual comparison 
between measurements and simulations of SDH of different 

sizes to no bleeding, to evaluate whether there are any clear 
visual trends due to the presence/size of SDH compared to 
a healthy brain.

MATLAB (version R2012a) was used for all preprocess-
ing and analysis. Algorithms included in MATLAB were 
used when possible, and other algorithms were written 
in-house.

2.4.1 � Preprocessing

For each measurement, all frequencies of the reflection 
Sii and transmission coefficients Sij were combined into 
one complex vector x. As an example, for the phantom 
measurements the 55 channels, each consisting of 401 
frequencies, were combined into a vector with a total of 
55× 401 = 22,055 elements. No further preprocessing of 
the raw data was performed.

2.4.2 � Classification algorithm

The classification algorithm is based on the same princi-
ples as used in [26], but the implementation in this study 
enables classification of multiple classes. Given C the total 
number of classes, let Uc be a subset containing data from 
class c, where c ∈ {1, · · · ,C}. Hence, ∀ xc,i ∈ Uc the signal 
is modeled as:

where, Uc is the subspace basis with a dimension mc; vec-
tor αc(i) contains the weights of the basis vectors, and ec 
is additive white noise [5, 25]. Therefore, the classification 
criterion is to find the class c with the smallest distance dc 
from the data xi to the basis Uc. The detailed classification 
algorithm is shown in Algorithm 1. 

(1)xc,i = Ucαc(i)+ ec

Algorithm 1 Classification algorithm (c ∈ {1,2, · · · ,C}):
Train

- Preprocess the raw data to produce feature vectors xi
- Construct the measurement matrix Xc using the training data from class c: Xc =

[
xc,1, · · · ,xc,Nc

]
, ∀c

- Estimate the basisUc = {uc,k}mk=1 (m set to Nc in this study) for each class by SVD:
Xc =UcScVH

c =UcΛc

Uc is the subspace basis and Λc is the coefficient matrix.
Classify Given test data xi of unknown class:

- Compute the distance dc(xi):
dc(xi) =

∥
∥xi−UcUT

c xi
∥
∥
2

- Estimate ĉi by finding the smallest distance:
ĉi = arg min

c
d2c (xi).
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2.4.3 � Validation

Fivefold cross-validation  [2] was used to estimate the 
classification accuracy for both laboratory and simulated 
data (except for the validation dataset). This means that 
the dataset was divided into five randomized folds with 
approximately equal number of observations. One fold at 
a time was left out. The classifier was trained on data from 
the remaining four folds, and the observations in the left 
out fold were then classified. This procedure was repeated 
for all folds, i.e., performed five times.

For the laboratory experiments, we considered measure-
ments where the helmet position was unchanged (the cra-
nium was repositioned after every third measurement) to be 
replicate measurements. They were treated as one unit that 
was included in either training or validation data, to avoid 
introducing bias due to replicate measurements being pre-
sent in training data.

For the simulated data, the classification accuracy as 
a function of number of samples per class was assessed 
by extracting random subsets from the full dataset and 
employing fivefold cross-validation on each subset. This 

was done to evaluate how large training dataset the clas-
sifier needs to achieve high accuracy. The separate valida-
tion dataset, with other values of bleeding and head sizes, 
was used to confirm that our model was not overfitted. The 
original dataset was used as training data, and the classifi-
cation accuracy was calculated by dividing the validation 
data into only two classes: No bleeding and Bleeding. If an 
observation in the validation dataset was closest to the sub-
space basis of the No bleeding class of the original data, it 
was classified as No bleeding, else if closest to any of the 
bleeding subspaces of the original data, it was classified as 
Bleeding.

3 � Results

The classification accuracy was overall high. Figure  5 
shows the classification results for the laboratory meas-
urements. The classification accuracy is 100 % for all 
classes. Table  2 and Figs.  6, 7 show the classification 
results for the simulated data. The classification accuracy 
is 82–96 % for all classes, i.e., when the full dataset was 

Fig. 5   Distances dc to each 
subspace for all observations for 
the laboratory data. The class c 
is given in the plot titles. We see 
that the classification accuracy 
is 100 % since all observa-
tions have shortest subspace 
distance to their respective 
class (1). We also see that there 
is a tendency that bleedings of 
sizes close to each other are 
more similar than bleeding 
sizes far apart, as measured 
by the subspace distances, 
e.g., for the test on 110 mL is 
d110mL < d70mL < d40mL <

dNo bleeding (bottom right plot). 
The variability caused by taking 
the helmet on and off every 
third measurement shows in 
the plots; groups with repeated 
observations are close to each 
other, whereas there can be 
a relatively large difference 
between groups
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used with fivefold cross-validation. The true positive rate 
(sensitivity) for detection of bleeding (regardless of size) 
was 100 %, whereas the true negative rate (specificity) was  
96 % (Fig.  7). However, a high accuracy required a rela-
tively large training dataset. The classification accu-
racy dropped when smaller subsets of the data were used 
(Fig. 7). For both the laboratory and the simulated data, the 
bleeding size correlates with the subspace distances, i.e., 

the smaller the bleeding the closer it is to the No bleeding 
subspace (Figs. 5, 6). Bleedings of sizes close to each other 
are more similar to each other than sizes far apart. For the 
few misclassifications of simulated data, the predicted class 
is a bleeding with a nearby size (Table 2).  

The outcome of the classification of the validation data-
set based on training on the original simulation dataset is 
shown in Table 3 and Fig. 8. The classification accuracy is 
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Fig. 6   Box plots showing the distances dc to each subspace, for all 
classes c, for the simulated data. The class c is given in the plot titles. 
The line in the middle of the box shows the median, and the bottom 
and the top of the box show the 25th and 75th percentile, respectively. 
The whiskers extend to 1.5 times the inter-quartile range away from 

the top or bottom of the box, or to the furthest observations from the 
box. Data points outside the whiskers are plotted individually. We see 
that there is a large margin between the No bleeding class and large 
bleedings, and that there is a clear trend that the subspace distances 
correlate with the size of the bleeding
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99 % (Bleeding versus No bleeding), with only a few mis-
classifications (Table 3). Figure 8 shows that the size of the 
bleedings in the unseen dataset correlates with the subspace 
distance to the No bleeding class of the training data, i.e., 
smaller bleedings are closer to the No bleeding class.

Analysis of plots of raw reflection Sii and transmission 
coefficients Sij revealed that the effect of SDH is small 

compared to the effects of, e.g., head size, see Fig. 9. No 
consistent visual trends due to SDH were identified in plots 
of magnitude and phase for the measurements on the labo-
ratory phantom. Even though plots of the mean magnitude 
indicate a difference  (Fig.  9), the standard deviation for 
laboratory data is relatively large and obscures any possible 
trends due to SDH. For the simulated data, it was clear that 
head size is the parameter producing the largest variability, 
whereas differences due to bleeding size and position are 
relatively small (Fig. 9).

4 � Discussion

This study shows that MWT is a promising technology 
for prehospital detection of traumatic intracranial bleed-
ings. The classifier distinguished all observations on three 
sizes of bleedings and no bleeding for the laboratory SDH 
model (Fig. 5). Furthermore, using a finite element model, 
we simulated a large number of bleedings with differ-
ent sizes, at various positions, in crania of different sizes. 
The classifier identified SDH with high accuracy (Table 2; 
Fig. 7 ), despite the relatively high variability from varying 
head size (Fig. 9b, c). Furthermore, classification accuracy 
was high on an unseen dataset with different values of head 
and bleeding sizes (Table 3). This indicates that the model 
was not overfitted to the original dataset.

This conceptual study evaluates the hypothesis that it is 
possible to detect small signal changes caused by intracra-
nial bleedings in a heterogeneous dataset with high vari-
ability, due to inter-individual differences between patients. 
Results for the phantoms constructed in the human cranium 
indicate that it is possible to detect SDH using the current 
microwave system in conjunction with the classifier, with 
consideration taken to the variability caused by taking the 
helmet on and off (Fig. 5). However, this does not consider 
the inter-patient variability. It was not feasible to construct 
physical phantoms of many different head sizes. Therefore, 
the simulations were performed to evaluate the impact of 
inter-patient variability. The results indicate that it is possi-
ble to differentiate bleeding sizes (Fig. 6), if a large training 
dataset is available (Fig. 7).

Bleeding size correlated with the subspace distance to 
the No bleeding class and bleedings of nearby sizes were 
more similar to each other compared with bleeding sizes far 
apart (Figs. 5, 6, 8). We have previously shown that there 
is good potential for estimating the position of a bleeding 
[5]. These results combined point to that MWT, in addition 
to reliable SDH detection, can be of further clinical value 
by estimating size and position of the lesion. In particular, 
the potential for size estimation can be valuable for moni-
toring patients, to detect an expanding bleeding before the 
patient’s condition deteriorate.
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per class, for the simulated data. Total accuracy was calculated by 
summing all correctly classified observations (the main diagonal of 
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ples per class) and dividing by the total number of observations. To 
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from the top or bottom of the box, or to the furthest observations from 
the box. Data points outside the whiskers are plotted individually. We 
see that dNo bleeding correlates with bleeding size; which is consistent 
with the result for the original simulation dataset (Fig. 6)
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The laboratory model of SDH was made in a human 
cranium. This was important to make the model more 
realistic, especially since it was expected that the cranium 
would attenuate the signal substantially [32]. The SDH 
model was simplified due to practical reasons. It was not 
feasible to construct an advanced phantom with a realistic 

anatomy of the human brain. However, the healthy human 
brain is symmetric with respect to the left and right hemi-
spheres. Our hypothesis is that the altered scattering pat-
tern of the microwave signals, due to the asymmetry intro-
duced by a lesion, is the main reason for that bleedings can 
be detected by the classifier. In this regard, the model is 
suitable. A disadvantage with the laboratory phantom used 
in this study is that although the bleeding compartments 
were cut out and filled with bleeding solution in a meticu-
lous manner, it cannot be guaranteed that small pockets of 
air are not present. Furthermore, the dielectric properties 
could not be matched closely to published values across 
the full frequency interval (Fig.  1). In future studies, it 
would be valuable to confirm the results obtained in this 
study using improved and more realistic models of the 
brain, such as [21].

Table 2   Confusion matrix for 
the classification result for the 
simulated data

The rows show the actual class of a bleeding, and the columns show the predicted class. The number of 
observations correctly classified for each class is shown in the main diagonal

NB No bleeding

NB 0.2 cm 0.5 cm 1.0 cm 2.0 cm 2.5 cm

NB 240 5 4 0 0 1

0.2 cm 0 207 37 4 1 1

0.5 cm 0 33 205 9 0 3

1.0 cm 0 10 9 228 2 1

2.0 cm 0 5 5 1 228 11

2.5 cm 0 11 5 3 12 219

Table 3   Confusion matrix for the classification result for the simu-
lated validation dataset

The rows show the actual class, and the columns show the predicted 
class. The number of observations correctly classified for each class 
is shown in the main diagonal

No bleeding Bleeding

No bleeding 237 13

Bleeding 2 1248
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Fig. 9   Mean magnitude for selected scattering parameters Sij for 
antennas positioned at opposite sides of the head close to the ears. 
Refer to Fig.  4, where the signal is transmitted between the two 
antennas situated at y = 0. The closest corresponding pair of anten-
nas was chosen for the laboratory measurements. The direct signal 
pathway passes through the bleeding, see Figs.  2 and 4, where the 
depicted bleeding at position 1 was selected. The laboratory meas-
urements (a) were lightly smoothed using Eilers’ algorithm [7] with 
d = 2 and � = 10, to reduce noise and increase clarity. The large 

magnitude difference between laboratory and simulated data is most 
likely due to that signal is transmitted directly between antennas, 
without passing the head, to a larger degree for laboratory data. Fur-
thermore, a simplified antenna model was used. a Laboratory data: no 
bleeding compared to the three different sizes of bleeding. b Simu-
lated data: three different head sizes for simulations without bleed-
ing. c Simulated data: no bleeding compared to two sizes of bleeding. 
Some bleeding sizes were omitted for increased clarity
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The laboratory data showed relatively large variability/
noise (Fig.  9). This was to a large degree caused by tak-
ing the helmet on and off. It was done to mimic the clini-
cal scenario, where the helmet position will vary. From 
Fig.  5, we see that the variability from taking the helmet 
on and off manifests in the subspace distance. The repeated 
observations in groups of three are close together, while 
the difference between the groups is considerably larger. 
The differences between the SDH models were larger than 
the differences due to helmet position  (Fig.  5). The clas-
sification accuracy was high, and the trends for the sub-
space distances for different classes followed the numerical 
simulations (Figs. 5, 6). Thus, the classifier seems capable 
of identifying the pattern due to bleeding, despite that this 
effect was small relative to other sources of variability/
noise, and the apparent strong cross talk between antennas 
(Fig. 9). This was achieved for a relatively small dataset, as 
compared to the numerical data where a large training data-
set was necessary (Fig. 7). A plausible explanation is that 
for the laboratory phantom the cranium size and bleeding 
position were fixed and the effect of bleeding size should 
then be more readily detectable.

For the numerical simulations, a 2D electromagnetic 
finite element method was employed to achieve a fast and 
efficient simulation tool, which described the physics for 
the measurement setup reasonably well. The model was 
rather simple for practical reasons. Our aim was not to cre-
ate simulation data that are highly realistic with respect to 
patient anatomy, but to create a realistic model of the varia-
bility due to head size, bleeding position and bleeding size, 
and CSF, as will be experienced for future measurements 
on patients.

We consider this to be a suitable approach to simulate 
patient measurements in the context of a classification test, 
since the fundamental physics and numerical method are 
well known and understood. The main limitations of the 
simulation model are that the anatomy was simplified and 
that simulations were performed in 2D, which limits the 
antenna structures that are possible to realize.

Accurate detection may require that the classification 
algorithm is trained on a relatively large number of patients 
(Fig. 7). Further development of the classification method, 
to realize a high classification accuracy for smaller train-
ing datasets, may decrease the number of patients needed 
in future clinical studies.

5 � Conclusion

This study presents a new method for detection of trau-
matic intracranial bleedings using MWT in conjunction 
with a diagnostic algorithm. Through laboratory measure-
ments and numerical simulations, we show that the method 

has potential for accurate detection of clinically signifi-
cant bleedings. This is promising for the development of a 
simple-to-use instrument to recognize patients with occult, 
severe brain injury already in the prehospital setting.
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