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Knowledge of the current tyre-road friction coefficient is essential for future autonomous vehicles. The environmental 
conditions, and the tyre-road friction in particular, determine both the braking distance and the maximum cornering 
velocity and thus set the boundaries for the vehicle. Tyre-road friction is difficult to estimate during normal driving due to 
low levels of tyre force excitation. This problem can be solved by using active tyre force excitation. A torque is added to one 
or several wheels in the purpose of estimating the tyre-road friction coefficient. Active tyre force excitation provides the 
opportunity to design the tyre force excitation freely. This study investigates how the tyre force should be applied to 
minimize the error of the tyre-road friction estimate. The performance of different excitation strategies were found to be 
dependent on both tyre model choice and noise level. Furthermore, the advantage with using tyre models with more 
parameters decreased when noise was added to the force and slip ratio.   
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1 Introduction 
 

In strive for autonomous vehicles modern passenger cars are being equipped with an increasing 
number of Advanced Driver Assistance Systems (ADAS). Future fully autonomous vehicles, 
level 5 autonomous vehicles as defined in [1], must be able to handle all aspects of driving for 
all roadway and environmental conditions manageable by a human driver. The environmental 
conditions and the tyre-road friction in particular, determine the braking distance and the 
maximum cornering velocity. Without any knowledge of the tyre-road friction the worst-case 
scenario would have to be assumed, implying a very conservative drive strategy for autonomous 
vehicles. This could result in poor customer acceptance since there will be situations where it 
is obvious to the passengers/driver that the safety margins are unreasonably large for the 
circumstances. A conservative drive strategy could potentially also decrease the traffic flow 
and create less acceptance from other vehicles on the road. Adapting the driving strategy to the 
current environmental conditions is therefore important for autonomous vehicles. Lower level 
of autonomous driving and active safety systems can also benefit from real-time information 
about the current tyre-road friction coefficient. Autonomous Emergency Braking (AEB) could 
for instance be improved by adapting the intervention thresholds based on an estimated friction 
coefficient.  

There exist many, fundamentally different, approaches to estimate the current environmental 
conditions. A simple example is the warning message in the instrument cluster when the 
ambient temperature is close to or below water freezing temperature. Although this information 
is useful for the driver, the ambient temperature does not give a direct indication of the current 
tyre-road friction coefficient. Hence, for active safety systems and autonomous vehicles more 
accurate information is required. Friction estimation methods in general can be divided into two 
different categories, cause- and effect-based methods [2, 3]. Cause-based approaches, as the 
name suggests, identify the environmental causes for different tyre-road friction coefficients 
such as, ambient temperature, water on the road, snow, ice etc. The effect-based approaches 
measure the effects of the current road surface on the vehicle response to identify a tyre-road 
friction coefficient. Optical systems are commonly used for cause-based approaches, see for 
example [4]. These systems can detect the road surface ahead of the vehicle and thus provide a 
short preview of the upcoming road.  

Effect-based approaches can only detect the current friction coefficient. However, the 
consequence of this can be resolved by introducing cloud-based communication between 
vehicles, see for instance the project Road Status Information (RSI) [5]. Effect-based 
approaches also have the advantage of estimating the actual tyre-road friction coefficient given 
by the current tyre-road combination. The friction coefficient can vary on the same road-surface 
for different tyres depending on the properties of the tyre. It should also be noted that the same 
tyre on the same class of surface (snow, ice, asphalt etc.) can have different friction coefficients 
depending on the structure of the surface and other ambient conditions [6]. This makes it 
difficult to determine the friction coefficient accurately by only classifying the road surface.  
When cloud-based services are used to share friction information between vehicles, effect-
based friction estimation approaches will provide friction information for the tyres that are fitted 
to the measuring vehicle. This mean that the effect-based friction estimators cannot provide 
highly accurate preview information and predict the exact future friction coefficient for the 
vehicle. However, friction coefficient variations in the same class of road surface can still be 
possible to capture on average with several measuring vehicles available.   

A drawback with effect-based approaches is that they normally require large tyre excitation 
(large tyre forces) to achieve accurate friction estimates [7-11]. Studies that investigate if the 



maximum road-friction coefficient can be estimated from only the slip stiffness of the tyre-road 
combination have been made, see e.g. [12, 13]. This would reduce the required tyre excitation 
to levels which can be found during normal driving. Although the road surface influence on the 
slip stiffness has been shown, no straightforward correlation between the slip stiffness and the 
maximum road friction coefficient has been shown in literature. Furthermore, the slip stiffness 
is sensitive to other parameters than the road surface, see [14]. More information than the slip 
stiffness is therefore needed to determine the friction coefficient. However, different road 
surfaces may be identified using the slip stiffness with a-priori information about the tyres and 
the road surfaces that the vehicle will operate on. In practice then, with unknown tyres fitted to 
the vehicle and at least some road surfaces that are not known a-priori, the requirement of large 
tyre excitation still remains.   

The requirement of high excitation implies that the tyre-road friction coefficient cannot be 
estimated during normal driving, except for very slippery road conditions. Possibilities to 
estimate the friction coefficient are thus scarce when relying purely on the driver input in day-
to-day driving conditions. It has been previously suggested in literature to use active tyre force 
excitation where torques are actively applied to the wheels in the sole purpose to estimate the 
tyre-road friction coefficient [15-17]. The authors have previously published a proof-of-concept 
where this method was implemented and evaluated in a real vehicle, see [18]. The basic concept 
of active tyre force excitation is to achieve large opposite tyre forces on the front and the rear 
axle, while maintaining the intended acceleration of the driver. This is possible by adding a 
propulsion torque on the front axle while using the friction brake on the rear axle to maintain 
the desired acceleration level. The level of excitation, the location and time of the friction 
estimation, can thus be controlled. Naturally, it has to be ensured that the stability of the vehicle 
is guaranteed and that the wear, energy consumption and comfort are acceptable.  

With the possibility to control the tyre forces freely, and thus also the data used for friction 
estimation, a new degree of freedom is available when developing the tyre-road friction 
estimator. Instead of relying on the data from the driver inputs only, it is possible, within the 
limitations of the actuators, to design the measurements. This paper exploits the new degree of 
freedom to excite the tyre forces to improve the quality of the estimated friction. Different 
strategies are investigated and compared, including ones derived from optimization. Focus is 
put on the influence of modelling errors of the tire model, with three commonly used models in 
the investigation. Measurements from two different surfaces are used as reference, representing 
the actual tyre behaviour.  

.  



2 Method 
This section describes the different tyre models used in the investigation and the optimization 
of the excitation. The excitations are evaluated for six different tyre-road combinations. Only 
pure longitudinal slip is considered since the lateral tyre forces can be neglected in the 
motivating problem, see [18]. In a real vehicle, the intervention may be performed when small 
lateral tyre forces are present as well. Furthermore, the tyre dynamics has been neglected since 
it is assumed that the active tyre force excitation will be done slow enough to neglect the tyre 
relaxation. This is motivated by the aim of the study, to understand which measurement points 
to choose without making the problem unnecessarily complicated. A batch estimation strategy 
requires that the friction coefficient is estimated after the intervention. This strategy is suitable 
in combination with active tyre force excitation since the intervention is well-defined and time 
limited. However, this paper does not define when the estimator should be switched off for a 
real intervention. The batch strategy also allows the estimator to take all the measurement points 
into consideration simultaneously. A flow chart of the optimization method can be seen in 
Figure 1. The details of the optimization method are described in the other sections in this 
chapter.  

 
Figure 1, Flow chart of optimization method 

The optimization is performed for all tyre-road combinations simultaneously in order to study 
the influence of modelling errors and to find a generic estimation strategy which is valid for 
several road surfaces. When implemented in a real vehicle the road surface is unknown and the 
estimation strategy should thus minimize the estimation error for all road surfaces. The 
optimization is also performed on asphalt and gravel separately to compare the differences in 
excitation strategy. The main purpose of the excitation optimization was to investigate any 
general trends in the optimized excitation that could serve as inspiration to other excitation 
strategies that are implementable in a real vehicle and to use the optimized excitations as 
benchmarks to which other excitation strategies could be compared. 

2.1 Reference Tyre Characteristics 
Due to the loose surface on gravel, the slip stiffness tends to be lower and the peak less 
distinguished as compared to wet asphalt. By using two different road surfaces a more general 
excitation can be obtained that minimizes the friction estimation error for several different tyre 
and road surface combinations. The measurements, which are the same measurements that were 
used in [8], are performed with the mobile tyre testing rig BV12. A negative torque is applied 
to the wheel and decreased until wheel lock. The measurement signals used in this paper are 
the longitudinal force 𝐹𝐹𝑥𝑥, the vertical force 𝐹𝐹𝑧𝑧, the rotational velocity of the wheel 𝜔𝜔 and the 
longitudinal velocity of the wheel centre 𝑣𝑣𝑥𝑥.    
The reference measurements were filtered and the slip and force offsets removed so that the 
slip is zero at zero longitudinal force. Furthermore, in order to optimize the excitation, the tyre 
force was normalized with both the vertical force,  



𝑓𝑓 =
𝐹𝐹𝑥𝑥
𝐹𝐹𝑧𝑧

 (1) 

and the maximum normalized force,  

𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑓𝑓

𝑓𝑓 max
 (2) 

The second normalization, Equation (2), was done to have decision variables with the same 
relative excitation levels for the different tyre-road surface combinations in the optimization 
problem, see Figure 2. The oscillations in the measured tyre characteristics at larger slip values 
are due to oscillations in the vertical force measurements. Even though the tyre characteristics 
are averaged over several measurements, it is difficult to get a large number of measurement 
points at slip values beyond the peak force. The purpose of a friction estimator is to estimate 
the friction level before the maximum force is reached, hence only measurement points below 
the peak force were considered in this paper.   

 
Figure 2, Measured and filtered normalized tyre force 𝒇𝒇 and normalized normalized tyre force 𝒇𝒇𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 vs 
longitudinal slip ratio for the different tyre-road combinations. 

The reference tyre characteristics are implicitly assumed to be representative for the tested tyres 
and surfaces. Naturally, the test method, equipment and the environmental conditions influence 
the test results. Furthermore, these tyre-road characteristics are not valid for other asphalt and 
gravel surfaces. Although the reference tyres do not describe the tested tyre perfectly, they 
represent a variety of tyre-road combinations, thus allowing for a more general formulation of 
the results and conclusions. The slip ratio 𝜎𝜎𝑥𝑥 used throughout the paper, is defined as  

𝜎𝜎𝑥𝑥 =
𝑣𝑣𝑥𝑥 − 𝑅𝑅𝜔𝜔
𝑅𝑅𝜔𝜔

 (3) 

2.2 Evaluated Tyre Models 
Two of the models chosen for evaluation are based on the brush tyre model but with different 
pressure distributions, parabolic (Equation (4)) and constant pressure distribution (Equation (5))  



𝑓𝑓(𝜎𝜎𝑥𝑥) = �−𝐶𝐶𝜎𝜎𝑥𝑥𝜎𝜎𝑥𝑥 +
𝐶𝐶𝜎𝜎𝑥𝑥
2 𝜎𝜎𝑥𝑥|𝜎𝜎𝑥𝑥|

3𝜇𝜇
−
𝐶𝐶𝜎𝜎𝑥𝑥
3 𝜎𝜎𝑥𝑥3

27𝜇𝜇2
                                 𝑓𝑓𝑓𝑓𝑓𝑓 |𝜎𝜎𝑥𝑥| ≤

3𝜇𝜇
𝐶𝐶𝜎𝜎𝑥𝑥

−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜎𝜎𝑥𝑥)𝜇𝜇𝐹𝐹𝑧𝑧                                         𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒
 (4) 

The brush model with constant pressure distribution is often referred to as the Dugoff tyre 
model [19]. It is given by,  

𝑓𝑓(𝜎𝜎𝑥𝑥) = �
𝐶𝐶𝜎𝜎𝑥𝑥𝜎𝜎𝑥𝑥(2− 𝜆𝜆)𝜆𝜆                                                           𝑓𝑓𝑓𝑓𝑓𝑓 |𝜆𝜆| < 1

𝐶𝐶𝜎𝜎𝑥𝑥𝜎𝜎𝑥𝑥                                                              𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒  

(5) 
𝜆𝜆 =

𝜇𝜇
2�𝐶𝐶𝜎𝜎𝑥𝑥𝜎𝜎𝑥𝑥�

 

These tyre models have two parameters for pure longitudinal slip, the slip stiffness 𝐶𝐶𝜎𝜎𝑥𝑥  and the 
friction coefficient 𝜇𝜇 and are not adaptable to different curvatures of the slip-force curve. In 
contrast the Magic formula has four parameters and thus additional freedom to adapt the 
resulting tyre characteristics [20],  

𝑓𝑓(𝜎𝜎𝑥𝑥) = 𝐷𝐷 sin(𝐶𝐶 tan−1(𝐵𝐵𝜎𝜎𝑥𝑥 − 𝐸𝐸 (𝐵𝐵𝜎𝜎𝑥𝑥 − tan−1(𝐵𝐵𝜎𝜎𝑥𝑥)))) (6) 

The 𝐶𝐶 parameter in the magic formula mainly affects the decrease in force after the peak of the 
tyre characteristics and the E parameter mainly affects the shape near the peak. Two different 
variations of the Magic formula are evaluated and compared, one where the  𝐶𝐶 parameter is 
fixed to one and another model where the 𝐶𝐶 parameter is allowed to vary in the range from 1 to 
1.6. The effect of adding additional parameters is thus evaluated. The range of the other tyre 
parameters has to be constrained to make sure that the resulting tyre characteristics are realistic 
and to aid the optimization problem in estimating the tyre parameters. The parameter ranges 
can be seen in table 1.  
 
Table 1, Tyre Parameter Constraints 

𝐶𝐶𝜎𝜎𝑥𝑥 [1,200] B [1,200] 

𝜇𝜇 [0.05,1.5] 𝐶𝐶 [1,1] or [1,1.6] 

𝐷𝐷 [0.05, 1.5] 𝐸𝐸 [-1.5, 1] 

 

2.2.1 Parametric sensitivity analysis 
A sensitivity analysis was performed for the summer tyre to understand in which region data 
should be sampled to estimate the different tyre parameters, see Figure 3 and 4. The variations 
have been normalized so that the maximum deviation corresponds to 0.1 in normalized tyre 
force f. The grey areas are derived from the partial derivatives of the force with respect to the 
different parameters at that slip ratio value. Note that the figures show the first order variation 
around the nominal value which describes the nominal deviation in each slip point and not how 
the curve is affected globally by the different parameters. Figure 4 clearly shows the difference 
between the influence of the slip stiffness and the friction parameter for the brush model and 
the Dugoff model. The results for the Magic formula indicate that the B, C and E parameter all 
have similar effect on the tyre characteristics but at different slip levels. Note that the E 



parameter does not affect the linear tyre region in the Magic formula as opposed to the B and 
C parameters.   

The sensitivity analysis can explain part of the performance of the optimization procedure. It is 
important to remember that these figures only indicate at which force level a certain parameter 
should be estimated provided that there are no modelling errors. If modelling errors are present, 
it may be beneficial to avoid a certain excitation level in order to avoid that areas with large 
modelling errors influence the result. Naturally, with real test data, modelling errors are present 
and depending on the size of these errors, the optimized excitation will either avoid or seek out 
the areas where the partial derivatives with respect to the unknown parameters are large. Figure 
3 and 4. also show why a large excitation is required to determine the friction coefficient 
accurately. At low tyre forces, there is not enough information to determine the peak value. 
This information from the sensitivity analysis could potentially be included in the optimization 
algorithm to actively seek out or avoid utilization levels with large parameter gradients 
depending on the size of the modelling error. In real-time, the information could be used to give 
different weights to the measurement points provided that a recursive tyre parameter estimator 
is used. The main purpose to include the sensitivity analysis in this study was to indicate why 
the genetic algorithm used in the optimization procedure prefer some utilization levels.  

 
Figure 3, Parameter sensitivity Magic formula, 0.1 normalized force variation. 



 
Figure 4, Parameter sensitivity Brush model and Dugoff model, 0.1 normalized force variation. 
 

2.3 Optimization Problem 
This section describes and formulates the optimization problem. The objective of the 
optimization is to find the best excitation that minimizes the friction estimation error. The 
optimization problem is split into two different layers of interconnected optimization problems, 
inner problems and an outer problem. The inner problems consist of the tyre parameter fitting 
to a given tyre force excitation, Equation (12). In a real-world application this inner 
optimization problem can be replaced by a recursive estimator. However, to study the optimized 
excitation independently of the estimator approach, batch optimization problems were 
formulated for the inner layer. The tyre parameters are thus found through optimization for each 
tyre-road combination using all the available data. The goal of the outer optimization problem 
is to minimize the friction coefficient estimation errors of the inner problems, i.e. the difference 
between the measured and estimated maximum friction coefficients, see Equation (7).  

𝐽𝐽𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛 = ��𝜇𝜇𝑜𝑜𝑒𝑒𝑜𝑜,𝑘𝑘 − 𝜇𝜇𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘�
𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜

𝑘𝑘=1

 (7) 

The force in the inner optimisation problems 𝑓𝑓𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘 (Equation (12)) corresponds to the 
normalized force f (Equation (1)) and 𝜇𝜇𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘 corresponds to the maximum normalized 
force 𝑓𝑓𝑛𝑛𝑚𝑚𝑥𝑥 in Equation (2) for the tyre-road combination k. As seen from Equation (6), the cost 
function of the outer optimization problem is defined as the sum of the absolute errors of the 
friction estimates for the six different road-tyre combination. By choosing the absolute error 
instead of the square error of each estimate, large estimation errors have a lower weighting. 
Hence, the risk of finding a minimum that mainly minimizes the largest friction estimation error 
is reduced. The optimized force excitation, normalized with the vertical force and 
𝑓𝑓𝑛𝑛𝑚𝑚𝑥𝑥  according to Equation (2), is found as, 

𝒇𝒇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∗ = arg min 
𝒇𝒇𝑛𝑛𝑜𝑜𝑛𝑛𝑛𝑛

𝐽𝐽𝑓𝑓𝑜𝑜𝑜𝑜𝑒𝑒𝑓𝑓 (8) 

with the constraints 



0 < 𝒇𝒇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑠𝑠) < 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑚𝑚𝑥𝑥  𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠 = 2,3 . .𝑁𝑁 (9) 

𝒇𝒇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(1) = 0 (10) 

The tyre models that are used to estimate the tyre parameters do not perfectly describe the 
measured tyre characteristics and modelling errors will therefore be present. The optimized 
excitation for a single tyre-road combination will be influenced by these modelling errors. 
Hence, by only selecting a few different excitation levels, the friction estimation error can be 
very small for a single tyre-road combination but the obtained excitation would not perform as 
well for other surfaces or tyres. The optimization of the excitation was thus done to minimize 
the friction estimate error for all six different tyre-road surface combinations simultaneously. 
By using six different road-tyre combinations the effect of modelling errors in the tyre model 
will be captured in the optimized excitation. The friction coefficient in the inner optimization 
problem is estimated by minimizing the force error between the model and the chosen excitation 
points, Equation (11-15) where  

 𝜇𝜇𝑜𝑜𝑒𝑒𝑜𝑜,𝑘𝑘 = arg min 
𝜽𝜽𝑖𝑖𝑛𝑛𝑛𝑛

𝐽𝐽𝑖𝑖𝑛𝑛𝑛𝑛𝑜𝑜𝑛𝑛 (11) 

with,  

𝐽𝐽𝑖𝑖𝑛𝑛𝑛𝑛𝑜𝑜𝑛𝑛 = � �𝑓𝑓𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘(𝑚𝑚) − 𝑓𝑓�𝜽𝜽𝑖𝑖𝑛𝑛𝑛𝑛,𝜎𝜎𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘(𝑚𝑚)��
2

𝑁𝑁𝑖𝑖𝑛𝑛𝑛𝑛

𝑛𝑛=1

 (12) 

𝑓𝑓𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘 = [𝑓𝑓𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘,1 𝑓𝑓𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘,2 … 𝑓𝑓𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘,𝑁𝑁]  (13) 

𝜎𝜎𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘 = 𝑓𝑓𝑜𝑜𝑡𝑡𝑛𝑛𝑜𝑜−1 (𝑓𝑓𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘) (14) 

where 𝑓𝑓𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘 is the normalized force (with vertical force) for each road-tyre combination and 
𝜽𝜽𝑖𝑖𝑛𝑛𝑛𝑛 are the unknown tyre parameters. With 𝜇𝜇𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘 denoting the reference friction coefficient 
from the measurements the different components in 𝑓𝑓𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘 can be expressed as in Equation (15). 
Additional points are added between the decision variables in 𝒇𝒇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. In total ten decision 
variables were used and with 𝑁𝑁𝑜𝑜𝑥𝑥𝑜𝑜 equal to ten, a total of 𝑁𝑁𝑖𝑖𝑛𝑛𝑛𝑛 =91 force-slip points are used 
when fitting the tyre parameters in each of the inner optimization problems.   

𝑓𝑓𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘,1(𝑗𝑗) = (𝒇𝒇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(1) +
𝒇𝒇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(2) − 𝒇𝒇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(1)

𝑁𝑁𝑜𝑜𝑥𝑥𝑜𝑜
∗ (𝑗𝑗 − 1))  ∗ 𝜇𝜇𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘 

(15) 

𝑓𝑓𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘,2(𝑗𝑗) = (𝒇𝒇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (2) +
𝒇𝒇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(3) − 𝒇𝒇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(2)

𝑁𝑁𝑜𝑜𝑥𝑥𝑜𝑜
∗ (𝑗𝑗 − 1))  ∗ 𝜇𝜇𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘 

.

.

.
 

𝑓𝑓𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘,𝑁𝑁−1(𝑗𝑗) = (𝒇𝒇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑁𝑁 − 1) +
𝒇𝒇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑁𝑁) − 𝒇𝒇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑁𝑁 − 1)

𝑁𝑁𝑜𝑜𝑥𝑥𝑜𝑜
∗ (𝑗𝑗 − 1))  ∗ 𝜇𝜇𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘 

𝑓𝑓𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘,𝑁𝑁 = 𝒇𝒇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑁𝑁) ∗ 𝜇𝜇𝑛𝑛𝑜𝑜𝑟𝑟,𝑘𝑘 



for  

  𝑗𝑗 = 1,2,3 …𝑁𝑁𝑜𝑜𝑥𝑥𝑜𝑜 

The extra points that are added in between the decision variables, with the number of points 
determined by the parameter 𝑁𝑁𝑜𝑜𝑥𝑥𝑜𝑜, provide two advantages. In order to decrease the 
computation time, the number of decision variables should be small. However, a small number 
of decision variables mean that the influence of the modelling errors potentially could be larger 
since two well-chosen measurement points can give a small friction estimate error. Two points 
could thus be chosen that would give large fitting errors in the inner optimization problem but 
result in a small friction estimation error. The additional points in between the decision 
variables remove the possibility to skip certain ranges of normalized tyre force. The extra data 
points in the inner optimization problem therefore reduce the likelihood to find data specific 
solutions due to modelling errors. Secondly, the cost function for the outer optimization 
problem should be smooth. The data with additional data points between the decision variables 
have a larger distribution since the cost function has to be evaluated in all these data points. 
This reduces the risk of the optimization algorithm getting stuck in a local minimum.   

The inner problem of finding the tyre parameters given a certain excitation is solved using a 
trust-region-reflective algorithm with upper and lower bounds on the tyre parameters, table 1. 
See [21] for a more extensive description of the algorithm. This algorithm was supplied with 
the Jacobian and Hessian of the objective function with respect to the decision variables to 
decrease the optimization time.    

The objective function in the outer optimization problem is directly dependent on how well the 
tyre model in the inner optimization problems fit the reference data. Due to these tyre modelling 
errors the outer cost function may not change smoothly with changing force excitation. 
Furthermore, the outer optimization problem may have many local minima due to the 
dependence on the inner problem. Gradient based optimization algorithms are thus unsuitable 
and a genetic optimization algorithm is used instead. See [22]  for a more extensive description 
of genetic algorithms. In the used genetic algorithm the children that are created through 
crossover and elite children are not mutated, see [23].  

Stochastic optimization methods, including genetic algorithms, may converge to different 
solutions when running the algorithms repeatedly. This means that there is no guarantee that 
the global minimum is obtained. On the other hand, if several solutions have similar objective 
function values they are all viable solutions, only slightly worse than the optimal solution [22]. 
The genetic algorithm thus fulfils the need to find a good (with low cost) excitation strategy 
that can be used as inspiration for excitations that can be implemented in a real vehicle and as 
a benchmark to which other excitations strategies can be compared. The optimization was run 
several times for each investigated case in order to increase the chance of finding the global 
minimum.   

2.4 Suboptimal excitations 
The excitation found through the optimization problem relies on a-priori information of the 
maximum friction coefficient. It is thus not certain that it will be possible to implement the 
optimized tyre force excitation in practice since the actual tyre-road combination is unknown. 
This is naturally also the main motivation behind the active tyre force excitation.  

Two excitation strategies that are straightforward to implement in a real vehicle, a ramp in the 
tyre force and a ramp in the slip ratio were evaluated and compared to the optimized excitation. 
These strategies have the benefit that they do not require knowledge of the maximum road 
friction coefficient, i.e. regardless of the actual maximum tyre-road friction coefficient the 



excitation strategies can be implemented. The sampled data will therefore correspond to the 
chosen estimation strategy even if the intervention has to be aborted, for instance due to safety 
reasons. In contrast, when using a nonlinear excitation strategy it is hard to predict at which 
utilization level the intervention will be stopped. 

The last strategy that is evaluated assume a recursive tyre parameter estimation. This method 
thus has a slow ramp until a force threshold is reached at which the gradient is increased and 
held as long as the force is below the utilization limit. The force is then slowly decreased until 
the sample limit is reached, see Figure 5. The idea is to determine the stiffness quickly, increase 
the force until the maximum allowed utilization is reached and then decrease the force slowly 
to determine the curvature of the slip-force curve near the friction limit. Due to the purpose of 
the excitation, to determine the slip stiffness before the other tyre parameters, the excitation is 
referred to as stiffness ramp.   

 
Figure 5, Excitation designed to first estimate the stiffness and then quickly reach large utilization, hereafter 
referred to as stiffness ramp.  

 



3 Optimized Excitations 
This section presents the results from the optimizations and compare the estimation errors for 
different excitation strategies. First some general results are presented where the friction 
estimation errors for a force ramp are presented. The optimized excitations indicate the 
estimator performance that can be achieved for the investigated tyre-road combinations. 
Although the tyre-road combinations are chosen to have different tyre characteristics in order 
to make the results more general, the optimized excitations have not been validated for other 
tyre-road combinations than the ones used in the optimization. The optimized excitations are 
intended to be used as a benchmark for other excitations and as inspiration for other excitation 
strategies. 

3.1 Friction estimation error with a force ramp excitation  
To get a basic understanding of the friction estimation error for different utilization levels, the 
inner optimization problem was used to estimate the tyre parameters for a force ramp with 
increasing utilized friction 𝜇𝜇𝑜𝑜𝑜𝑜𝑖𝑖𝑢𝑢 up to 95% friction utilization, see Figure 6. 200 samples were 
used for all excitation levels. The friction estimates and the corresponding errors were 
normalized for easier interpretation. On the asphalt surface, the brush model with parabolic 
pressure distribution provides a reasonable friction estimate for all excitation levels. In 
comparison the Dugoff model tends to follow the utilized friction more closely. The magic tyre 
formula has a small estimation error for all utilization on gravel. However, on the asphalt 
surface the error increases for large excitations. Note that these results are valid for one of the 
three investigated tyres. Also note that the error is increasing for larger utilizations on both wet 
asphalt and gravel for the Magic Formula both with and without fixed C parameter.  

 
Figure 6, Normalized friction estimation error as a function of utilized friction for a force ramp excitation, 
winter tyre on wet asphalt and gravel for all tyre models. 

3.2 Optimized excitation for a given maximum tyre utilization 
3.2.1 Optimized excitation for two road surfaces 

The results from three different optimization runs for each tyre model can be seen in Figure 7-
9. The maximum utilization level is limited at three different levels to investigate the differences 
in estimation error and estimation strategies depending on the allowed excitation level.  



The structures and modelling errors of the three different tyre models that are evaluated makes 
the optimized excitation strategies different between the models. The brush model with 
parabolic pressure distribution requires large excitation levels to estimate the friction 
coefficient. Hence, the tyre force is increased fast until the maximum excitation level is reached. 
For the magic tyre formula, the maximum allowed excitation level is avoided consistently both 
for fixed and free C parameter. This is likely due to the increase in error for large excitation 
levels, as seen from Figure 6. With free C parameter the maximum friction utilization is 71%, 
this model is therefore not evaluated when the maximum utilization limit is set to 75% in Figure 
8. Note also that the friction estimation error based on the estimated magic tyre formula 
parameters is smaller for a maximum utilization limit of 0.65 when the C parameter can be 
chosen freely.  

The excitation for the Dugoff tyre model has a large gradient up to between 40-50% utilization. 
This can be due to the structure of the Dugoff model, where the friction coefficient does not 
affect the shape of the curve below 50% utilization, as also seen in Figure 4. Note also that for 
all tyre models, only a few samples are found in the linear tyre region, presumably due to the 
fact that the stiffness can be sufficiently determined from a few points in a noise free 
environment. If noise is added though, more samples may be required in the linear tyre region 
to estimate the slip stiffness accurately.   

 
Figure 7, Optimized excitation for a maximum utilization of 95% (𝝁𝝁𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖,𝒏𝒏𝒎𝒎𝒎𝒎 = 𝟎𝟎.𝟗𝟗𝟗𝟗) for all road–tyre 
combinations  



 
Figure 8, Optimized excitation for a maximum utilization of 75% (𝝁𝝁𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖,𝒏𝒏𝒎𝒎𝒎𝒎 = 𝟎𝟎.𝟕𝟕𝟗𝟗) for all road–tyre 
combinations, MTF with estimation of the parameter 𝑪𝑪 not included since the maximum utilization with  
𝝁𝝁𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖,𝒏𝒏𝒎𝒎𝒎𝒎 = 𝟎𝟎.𝟗𝟗𝟗𝟗 was found to be 71%.  

 
Figure 9, Optimized excitation for a maximum utilization of 65% (𝝁𝝁𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖,𝒏𝒏𝒎𝒎𝒎𝒎 = 𝟎𝟎.𝟔𝟔𝟗𝟗) for all road–tyre 
combinations,  

 

3.2.2 Optimized excitation for one road surface 
Due to the differences in tyre characteristics on gravel and wet asphalt, the modelling errors 
and hence the optimized excitation strategies differs between the surfaces, see Figure 10 and 
11. For the brush model with parabolic pressure, the force is increased faster on asphalt than on 
gravel and the maximum utilization is consequently reached faster. The excitation strategy for 
the Dugoff model is shifted as well and the fast ramp in the beginning is not present on gravel 
for any of the optimized excitations.        



 
Figure 10, Optimized excitation for a maximum utilization of 95% (𝝁𝝁𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖,𝒏𝒏𝒎𝒎𝒎𝒎 = 𝟎𝟎.𝟗𝟗𝟗𝟗) for all tyres on gravel. 
 

 
Figure 11, Optimized excitation for a maximum utilization of 95% (𝝁𝝁𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖,𝒏𝒏𝒎𝒎𝒎𝒎 = 𝟎𝟎.𝟗𝟗𝟗𝟗) for all tyres on wet 
asphalt. 

3.2.3 Excitation strategies based on optimized excitation 
The optimized excitation for the Brush model can be seen as a ramp with a steep slope to the 
maximum allowed utilization level. The tyre relaxation and physical constraints of the engine 
should be considered since they limit the maximum force gradient that can be used to achieve 
accurate measurement data. From [18], the maximum achievable torque gradient that the 
engine, for that particular vehicle, could deliver to the driven wheels was 1200 Nm/s. Assuming 
a wheel radius of around 0.3, the maximum force gradient that can be used is 4000 N/s. This 
limit is hence used when implementing the saturated steep force ramp based on the optimized 
excitation for the brush model. The optimized strategies for the Magic formula and the Dugoff 
model are harder to implement in a way that would be neutral to all friction levels, i.e. the 
friction has to be known in order to implement these strategies. Although used as benchmarks 
when comparing different excitations they are not evaluated for all tyre utilizations.  



4 Evaluation of different excitation strategies 
The different excitation strategies suggested in section 2.4 and 3.2.3 are evaluated and 
compared to the lowest cost function values obtained in the optimization. The slip ramp and the 
force ramp have a constant gradient in slip and force respectively, up to the maximum utilization 
level. The steep force ramp has a large constant force gradient until the force reaches the 
maximum utilization level. At this level the force is kept constant until the end of the 
intervention. The last evaluated excitation, the stiffness ramp, has a slow ramp at the beginning 
of the intervention, followed by a fast ramp up to the maximum utilization at which the force is 
slowly decreased, see Figure 5. The excitation strategies are evaluated both with and without 
measurement noise in the force and slip signals. The excitations are compared separately on the 
different surfaces and for all six tyre-road combination simultaneously.  

4.1 Estimation Error without noise 
The results for the different excitations evaluated on all six tyre-road combination 
simultaneously can be seen in Figure 12. Note that for both the Dugoff tyre model and the Brush 
model with parabolic pressure distribution, a saturated steep force ramp seem to be the best 
option. For the magic formula it is not as obvious which excitation strategy to use. Depending 
on the excitation level, the strategy with the lowest cost varies. Generally though, the magic 
formula has a smaller error than the two other tyre models. Note that the magic formula with 
fitted C parameter does not obtain as low cost function values as found for the optimized 
excitation. The difference between fitting the C parameter or not is hence smaller when a 
suboptimal excitation is used. A possible explanation is the fact that a larger number of 
parameters allow the outer optimization problem to adjust the excitation in a way which gives 
a small friction estimation error for that particular excitation level.  

 
Figure 12, Average friction estimation error 𝑱𝑱𝒏𝒏𝒖𝒖𝒖𝒖𝒐𝒐𝒏𝒏

𝑵𝑵𝒏𝒏𝒖𝒖𝒖𝒖
 for all tyre-road combinations as a function of utilized 

friction for different excitation strategies, without any measurement noise 

Due to differences in the tyre-road interaction, the modelling errors of the tyre models will be 
different on different road surfaces. It is thus not obvious if the same excitation strategy can be 
used on two different surfaces for the same tyre model. However, comparing Figure 12 with 
Figure 13-14, it seems that the saturated steep force ramp is the best of the evaluated excitation 
strategies on both road surfaces for the brush model and the Dugoff model. The Magic formula 



shows no clear indication of any excitation strategy that give a low error estimation error for all 
excitation levels on either surface.   

 
Figure 13, Average friction estimation error 𝑱𝑱𝒏𝒏𝒖𝒖𝒖𝒖𝒐𝒐𝒏𝒏

𝑵𝑵𝒏𝒏𝒖𝒖𝒖𝒖
  for all tyres on wet asphalt as a function of utilized friction 

for different excitation strategies, without any measurement noise 

 
Figure 14, Average friction estimation error  𝑱𝑱𝒏𝒏𝒖𝒖𝒖𝒖𝒐𝒐𝒏𝒏

𝑵𝑵𝒏𝒏𝒖𝒖𝒖𝒖
   for all tyres on gravel as a function of utilized friction 

for different excitation strategies, without any measurement noise 

4.2 Estimation error with noise 
When implementing a recursive estimator in real time on-board a vehicle there will be noise 
and disturbances on the signals used to estimate both the force and the slip ratio. Noise should 
thus be included in the evaluation to make the comparison more realistic. The noise is modelled 
as zero mean white Gaussian noise with a variance of 0.032 for the force signal f and 0.0032 
for the slip ratio signal 𝜎𝜎𝑥𝑥, these noise levels approximately correspond to the ones in previous 
experiments, see [18].  The excitation strategies are evaluated 30 times each for each tyre model 
and the mean friction estimation error is calculated, see Figure 15-17.   



With the added noise the saturated steep force ramp is not the best excitation strategy for the 
Brush model anymore, see Figure 15. Instead the basic force ramp is the best option for the 
Brush model and both Magic formula models in the medium excitation range. For the Dugoff 
model though, the saturated steep force ramp remains the best choice for friction utilizations 
between approximately 0.3-0.85. Note the significantly larger mean error for both magic 
formulas when noise is present. Furthermore, the noise changes the shape of the curve to a more 
or less monotonically decreasing error with increasing utilization. The result from the different 
road surfaces, Figure 16 & 17, confirm the results in Figure 15.  

 

 
Figure 15, Average friction estimation error 𝑱𝑱𝒏𝒏𝒖𝒖𝒖𝒖𝒐𝒐𝒏𝒏

𝑵𝑵𝒏𝒏𝒖𝒖𝒖𝒖
  for all tyre-road combinations as a function of utilized 

friction for different excitation strategies, noise added to the slip and force signal. 

 

 
Figure 16, Average friction estimation error 𝑱𝑱𝒏𝒏𝒖𝒖𝒖𝒖𝒐𝒐𝒏𝒏

𝑵𝑵𝒏𝒏𝒖𝒖𝒖𝒖
  for all tyres on wet asphalt as a function of utilized friction 

for different excitation strategies, noise added to the slip and force signal. 



 
Figure 17, Average friction estimation error 𝑱𝑱𝒏𝒏𝒖𝒖𝒖𝒖𝒐𝒐𝒏𝒏

𝑵𝑵𝒏𝒏𝒖𝒖𝒖𝒖
  for all tyres on gravel as a function of utilized friction for 

different excitation strategies, noise added to the slip and force signal. 

 

 

 

 



5 Discussion 
5.1 C parameter in the Magic Formula 

For the optimized excitation, a larger friction estimation error was found for the Magic formula 
with fixed C parameter compared to when C was estimated. This does not necessarily mean 
that estimating the shape factor reduces the estimation error for a more realistic excitation 
compared to using a fixed value. With the additional parameter, the genetic algorithm has a 
larger possibility to take advantage of the modelling errors and choose a specific excitation 
strategy which minimizes the friction estimate error. The comparisons between the 
implementable excitation strategies are therefore more representative for a real vehicle.  

When comparing the two Magic formula models in Figure 12-14, no clear difference in the size 
of the estimation errors can be seen. If anything, the Magic formula with fixed C parameter has 
a flatter error curve with lower estimation error in the medium excitation ranges. If estimating 
the C parameter does not lower the estimation error, it should not be included in the estimator 
since that would unnecessarily increase the number of parameters. However, the evaluation 
should be performed for more types of road surfaces and for more tyres to increase the 
generality of the results. 

5.2 Optimized excitation for a given maximum tyre utilization 
None of the evaluated excitation strategies provide the lowest error for all tyre utilizations. 
However, for the Dugoff tyre model the saturated steep force ramp is a strong candidate. For 
the medium excitation levels between 0.3-0.8 this excitation strategy had the lowest error. Due 
to the linear part of the tyre characteristics, it should not be expected that the friction coefficient 
can be estimated at a utilization level below 0.3. Furthermore, this excitation strategy has fairly 
similar error as the other strategies at utilization above 0.8.  

For the other tyre models the differences between the excitation strategies are smaller. The 
saturated steep force ramp produces the lowest error for the brush model without any 
measurement noise but with added noise the force ramp seems to be the best option overall, see 
Figure 15. The Magic Formula performs well without any measurement noise and it is difficult 
to say which excitation strategy that perform best. By adding noise, the force ramp becomes the 
stronger candidate for the Magic formula both with and without locked C parameter.  

The noise does not only affect which excitation that give the lowest error but also the size of 
the estimation error. For the brush model and the Dugoff model, the trend with a decreasing 
estimation error for an increasing utilization is valid both with and without noise. For the Magic 
formula though, the estimation error varies across the utilization range without noise but at a 
consistently low value. When noise is added, the Magic Formula displays the same trend as the 
brush model and the Dugoff model. This can partly be explained by the cost function of the 
inner estimation problem that minimizes the force error between the model and the data. When 
the noise on the slip signal is too large, the data points can be interpreted as data points from a 
low-friction surface and the tyre parameters are thus fitted accordingly.   

5.3 Minimum tyre utilization required to achieve less than an 
estimation error of less than 0.1  

The minimum tyre utilization required to achieve an estimation error of less than 0.1 without 
any measurement noise is shown in table 2. An estimation error of 0.1 roughly corresponds to 
an error of 12-14% on wet asphalt and 13-22% on gravel (Figure 1). As seen from the table the 
Magic formula has a smaller required utilization compared to the other two tyre models. 
Furthermore, the Magic formula with a fixed C parameter has a lower required utilization for 



the suboptimal excitations that were investigated. For these tyre-road combinations the best 
performing tyre model only requires around 30% utilization to have an average estimation error 
of below 0.1. Of course, in individual cases the estimation error can be larger. Both the Dugoff 
model and the Brush model achieve similar performance with measurement noise, compare 
table 2 and 3. However, the required utilization for the Magic tyre formula increases 
substantially when measurement noise is added and the performance is decreased to a level 
close to the Dugoff model. Minimizing the measurement noise is thus of importance when the 
performance of the friction estimator should be improved.  
Table 2, Required utilization for a friction estimation error of less than 0.1 without any measurement 
noise, from Fig. 12 

Tyre Model 
Required Utilization [%], 

Optimized excitation/Other 
excitation 

Brush Model      71  / 77.5 
Dugoff Model     60 / 64.5 
Magic formula, 1<C<1.6 <45 / 51 
Magic formula, C=1 <45/ 29 

 
Table 3, Required utilization for a friction estimation error of less than 0.1 with measurement noise, from 
Fig. 15 

Tyre Model Required Utilization [%] 
Other excitation 

Brush Model 75 
Dugoff Model 67.5 
Magic formula, 1<C<1.6 65 
Magic formula, C=1 60 

 

5.4 Tyre Models and Tyre modelling errors 
The brush model and the Dugoff tyre model have two parameters. The Magic formula on the 
other hand has four parameters, or three in the case of a fixed C value. With only two parameters 
the tyre characteristics cannot be described accurately at all slip values and the structure of the 
tyre model will affect how well the tyre characteristics can be fitted on different surfaces. Since 
the friction coefficient estimate is based on a tyre model fitted to the measurement data at the 
current utilized friction, any modelling errors will affect the estimate. For instance, in Figure 
13 and 11 it is apparent that the brush model has a lower average error on wet asphalt than on 
gravel.  

Even though the Magic formula has additional parameters to describe the tyre characteristics, 
modelling errors will still be present. However, as seen in Figure 12-14 the Magic formula has 
a lower error than the brush model and the Dugoff tyre model in a noise free environment. 
Based on these results, it appears beneficial to include additional parameters in the tyre model, 
in addition to the slip stiffness and the maximum friction coefficient. However, the same 
number of samples has been used for each utilization level and the measurements points have 
been chosen by the excitation strategy in a well-defined intervention. Without active tyre force 
excitation, the driver controls the manoeuvre in which the friction coefficient is estimated and 
the measurement points will hence have a more uneven distribution. For this type of data it can 
be beneficial to have fewer parameters. The tyre model should therefore be chosen with the 
expected excitation in mind.     



It is also interesting to note that the Magic formula gives the lowest estimation error below 80% 
utilized friction on both wet asphalt and gravel, although the estimation error does not increase 
as much above 80% on gravel as on wet asphalt. This indicate that the prediction made by the 
Magic formula based on the measurement points is incorrect, likely due to modelling errors. Of 
course, the level of excitation cannot be chosen freely in a real vehicle since the friction 
coefficient is unknown. It is thus important to investigate how the error varies across all 
excitation levels and not only the minimum error.  

 



6 Conclusions & Future Work 
This paper investigated different excitation strategies for tyre-road friction estimation using 
active tyre force excitation. Optimized excitations were compared to other excitations that can 
be implemented in real-time in a vehicle with limited information about the road surface.  

Without any measurement noise, the Magic formula, which has the most number of parameters, 
showed the most promising results of the investigated tyre models. At realistic noise levels, the 
benefits of additional parameters are smaller and the simpler tyre models can thus be used. 
Ideally the measurement signals needed for friction estimation should have low noise and small 
disturbances in order to decrease the friction estimation error. Carefully estimating these signals 
is thus important for the performance of the estimator and should be given time in the tyre-road 
friction estimator development process.  

It was found that different excitation strategies lead to the lowest friction estimation error 
depending on the choice of tyre model in the estimator. The choice of tyre model should thus 
be taken into consideration when designing an excitation strategy. The sensitivity to different 
excitation strategies varied between the tyre models with some tyre models being less sensitive. 
This can be considered a benefit since an excitation strategy that suits other requirements such 
as safety, comfort and wear can be chosen. For the Magic formula, which had the best 
performance of the investigated tyre models, a simple force ramp seems to be the most 
promising excitation strategy. Without any measurement noise this tyre model showed no clear 
preferred excitation strategy but with added measurement noise, the force ramp provided the 
best estimator performance. The force ramp has the benefit of being easily implementable in 
real-time. In order to have an average estimation error of below 0.1 in normalized force with 
realistic noise levels and with the force ramp excitation, at least 60% utilization is required for 
the given tyre-road combinations. However, depending on the tyre-road combination, the 
required utilization varied between 40 and 65% in a noise free environment. Hence, without 
any measurement noise, 65% friction utilization will give a friction estimation error of below 
0.1 in normalized force for all of the tested tyre-road combinations using a real-time 
implementable excitation strategy. 

This paper has investigated how the force should be applied in an active tyre force intervention 
to minimize the friction estimation error. As such, it provides a basic understanding of how 
large variations that can be expected in estimator performance from different excitation 
strategies and when using different tyre models. If these kinds of systems are to be implemented 
in production vehicles, other aspects such as safety, comfort, and wear should be taken into 
account as well. The proposed method can be extended to include these aspects as well but 
would require the availability of the control algorithm with realistic actuator models, a complex 
vehicle simulation model and a model of the tyre wear. Future work should also include a 
recursive excitation strategy that is based on the current friction estimate and utilizes the 
information from the sensitivity analysis performed in the paper.    
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Table 1, Tyre Parameter Constraints 

𝐶𝐶𝜎𝜎𝑥𝑥 [1,200] B [1,200] 

𝜇𝜇 [0.05,1.5] 𝐶𝐶 [1,1] or [1,1.6] 

𝐷𝐷 [0.05, 1.5] 𝐸𝐸 [-1.5, 1] 

 
  



Table 2, Required utilization for a friction estimation error of less than 0.1 without any measurement 
noise, from Fig. 12 

Tyre Model 
Required Utilization [%], 

Optimized excitation/Other 
excitation 

Brush Model      71  / 77.5 
Dugoff Model     60 / 64.5 
Magic formula, 1<C<1.6 <45 / 51 
Magic formula, C=1 <45/ 29 



Table 3, Required utilization for a friction estimation error of less than 0.1 with measurement noise, from 
Fig. 15 

Tyre Model Required Utilization [%] 
Other excitation 

Brush Model 75 
Dugoff Model 67.5 
Magic formula, 1<C<1.6 65 
Magic formula, C=1 60 

  



 
Figure Captions 
 
Figure 1, Flow chart of optimization method 

Figure 2, Measured and filtered normalized tyre force f and normalized normalized tyre force fnorm vs 
longitudinal slip ratio for the different tyre-road combinations. 

Figure 3, Parameter sensitivity Magic formula, 0.1 normalized force variation. 

Figure 4, Parameter sensitivity Brush model and Dugoff model, 0.1 normalized force variation. 

Figure 5, Excitation designed to first estimate the stiffness and then quickly reach large utilization, hereafter 
referred to as stiffness ramp. 

Figure 6, Normalized friction estimation error as a function of utilized friction for a force ramp excitation, winter 
tyre on wet asphalt and gravel for all tyre models. 

Figure 7, Optimized excitation for a maximum utilization of 95%  (µutil, max = 0.95) for all road–tyre 
combinations 

Figure 8, Optimized excitation for a maximum utilization of 75%  (µutil, max = 0.75) for all road–tyre 
combinations, MTF with estimation of the parameter C not included since the maximum utilization with  
µutil, max = 0.95 was found to be 71%. 

Figure 9, Optimized excitation for a maximum utilization of 65% (µutil, max = 0.65) for all road–tyre 
combinations, 

Figure 10, Optimized excitation for a maximum utilization of 95%  (µutil, max = 0.95) for all tyres on gravel. 

Figure 11, Optimized excitation for a maximum utilization of 95% (µutil, max = 0.95) for all tyres on wet asphalt. 

Figure 12, Average friction estimation error Jouter/Nout for all tyre-road combinations as a function of utilized 
friction for different excitation strategies 

Figure 13, Average friction estimation error Jouter/Nout for all tyres on wet asphalt as a function of utilized 
friction for different excitation strategies 

Figure 14, Average friction estimation error Jouter/Nout   for all tyres on gravel as a function of utilized friction 
for different excitation strategies 

Figure 15, Average friction estimation error Jouter/Nout for all tyre-road combinations as a function of utilized 
friction for different excitation strategies, noise added to the slip and force signal. 

Figure 16, Average friction estimation error Jouter/Nout  for all tyres on wet asphalt as a function of utilized 
friction for different excitation strategies, noise added to the slip and force signal. 

Figure 17, Average friction estimation error Jouter/Nout  for all tyres on gravel as a function of utilized friction 
for different excitation strategies, noise added to the slip and force signal. 
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