
Model for automatically shifted truck

during operating cycle for prediction of

longitudinal performance

P. Pettersson, B. Jacobson, S. Berglund

October 31, 2016

Contents

1 Introduction 2

2 Simulation model structure and concepts 2

3 Operating cycle 3

3.1 Speed . 4
3.2 Topography . 5

4 Driver 5

5 Vehicle 6

5.1 Engine . 6
5.2 Transmission . 10

5.2.1 Implementation of the mathematical model 12
5.2.2 Control modules . 15
5.2.3 O�-line computations . 27

5.3 Chassis . 28

6 Discussion and conclusion 33

7 Bibliography 34

1

Figure 1: Top level of VehProp

1 Introduction

VehProp, for VEHicle PROPulsion, is a simulation model library for evaluating the lon-
gitudinal performance of a vehicle by predicting, for example; fuel consumption, produc-
tivity or clutch wear. The idea is to represent the forces on and the torque transmitted
through the powertrain during time intervals that are typical for conducting transport
missions. This could mean anything from a minute to several days.
This report describes the library as parts of a full vehicle model. The model is based

on a number of articles by Jacobson and Eriksson see e.g. [1, 2] as well as the master
thesis by Venbrant [3]. The physical models are in turn based on work done in the PhD-
thesis by Berglund [4] (engine) and the PhD-thesis by Jacobson [5] (transmission). The
chassis equations follow more or less from Newton's Principia [6], but for a more recent
treatment that also gives a vehcle dynamic perspective see the compendium by Jacobson
[7].

2 Simulation model structure and concepts

The simulation model is largely based on a modular structure and the modules are sup-
posed to be divided into components which are both intuitively and physically di�erent.
At top level the model is divided into the operating cycle (generalized road), the driver
(who controls the vehicle) and the vehicle (the system under test), see �gure 1.
The vehicle model here has been developed with the explicit purpose to re�ect how the

di�erence between a single clutch (SC) and dual clutch (DC) transmission in�uence the
transport mission e�ciency (e.g. average speed) and vehicle fatigue (e.g. clutch wear)
during a realistic long-haul mission. As other performance measures become interesting,
it could (and will) be developed in other directions to capture for these too.
It should be pointed out that the model uses forward simulation (sometimes called

2

natural dynamic or causal) to better re�ect reality. The opposite, a backward simulation
(inverse dynamic or reverse causal), would be more e�ective but would not be able to
capture gear transitions or engine dynamics in a good way. This is a major part of the
model and thus a forward simulation is the canonical choice. The downside is that it
makes a driver model necessary, something that adds considerable complexity.

3 Operating cycle

The operating cycle is very simple at the time of writing and uses only two road proper-
ties: speed and topography, but the principle is the same for many other e�ects related
to road and environment.
Each property is either de�ned as a function of position (static properties e.g. road

curvature) or time (dynamic properties, e.g. how long to stay with active PTO at a
certain coordinate). The latter require a much more sophisticated treatment than the
former and since no such property is used at present, it will not be treated further here.
Currently the operating cycle is a matrix OCab where the columns represent di�erent

properties and the rows each property value at the current coordinate. The current
properties are: an index j (a counter that is included to easily see how big the matrix is),
the position s (which is the governing variable), the target speed v (sometimes referred
to as vset), curvature κ, and altitude z or inclination angle θ (topography). In the
implementation the continuous functions are replaced by discrete variants. In that case
the operating cycle matrix can be written

OCab = δ1bka + δ2bsa + δ3bvset,a + δ4bκa + δ5bza (1)

where δij is the Kronecker delta. If the tensor notation is unfamiliar, a more convenient
but less rigorous way of writing would perhaps be

OCa = [ia, sa, va, κa, za] (2)

Each column here represents a di�erent value of b in eq (1). The input to the module,
see �gure 2, is the current position of the vehicle d, and a corresponding current index is
calculated

i : d ∈ (si, si+1] (3)

For many of the variables linear interpolation is used to �nd intermediary values. Other
types of interpolation (or spline) methods could be used too, and what type that is most
suitable is decided by the underlying physical model of each parameter. This will be
further discussed in future articles speci�cally treating advanced operting cycle concepts.
For a generic variable input variable x, using eq (3), the output

ỹ = f(x, yi) =
x− xi
xi+1 − xi

(yi+1 − yi) + yi (4)

The implementation of the operating cycle can be seen in �gure 2.

3

Figure 2: The operating cycle module

During a simulation, time is incremented in steps. To make the connection to the
simulation more apparent, a time index k can be attached to (some of) the variables in
eq (4). At iteration k in the simulation we would have:

tk =

k∑
j=1

∆tj (5)

i : dk ∈ (si, si+1) (6)

ỹk = f(xk, yi) (7)

In the following there may be some slight abuse of the notation, as the value ỹk which
changes in each steep and is sent around between modules in the simulation (the signal)
may be referred to by the same name as the parameter y in the operating cycle, which
is completely static.

3.1 Speed

The prescribed speed vset is output as

vset = f(d, vset,i) (8)

Here the notational abuse is apparent, as the left hand side is the dynamic value which
changes with each time step k, but the right hand side is static. Better notation would
be make the time dependence apparent and use eq (1).

vset,k = f(dk, OCi3) (9)

4

In the implementation, the signal is called v_set.

3.2 Topography

The topography can either be given as a road angle or altitude.
If given as a road angle, it is represented by a function, θ, that is piecewise constant

over intervals of 25 m. Thus the road angle α that is output from the operating cycle is

α = θi (10)

One could of course out�t this with a time index too: αk. In the simulation the signal
is called alpha_slope.
If the topography is given in altitude z, the output road angle is calculated by looking

at the elevation of the front part of the vehicle (zf) and comparing it to the rear part
(zr)

zf = f(d, zi) (11)

zr = f(d− l, zi), (12)

α = arcsin

(
zf − zr

l

)
(13)

where l is the wheelbase. In the implementation, the slope angle is called alpha_slope.

4 Driver

The driver module of course represents the human driving the vehicle. The input is the
current speed vis and the target speed vset. The outputs are the (normalized) accelerator
and brake pedal positions. A speed error is formed as

ek = vset,k − vis,k (14)

and a PID-regulator is used to regulate the driver pedal positions. Writing the output
from this as p(ek), the pedal positions will be output as

p(ek) ≥ 0⇒ ap = p, bp = 0 (15)

p(ek) < 0⇒ ap = 0, bp = −p (16)

In the implementation the Matlab/Simulink default PID-regulator is used and apart
from the basics features it also includes some �ltering and a useful anti-windup mecha-
nism. A �gure of the module can be seen in �gure 3.

5

Figure 3: The driver module

5 Vehicle

The vehicle is by far the most complex module at the time of writing. The top level can
be seen in �gure 4 and it consists of three main submodels: engine, transmission and
chassis. The inputs are the accelerator pedal position ap, the brake pedal position bp and
the road angle α. The outputs are the travelled distance d (which for a one dimensional
description with isotropic direction coincides with the position) and the current speed
vis. The physical vehicle model can be seen in �gure 5.

5.1 Engine

The engine module input are the accelerator pedal position ap, a torque limit request
�ag, torque limit speci�er Tlim and the engine speed ωe. It outputs an engine torque Te
and fuel volume �ow rate V̇ .
This is a simple, empirical engine model with only two dynamic states (ωe and Te),

but still we strive to have it as physical as possible. The pedal position is reinterpreted as
a torque request using a pedal map fpedal(ap, ωe), the torque request is checked against
both the maximum torque at current engine speed and the torque limit request from the
transmission. The limiting value is chosen and transformed into required amount of fuel
q injected into each cylinder, based on a fuel map ffuel(T, ωe). The fuel is injected into
the cylinders and a steady state torque is calculated from an engine map fengine(q, ωe).
Depending on its size, the torque it is either output directly or split into a base part
and a top part. The former is instantaneous and the latter is subject to a �rst order
di�erential equation, to mimic a boost pressure build-up. If the requested top part is
lower than the current top value, the change is immediate. The �nal output torque is
the sum of those parts. In the form of the equations

Traw = fpedal(ap, ωe) (17)

Treq = min(Treq, Tmax(ωe), Tlim) (18)

q = ffuel(Treq, ωe) (19)

Tss = fengine(q, ωe) (20)

Tbase = min(Tss, Tsplit) (21)

Tdyn,req = Tss − Tbase (22)

6

Figure 4: The vehicle module

Figure 5: The physical vehicle model. The engine and transmission together make up
the powertrain model, which is the focal point in the simulation.

7

Figure 6: The engine module

8

Tdyn,req − Ttop < 0

Ttop = Tdyn,req (23a)

Tdyn,req − Ttop ≥ 0

Ṫtop = k(Tdyn,req − Ttop) (23b)

Te = Tbase + Ttop (24)

where coe�cient k > 0 decides the build-up rate. The reason for eqs (23a) and (23b)
is that the process of reducing the boost pressure is much quicker than building it up. In
principle one could handle it by eq (23b) only and using di�erent coe�cients depending
on whether Ṫ is positive or negative.
There is also another engine layout where the engine e�ciency is available. Then the

fuelling can be skipped since the request can be directly translated into a steady state
torque and fuel rate computed from the e�ciency map. This approach requires fewer
computations and is therefore quicker, but less physical. As long as the fuelling process
contains no dynamics these two approaches are equivalent.
Note that in the above treatment we have not really made a clear distinction between

physical components, but rather between di�erent parts in the request chain. In reality
the case is rather that the pedal actuation is received by the main engine ECU, which
relates it, via a fuel and engine map, to amount of fuel to inject and then controls the
injection process. Thus equations (17) and (18) should really be in a control component,
whereas the others belong in mechanical components. For the current implementation
the distinction is irrelevant though, but may need to change if the complexity of the
engine grows.
The variable q is the amount of fuel (in mg) to inject per cylinder (injection) stroke.

In the end we are interested in the volume of fuel consumed and need to relate these two
quantities.It can be done by simply using dimensional analysis: [q] = mg/stroke, and
thus we need

ṁ = aωensq = c
N

n

ωe

2π
q (25)

ωe has the unit rad/s and therefore we have included a numerical ns which relates
the number of strokes per second to rotation speed. This depends on the number of
cylinders (N) and the type of combustion process: how many strokes (n) that are needed
to complete one full thermodynamic cycle. For example: a two stroke engine need only
one complete turn (n = 1) but a four stroke engine needs two complete turns (n = 2)
per injection. The constant c is a simple unit conversion factor: c = 10−6 kg/mg. So for
a six cylinder, four stroke engine

ṁ =
3 · 10−6

2π
qωe (26)

9

with ṁ the fuel (mass) �ow rate in SI-units. Some things are of interest from this: the
total volume of consumed fuel Vfuel and the engine e�ciency η. With ζ = 43.1 MJ/kg
the calori�c energy content of diesel and ρ = 0.832 · 10−3 kg/m3 the density, we have

Vfuel =ρ

∫ tf

t0

ṁ dt (27)

η =
Teωe

ζṁ
(28)

5.2 Transmission

The transmission is the most complex part and relies heavily on the input from various
control strategies. The input variables are the engine inertia Je, the engine torque Te, the
slope angle α, the wheel angular speed ωw and the wheel angular acceleration ω̇w. The
outputs are the wheel torque Tw, the complete inertia of all components up to the �nal
drive Jtot, the engine speed ωe, a torque limit request �ag and a torque limit speci�er
Tlim.
The physical model of the clutch and the gearbox is shown in �gure 7. In addition

to this there is a �nal gear afterwards, see �gure 5. The cut between the engine and
transmission in this �gure is trivial, so

Te − T ′e = 0 (29)

ωe − ω′e = 0 (30)

Since T ′e = Te and ω′e = ωe the prime notation will be dropped to avoid unnecessary
clutter.
Figure 7 shows a dual clutch gearbox. In this case one of the clutches controls the odd

gear set and the other the even one. Both of them are dry clutches and we have chosen to
model them strictly with Coulomb friction. Therefore each one operates in two regimes:
one where it sticks and one where it slips. The properties change based on the discrete
state. Since there are two clutches there are four di�erent discrete states in total. The
physical model of the gearbox can be seen in �gure 8.
The equations fall out as follows

Jeω̇e =Te − (Tc1 + Tc2) (31)

Jtω̇t =− Tt + (r1Tc1 + r2Tc2) (32)

∆ωi =ωe − riωt, i = 1, 2 (33)

Tci =

{
Ci sgn(∆ωi), if ci slip
from eqs, if ci stick

(34)

Ci = cmaxpi (35)

10

Figure 7: The physical model of the gearbox.

Figure 8: The transmission module

11

Figure 9: The clutch module

slip condition: Tci > Ci (36)

stick condition: ∆ωi = 0 (37)

One of the discrete states, the stick-stick state, is thoroughly uninteresting because it
cannot happen while driving. If both of the clutches stick then the engine crankshaft and
the clutch output shafts need to have the same speed: the only speed that can satisfy that
equality is zero. The state could be used as a parking brake, but this is not something
that we are interested in modelling.
The conditions for transitioning between the states in eqs (36) and (37) are indirectly

controlled by the clutch pressures pi. These are in turn controlled via some actuators
depending on the engineering solution (valves for hydraulic or pneumatic solution) by
the transmission ECU.
After the gearbox there is a �nal drive gear, where also a total transmission e�ciency

ηT has been included

TFD =ηT rFDTt (38)

ωFD =
ωt

rFD
(39)

These are the same as the torque and rotational speed of the wheels, see (53) and (54).

5.2.1 Implementation of the mathematical model

The implementation separates into three main parts (the top three modules in �gure 8):
a state machine for the clutch, a module for the gearbox and a module for the �nal drive.
The clutch module and its state machine can be seen in �gures 9 and 10. A limitation

in the implementation is that the clutch state must be delayed one time step, so the

12

Figure 10: The clutch state machine

switch between states will always be one tick behind. The reason is that the equations
(31) to (36) make up a set of di�erential-algebraic equations (DAE), and since Simulink
is strictly causal it has trouble solving them. However, when the clutch state is already
known the problem set reduces to a system of ordinary di�erential equations (ODE)
instead, and those Simulink excels at handling. Also note that the stick-stick state is
missing from the clutch state machine (though it could easily be introduced).
The gearbox module is shown in �gure 11 and all the submodules can be seen in �gures

12 to 15.
There are some things that may be of note here. There is one submodule for each of

the states odd stick/even slip, odd slip/even slip and odd slip/even stick. All of them
compute their output in each tick, and the signal router manages which of them to send
further on and which ones to block. The odd stick/even slip and odd slip/even stick
are identical under the transformation 1 ↔ 2 in equations (31)-(37) of course, but the
slip-slip equations are a little bit di�erent. The reason is that the number of dynamic
states change here: when one of the clutches stick the input and output shaft speeds are
linearly dependent (the engine speed depends on the transmission shaft speed through
the gear ratio, which in the end depends on the vehicle speed), but when both clutches
slip there is no such relation and these two speeds evolve independently. Thus whenever
the slip-slip state is entered the engine speed needs to be decoupled and reinitialized.
Another thing that should be pointed out is that the inertias are sent onwards and the

equations that are implemented are somewhat di�erent from those presented so far. This
is another relic from the choice of Simulink as implementation language: as noted above
the equations are linearly dependent and, together with the relations for the chassis, must
be solved as a system. Simulink cannot treat non-causalities, so we basically have to solve
it by ourselves and implement it in a way so that and output (vehicle acceleration) can
be computed from and input (engine torque). When doing that, all the inertias (both

13

Figure 11: The gearbox module

14

Figure 12: The gearbox details when the odd clutch sticks (c1 = co)

rotational and mass) bunch together. The �nal solving step is done in the chassis module
when �nding the linear vehicle speed, so the inertias need to be sent onwards until that
point (see section 5.3).
The �nal module concerning the mechanical system is the �nal drive in �gure 16.

5.2.2 Control modules

The control module (which would be equivalent to a transmission ECU) is shown in
�gure 17.
Three functions are included: the gearshift manager (which includes the gearshift

strategy and decides when a gearshift is complete), the clutch pressure control (which
manages the clutches), and an engine torque limiter (which communicates with the engine
module).

Gearshift manager

The gearshift manager (�gure 18) decides when to initiate a gearshift and which gear
to engage. In principle, a gearshift is requested if the current gear is di�erent from the
selected (or desired, rather), no other gearshift request is active, and no shift has been
performed for the past tmin seconds.
The gear choice (�gure 19) is simple and depends only on engine speed and the inclina-

tion angle. If the engine speed goes below the downshift threshold a downshift is initiated
and vice versa for an upshift. The inclination angle has discrete e�ect providing regimes

15

Figure 13: The gearbox details when both clutches slip

Figure 14: The gearbox details when the even clutch sticks (c2 = ce)

16

Figure 15: The signal router

Figure 16: The �nal drive module

17

Figure 17: The control function module

Figure 18: The gearshift manager

18

Figure 19: The gear choice strategy

in which di�erent engine speed thresholds are utilized. Typically the engine speeds need
to be higher for both up- and downshift in a downhill (meaning later upshifts and earlier
downshifts, to increase the performance) and the other way around in a downhill (for
fuel e�ciency). The number of gears to shift is similarly dependent on current gear and
inclination. If the current gear is denoted by ic, the gear request by ireq, the number
of gears to shift N(ic, α) and the up and down limits by ωu,lim(ic, α) and ωu,lim(ic, α)
respectively, then

ωe ≥ ωu,lim(ic, α) ⇒ ireq = ic +N(ic, α) (40)

ωe < ωd,lim(ic, α) ⇒ ireq = ic −N(ic, α) (41)

For a dual clutch transmission the gearshift is typically sequential by necessity - oth-
erwise there would need to be a disruption in the power transfer. This is not the case
for an SC, where non-sequential gearshifts are used extensively to improve fuel econ-
omy. Therefore numerical representations of the functions ωu,lim(ic, α), ωu,lim(ic, α) and
N(ic, α) are very di�erent for SC and DC.
The gearshift controller (�gure 20) makes the decision on when to command a gearshift

and what to specify as the current gear.

Clutch pressure control

The second function, shown in �gure 21, is the clutch manager (or clutch pressure con-
trol), and it manages the pressures in equations (35). Here we imagine that the pressure
is directly controlled by the module and not indirectly by some valves, but to get it
somewhat more realistic the pressure actuation is linear (and not instantaneous) with
speci�c rise and fall times.

19

Figure 20: The gearshift controller

There are two parts of it, one controller (�gure 22) and one actuator (�gure 26).
It should be noted that although the physical model has two clutches, the clutch control

can be tailored in such a way that it behaves as a single clutch transmission too. If the
disengaging clutch fully disconnects and there is a time delay before the connecting one
engages, the disruption in power transfer mimics that of a single clutch. Thus the only
thing that needs to be replaced when modelling a vehicle with an SC instead is the clutch
control strategy.
The controller (�gure 22) is based around the clutch control state machine (�gure 23),

with some signal routing to decide which clutch is disengaging and which one is engaging,
as well. The useful output is the clutch commands k1 (odd clutch) and k2 (even clutch),
with ki = −1 disengage, ki = 0 hold, and ki = 1 engage. The clutch state is also passed
onto the actuator module.
Two di�erent control concepts has been implemented. The �rst is that of a single clutch

as explained above. Here, the control is very simple, whenever a gearshift is detected the
disengaging clutch kprevious = −1, knext = −1, and after a time delay td (to simulate the
power disruption) kprevious = −1, knext = 1. It could be done in a much more re�ned
way: e.g. waiting for shaft synchronization before reconnecting to reduce heat generation
and thus clutch wear. At the time of writing this is remains to be done. The engine
speed control is performed by the engine itself, but in a controlled fashion via the torque
limit module.
For the dual clutch, the strategy needs to be more re�ned: the engine is never fully

disconnected from the transmission so it cannot be controlled in that way to the same
extent. Instead the clutch pressures are steered so that the transferred torque either
brakes the engine (upshift) or accelerates it (downshift). Figures 24 and 25 show the
principle.
These are based on the idea of a desired gearshift time tg and the assumption that

20

Figure 21: The clutch pressure control

Figure 22: The clutch controller

21

Figure 23: The clutch control state machine

22

Figure 24: The pressure control principle for a downshift. Note that C > 0 so the engine
accelerates.

Figure 25: The pressure control principle for an upshift. Note that C < 0 and the engine
decelerates.

23

Figure 26: The clutch actuator

the vehicle speed is unchanged during gearshift. Let the gear ratio of the current gear
be rc and the gear ratio of the next gear rn. Then equation (31) can be used to �nd the
transmission torque (again, assuming both this and the engine torque are constant) that
achieves this in the desired time

ωe(t) =
Te − (Tcc + Tcn)

Je
t+ ωe(t0) (42)

v(t0) = v(tg) ⇒ωe(tg) =
rn
rc
ωe(t0) (43)

∆ωe =ωe(tg)− ωe(t0) =

(
rn
rc
− 1

)
ωe(t0) (44)

Tcc + Tcn =Te +
Je∆ωe

tg
(45)

In the case of a downshift, the engaging clutch is initially disregarded (Tcn = 0) and
disengaging clutch torque Tcc is found (smaller than the engine torque) using equation
(45). In the case of an upshift the engaging clutch torque is found (larger than the engine
torque) in the same way, then the engaging clutch and the disengaging one are actuated
simultaneously.
Since the clutch actuators are not ideal, the equations above are only an approximation

of the actual behaviour of the engine speed so there must also be some kind of fall back
when things do not work out. That is the reason for the BailOut state.
The �nal component here is the clutch actuator that relates the commands from the

controller into the (normalized) pressures pi. The connection between ki and pi is

24

Figure 27: The engine torque limit module

ṗi =
ki
τs
, pi ∈ [0, 1] (46)

with τs being a rise or fall time, whose value depends on the clutch state and whether
the pressure is to be increased or decreased. Equation (46) implies that the pressure
change is not instantaneous but linear, so even though the description of the clutch
pressure is not based on a physical model (e.g. hydraulic or pneumatic), it is not a fully
idealized model.

Engine torque limiter

The engine torque limiter in �gure 27 is an essential component for the single clutch
transmission but not at all as important for the dual clutch, the reverse situation from
the clutch control. The control principle can be seen in �gures 28 and 29.
Both the timing and the limit levels here are �xed, depending on whether it is an

upshift or a downshift and the severity of the inclination. A more realistic and e�ective
approach would be to have these dynamic, i.e. compute both the torque request and the
ramping start and end points from e.g. a desired gearshift time. This is something that
remains to be done.
Currently, the torque limit is based on the clutch pressures only. For the single clutch

gearshifts the torque limit request can be written as follows

25

Figure 28: The principle for the engine torque limiter during a downshift

Figure 29: The principle for the engine torque limiter during an upshift

26

Tlim =


∞, pc > pbreak
cmaxpc + Ts, pc ≤ pbreak
T0, pc = 0, pn = 0
cmaxpn + Ts, pn ≤ pbreak
∞, pn > pbreak

(47)

where we have used the current (subscript c) and next (subscript n) indices as in equation
(42). In the end the only thing that di�ers between the upshift and downshift is the �nal
torque T0 during full declutch. For a downshift it is positive and for an upshift it is
negative.
Note that this is only a limit request, then it is up to the engine to accept and perform

the necessary actions to output the torque. In our case the engine is simple enough that
this is never a problem, but in a real vehicle there certainly could be.

5.2.3 O�-line computations

There are lots of interesting things that can be computed using output from the simula-
tion, but that does not necessarily need to be done during the run. The gain is both a
reduced complexity and a decrease in computation time.
One such thing is the temperature in the bulk material of the clutches. Among other

things this is related to the wear of the clutch material. To not confuse temperature and
torque in this section, we use M to denote torque and T for temperature. The heating is
due to the friction, whenever at least one of the clutches slip and there is some connection

dQ

dt
= |∆ωc1Mc1 |+ |∆ωc2Mc2 | (48)

with Q the heat energy in the clutch. The above equation could be used directly to
formulate a crude measure of the clutch wear, namely the total dissipated energy.

Ec =

∫ tf

t0

dQ

dt
dt (49)

However, we may use eq (48) and consider the heat exchange with the environment
via Newton's law of cooling to compute the temperature as a function of time. The heat
exchange due to a temperature di�erence is

dQ

dt
= q(T− T0) (50)

where q is the thermal dissipation rate and T0 is the temperature of the surrounding.
The heat equation can be used to supply information on the time evolution

−∇(k∇T) +
∂T

∂t
= cp

dQ

dt
(51)

with k the heat dispersion and cp the heat capacity. In this case we will neglect the
troublesome �rst term, by assuming that the heat travels much quicker inside the material

27

than between the interfaces. Then we end up with a so called lumped capacitance model.
Note that the heating power in equation (48) �ows into the system, while that in equation
(50) �ows from the system (into the environment). The di�erential equation for the
temperature becomes

∂T

∂t
= cp (|∆ωc1Mc1 |+ |∆ωc2Mc2 | − q(T− T0)) (52)

One could also keep the terms separate, because the heating due to the clutch slip
is typically a much faster process (seconds) than the cooling due to the surrounding
(minutes).
Though the temperature could be tracked during the simulation, there is no real point

since it doesn't a�ect the dynamics. To decrease the simulation time it is instead com-
puted afterwards. One could implement a temperature dependency in the clutch capacity
though (or decreased capacity due to wear etc.) and in that case the above should instead
be incorporated into the model.

5.3 Chassis

The last part is the chassis that connects the longitudinal resistances and road e�ects to
the propulsion torque. At this level the dynamics is strictly one-dimensional, i.e. neither
load transfer, pitch nor heave are considered at the time of writing.
Because of these simpli�cations, we have used a quarter car model for the vehicle, see

�gure 30. This corresponds to the part called chassis for the total vehicle in �gure 5.
Like before, the cut between the transmission and the chassis is trivial and

TFD − Tw = 0 (53)

ωFD − ωw = 0 (54)

The notation here is somewhat inconsistent: TFD and ωFD are entities after the �nal
drive, while Tw and ωw are entities before the wheel.
In this case the tyre has been fused to the wheel and these two together make up a

rigid cylinder without slip, see �gure 31.
The �gure implies the equations

0 = Ff − Fx,prop −mwv̇w (55)

0 = N − Fz −mwg (56)

0 = Tw − Tb − rwFf − eN − Jwω̇w (57)

rwωw = vw (58)

v = vw (59)

For the chassis with no wheels (�gure 32) we can write down the following equation

28

Figure 30: A free-body diagram of the quarter car (truck) model of the vehicle chassis.

Figure 31: A free-body diagram of the wheel and tyre on plane ground.

29

Figure 32: A free-body diagram of the chassis without tyre on plane ground.

0 = Fx,prop − Fair −msv̇ (60)

0 = Fz −msg (61)

Fair =
1

2
ρairACdv

2 (62)

(63)

Combining these and rotating the system to account for an inclination angle α gives
the following equations for the full chassis in �gure 30

(
ms +mw +

Jw
r2w

)
v̇ =

1

rw
(Tw − Tb)− Fair − Fslope − Froll (64)

0 = N − (ms +mw)g cos(α) (65)

Froll =
e

r
N = fr(ms +mw)g cos(α) (66)

Fslope = (ms +mw)g sin(α) (67)

The term ms + mw is of course the total vehicle mass and we therefore write m =
ms +mw. Also note that the wheel inertia comes into e�ect when combining the system
of equations from the wheel and the raw chassis.
Doing this is very useful, as the equation can then be treated in a causal way: which

means that we can prescribe a value for Tw and Tb (the input) and compute a linear
acceleration v̇ (the output). So to close the loop this reduction must be done all the way
done to the engine torque (which depends on the accelerator pedal through equations

30

(17)-(24)). Since the clutch model can take three discrete states, there will be one set of
equations for each such state.
For the case when clutch one sticks and clutch two slips, the reduced expression takes

the form

[
m+

1

r2w

(
Jw + r2FDJt + r2FDr

2
1Je
)]
v̇ =

=
rFDr1
rw

Te +
rFD (r2 − r1)

rw
Tc2 − (Fair + Fslope + Froll) (68)

The expression for clutch two sticks and clutch one slips is analogous and can be found
by the transformation 1↔ 2.
The factor in front of v̇ on the left hand side is sometimes called the e�ective mass and

written m∗, γm or km. The two �rst terms on the right hand side can be thought of as
the propulsion force

m∗ = m+ 1
r2w

(
Jw + r2FDJt + r2FDr

2
1Je
)

Fx,prop = rFDr1
rw

Te + rFD(r2−r1)
rw

Tc2
c1 stick, c2 slip

When the slipping clutch is fully disconnected, it reduces to the familiar expression
where the propelling force is the engine torque times the total gear ratio.
In the case where both clutches slip, the engine and chassis (everything after the clutch

really: driveline and chassis) decouple and the states evolve independently of each other.
The engine follows eq (31), while the linear vehicle speed expression reduces to

[
m+

1

r2w

(
Jw + r2FDJt

)]
v̇ =

rFD

rw
(r1Tc1 + r2Tc2)− (Fair + Fslope + Froll) (69)

with the clutch torques given by the �rst case in eq (34). The expression for e�ective
mass and propulsion force are di�erent from the stick-slip system, but can still be easily
identi�ed

m∗ = m+ 1
r2w

(
Jw + r2FDJt

)
Fx,prop = r1Tc1 + r2Tc2

c1, c2 slip

Therefore a familiar expression can be written for the acceleration, independently of
which state the clutch is in

m∗v̇ = Fx,prop − (Fair + Fslope + Froll) (70)

However, the engine speed ωe must still be handled in the slip-slip case. The imple-
mentation of the chassis can be seen in �gures 33 and 34. The implemented equation is
the one given by eq (70), and so this is the reason why the inertias have been propagated
from the other modules (see �gures 4, 11 and 16).

31

Figure 33: The top level of the chassis module.

Figure 34: The top level of the chassis module.

32

The brake system in �gure 33 is nothing sophisticated, a linear function of the brake
pedal position

Tb = Tb,maxbp · tanh(v) (71)

where Tb,max is a constant representing the maximum torque that the brake system can
deliver. The factor tanh(v) is included to get the torque direction correct: the resulting
brake force should always counter the direction of motion, and to remove the brake torque
at standstill.

6 Discussion and conclusion

Hopefully it can be understood from the previous sections that this model is very much
a work in progress. The research in the OCEAN-project (see [8]) relates to the operating
cycle module, and at the time of writing this is the least sophisticated model in VehProp.
As this model becomes more and more demanding, the vehicle model (and driver too,
for that matter) must be further developed to be able to account for the e�ects the
road, environment and missions has. Some things that we already foresee will need to
be implemented are

• Dry friction model for the brakes (needed for proper standstill and start-stop)

• Reversing (important for proper mission description)

• Standstill (essential for realistic driving scenarios)

• Spring and damper model for the suspension (to account for road roughness)

• Driver look-ahead (to hit the correct stop positions)

• Tyre (important all over really, but especially for starts, to account for di�erent
surfaces, and also has a small e�ect on fuel consumption)

The main purpose of the model is to accurately predict fuel consumption, but there
are a number of secondary properties that can be predicted or estimated at the same
time.
The clutch temperature is one of them and it can be related to wear, which can be

taken as another evaluation factor.
The time to �nish a speci�c mission is another evaluation factor. This is probably

most e�ective when comparing di�erent vehicle con�gurations, e.g. the di�erence be-
tween a single or a dual clutch transmission. The evaluation factor measures transport
productivity: �nishing a mission quicker allows for more missions per time unit.

33

7 Bibliography

[1] B. Jacobson. Final report from the project: Modular simulation tool for vehicle
propulsion concerning energy consumption and emissions. Technical report, Depart-
ment of Machine and Vehicle Design, Chalmers University of Technology, Göteborg,
1997.

[2] A. Eriksson and B. Jacobson. Modular modelling and simulation tool for evaluation
of powertrain performance. Int. J. Vehicle Design, 21:175�189, 1999.

[3] S. Venbrant. Towards a simulation environment for operating cycle analysis of road
transports. Master's thesis, Chalmers University of Technology, Göteborg, Sweden,
2015.

[4] S. Berglund. Modeling Complex Engines as Dynamic Powertrain Members. PhD
thesis, Chalmers University of Technology, 1999.

[5] B. Jacobson. Gear Shifting with Retained Power Transfer. PhD thesis, Chalmers
University of Technology, 1993.

[6] I. Newton. PhilosophiæNaturalis Principia Mathematica, volume 3. 3 edition, 1726.

[7] B. Jacobson. Vehicle dynamics. Chalmers University of Technology, 2016.

[8] Ocean project page, 11 2016. Available at https://www.chalmers.se/en/projects/
Pages/Operating-Cycle-Energy-Management.aspx.

34

https://www.chalmers.se/en/projects/Pages/Operating-Cycle-Energy-Management.aspx
https://www.chalmers.se/en/projects/Pages/Operating-Cycle-Energy-Management.aspx

	Introduction
	Simulation model structure and concepts
	Operating cycle
	Speed
	Topography

	Driver
	Vehicle
	Engine
	Transmission
	Implementation of the mathematical model
	Control modules
	Off-line computations

	Chassis

	Discussion and conclusion
	Bibliography

