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Abstract—We present nonasymptotic achievability and con-
verse bounds on the maximum coding rate (for a fixed average er-
ror probability and a fixed average blocklength) of variable-length
full-feedback (VLF) and variable-length stop-feedback (VLSF)
codes operating over a binary erasure channel (BEC). For the VLF
setup, the achievability bound relies on a scheme that maps each
message onto a variable-length Huffman codeword and then re-
peats each bit of the codeword until it is received correctly. The
converse bound is inspired by the meta-converse framework by
Polyanskiy, Poor, and Verdú (2010) and relies on binary sequen-
tial hypothesis testing. For the case of zero error probability, our
achievability and converse bounds match. For the VLSF case, we
provide achievability bounds that exploit the following feature of
BEC: the decoder can assess the correctness of its estimate by ver-
ifying whether the chosen codeword is the only one that is com-
patible with the erasure pattern. One of these bounds is obtained
by analyzing the performance of a variable-length extension of
random linear fountain codes. The gap between the VLSF achiev-
ability and the VLF converse bound, when number of messages
is small, is significant: 23% for 8 messages on a BEC with erasure
probability 0.5. The absence of a tight VLSF converse bound does
not allow us to assess whether this gap is fundamental.

I. INTRODUCTION

In a point-to-point communication system with full feedback,
the transmitter has noiseless access to all the previously received
symbols. For discrete memoryless channels (DMCs), it turns out
that this additional information does not increase capacity when
codes of fixed blocklengths are used. Specifically, Shannon [1]
proved that the capacity with full-feedback fixed-blocklength
codes is no larger than the one achievable in the no-feedback
case. Dobrushin [2] established a similar result for the reliability
function of symmetric DMCs (the general case is, however, open).
However, if the use of variable-length codes is permitted, the
availability of full feedback turns out to be beneficial. Burna-
shev [3] derived the reliability function for the case when full
feedback is available and variable-length feedback (VLF) codes
are used, for all rates between zero and capacity. He showed that
this reliability function is

E(R) = C1

(
1− R

C

)
, R ∈ (0, C). (1)

Here, C is the channel capacity and C1 denotes the maximum
relative entropy between two arbitrary conditional output dis-
tributions. Note that (1) is strictly larger than the reliability
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function for the no-feedback case. Burnashev’s proof relies
on the asymptotic analysis of an achievability and a converse
bound on the maximum rate obtainable with VLF codes, for a
given average blocklength and a fixed average error probability.
Yamamoto and Itoh [4] gave an alternative proof of Burnashev’s
achievability bound, which relies on a two-phase scheme: a
standard transmission phase where feedback is not used at
the transmitter is followed by a confirmation phase where the
transmitter uses feedback to confirm/contradict the decision of
the receiver. Berlin et al. [5] provided a stronger version of
Burnashev’s converse bound, whose proof parallels the two-
phase scheme in [4]. A one-phase scheme that achieves (1) was
proposed in [6].

Polyanskiy et al. [7] obtained a nonasymptotic converse bound
that improves on Burnashev’s one [3]. In the same work, an
achievability bound is provided, which is used to show that with
VLF codes one can approach capacity faster than in the fixed-
blocklength case. Specifically, the channel dispersion [8, Eq.
(221)] turns out to be zero. The achievability bound used in [7]
to prove this result is actually based on variable-length stop-
feedback (VLSF) codes. In the VLSF setup, the feedback link is
used by the receiver only to send a single bit indicating to stop
the transmission of the current message. This setup is of interest
from a practical point of view, because it encompasses hybrid
automatic repetition request (ARQ) schemes. Note that VLSF
codes are a special case of VLF codes.

In this paper, we shall focus on the binary erasure chan-
nel (BEC) and seek nonasymptotic achievability and converse
bounds, for both the VLF and the VLSF setups, which improve
on the ones available in the literature. Note that the two-phase
converse bounds [3, Thm. 1], [7, Thm. 6] require that all entries of
the channel transition matrix of the DMC are strictly positive1—
an assumption that does not hold for the BEC. Bounds on the
maximum rate achievable over a BEC in the VLF setup are
provided in [7, Thm. 7]. The achievability bound is based on a
simple scheme (also suggested in [9]) where each bit is repeated
until it is received correctly. The converse bound can be seen as
a variable-length analogue of Fano’s inequality (see [3, Lemmas
1 and 2]). This bound does not require C1 to be finite.

The problem of constructing VLSF codes over a BEC reduces
to problem of constructing rateless erasure codes. Thus, one can
get achievability bounds on the maximum coding rate in the

1This is required for C1 in (1) to be finite.



VLSF setup by analyzing the performance of family of rateless
codes such as random linear fountain codes [10, Sec. 3]. The
only converse bounds that are available for VLSF codes (stop
feedback) hold also in the VLF setup (full feedback) to the best
of the authors’ knowledge. This is actually the case for both the
maximum coding rate and the reliability function.

Our contributions in this paper are as follows:
• We provide nonasymptotic converse and achievability bounds

on the maximum coding rate of VLF codes over BECs, which
improve upon the ones provided in [7, Thm. 7]. Our converse
bound relies on sequential hypothesis testing and is inspired by
the meta-converse framework [8, Sec. III.E]; the achievability
bound combines the simple repetition scheme used in [7, Thm.
7] with variable-length Huffman coding. For the case of zero
error probability, the achievability and converse bounds match.

• For the VLSF setup, we provide nonasymptotic achievability
bounds that improve on the one reported in [7, Thm. 3].
The bounds are obtained by exploiting that, for a BEC, the
decoder is able to identify the correct message whenever only
a single codeword is compatible with the sequence of channel
outputs received up to that point (a property noted previously
in e.g., [11]). The random coding argument used in one of
the bounds utilizes linear codes. Hence, the resulting coding
scheme can be seen as variable-length extension of random
linear fountain codes.

Some proofs are omitted for space constraint; they can be found
in [12].

Notation: Uppercase curly letters denote sets. The n-fold
Cartesian product of a set X is denoted by Xn. Uppercase
boldface letters denote random quantities and lightface letters
denote deterministic quantities. The distribution of a random
variable X is denoted by PX. With E[·] we denote expec-
tation and with EP [·] we stress that the expectation is with
respect to the probability law P. The indicator function is
denoted by 1{·} and we use the symbol F2 to indicate the
binary Galois field. With Xn

m we denote the random vector
with entries (Xm,Xm+1, . . . ,Xn). Similarly, xnm stands for a
deterministic vector with entries (xm, xm+1, . . . , xn). We shall
often use the following function:

ˆ̀(x) = blog2 xc+ 2(1− 2blog2 xc−log2 x), x ∈ R. (2)

Here, b·c denotes the floor operator. Furthermore, we shall use d·e
to denote the ceil operator. We let Bern(p) denote a Bernoulli-
distributed random variable with parameter p and Geom(p) a
geometrically distributed random variable with parameter p. The
binary entropy function Hb(·) is defined as follows:

Hb(x) = −x log2 x− (1− x) log2(1− x), x ∈ (0, 1). (3)

II. DEFINITION

We consider a BEC with input alphabetX = {0, 1} and output
alphabet Y = {0, e, 1}, where e denotes an erasure. A VLF code
for the BEC is defined as follows.

Definition 1: ([7, Def. 1]) An (`,M, ε)–VLF code, where ` is
a positive real, M is a positive integer, and ε ∈ [0, 1], consists of:

1) A random variable U, defined on a set U with2 |U| ≤ 2,
whose realization is revealed to the encoder and the decoder
before the start of transmission. The random variable U acts
as common randomness and enables the use of randomized
encoding and decoding strategies.

2) A sequence of encoders fn : U ×W × Yn−1→X , n ≥ 1
that generate the channel inputs

Xn = fn
(
U,W,Yn−1

1

)
. (4)

Here, W denotes the message, which is uniformly distributed
onW = {1, 2, . . . ,M}.Note that the channel input at time n
depends on all previous channel outputs (full feedback).

3) A sequence of decoders gn : U × Yn→W that provide the
estimate of W at time n.

4) A nonnegative integer-valued random variable τ, which is a
stopping time of the filtration

Gn = σ{U,Yn
1 } (5)

and satisfies
E[τ] ≤ `. (6)

5) The final estimate Ŵ = gτ(U,Y
τ
1 ) of W, which satisfies

the error-probability constraint

Pr
{
Ŵ 6= W

}
≤ ε. (7)

The rate R of an (`,M, ε)–VLF code is defined as

R =
log2M

E[τ]
. (8)

Furthermore, we define the minimum average blocklength of
VLF codes with M codewords and error probability not exceed-
ing ε as follows:

`∗f (M, ε) = min{` : ∃(`,M, ε)–VLF code}. (9)

VLSF codes are a special case of VLF codes. The peculiarity of
VLSF codes is that the sequence of encoders is not allowed to
depend on the past channel outputs, i.e.,

fn : U ×W→X , n ≥ 1. (10)

In the VLSF case, the feedback link is used by the receiver only
to inform the transmitter that the message has been decoded
(stop/decision feedback).

III. EXISTING RESULTS FOR BEC
In this section, we review the results available in literature

on the minimum average blocklength `∗f (M, ε) for the BEC.
The following achievability bound is obtained by time-sharing
between a scheme that drops the message to be transmitted
without using the channel at all, and a scheme that repeats the
channel input until it is received correctly.

Theorem 1: ([7, Thm. 7]) For a BEC with erasure probability δ,
there exists an (`,M, ε)–VLF code with

` ≤ (1− ε)dlog2Me
1− δ

. (11)

2The bound on the cardinality ofU given in [7] (i.e., |U| ≤ 3) can be improved
by using the Fenchel-Eggleston theorem [13, p. 35] in place of Caratheodory’s
theorem.



Next, we provide a converse bound.
Theorem 2: ([7, Thm. 7],[3, Lemmas 1 and 2]) For ev-

ery (`,M, ε)–VLF code with 0 ≤ ε ≤ 1 − 1/M operating
over a BEC with erasure probability δ, we have

` ≥ (1− ε) log2M −Hb(ε)

1− δ
. (12)

This converse bound can be obtained by constructing an appropri-
ate martingale using the conditional entropy of the a posteriori
distribution of the message given the channel output. Note that
the bounds (11) and (12) coincide for ε = 0whenever the number
of messages M is a power of 2.

IV. NOVEL BOUNDS FOR VLF CODES

In this section, we present an achievability and a converse
bound on `∗f (M, ε) that improve upon the ones given in The-
orems 1 and 2. The idea behind the achievability bound is to
combine the scheme in Theorem 1 with a Huffman code, whose
purpose is to reduce the average blocklength when the number
of messages is not a power of two. The converse bound relies
on sequential hypothesis testing and is inspired by the meta-
converse framework [8, Sec. III.E]. As we shall see, achievability
and converse bounds are tight when ε = 0, for every integer M.
Our achievability bound is given in Theorem 3 below.

Theorem 3: For a BEC with erasure probability δ, there exists
an (`,M, ε)–VLF code with

` ≤ (1− ε)ˆ̀(M)

1− δ
(13)

where ˆ̀(·) is defined in (2).
Proof: See [12, App. A].

The converse bound is based on binary sequential hypothesis
testing [14]. Let3 (D, τ) denote a generic binary sequential
hypothesis test between two stochastic processes P and Q.
Here, τ is a stopping time and D is a decision rule (0 indicates
that P is chosen and 1 thatQ is chosen). LetR(P,Q) denote the
set of all possible binary sequential hypothesis tests. We are inter-
ested in the minimum average number of samples `αP ,αQ

(P,Q)
required by a binary sequential hypothesis test to identify P
andQ correctly with probability at least αP and αQ, respectively.
Formally,

`αP ,αQ
(P,Q) = min

(D,τ)∈R(P,Q),
P [D=0]≥αP ,
Q[D=1]≥αQ

EP [τ]. (14)

In Lemma 4 below we establish a connection
between `αP ,αQ

(P,Q) and the parameters of a given VLF code.
For the sake of generality, the lemma is formulated for the case
of arbitrary DMCs (this requires a suitable generalization of the
definition of VLF codes provided in Definition 1 to arbitrary
DMCs).

Lemma 4: Consider an (`,M, ε)–VLF code for the
DMC PY |X. Let εQ denote the probability of error when
this code is used over the DMC QY |X. Let

{
PU,Xn

1 ,Y
n
1

}∞
n=0

and
{
QU,Xn

1 ,Y
n
1

}∞
n=0

be the probability distribution of

3We use the same notation as in [15, Ch. 3].

the process U, {(Xn,Yn)}∞n=1 under PY |X and QY |X,
respectively. The distributions of the stochastic processes
depend on the chosen (`,M, ε)–VLF code through its encoder
according to (4). We consider binary sequential hypothesis
testing between the two processes, under the assumption that the
realization of U is known to the test before processing (X1,Y1).
We have

` ≥ `1−ε,εQ
({
PU,Xn

1 ,Y
n
1

}∞
n=0

,
{
QU,Xn

1 ,Y
n
1

}∞
n=0

)
. (15)

Proof: See Appendix A.
The bound (15) can be viewed as the variable-length analogue
of the meta-converse theorem [8, Thm. 26]. The meta-converse
theorem links the average error probabilities resulting by using
the same fixed-blocklength code over two different channels by
means of binary hypothesis testing. Similarly, Lemma 4 relates
the average error probabilities and the average blocklengths
resulting by using a given VLF code over two different channels
by means of binary sequential hypothesis testing.

To obtain a converse bound from (15), we takeQY |X = QY,
with QY being the capacity-achieving output distribution of
the BEC. Then, we solve the minimization in (14) by using the
sequential probability ratio rest (SPRT) [14] (see [12, App. C]
for a short review). This yields the following bound.

Theorem 5: Every (`,M, ε)–VLF code operating over a BEC
with erasure probability δ satisfies

` ≥ (1− ε)ˆ̀(M(1− ε))
1− δ

. (16)

Proof: See [12, App. D].
We would like to emphasize that although (16) is tighter than

the converse bound reported in [7, Thm. 6], a generalization of
Theorem 5 to DMCs with finite C1 yields a converse bound that
is in general looser than the ones reported in [3, Thm. 1] and [7,
Thm. 6]. The peculiarity of the BEC is that the decoder is able to
determine if its estimate is correct or not by assessing whether
the estimated codeword is the only codeword compatible with
the erasure pattern. This implies that a two-phase scheme with a
confirmation from the encoder is not required.

Note that the right-hand sides of (13) and (16) coincide
when ε = 0. This fact is collected in the following corollary.

Corollary 6: The minimum average blocklength `∗f (M, 0) of
an (`,M, 0)–VLF code over a BEC with erasure probability δ
is given by

`∗f (M, 0) =
ˆ̀(M)

1− δ
(17)

where ˆ̀(·) is defined in (2).

V. NOVEL BOUNDS FOR VLSF CODES

We now focus on the VLSF setup and provide achievability
bounds for the case ε = 0. Achievability bounds for arbitrary ε
can be obtained by allowing the receiver to send a stop signal
at time zero with probability ε (see [7, Sec. III.D]). The corre-
sponding achievability bounds can be readily obtained from the
ones presented in this section by multiplying them by (1− ε).



As already mentioned, in the BEC case the decoder can assess
the correctness of its message estimate by verifying whether the
codeword corresponding to the chosen message is the only one
that is compatible with the received sequence. It is therefore
natural to consider a decoder whose stopping time is given by

τ = inf
{
n ≥ 1 : Pr

{
W = Ŵn |Yn

1 = yn1

}
= 1
}

(18)

where Ŵn denotes the message estimate at the decoder after n
channel uses:

Ŵn = arg max
w∈W

Pr{W = w |Yn
1 = yn1 }. (19)

The decoding rule (18)–(19) combined with random coding (inde-
pendent and identically distributed (i.i.d.) Bern(0.5) ensemble)
yields the following achievability bound.

Theorem 7: For a BEC with erasure probability δ, there exists
an (`,M, 0)–VLSF code with

` ≤ 1

1− δ

(
1−

M−1∑
i=1

(
M − 1

i

)
(−1)i

2i − 1

)
. (20)

Proof: See Appendix B.
The achievability bound (20) suffers from two pitfalls: (i) the
bound is loose when M is small because the random coding
ensemble contains few codebooks with abnormally large average
blocklengths; (ii) since the bound requires the computation
of differences of binomial coefficients, it becomes difficult to
compute whenM is larger than 104. Next, we present a different
achievability bound that addresses these two shortcomings. To
tighten (20) for smallM we use an expurgation technique similar
to the ones utilized by Shannon, Gallager, and Berlekamp [16, p.
529]. Specifically, we view each codebook as a random matrix
withM rows and an infinite number of columns and we assign the
following probability distribution on the VLSF code ensemble:
each column is drawn uniformly and independently from the
set of binary vectors with dM/2e zeros. Furthermore, to obtain
an expression that is computable for arbitrary values of M, we
upper-bound the average blocklength of the expurgated ensemble
using the union bound. The achievability bound thus obtained is
given in the following theorem.

Theorem 8: For a BEC with erasure probability δ, there exists
an (`,M, 0)–VLSF code with

` ≤ 1

1− δ

(
bmc+ 1 +

µm−bmc

µ− 1

)
(21)

where m = logµ(M − 1) and µ is related to the number of
messages M as follows:

µ = 2 +
1

dM/2e − 1
. (22)

Proof: See [12, App. G].
The parameter µ in (22) is the reciprocal of the probability that
the first two bits in a random vector that is uniformly distributed
over the set of vectors in FM2 with dM/2e zeros, are equal.

For the case when the number of messages M is a power of 2,
one can obtain an achievability bound that is tighter than (21), that
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Fig. 1: Achievability and converse bounds for zero error VLSF
codes over BEC with δ = 0.5. The converse bound is the one
given in (17) for VLF codes.

does not require the union bound, and that is easily computable.
The bound relies on a linear codebook ensemble in which the
columns of the random generator matrix are distributed uniformly
over the set of all nonzero vectors from Flog2M

2 . Specifically,
consider a received vector of length n and let In be the set
containing the indices of unerased symbols in the received vector.
We are interested in the dimension of the subspace spanned by the
columns of the generator matrix with index in In.This dimension
evolves as a Markov chain with a single absorbing state (the state
that corresponds to maximum dimension log2M ). it follows that
the average blocklength (averaged over the ensemble) coincides
with the expected absorption time of the Markov chain, which
follows a discrete phase-type distribution [17, Ch. 2]. This
achievability scheme can be seen as a variable-length analogue
of random linear fountain codes [10, Sec. 3]. The performance
of the achievability scheme just described is characterized in the
following theorem.

Theorem 9: For every integer k ≥ 1, there exists an (`, 2k, 0)–
VLSF code for a BEC with erasure probability δ with

` ≤ 1

1− δ

(
k +

k−1∑
i=1

2i − 1

2k − 2i

)
. (23)

Proof: See [12, App. H].
The achievability bounds (20), (21), and (23) are plotted in

Fig. 1. As expected, the bound (21) is tighter than (20) at small
average blocklengths (because of expurgation) and looser at large
average blocklengths (because of union bound). The achievability
bound (23) is tighter than (21) for all blocklengths and looser
than (20) for large average blocklengths. When M = 2, the
achievability bounds (21) and (23) coincide with the converse
bound for VLF codes given in (17). This holds because the
scheme that achieves (17) (repeat each bit until it is received
correctly) can be implemented with stop feedback when4 M = 2.

4Recall that in the VLSF setup the decoder is allowed to send only one stop
signal per message.



Pr{Z = 0 |Xn
1 = xn1 ,Y

n
1 = yn1 ,U = u, τ = n}

=
∑
w∈W

Pr{W = w |Xn
1 = xn1 ,Y

n
1 = yn1 ,U = u}Pr

{
Ŵ = w |Yn

1 = yn1 ,U = u, τ = n
}
. (24)

AsM increases, the gap between the VLSF achievability bounds
and the VLF converse bound increases and gets as large as 23%
when M = 8, before vanishing asymptotically as M→∞. It
remains to be seen whether this gap is fundamental.

APPENDIX A
PROOF OF LEMMA 4

Consider the random variable Z = 1
{
W 6= Ŵ

}
. The con-

ditional distribution of Z given Xn
1 = xn1 ,Y

n
1 = yn1 ,U =

u, τ = n, which is given in (24), does not depend on whether the
underlying channel is PY |X or QY |X. Indeed in (24), the first
factor depends only on the encoder and second factor depends
only on the decoder. Using the stopping time τ associated to the
given code and the family of probability kernels defined by the
conditional distribution (24) we construct a binary sequential
hypothesis test (D, τ). By definition, we have that under PY |X,

Pr{D = 0} = 1− ε (25)
and under QY |X

Pr{D = 0} = 1− εQ. (26)
Thus,

` ≥ E{
PU,Xn

1 ,Yn
1

}∞

n=0

[τ] (27)

≥ `1−ε,εQ
({
PU,Xn

1 ,Y
n
1

}∞
n=0

,
{
QU,Xn

1 ,Y
n
1

}∞
n=0

)
. (28)

APPENDIX B
PROOF OF THEOREM 7

We consider the VLSF codebook ensemble specified by the
set of all binary matrices with M rows and infinitely many
columns. Furthermore, we assign a probability distribution
on this ensemble by assuming each entry in the codebook
being i.i.d. Bern(0.5). Using the stopping time (18) and the
decoder (19), we can now create a VLSF code ensemble. By [12,
Lemma 10], we can write the ensemble average blocklength as

E[τ] =
E[τ0]
1− δ

(29)

where τ0 is the stopping time when δ = 0. Let Ew(Xn
1 ) be the

event that the bits Xn
1 , which are distributed i.i.d. Bern(0.5),

coincide with the first n bits of the codeword corresponding to
messagew.Without loss of generality, we assume that message 1
is transmitted. The ensemble average of τ0 is given by

E[τ0] = 1 +

∞∑
n=1

Pr

{
M⋃
w=2

Ew(Xn
1 )

}
(30)

=

∞∑
n=0

(
1−

(
1− 2−n

)M−1)
(31)

= 1−
M−1∑
i=1

(
M − 1

i

)
(−1)i

2i − 1
. (32)

In (32), we used the binomial theorem and the summation
formula for geometric series. Substituting (32) into (29) we
conclude that

E[τ] =
1

1− δ

(
1−

M−1∑
i=1

(
M − 1

i

)
(−1)i

2i − 1

)
. (33)

Since there exists at least one VLSF code in the ensemble with av-
erage blocklength lower than the ensemble average blocklength,
we conclude that (20) must hold.
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