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Abstract
In the computer vision community, saliency detection refers to modeling the
selective mechanism in human visual attentions. Outputs of saliency detec-
tion algorithms are called saliency maps, which represent conspicuousness
levels of different scene areas. Since saliency detection is an effective way to
estimate regions of interest that may be attractive to human eyes, numerous
applications range from object recognition, image compression, to content-
based image editing and image retrieval. This thesis focuses on salient region
detection, which aims at detecting and segmenting holistic salient objects
from natural images. Despite of many existing models/algorithms and rapid
progress in this field over the past decade, improving the detection perfor-
mance in complex and unconstrained scenarios remains challenging. This
thesis proposes five innovative methods for salient region detection. Each
method is designed to solve some issues in the existing models. The main
contributions of this thesis include: 1) A novel method that induces salien-
cy maps through eigenvectors of the normalized graph cut for better visual
clustering of objects and background. It leads to more accurate saliency es-
timation. 2) A novel data-driven method for salient region detection based
on continuous conditional random field (C-CRF). It provides an optimal
way to integrate various unary saliency features with pairwise cues. 3) A
robust graph-based diffusion method, referred to as manifold-preserving d-
iffusion (MPD). Based on two assumptions on manifold—smoothness and
local reconstruction, the method preserves the manifold used in the salien-
cy diffusion. 4) A superpixel-based method that effectively computes color
contrast and color distribution attributes of images in a unified manner. 5)
A new geodesic propagation method that is used to optimize coarse salient
regions for rendering visual coherence. In addition, driven by application-
s, this thesis also addresses traffic sign recognition (TSR) problem from
street view images. As a new application linking between saliency detection
and TSR, salient region detection of traffic signs is investigated in order to
enhance the sign classification performance.

Keywords: Salient region detection, normalized cut, continuous condition-
al random field, manifold, adaptive graph edge weights, saliency propaga-
tion, geodesics, color contrast, color distribution, traffic sign recognition
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Chapter 1

Introduction

1.1 Saliency detection

Images appearing on televisions, mobile devices, as well as computer screens
enrich our daily life. However, processing such vast amount of visual in-
formation in images in short time is a computational resource-demanded
task. Usually, information differs in importance. Some is crucial and grab-
s person’s attention, while other is less important. Thereby, an automatic
mechanism that answers what information might be necessary to pick up for
further processing is practically useful. A feasible way to realize the above
is lighted by modeling the selective mechanism of human visual attention,
or called visual saliency. According to studies of neurobiology and cogni-
tive psychology [1, 2], human eyes are capable of instinctively focusing on a
certain subset of visual information and capture with different priorities for
further processing in the brain. Such a mechanism, called visual saliency,
derives from the long evolution process of human beings and guarantees
humans the ability to understand complex visual scenarios in very short
time. Besides, it alleviates the need to process the otherwise vast incoming
visual data. Such a mechanism has been investigated by multiple disciplines
such as cognitive psychology [1–3], neuroscience [4], and computer vision [5].
Researchers categorize visual saliency processes into two types [5], namely
bottom-up and top-down. These two types of saliency have the following
features, respectively:

• Fast, unconscious, data driven, low-level feature driven

• Slow, task driven, knowledge driven, semantic feature driven

In the computer vision community, modeling visual saliency on images
is referred to as saliency detection, which aims at detecting salient image
parts that easily attract the human attention. These parts are often called
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“salient regions”, “important regions”, or “regions of interest”. Although
attention processes of human rely on bottom-up influences [6–8] and top-
down influences [9–11] as aforementioned, saliency detection in this thesis
mainly considers bottom-up factors, namely influences from low-level fea-
tures. Such type of saliency is data and stimulus driven. This means without
specifying any prior tasks or knowledge, bottom-up saliency detection can
be applied to detect generic salient regions. In the past decade, this type
of saliency detection has become a hot research field in computer vision
community [5].

The results of saliency detection are called saliency maps, where the
pixel-wise intensity indicates the degree of being salient (Figure 1.2). Since
such results indicate potential regions of interest (ROI), they have been
applied to many computer vision applications, e.g., object detection and
recognition [10, 12–14], image and video compression [15], video summariza-
tion [16], content-based image editing [17–23] and image retrieval [24–26]. It
is worth noting that in many applications above, saliency detection makes
it possible for smart and autonomous image processing without any hu-
man interaction. Figure 1.1 shows some example applications. There is no
doubt that saliency detection with more accurate results will improve these
applications, and therefore it is worthy studying in depth.

Aiming at different goals and tasks, saliency models are categorized into
eye fixation modeling and salient region detection1 [27]. Most of the early
saliency models [6, 14, 15, 28] belong to the former, aiming at predicting
where human look in a scene. Their basis dates back to the “feature integra-
tion theory” [1] proposed by cognitive psychologists Triesman and Gelade,
stating what kinds of visual features are important and how they are com-
bined to direct human attention. Neurobiologists Koch and Ullman [2] first
propose a feed-forward model to combine these features and introduce the
concept of a saliency map, i.e., a topographic map that represents conspic-
uousness of scene locations. A winner-take-all neural network is introduced
in their work to select the most salient locations and an inhibition of return
mechanism is employed to simulate eye shift. The first complete implemen-
tation of Koch and Ullman’s model [2] is proposed by Itti et al. [6]. As one
of the pioneer work, Itti et al. [6] propose a “center-surround” operator as
local feature contrast in color, intensity, and orientation on an image pyra-
mid. Such a center-surround operator characterizes the stimuli fed to visual
neural cells and is realized througth Difference of Gaussians (DOG).

Although eye fixation prediction is the origin of saliency detection and
has gained a lot of progress since then, these methods have a typical short-
coming which limits their performance in many applications. This drawback

1Eye fixation modeling and salient region detection are two research directions of
saliency detection. They aim at different tasks. However, when they individually appear
in certain context or applications, for simplicity both of them might be called saliency
detection instead.
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Proto object detection [14]

Object recognition [10]
Original size=628KB Compressed=261KB

Image/video compression [15]

Image retargeting [19] Picture collage [20, 21]

Non‐photorealistic rendering  [22, 23]

Query image

Content‐based image retrieval [26]

Figure 1.1: Sample applications of saliency detection. Images from the
corresponding references are reproduced.
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is that they tend to generate selectively sparse saliency maps (see Figure
1.2 for an illustrative example). When using them to detect salient objects
in relatively large sizes, such models often highlight merely edges, corners of
the objects instead the whole. Driven by emerging computer vision appli-
cations [12, 13, 15–20, 24, 25] as well as the development of modern display
devices, a new branch of saliency detection called salient region/object de-
tection2 [27] as aforementioned has emerged. In contrast to predicting eye
fixations, the goal of salient region detection is to detect and segment entire
salient objects in a scene. The output is a saliency map where the pixel in-
tensity represents the probability of belonging to salient objects. From this
definition, one can see this problem in its essence is a figure/ground seg-
mentation problem, and the goal is to only segment the salient foreground
objects from image background. Note that this problem differs from the
traditional image segmentation which aims at partitioning an image into
perceptually coherent regions.

Compared to fixation prediction models, salient region detection meth-
ods often compute center-surround contrast [30] or global contrast [7] based
on image regions. Hierarchical image segmentation [29, 31] is favored as a
multi-scale operation instead of the commonly used image pyramid in eye
fixation prediction [6]. Figure 1.2 shows a visual comparison between It-
ti’s model [6] and a state-of-the-art salient region detection model [29]. It
is worthy noting that in recent years the research wave of salient region
detection has already exceeded that of eye-fixation prediction. According
to the survey of Borji et al. [32], in 2013 year’s top conferences on com-
puter vision including: CVPR (IEEE Conference on Computer Vision and
Pattern Recognition), ICCV (IEEE International Conference on Comput-
er Vision), ECCV(European Conference on Computer Vision), the number
of papers on salient region/object detection is about five times of those
on eye-fixation prediction. This thesis addresses salient region detection in
natural images. Despite many previous methods/models on salient region
detection exist, improving the performance in complex scenarios yet remains
challenging. One of the fundamental challenges is how to emphasize entire
salient objects uniformly and suppress irrelevant background from unre-
stricted complex scenes. In order to improve the detection accuracy, this
thesis proposes several novel techniques driven by different motivations to
solve certain shortcomings in existing models.

2In this research field, terms “salient region detection” and “salient object detection”
are often used interchangeably and they refer to the same task. In some parts of this
thesis, they are used interchangeably as well.
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(a) (b) (c)

(d) (e) (f)

Figure 1.2: An example of visual comparison between Itti’s model [6]
and a state-of-the-art salient region detection model DRFI
[29]. From left to right, top to bottom: (a) A sample
image from a benchmark dataset MSRA-1000 [8] for salient
region/object detection. (b) The saliency map generated
by Itti’s model [6]. (c) The saliency map generated by
DRFI [29]. (d) The annotated ground truth provided by
the dataset. (e) Simple adaptive thresholding [8] on the
saliency map (b). (f) Simple adaptive thresholding on the
saliency map (c). This example is supposed to show the
visual difference between eye fixation prediction models
and salient region detection models.

1.2 Traffic sign recognition

Due to recently renewed efforts in vehicle safety and autonomous driving,
computer vision-based traffic sign recognition (TSR) has drawn increasing
interest lately from academic researchers and industries. It aims at detecting
and locating the traffic signs automatically in the captured images/videos,
and then classifying these signs. Numerous applications of TSR are listed
below:

1) Advanced driver assistance systems (ADAS) [33]: Many traffic
accidents have happened because the drivers ignored or neglected the traffic
signs. TSR is able to remind drivers about the signs appeared on the road
and assist them to make the judgement. Hence, traffic accidents can be
reduced. TSR is a crucial part of ADAS. Nowadays, many well-known
automobile manufacturers such as BMW, Benz, Volvo, Tesla have already
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added TSR modules into some of their products.
2) Intelligent autonomous driving [34]: Autonomous driving tech-

nology is supported by the intelligent computer control systems inside a car
to make the car be able to drive itself without human operation. Through
the perception of road situation around the car by multiple sensors, infor-
mation about the road situation, the position of the car, as well as the
obstacles can be simultaneously acquired. According to the information,
the systems control the speed and turning of the car, making the car drive
safely and reliably to the destination. To enable the autonomous car aware
of the situation on the road as well as the corresponding traffic rules, TSR is
one crucial function that must be included. A famous application instance
is Google’s self-driving car project3.

3) Road maintenance [35]: Traffic signs are usually placed on the
road side or hung above the road. They are infrastructures of the road and
require regular maintenance in order to check whether there has been any
loss, damage, or malicious occlusion. The traditional way for checking is to
rely on human operators to check along the road, or watching the recorded
video sequences to confirm the occurrence and status of signs. This no
doubt is a tedious and time-consuming task. The TSR can assist or even
replace human operators to complete this mission.

4) Sign inventory [35]: TSR can help collect images of signs appearing
along a road and at the same time link to global positioning system (GPS)
to mark the geographical coordinates of these signs, leading to automatic
annotation on the map. This finally results in a sign inventory map. Such a
map is useful in navigation as well as geographic information systems (GIS).

The challenges in TSR are three-fold and are summarized as follows:

• Degeneration of sign appearances due to light variations, view angle
changes, image compression, size changes, occlusion, motion blur, and
many more.

• Background noise/clutter whose appearances look similar to those of
signs.

• Similarity across some sign classes.

The work related to this field investigated in this thesis is driven by
a Volvo project that aims at recognizing Chinese road signs from street
view images. Since China has very large population and hence crowded
traffic, it uses a variety of signs and complicated combination to guide traffic
activities. As a result, it makes sign recognition on Chinese traffic signs an
interesting yet challenging task. Though there exist some public traffic sign
datasets (e.g., German sign dataset [36, 37], Belgium sign dataset [38]),

3https://www.google.com/selfdrivingcar/
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Figure 1.3: A street view image (resolution 960*640), where two signs
are annotated. The color of their bounding boxes indi-
cate their category and the bottom-left text in the blue
background indicates the classes they belong to. Sign #1
means speed limit 120 and sign #2 means speed limit 100.

there is no any public Chinese sign dataset. Besides, Chinese traffic signs
are different from the European ones. Thereby, images used for research
purpose are collected from a public web source—street view images. Street
view images are captured by multiple cameras mounted on the top of a
moving car. The car performs street view shooting each time after it moves
forward for a certain distance (e.g., 10m). Images captured in different
orientations are stitched to generate a 360-degree full street view scene.
Therefore, street view images are real-world images which show road scenes
in the perspective of a moving vehicle on the road. Likewise, the traffic signs
contained in street view images present various distortion and degeneration
of signs in real-world scenarios. Using street view images to study TSR
problems is hence reasonable and fits to the applications in ADAS and
autonomous driving. Google street view4 is the most commonly used online
street view service that covers up to 114 countries in the world, whereas
Tencent street view5 provides street images in major cities of China. Figure
1.3 shows an example of street view images collected from Tencent during
our project, where the traffic signs are later manually annotated.

4http://www.google.com/streetview/
5http://map.qq.com/
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In real-world applications, a complete TSR system needs to comprise
two modules [35], namely sign detection (locating signs) and sign classifi-
cation (determining types of signs). Since in practice these two modules
are cascaded, the detection results of the first module will heavily influence
the performance of subsequent classification. Different from some existing
works which only focus on either sign detection or sign classification [39–44],
this thesis exploits a complete detection and classification system to tackle
Chinese sign recognition problem. In the proposed system, salient region
detection is applied to obtain reliable feature extraction from detected signs,
leading to enhanced sign classification.

1.3 Scope and addressed problems

1.3.1 Scope

This thesis focuses on robust salient region/object detection in natural im-
ages. The aim is to generate high quality saliency maps that emphasize
holistic salient objects meanwhile suppress irrelevant background. The oth-
er branch namely eye fixation modeling [6, 14, 15, 28] is not investigated.
As aforementioned, salient region/object detection aims at detecting and
segmenting entire salient objects [27, 32] and can better benefit emerging
applications [12, 13, 15–20, 24, 25]. Besides, the proposed saliency models
focus on bottom-up salient region detection. The top-down factors [9–11]
are not intentionally considered. As aforementioned, the bottom-up salien-
cy detection does not rely on any prior-dependant tasks. Comparing to the
top-down one, its applications are more universal.

1.3.2 Addressed problems

This thesis addresses the problems of salient region detection in natural
images and proposes five innovative methods. Then we propose two methods
to apply salient region detection to traffic sign recognition (TSR). More
specifically, our methods are focused on different sub-problems:

• Group salient objects and background for saliency detection:
Existing methods are often in favor of over-segmented regions upon
which saliency levels are computed. Unfortunately, such local regions
are less effective on capturing objects holistically and therefore are less
emphasis on entire objects in the saliency maps. Additionally, nois-
es are easily introduced by over-segmentation. As a result, existing
methods often fail to detect an entire object in complex background.
By investigating an optimized clustering/grouping process, more ac-
curate saliency estimation could be achieved.



1.4 Outline of this thesis 9

• Learn a complete conditional random field (CRF) for saliency
detection: Previously, a CRF is often employed for salient object
detection. Unfortunately, when utilizing a CRF with parameterized
unary and pairwise energy potentials, existing methods only adopt
manually designed parameters, or alternatively learn the parameters
for the unary potentials. As such, the feature integration ability of
CRF cannot be fully exploited. By learning a complete CRF, namely
learning parameters for both types of potentials, we are able to learn
to integrate more information and thus expect better detection results.

• Apply graph-based diffusion to salient region detection: In
diffusion-based saliency detection, an image is first modeled by a
graph. Next, a diffusion process is formulated to propagate the salien-
cy information from nodes to nodes. While the diffusion performance
heavily relies on the graph edge weights representing the similarity
degree between nodes, existing works often define such weights with
manually tuned Gaussian bandwidth parameters and fix them for al-
l images. Since different images often have different properties such
as colors, contrast, textures, using fixed bandwidth cannot reach an
optimal for individual images. This thesis addresses the adaptive con-
struction of graph weights in each image and aims at a new diffusion
method for saliency detection.

• Formulate the computation of color contrast and color distri-
bution in a unified manner: Color contrast and color distribution
are two widely employed hypotheses for discovering salient objects,
but there lacks an efficient and unified scheme to compute them. By
integrating complementary contrast and distribution information, we
are able to achieve a baseline method derived from color attributes.

• Transfer geodesic distance to saliency detection: Geodesic dis-
tance is often applied to images to measure the connectivity between
image parts, and is widely used in interactive foreground segmen-
tation. This thesis addresses how to transfer geodesic distance to
saliency detection for rendering a coherent visual saliency map.

• Traffic sign recognition from street view images using saliency-
enhanced methods: Since salient regions are supposed to be more
informative, this thesis further attempts to employ salient regions for
enhanced sign classification.

1.4 Outline of this thesis

The thesis is divided into two parts. The first part briefly describes the
background and the proposed work. The second part includes publications
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resulted from this thesis work. The first part of the thesis is organized as
follows: Chapter 2 reviews related work and theories. Chapter 3 gives a
thorough overview of existing work on salient region detection and traffic
sign recognition. Summary of this thesis work is described in Chapter 4.
Finally, conclusion and insights are drawn in Chapter 5.



Chapter 2

Background Theories and
Methods

This chapter reviews the basic background theories where this thesis work is
built upon, including: Itti’s model for eye fixation prediction; global regional
contrast for salient region detection; graph-related theory; and superpixel
segmentation by SLIC (Simple Linear Iterative Clustering). Noting that
although this thesis focuses on salient region detection, salient region detec-
tion is one branch in saliency detection and the saliency detection originates
from Itti’s model.

2.1 Itti’s saliency model

In 1998, Itti et al. [6] proposed a visual attention system inspired by the
behavior and the neuronal architecture of an early primate visual system [2].
It is the earliest saliency model implemented by using computer vision and
image processing techniques. Itti’s model is related to the so-called “feature
integration theory” [1], explaining human visual search strategies. In Itti’s
model, visual input is first decomposed into a set of topographic feature
maps. Different spatial locations then compete for saliency within each
map, such that only locations which locally stand out from their surround
can persist. All feature maps feed in a purely bottom-up manner, into a
master saliency map which topographically codes for local conspicuity over
the entire visual scene. In primates, such a map is believed to be located
in the posterior parietal cortex as well as in the various visual maps in the
pulvinar nuclei of the thalamus. The general architecture of Itti’s model is
shown in Figure 2.1. Below, we briefly review essential details of the model,
as shown by the three stages in Figure 2.1.



12 Background Theories and Methods

Ex
tr
ac
ti
o
n
 o
f 
ea
rl
y 

vi
su
al
 f
ea
tu
re
s

Fo
rm

u
la
ti
o
n
 o
f 
th
e
 

sa
lie
n
cy
 m

ap
Ey
e 
sh
if
t 

si
m
u
la
ti
o
n

Figure 2.1: The general architecture of Itti’s model (the picture is tak-
en from [6] and is reproduced).

2.1.1 Extraction of early visual features

Denote the red, green, and blue channels of an input image as r, g, b. The
intensity channel I is computed as (r + g + b)/3. Meanwhile, four color-
enhanced channels R, G, B, Y are defined in Itti’s model:

R = r − (g + b)/2 (2.1)

G = g − (r + b)/2 (2.2)

B = b− (r + g)/2 (2.3)

Y = (r + g)/2− |r − g|/2− b (2.4)

where negative values of R, G, B, Y are set to zeros. Then, Gaussian
pyramids are created upon these channels as I(σ), R(σ), G(σ), B(σ), Y (σ),
where σ ∈ [0, 1, ..., 8] is the scale parameter. In addition to intensity and
color features, orientation features are considered as well. Let O(σ, θ) de-
note the Gabor pyramid obtained from I, where σ ∈ [0, 1, ..., 8] indicates the



2.1 Itti’s saliency model 13

scale and θ ∈ {0, π/4, π/2, 3π/4} indicates the orientation. After all primi-
tive features are prepared at hand, Itti’s model defines a “center-surround”
operation which characterizes the stimuli strength of different feature type-
s fed to visual neural cells. Such a center-surround operation is realized
through the difference of Gaussians, denoted by notation “	”. Note that
the across-scale difference “	” between different Gaussian scales is calculat-
ed by interpolation to the finer scale and then point-by-point subtraction.
The center-surround difference upon intensity feature is calculated as:

I(c, s) = |I(c)	 I(s)| (2.5)

where c ∈ {2, 3, 4} corresponds to the “center”, namely a pixel at a fine
scale, whereas s = c+δ, δ ∈ {3, 4}, corresponds to the “surround”, namely a
pixel at a coarse scale. Similarly, the center-surround difference upon color
features is calculated by considering the “color double-opponent” system
(including red/green and yellow/blue) in human primary visual cortex:

RG(c, s) = |(R(c)−G(c))	 (G(s)−R(s))| (2.6)

BY (c, s) = |(B(c)− Y (c))	 (Y (s)−B(s))| (2.7)

Likewise, the center-surround difference upon orientation features is com-
puted for different orientation θ as:

O(c, s, θ) = |O(c, θ)	O(s, θ)| (2.8)

In total, 42 feature maps (see the first stage in Figure 2.1) are computed:
6 for intensity, 12 for colors, and 24 for orientations.

2.1.2 Formulation of saliency map

In the absence of top-down supervision, Itti’s model adopts a map normal-
ization operator N (·), which globally promotes maps where a small number
of strong peaks of activity (conspicuous locations) are present. Meanwhile
N (·) globally suppresses maps that contain numerous comparable peak re-
sponses. N (·) consists of the following two steps: (a) Large amplitude
differences are eliminated by normalizing the map values to a fixed range
[0, 1, ...,M ], where M is the global maximum of the map; (b) Multiply the
map by (M−m̄)2, where m̄ is the average of all its other local maxima. The
underlying biological motivation for N (·) is lateral cortical inhibition mech-
anism, in which neighboring similar features inhibit each other via specific,
anatomically defined connections.

Feature maps are combined into three “conspicuity maps” (Figure 2.1),
Ī for intensity, C̄ for colors, and Ō for orientation, at the scale 4 of salien-
cy map. They are obtained through across-scale summation, denoted by
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notation “
⊕

” which consists of reduction of each map to the scale 4 and
point-by-point addition. The computation of Ī, C̄ and Ō is as follows:

Ī =
4⊕

c=2

c+4⊕

s=c+3

N (I(c, s)) (2.9)

C̄ =

4⊕

c=2

c+4⊕

s=c+3

[N (RG(c, s)) +N (BY (c, s))] (2.10)

Ō =
∑

θ∈{0,π/4,π/2,3π/4}
N [

4⊕

c=2

c+4⊕

s=c+3

N (O(c, s, θ))] (2.11)

The final saliency map S is obtained by normalization and a linear combi-
nation (Figure 2.1) of these three conspicuity maps:

S =
1

3
(N (Ī) +N (C̄) +N (Ō)) (2.12)

2.1.3 Simulation of eye shift

The inhibition-of-return (IR) process in Figure 2.1 is part of Itti’s model
that is employed to simulate human eye shift in free viewing. It detects the
most salient location and directs focus of attention (FOA) towards it. After
that, IR in a short time suppresses this salient location in the saliency map
and its neighborhood in a small radius (equal to the radius of FOA), such
that FOA is autonomously directed to the next most salient location. The
suppression is achieved by setting saliency map values to 0. The following
iteration will find the most salient point in a different location. This iterative
process stops when the maximum of the saliency map reaches below a certain
threshold. Computationally, the IR performs a similar process of selecting
the global and local maxima. Since there are no any top-down attentional
components modeled, the radius of FOA in Itti’s model is fixed to one
sixth of the smaller of the input image width or height [6]. In practice, IR
is realized by a biologically plausible 2D “winner-take-all” (WTA) neural
network [2] at the scale 4. The time constants, conductances, and firing
thresholds of the simulated neurons are chosen so that the FOA jumps from
one salient location to the next in approximately 30–70 ms, and that an
attended area is inhibited for approximately 500–900 ms. The difference in
the relative magnitude of these delays proves sufficient to ensure thorough
scanning of the image and prevents cycling through only a limited number
of locations.
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2.2 Global regional contrast for salient region
detection

The work of Cheng et al. [7] is one of the earliest to introduce regional con-
trast based salient region detection, which simultaneously evaluates global
contrast differences and spatial weighted coherence scores. The motivation
behind such contrast analysis is that human cortical cells may be hard-wired
to preferentially respond to high contrast stimulus in their receptive field-
s. This is somewhat related to and coincides with the “center-surround”
feature contrast hypotheses in Itti’s model [6]. However, compared to It-
ti’s model which typically measures local contrast, the method proposed by
Cheng et al. [7] is global and use regions from image segmentation to cap-
ture non-local contrast information, and hence is more suitable for detecting
a large-scale salient object from its surroundings. Below this thesis briefly
reviews the regional contrast (RC) algorithm proposed by Cheng et al. [7].

In RC, an input image is firstly pre-segmented into non-overlapping re-
gions using some image segmentation algorithm. Then a regional saliency
map is computed, where saliency of a region is measured by the global color
contrast between this target region and all other regions in the image. Sup-
pose an input image is pre-segmented into N regions denoted as {ri}Ni=1. In
RC, the global regional contrast saliency for a region ri is computed as:

S(ri) =

N∑

j=1

w(rj)Dr(ri, rj) (2.13)

where Dr(ri, rj) is related to the appearance contrast between two region-
s. In RC, Cheng et al. adopt the color histograms of regions, which are
extracted from quantized color space. Therefore, Dr(ri, rj) is computed as:

Dr(ri, rj) =

ni∑

l=1

nj∑

m=1

f(ci,l)f(cj,m)D(ci,l, cj,m) (2.14)

where f(ck,l) is the probability (in the normalized color histogram) of the
l-th color ck,l among all nk colors in the k-th region rk, k ∈ {i, j}, and
D(ci,l, cj,m) is the Euclidean distance between two colors in the color space.
w(rj) is the weight for region rj during contrast computation and is defined
by considering both spatial influence and region size:

w(rj) = exp(−Ds(ri, rj)/σ
2
s)|rj | (2.15)

where Ds(ri, rj) is the spatial distance between region ri and rj , and σs
controls the strength of spatial weighting. Large values of σs reduce the
effect of spatial weighting, so that contrast to farther regions would con-
tribute more to the saliency of the current region. By letting σs → ∞,
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equal weights for all regions are resulted. |rj | is the size of region rj to
emphasize color contrast to bigger regions.

2.3 Graph-related theory

2.3.1 Fundamentals

Graph theory studies the graphs, which are mathematical structures for
modeling relations between objects. A graph in this context consists of
vertices (also called nodes or points) and edges (also called arcs or lines). A
graph may be undirected, meaning that there is no distinction of directions
of edges, or directed, meaning an edge points from one vertex to another.
Since graphs involved in this thesis work are undirected, the introduction
below will be focused on undirected graphs.

Let a graph G be denoted by G = (V,E), where V is the set of ver-
tices and E is the set of edges. Specially, E can be expressed as 2-element
subsets of V . For example, an edge eij = 〈vi, vj〉 corresponds to the con-
nection between two vertices vi and vj , and for an undirected graph, 〈vi, vj〉
and 〈vj , vi〉 are the same. In a graph, an edge is usually rendered with
some weight, which is called edge weight as shown in Figure 2.2. The edge
weights of graph should reflect certain relation between two vertices, usually
either distinction or similarity. Note that “similarity”, in some context, is
also called “affinity”. Below, we describe the definitions of adjacency ma-
trix, edge weight matrix, degree matrix, and Laplacian matrix in the graph
theory, which are frequently used:

v2

v1

v3 v4

v5

v6

v7

0.1

Figure 2.2: An undirected graph with 7 vertices (v1 ∼ v7). The values
beside edges are corresponding edge weights.

Adjacency matrix: An adjacency matrix is a square matrix used to repre-
sent the connections of a graph. The rows and columns are both indexed by
vertices of the graph whereas the elements of the matrix indicate whether
pairs of vertices are adjacent or not in the graph. The adjacency matrix is
a binary matrix ({0, 1} valued) often with 0 on its diagonal. If the graph is
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undirected, the adjacency matrix is symmetric. For instance, the adjacency
matrix of the graph in Figure 2.2, denoted as A, is shown below:

A =




0 1 1 0 0 0 0
1 0 0 0 0 0 0
1 0 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 0




(2.16)

Edge weight matrix: Edge weight matrix is very similar to the adjacency
matrix, however, its elements indicate edge weights of the corresponding
edges. The elements equal to 0 if no edges exist between pairs of vertices.
One can simply formulate an edge weight matrix by replacing the 1 entries
in an adjacency matrix with the corresponding edge weights of the graph1.
For example, the edge weight matrix of the graph in Figure 2.2, denoted as
W, is shown below:

W =




0 0.7 0.8 0 0 0 0
0.7 0 0 0 0 0 0
0.8 0 0 0.1 0 0 0
0 0 0.1 0 0.6 0 0
0 0 0 0.6 0 0.5 0.6
0 0 0 0 0.5 0 0.9
0 0 0 0 0.6 0.9 0




(2.17)

Degree matrix: The degree matrix is a diagonal matrix where its ith
diagonal entry indicates the degree of vi. Note in different situations, the
degree matrix of the adjacency matrix or the degree matrix of the edge
weight matrix may be used. Since in this thesis, the term “degree matrix”
usually refers to the degree matrix of edge weight matrix, therefore below
the definition of the degree matrix is based on edge weight matrix. Based
on such an edge weight matrix W, the degree of the ith vertex vi is defined
as dii =

∑
j wij , where wij is the entry of W. For example, the degree

matrix of the graph in Figure 2.2, denoted as D, is shown below:

1In some literatures, the edge weight matrix W of a graph is still called adjacency
matrix. In those context, adjacency matrix and edge weight matrix indeed refer to the
same thing, namely the edge weight matrix W described in this section. However, to be
precise and distinguishable, they refer to different things in this section.
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D =




1.5 0 0 0 0 0 0
0 0.7 0 0 0 0 0
0 0 0.9 0 0 0 0
0 0 0 0.7 0 0 0
0 0 0 0 1.7 0 0
0 0 0 0 0 1.4 0
0 0 0 0 0 0 1.5




(2.18)

Laplacian matrix: The Laplacian matrix, also called graph Laplacian,
is defined as L = D −W. This matrix acts as a very important role in
many sub-fields of graph theory such as random walk, graph-based semi-
supervised learning, spectral graph theory. The Laplacian matrix of the
graph in Figure 2.2, denoted as L, is shown below:

L =




1.5 −0.7 −0.8 0 0 0 0
−0.7 0.7 0 0 0 0 0
−0.8 0 0.9 −0.1 0 0 0

0 0 −0.1 0.7 −0.6 0 0
0 0 0 −0.6 1.7 −0.5 −0.6
0 0 0 0 −0.5 1.4 −0.9
0 0 0 0 −0.6 −0.9 1.5




(2.19)

The Laplacian matrix has many interesting properties:

1. For every vector f ∈ Rn, fTLf = 1
2

∑n
i,j=1 wij(fi − fj)2, where fi is

the ith component of f and n is the dimension of W and L.

2. For an undirected graph whose edge weights are non-negative, L is
positive semi-definite.

3. Along with item 2, the smallest eigenvalue of L is 0. The correspond-
ing eigenvector is the constant one vector.

4. Along with item 2, L has n non-negative, real-valued eigenvalues.

5. Along with item 2, the multiplicity of the eigenvalue 0 of L equals the
number of connected components in the graph.

From the examples above, one can see that there are two essential questions
to answer when building a graph. The one is whether there exists an edge
between two vertices. The other is how to define the weight of an edge.
Below we describe four ways commonly adopted for computing graph edge
weights.
Binary 0/1 weight: If there exists an edge, then the corresponding edge
weight is 1. In this case, the edge weight matrix W degrades to the adja-
cency matrix A.
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Feature distance: Suppose that a graph node vi associates with a feature
vector, denoted as fi. Then the edge weight can be computed as wij =
||fi − fj ||, which typically measures the distinction between two nodes.

Gaussian similarity: In the situations where graph edge weights need to
reflect similarity (or affinity) between vertices, the most common weights
are induced by Gaussian kernel function:

wij = exp(−||fi − fj ||2
2σ2

) (2.20)

where σ is the kernel width. The closer the two nodes are in feature space,
the larger the corresponding wij will be. The wij generated in this way
ranges from 0 to 1. Noting that a graph edge weight matrix W where
entries represent the similarity degree (such as those induced by Gaussian
kernel) is often called affinity matrix. The corresponding graph is then
called “similarity graph” or “affinity graph”.

Locally linear embedding: Assume each graph node vi can be optimally
reconstructed using a linear combination of its graph neighbors vj ∈ N (vi)
(where N (·) denotes the neighborhood) in feature space, then the weights
of edges connecting to vi can be obtained automatically by solving the
following optimization problem [45]:

minwij
||fi −

∑
j|vj∈N (vi)

wijfj ||2 (2.21)

s.t.
∑
j wij = 1, wij ≥ 0 (2.22)

Besides the above four common ways of computing edge weights, other
means for graph construction exist. However, how to build up graph edges
meanwhile choosing an appropriate way for edge weight computation de-
pends on specific applications.

2.3.2 Geodesic distance

Geodesic distance is originally defined as the length of the shortest path
(called geodesic) between any pair of points on a nonlinear manifold. Figure
2.3 gives an example, where a 2-D manifold is embedded in a 3-D space R3.
In the graph theory, the geodesic distance is usually considered between two
vertices/nodes as the distance metric on a graph, which corresponds to the
length of the shortest graph path. Below geodesic distance and its definition
on images [46] are reviewed since they are relevant to this thesis work. The
geodesic distance and its transform can be applied to image segmentation,
edge-preserving filtering, denoising, stitching, and colorization [46]. Let I(x)
be an image: Ψ→ Rd (d = 3 for a color image while d = 1 for an intensity
image), whose support Ψ ⊂ R2 is assumed to be continuous for the time
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a

b

Figure 2.3: Example of a 2-D manifold (sphere) embedded in a 3-D
space R3. a and b are manifold points. The geodesic ρ is
the shortest curve between a and b on the manifold, and
its length is called geodesic distance.

being. Given two points a, b ∈ Ψ, the geodesic distance between them on
the image is defined as:

dgeo(a, b) = inf
Γ∈Pa,b

∫ l(Γ)

0

√
1 + γ2(∇I(s) · Γ′(s))2ds (2.23)

where Pa,b is the set of all possible differentiable paths between a and b.
The spatial derivative Γ′(s) = ∂Γ(s)/∂(s) is the unit vector tangent to the
direction of the path with arc length s, and ∇I(s) is the corresponding gra-
dient vector. The dot-product ∇I(s) · Γ′(s) computes the image gradient
magnitude along the tangent. The geodesic factor γ weighs the contribution
between the gradient and the spatial distance. When γ = 0, the integra-
tion will turn to the length of path, i.e., l(Γ), and dgeo(a, b) degenerates to
Euclidean distance. Figure 2.4 gives an example to help understand the def-
inition (2.23). Note that the definition (2.23) is an adaption of the generic
definition of geodesic distance to images, since an image may be treated as
an intrinsic manifold. Given a “seed” region Ω, one can define the geodesic
distance transform D of pixel x as its minimum geodesic distance from Ω:

D(x; Ω) = min
{x′∈Ω}

dgeo(x, x
′) (2.24)

In (2.23) the support Ψ ⊂ R2 is assumed continuous. However, in practice
an image is pixel lattice and thereby has pixels with discrete coordinates.
From (2.23), we can derive a discrete approximation for image lattice:

dgeo(a, b) = min
Γ∈Pa,b

∑

pk∈Γ

√
1 + γ2(∇I(pk, pk+1))2Ds(pk, pk+1) (2.25)
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An image I

a

b

Arc length

Figure 2.4: Example on a simple synthetic image to help understand
definition (2.23). The synthetic image is gray-level and has
its upper half to be gray (low intensity) and the lower half
to be white (high intensity). The blue curve connecting
two point a and b in the image indicates a path Γ ∈ Pa,b.
The solid blue arrow means the gradient vector ∇I(s) at
the current point where as the dash blue arrow reveals the
corresponding tangent direction along the path.

where pk is the kth point on the discrete path Γ, ∇I(pk, pk+1) is the gradi-
ent magnitude between pk, pk+1, and Ds(pk, pk+1) is the spatial distance
between pk, pk+1. When further ignoring the influence of spatial distance
but considering only the gradient, namely γ → ∞, the following variation
can be obtained:

dgeo(a, b) = min
Γ∈Pa,b

∑

pk∈Γ

∇I(pk, pk+1)Ds(pk, pk+1) (2.26)

The computation of (2.26) (and also (2.25)) can be transferred to an-
other perspective—computing the geodesic distance on a graph, where each
point pk of the lattice is a vertex while ∇I(pk, pk+1)Ds(pk, pk+1) between
two adjacent lattice points is the edge. Hence, calculating (2.26) is equiv-
alent to finding the shortest path on a graph, which rightly coincides with
the geodesic distance on the graph as aforementioned. Typically Floy-
d’s/Dijkstra’s algorithms are applied, but there also exist speedup com-
putation techniques like raster scanning [47] for 4-adjacency/8-adjacency
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neighborhood on image lattice. Since the geodesic distance on an image
can describe the connectivity degree between two image locations, whereas
objects usually present connectivity properties, superpixel-based geodesic
distance is employed in this thesis for salient region detection and traffic
sign recognition.

2.3.3 Normalized graph cut (Ncut)

Graph cut is a class of methods for finding a partition of a similarity graph,
such that edges between different groups have low weights (indicating low
similarities) and meanwhile edges within a group have high weights (indicat-
ing high similarities). It has a similar spirit to the aim of clustering: points
within a same cluster are similar to each other while points in different clus-
ters are dissimilar from each other. This section reviews a well-established
graph cut method—normalized graph cut (Ncut) proposed by Shi et al. [48],
which is relevant to this thesis work. Since the Ncut and spectral cluster-
ing are tightly related, Ncut is first reviewed and its connection to spectral
clustering is then described.

From the partition point of view, a simplest example to start with is
the min-cut example. Suppose a similarity graph G = (V,E). Let W be
the edge weight matrix of the graph, D be the degree matrix, and L =
D−W be the Laplacian matrix. A cut is a partition of the graph vertices
into two disjoint subsets A and B, where such cut can be specified by
a series of edges. The corresponding cut cost is defined as cut(A,B) :=∑
vi∈A,vj∈B wij . Generally, for a given number k (k ≥ 2) of subsets, the

min-cut chooses a partition {A1, ...., Ak} that minimizes:

cut(A1, ..., Ak) =

k∑

i=1

cut(Ai, Āi) (2.27)

where Ā denotes the complement of A. In particular for k = 2, min-cut is
to search for a partition {A,B} (B = Ā) where the cut(A,B) is minimized.
This problem is relatively easy and can be solved efficiently. Unfortunately,
in practice the min-cut often does not give satisfactory partition, since it
often separates one (or few) individual vertex from the rest of the graph
[48]. This is not satisfying to achieve in clustering because clusters should
be reasonably large groups of points. An effective objective function to
overcome this issue is by normalizing the cut values using cluster sizes,
leading to the normalized cut (Ncut). Ncut is originally proposed by Shi et
al. [48] aimed at minimizing:

Ncut(A1, ..., Ak) =
k∑

i=1

cut(Ai, Āi)

assoc(Ai, V )
(2.28)
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where assoc(Ai, V ) :=
∑
vl∈Ai,vm∈V wlm is a measure of set size, i.e., the

larger the cardinality |Ai| is, the higher assoc(Ai, V ) will be. By defining
a hard indicating vector for each Ai and relaxing the hard constraints (for
details please refer to [48, 49]), the continuous indicating vectors for Ncut
can be derived from the first k eigenvectors corresponding to the smallest
eigenvalues of D−1L, or the first k generalized eigenvectors2 of:

(D−W)u = λDu (2.29)

where u and λ denote the eigenvector and eigenvalue. The solution of 2-way
Ncut (k = 2 case) is given by its second smallest eigenvector.

Since the continuous indicating vectors for multi-cluster Ncut are derived
from the first k generalized eigenvectors of system (D−W)u = λDu and
contain valuable cluster information, k-means clustering can be applied to
these eigenvectors to obtain labels corresponding to clusters, leading to the
so-called spectral clustering (Algorithm 1).

Algorithm 1 Spectral Clustering

Require: Constructed similarity graph described by W, cluster number k.
Ensure: Clusters A1, ..., Ak with Ai = {j|yj ∈ Ci}, where yj and Ci are

defined below.
1: Compute the degree matrix D and graph Laplacian L = D−W.
2: Compute the first k generalized eigenvectors u1,u2, ...,uk of the gener-

alized eigen-problem Lu = λDu.
3: Let U ∈ Rn×k be the matrix containing the vectors u1, ...,uk as column-

s.
4: For i = 1, 2, ..., n, let (yi ∈ Rk) be the vector corresponding to the i-th

row of U.
5: Cluster the points (yi)i=1,...,n in Rk with the k-means algorithm into

clusters C1, ..., Ck and output clusters A1, ..., Ak with Ai = {j|yj ∈ Ci}.

2.3.4 Conditional random field (CRF)

Conditional random field (CRF) is originally proposed by Lafferty et al. [50]
for labeling sequence data. Its definition is given according to [50]: “Suppose
X is a set of random variables over data sequences to be labeled, and Y is
a set of random variables over corresponding label sequences. G = (V,E)
defines a graph constructed from the data sequences such that Y = (Yv)v∈V
is indexed by the vertices of G. (X,Y ) formulates a conditional random
field in case, when conditioned on X, each Yv obeys the Markov property

2Hereafter in this section, we use “the first k eigenvectors” instead of “the first k
eigenvectors corresponding to the smallest eigenvalues” for simplicity.
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with respect to the graph: p(Yv|X,Yw, w 6= v) = p(Yv|X,Yw, w ∼ v), where
w ∼ v means w and v are neighbors in G.” Such Markov property infers
that the probability of Yv is conditioned on both data sequence X and also
labels, i.e., Yw of neighboring vertices. CRF has become a popular class of
statistical modelling methods in pattern recognition and machine learning,
where they are used for structured prediction. In computer vision, CRFs are
often used for semantic segmentation [51–53]. The below introduction for
CRF is mainly about image labeling task, which is relevant to this thesis
work.

For the image labeling task, given an image x, the conditional probability
distribution of a label configuration y (vector form) on the CRF is defined
as:

p(y|x) =
1

Z(x)
exp{−E(y,x)} (2.30)

where E(y,x) is the energy function and Z(x) is the partition function
(i.e., normalization function) which sums over all possible label state. In a
discrete case, the partition function is written as Z(x) =

∑
y exp{−E(y,x)},

whereas in a continuous case, the partition function is written as Z(x) =∫
y

exp{−E(y,x)}dy. The energy function can be expressed as unary terms
plus pairwise terms as:

E(y,x) =
∑

i

Uα(yi,x)︸ ︷︷ ︸
Unary term

+
∑

i,j,i∼j
Pβ(yi, yj ,x)︸ ︷︷ ︸
Pairwise term

(2.31)

where yi is the ith element of the label vector y, vector α contains the
parameters for unary potentials, and vector β contains the parameters for
pairwise potentials. As introduced before, a CRF is often coupled with
the definition of an undirected graph G(V,E), where V is the set of graph
nodes and E is the set of graph edges. The label assigned to each graph
node vi ∈ V is denoted by yi. In (2.31), the notation “i ∼ j” means vi
and vj are graph neighbors. The unary term Uα represents the dependency
between a label and the image x at a specific node, whereas the pairwise
term Pβ encourages neighboring graph nodes to take similar labels (i.e.,
enforces labeling consistency). A general graphic model of CRF for image
labeling task is given in Figure 2.5 (a), where a white vertex represents a
label and the gray vertex represents the entire image. It can be seen that
compared to an ordinary prediction model (Figure 2.5 (b)) where labels are
predicted independently, a CRF (Figure 2.5 (a)) takes context into account.

Assuming that the parameters (α, β) of a CRF are given or estimated
by learning, the optimal labeling vector y is often inferred by maximizing
(2.30), or equivalently minimizing the negative logarithm of (2.30) as:

− log p(y|x) = E(y,x) + logZ(x) (2.32)
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Figure 2.5: (a): A general graphic model of CRF for image labeling
task. A white vertex (vi) represents a label (yi) and the
gray vertex represents the entire image (x). The dash ar-
rows indicate the unary dependencies (conditions) while
the solid lines indicate the pairwise relations associating
with a graph, where the spirit of structured prediction can
be seen. (b): An ordinary prediction model.

Since in the inference stage logZ(x) is a constant with respect to y, one
can choose to directly minimize the energy function E(y,x). However, in
many discrete cases, the exact inference of CRF is NP hard. This is be-
cause computing Z(x) is usually intractable since it is summed over the
exponentially possible assignments to y. Several algorithms exist to obtain
approximate solutions for such inference, including loopy belief propagation,
mean field inference, linear programming relaxations and so on. For further
introduction on parameter learning and inference of CRF, see [54] and [55].

2.3.5 Graph-based semi-supervised learning

Unlike ordinary supervised learning which only leverages labeled data, semi-
supervised learning makes use of both labeled data (typically a small amount
of labeled data) together with a large amount of unlabeled data for train-
ing. It has tremendous practical value. In many tasks, there is a paucity of
labeled data and the labels may be difficult to obtain because they require
large human annotation effort, special devices, or expensive and slow exper-
iments. Figure 2.6 shows a straightforward comparison of semi-supervised
learning to traditional supervised learning. Due to the use of unlabeled
data, semi-supervised learning is capable of discovering latent data distri-
bution. Specifically, graph-based semi-supervised learning is about how to
induce the labels of unlabeled data from the graph structure when given
only the labels of some labeled data.
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Supervised learning Semi‐supervised learning

Figure 2.6: A comparison between supervised learning (left) and semi-
supervised learning (right). Blue and red dots represent
the labeled data in two classes whereas the white dots rep-
resent unlabeled data. The dash curve indicate the gener-
ated classification boundary.

Graph-based semi-supervised learning starts by constructing a graph
from the training data. Given training data {(xi, yi)}li=1 and {(xi)}l+ui=l+1,

where {(xi, yi)}li=1 are labeled data, {(xi)}l+ui=l+1 are unlabeled data, and
xi, yi are the corresponding data vector and label, respectively. The ver-
tices of the graph comprise labeled and unlabeled instances {(xi)}li=1 ∪
{(xi)}l+ui=l+1, and the goal is to infer the unknown labels, i.e., {(yi)}l+ui=l+1.
This is made possible by graph edges that connect labeled vertices to un-
labeled vertices. In graph-based semi-supervised learning, the graph edges
should represent the similarities of the instances, and the idea is that if the
edge weight between two vertices is large, then their labels are expected to
be the same. Since in Section 2.3.1 we have already introduced the common
ways for computing edge weights, below we further introduce some common
ways in machine learning field to construct graph structure from a pool of
given instances.

By treating each instance as a vertex in the graph, the following four
ways are usually adopted for graph construction:

• Fully connected graph: Every pair of instances is connected by an
edge.

• ε-neighborhood graph: If two instances satisfy ||xi−xj || < ε, then
there will be an edge connecting them. ε is a threshold pre-determined.

• k-nearest neighbourhood graph (kNN graph): Each instance
defines its k-nearest neighbor instances in Euclidean distance. If one
instance xi is in the k-neighborhood of another instance xj , or xj is in
the k-neighborhood of xi, then they are connected by an edge. This
means of constructing graph is very popular in machine learning field.
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• Mutual kNN graph: Only when xi is in the k-neighborhood of xj
and meanwhile xj is in the k-neighborhood of xi, they are connected
by an edge. Note the difference of the mutual kNN graph compared
to the kNN graph, which makes the mutual kNN graph much sparser
than the kNN graph.

The graph-based semi-supervised learning can be formulated as learning
a label function f from the graph, which conducts the mapping f(xi)→ yi.
Below we briefly review three different graph-based semi-supervised learn-
ing algorithms. For simplicity, the case of binary labels yi ∈ {−1, 1} is
considered. Similarly as before, we use notation W for the edge weight
matrix and L for the Laplacian matrix of the graph.

Min-cut: In this approach, the positive labeled instances are treated as
“source” vertices, as if some fluid is flowing out of them and through the
edges. Similarly, the negative labeled instances are “sink” vertices, where
the fluid would disappear. Min-cut can be used to find a partition of the
graph into two sets, under the constraint that one set contains all the
“source” vertices and the other contains all the “sink” vertices. Once the
graph is split, the vertices connecting to the sources are labeled positive,
and those to the sinks are labeled negative. Mathematically, the min-cut is
to find a binary label function f(x) ∈ {−1, 1} by solving the below energy
minimization:

min
f(x)|f(x)∈{−1,1}

∑

i,j|f(xi) 6=f(xj)

wij , s.t. {f(xi) = yi}li=1 (2.33)

The above min-cut problem can be treated as an integer programming prob-
lem because f is constrained to produce discrete values -1 or 1. Efficient
polynomial-time algorithms exist to solve such a min-cut problem.

Harmonic function: In this approach, the discrete constraint for f is
first relaxed to R. By introducing a pairwise energy term, the f is found by
solving the below energy minimization problem:

min
f(x)|f(x)∈R

l+u∑

i,j=1

wij(f(xi)− f(xj))
2 , s.t. {f(xi) = yi}li=1 (2.34)

The above pairwise energy enforces similar instances that are characterized
by large wij to take similar labels, meanwhile the labels for labeled instances
should definitely fit their original labels. The drawback of the relaxation is
that in the solution, f(x) is now a real value that does not directly corre-
spond to a label. This can however be addressed by thresholding f(x) at ze-
ro to produce discrete label predictions (i.e., if f(xi) ≥ 0, predict yi = 1, and
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if f(xi) < 0, predict yi = 1). It is worthy noting that since the regularizer∑l+u
i,j=1 wij(f(xi) − f(xj))

2 = 2fTLf where f = [f(x1), f(x2), ..., f(xl+u)]T ,
there exists closed-form solution for (2.34) by using Lagrange multipliers
with matrix algebra.

Manifold regularization: Both min-cut and harmonic function fix {f(xi) =
yi}li=1 for labeled instances. However, when some of the labels are wrong,
one may prefer f(x) to be able to occasionally disagree with the original la-
bels. Manifold regularization is such an approach which further relaxes the
constraint {f(xi) = yi}li=1 by adding an extra loss to the energy function:

min
f(x)|f(x)∈R

l+u∑

i,j=1

wij(f(xi)− f(xj))
2 + λ

l∑

i=1

(f(xi)− yi)2 (2.35)

where λ > 0 is a parameter controlling the strength of fitness to the original
labels. Also, there exist efficient algorithms to find the optimal f(x). Note
that besides the typical formulation of pairwise and loss term introduced in
(2.35), there are many variations.

Remarks: In all, the graph-based semi-supervised learning assumption
is that the labels should vary “smoothly” on the graph. That is, if two in-
stances are connected by a strong edge, their labels tend to be the same. In
this sense, it shares a common spirit with CRF mentioned before, since the
CRF also enforces the label consistency over the graph. The main difference
is that the CRF is a probabilistic framework for labeling.

2.4 Superpixel segmentation algorithm SLIC

Superpixel segmentation partitions image pixels into perceptually homoge-
nous atomic regions, usually called “superpixels”. An underlying concept of
superpixels, which distinguishes them from common image regions, is that
superpixels are generated from image over-segmentation, namely when more
segments are generated than what may define whole object regions. In this
sense, superpixels are highly over-segmented regions. By treating superpix-
els as processing units, it allows to replace the rigid structure constituted by
image pixels. Abstracting images into superpixels offers the following ad-
vantages: 1) Eliminating unnecessary noise and details; 2) Capturing image
redundancy and providing a convenient primitive for feature extraction and
other subsequent processing; 3) Greatly reducing the computational com-
plexity. Thanks to the above, superpixels have become key building blocks
of many computer vision applications including image and object segmen-
tation, object recognition, depth estimation, as well as saliency detection.
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Figure 2.7: Difference of element (i.e., pixel) assignment between k-
means and SLIC. In k-means (left), the assignment of a
pixel (black dot) considers all cluster centers. However,
in SLIC (right), the assignment of a pixel considers only
cluster centers in a 2S×2S region (dash rectangle), which
drastically reduces the cluster centers that need to consider
for each pixel.

There exist many superpixel generation algorithms (see a survey in [56]).
Below we briefly review an algorithm called Simple Linear Iterative Cluster-
ing (SLIC) proposed by Achanta et al. [56]. SLIC is extensively employed
by existing work on saliency detection (e.g., [57] [58] [59–62]), and is often
used by the methods proposed in this thesis as a pre-processing step.

SLIC is an adaption of k -means clustering. Similar to the cluster num-
ber in k -means algorithm, a crucial parameter in SLIC is k. It is the desired
number of approximately equally-sized superpixels. For color images in the
CIELab color space, the clustering procedure begins with an initialization
step where k initial cluster centers Ci = [li, ai, bi, xi, yi]

T are sampled on
a regular grid. Here li, ai, bi, xi, yi respectively denote L, a, b color com-
ponents in CIELab color space and spatial coordinates in the image plane.
The grid interval is set as S =

√
N/k, where N represents the number of

total pixels in an image. Each cluster center is later associated with a super-
pixel. To avoid the center being initialized on an edge or on a noisy pixel,
Achanta et al. further suggest to switch a cluster center to the location
corresponding to the lowest gradient in a 3× 3 neighborhood.

The iterative clustering steps of SLIC are similar to those in the k-means,
however, with a special modification on element assignment. Since in SLIC
the expected spatial range of a superpixel is a region of approximate size
S×S, in each iteration an image pixel is only assigned to its nearest cluster
center in a local spatial range 2S × 2S around the pixel. An illustration for
this is in Figure 2.7. The distance measure D which specifies the nearest
neighbor is defined by considering both color and spatial distance as:



30 Background Theories and Methods

Superpixels after 1 iteration of SLIC Superpixels after 10 iterations of SLIC

Figure 2.8: An example evolution of SLIC iteration process. Blue rect-
angles visualize the local 2S × 2S range. The boundaries
of superpixels are shown in black, whereas the locations of
cluster centers are represented by the small black dots.

dlab =
√

(li − lj)2 + (ai − aj)2 + (bi − bj)2 (2.36)

dxy =
√

(xi − xj)2 + (yi − yj)2; (2.37)

D =

√
d2
lab +

m2

S2
d2
xy (2.38)

where m is a parameter specifying the relative importance of spatial dis-
tance. When m is large, spatial proximity is more important and the result-
ing superpixels are more compact. When m is small, the resulting super-
pixels adhere more tightly to image boundaries but have less regular shape
and size. After all pixels in the image are associated to the corresponding
cluster centers. The cluster centers will be updated by computing the aver-
ages of the elements in individual clusters. This is the same as the updating
process in k-means. In the next iteration, image pixels are associated with
new clusters in a local range as aforementioned. The whole iteration process
converges when the global residual error is below a threshold.

The time complexity of SLIC is O(N), where N denotes the total num-
ber of pixels in the image. This means the time complexity of SLIC is
independent from the superpixel number k. This is because a pixel only
needs to be compared with the cluster centers in a local area 2S × 2S on
the image plane. A pixel falls into the local neighborhood of no more than
eight cluster centers (Figure 2.8). Therefore, the convergence of SLIC can
be achieved in 10 iterations [56]. This makes SLIC much efficient than k-
means whose practical time complexity is O(NkI), where I is the number
of iterations needed for convergence.

To summarize, SLIC algorithm generates superpixels that align well to
object boundaries, and is also fast to compute, memory-efficient, and simple
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Figure 2.9: Sample results of segmenting images into superpixels of
(approximate) size 64, 256, and 1024 pixels by using SLIC.
Boundaries of superpixels are visualized in black. The su-
perpixels are compact, uniform in size, and adhere well to
region boundaries. This picture is taken from [56].

to use. It has very few parameters to tune, only including the superpixel
number k and the weight of spatial distance m. Since the size of the su-
perpixels can be estimated by N/k, some implementations of SLIC instead
provide interface of superpixel size and m. For the quantitative results of
comparing SLIC to state-of-the-art superpixel methods, interested readers
are referred to [56]. Figure 2.9 shows several sample results from [56], where
different numbers of SLIC superpixels are used for a same image.



Chapter 3

Overview of Related Work

This chapter reviews existing techniques and models on salient region/object
detection and traffic sign recognition. Since this thesis mainly focuses on
salient region detection, literatures on eye fixation prediction are not re-
viewed. For details on eye fixation prediction models, interested readers are
referred to a comprehensive survey on visual attention modeling [5].

3.1 Salient region detection

We roughly subdivide existing methods of salient region/object detection
into four categories: heuristic color contrast-based methods; learning-based
methods; segmentation-assisted approaches; and graph-based saliency mod-
eling. Methods beyond these four categories fall into the fifth category.

3.1.1 Heuristic color contrast-based methods

Methods of this category model the saliency using local or global color s-
tatistics. The underlying assumption is that salient objects “pop up” from
their surroundings due to their unique color appearances. Thus they are
supposed to present high color contrast to the rest image parts. Many
methods for computing such contrast-based saliency have been proposed
since 2006. Zhai et al. [63] introduce pixel-level saliency calculation based
on histograms that only model luminance channel of an image. They define
the saliency level of a pixel as its luminance contrast to all pixels in the
image. Such global contrast computation is then converted into histogram
analysis for efficiency. Achanta et al. [8] provide a frequency-tuned saliency
estimation by calculating the feature distance between the low-pass filtered
result of an image and the average color. This operation of [8] is equiva-
lent to combining center-surround differences [6] of all bandwidth to detect
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objects in different scales. Their method, to some extent, alleviates the
bandwidth limitation of early Itti’s model [6] so that not only edges and
corners, but also the entire objects are highlighted. Goferman et al. [20]
propose context-aware saliency detection, which combines local and global
features to estimate patch saliency in multi-scales. To consider both local
and global features, they compute saliency of a certain patch as its contrast
to the nearest patches in the feature space. However, their method still
tends to highlight edges meanwhile attenuate the inner parts of an object.
Motivated by the work of Zhai et al. [63] and to better take advantage of
color information, Cheng et al. [7] extend contrast saliency computation to
color histograms. To reduce the bin number of color histograms, a color
quantization technique is employed. Besides, they propose a saliency mea-
sure based on regional color contrast. Jiang et al. [30] also use regional
contrast to define saliency. Instead, they only consider context information
from neighboring regions. Perazzi et al. [64] propose “saliency filter”, which
formulates complete contrast and saliency estimation using high dimension-
al Gaussian filters. Wang et al. [65] compute pixel-wise image saliency by
aggregating complementary appearance contrast measures with spatial pri-
ors. When computing the saliency of a pixel, they adopt shape-adaptive
observation region to extract local information associated with the pixel.
This is deemed more robust than using a whole image patch centered round
the pixel. A more recent method [66] computes contrast-based saliency as
dissimilarity/similarity to carefully selected background/foreground seeds.
Most of the above contrast-based saliency are straightforward to compute,
though the performance is often less satisfactory on images with complex
background.

3.1.2 Learning-based methods

The concept of “learning to detect” in saliency detection originates from
[22, 67]. The idea behind is to automatically discover feature integration
rules from training data instead of manually designed rules. Judd et al.
[22] propose to learn a saliency model from eye-tracking data, where low,
middle and high-level image features are integrated by a linear SVM. Their
work is, however, on eye-fixation prediction. Alex et al. [68] learn to score
sampled windows from a given image, where the Bayesian theory is applied
for cue integration. The posterior of the Bayesian model constitutes the final
objectness score of a window. Khuwuthyakorn et al. [69] learn to integrate
pixel-wise saliency features by a mixture of linear SVMs. Mehrani et al. [70]
use confidence scores from a boosting classifier to formulate a saliency map,
which is then fed to graph cut for figure-ground segmentation. Jiang et
al. [29] propose to extract abundant discriminative features from image
regions. A random forest regressor is trained to map regional features to
final saliency scores.



34 Overview of Related Work

Some methods on saliency detection are based on learning conditional
random field (CRF). Learning is conducted first to obtain optimal param-
eters and then inference is applied on user input images to achieve final
saliency maps. Representative works include: Liu et al. [67] detect and
segment salient objects by aggregating pixel saliency cues in a CRF. The
linear weights for those cues are learned under the maximized likelihood
(ML) criteria by tree-reweighted belief propagation. Mai et al. [71] propose
a saliency aggregation approach. Their method aggregates saliency map-
s output by existing saliency detection models using a CRF. Weights for
aggregation are learned in a data-driven way from most similar images re-
trieved from a pre-defined dataset. Lu et al. [72] learn optimal combination
of seeds for graph-based diffusion by maximizing figure-ground segregation,
where the employed graph diffusion is tightly related to continuous CRF
(C-CRF), and their method boils down to learning the linear parameters of
unary terms of the C-CRF.

Besides, some recent data-driven techniques [73–75] consider deep learn-
ing for saliency detection. Due to the deep architecture of convolutional
neural networks (CNNs) which is to able to fit highly non-linear models,
impressive performance has been obtained. Since machine learning is able
to discover latent and complicated feature integration rules from annotat-
ed data, learning-based methods can achieve good performance in complex
scenarios attributed to the learning. However, high computation cost is
needed for this type of methods due to feature extraction and learning, as
comparing to the conventional color contrast-based methods.

3.1.3 Segmentation-assisted methods

Methods in this category aim at generating good segmentation, usually in
hierarchy or multi-scale, to facilitate saliency computation. According to the
figure-ground perceptual organization of human eyes described in Gestalt
laws [76, 77], the region on the convex side of a curved boundary tend to be
perceived as object (i.e., figure). Motivated by this, Lu et al. [78] exploit the
concavity context in a scene and detect concave arcs from multi-scale seg-
mentation. The detected arcs then contribute to an enhanced figure-ground
segmentation phase. Yan et al. [31] propose a hierarchical saliency detection
method that aims at eliminating the impact of small-scale patterns during
saliency estimation. Their method merges regions according to a newly pro-
posed scale metric which meets human perception. However, each region
in a hierarchy is still evaluated by using local contrast and location prior.
Cheng et al. [79] measure saliency by hierarchical soft abstraction. They
form a 4-layer hierarchical structure including pixel layer, histogram layer,
GMM layer and clustering layer with an index table to associate cross-layer
relations efficiently. Saliency estimation using color contrast and distribu-
tion is conducted on the coarse layers and then propagated to the pixel
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layer. Jiang et al. [59] segment an image into different salient regions by
maximizing a submodular objective function. Then saliency of a region is
modeled in terms of appearance and spatial location. In their method, how
to assign over-segmented superpixels to the corresponding seeds is formu-
lated as a “facility location problem” and is solved efficiently by finding a
closed-form harmonic solution on a graph model. The above methods, ben-
efiting from some optimized segmentation phases, could make entire objects
emphasized and hence boost the final performance.

3.1.4 Graph-based saliency modeling

These methods represent each image by using a graph, where natures of
salient objects such as high color contrast and compact color distribution are
modeled. Gopalakrishnan et al. [80] perform random walks on graphs to find
salient objects. The global pop-up and compactness properties of salient
objects are modeled in random walks by the equilibrium access time. Wei
et al. [81] propose to treat boundary parts of an image as the background.
The patch saliency is defined as the shortest geodesic distance on a graph to
image boundary. Zhu et al. [60] propose a saliency detection method based
on robust background estimation from graph-based geodesic affinity.

Some methods propagate/diffuse the saliency energy from labeled seeds
to the entire image through a graph. Yang et al. [57] propagate saliency
via graph-based manifold ranking from four image borders separately. Four
saliency maps generated are then multiplied to achieve the final one. Yang
et al. [82] propose to use graph regularization on a convex-hull-based cen-
ter prior map to achieve an edge-preserving final saliency map. Recently,
Gong et al. [61] propose a new saliency propagation algorithm employing
teaching-to-learn and learning-to-teach strategies to explicitly improve the
propagation quality. Many graph-based diffusion models are related to the
inference stage of continuous CRFs (as explained in Paper 2). Methods of
this category can emphasize holistic objects and achieve good performance.

3.1.5 Other methods

Other notable work includes: Shen et al. [83] solve saliency detection as a
low rank matrix recovery problem, where salient objects are represented by
a sparse matrix (noise) and background is indicated by a low rank matrix.
Though their idea is novel, such sparse and low rank assumption may hardly
be satisfied in complex scenes, leading to unsatisfactory results. A Bayesian
framework is adopted in [84]. Firstly, saliency points are applied to get a
coarse location of the saliency region. Based on the rough region, a prior
map is computed for the Bayesian model. The likelihood of the Bayesian
model is defined according to the histograms in and outside the rough re-
gion. Margolin et al. [85] find the previously used patch distance may not
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reliably characterize the saliency level of a patch in an image. From the
idea of global pattern statistics, they perform principal component analysis
(PCA) on a large number of collected patches from the image. The patch
saliency is defined as L1-norm in PCA coordinates and then combined with
color contrast saliency. Li et al. [62] propose to measure saliency by dense
and sparse reconstruction errors, where the dictionaries for reconstruction
are acquired from image boundary. More recently, Zhang et al. [86] per-
form saliency detection based on minimum barrier distance and show its
robustness over the extensively used geodesic distance.

3.2 Traffic sign recognition

3.2.1 Traffic sign detection

State-of-the-art sign detection techniques can be divided into three cate-
gories: image segmentation followed by region analysis [41, 87–89], edge-
based shape discovery [42–44, 90], sliding window detection approaches
[40, 91, 92]. In addition, a forth category is also summarized in this thesis,
namely saliency detection-based approaches [93–95].

Image Segmentation Followed by Region Analysis

In traffic sign detection, color segmentation is a classical and widely adopted
technique. It is conducted by either segmenting images into non-overlapping
regions [87], or extracting candidate regions from specific image color chan-
nels [41, 88, 89]. These regions are further filtered by color/shape analysis
to pick up candidate regions of signs. Khan et al. [87] segment images by
pixel clustering. After post-processing, potential sign regions are analyzed
by principal shapes. Maldonado et al. [88] segment images by thresholding
each color component in HSI color space. Potential sign regions are classi-
fied by linear SVMs to determine shapes. Gómez-Moreno et al. [89] bench-
mark a variety of color segmentation techniques in different color spaces for
traffic sign recognition. To show which segmentation technique performs
the best, their evaluation is done by fixing the subsequent detection and
classification modules while only changing the segmentation method used.
Since these methods described above rely heavily on image segmentation
for generating complete sign regions, segmentation parameters need to be
carefully tuned to avoid over- or under-segmentation of sign regions. For
example, [87] uses k-means to pre-segment an image into 5 clusters. Though
this method handles simple images, it suffers in cluttered or complex sce-
narios. To summarize, segmentation-based methods require images to have
good color contrast and visual quality so that good segmentation can be
performed. They are less robust to color distortion and luminance changes.
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Edge-based Shape Discovery

In contrast to segmentation-based methods, this type of methods directly
discover certain shapes of signs. Arlicot et al. [44] apply curve fitting to
discover ellipse signs. Garrido et al. [90] use constrained Hough transform
to find circles and lines in triangles. [42, 43] employ Fast Radial Symmetrical
Transform (FRST, an edge-based voting scheme) proposed by Loy et al. [96]
to discover circular and triangle signs. Since these methods need to examine
edge points in images, they are robust to illumination changes but however
less efficient due to a tremendous number of edge points. To improve the
efficiency, Zhang et al. [41] combines color-based segmentation with FRST
[96]. Another shortcoming of edge-based methods is that they are sensitive
to shape distortion caused by view angle changes, since most shape detection
methods assume signs to have regular polygon shapes or circular shapes.

Sliding Window Detection

A recent trend for sign detection is to use the sliding window strategy
[40, 91, 92, 97, 98], a method widely used in category-specified object de-
tection [99–102]. A sliding window scans an entire image exhaustively and
a detector (usually a binary classifier) is used to determine whether or not
the window contains any sign. In such a way, image segmentation is no
longer required during sign detection. Bahlmann et al. [91] employ the Ad-
aboost detector with Haar wavelet features for sign detection, which has
been successfully applied to face detection [99]. Creusen et al. [40] use
color-boosted histograms of oriented gradient (HOG) features with SVMs
for sign detection. Mathias et al. [92] employ integral channel features [101]
and Adaboost detectors. Wang et al. [97] propose a two-stage coarse-to-fine
sliding window scheme. In the first stage, HOG with small sized windows
and LDA are used for the efficiency. In the second stage, HOG with large
sized windows and SVMs are used for the better accuracy. Møgelmose et
al. [98] evaluate the detector proposed by Mathias et al. [92] on road signs
in U.S. and find that sign detection still remains challenging for U.S. road
scenes.

Saliency Detection-based Approaches

Traffic signs are markers placed along roads to inform drivers and com-
municate a wealth of information. In this case, they are designed to be
easily realized at a glance, or in other word, to be salient. The idea of
this category of methods is to use saliency detection to identify some pre-
attentive regions of interest (ROI), where signs are contained. Therefore,
searching space is narrowed down for subsequent detection. Most of related
literatures are limited to applying saliency detection prior to sign detection.
Kastner et al. [93] extract rectangular ROI from an attention map by region
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growing and fusion. In each rectangular ROI, color segmentation and a cas-
cade of weak classifiers are applied to identify signs. Won et al. [94] apply
Itti’s model [6] on augmented color channels and an edge channel to com-
pute a saliency map. They show that top five candidate regions extracted
from such a saliency map provide encouraging detection coverage of sign-
s. Recently, Yuan et al. [95] apply graph-based manifold ranking saliency
proposed in [57] to traffic sign detection. The computed saliency map that
indicates salient regions is further processed by a multi-threshold segmen-
tation algorithm. Generally speaking, this category of methods build up
the connection between two research fields, namely saliency detection and
traffic sign detection, by applying the former to the latter.

3.2.2 Traffic sign classification

A typical sign classification pipeline contains feature extraction, dimension
reduction, and classification. Bahlmann et al. [91] employ naive Bayesian
classifiers for road sign classification. Prior to the probabilistic modeling,
a feature transformation is performed, using standard linear discriminant
analysis (LDA). The features used in [91] are normalized gray-scale images
of signs. Maldonado et al. [88] extract gray-scale images from every can-
didate blob as the features and use one-against-all SVMs for classification.
No dimension reduction procedure is applied in between. Ruta et al. [103]
present a class-specific discriminative feature selection scheme, where dis-
criminative patches are pre-learned from training templates and then are
used to calculate feature distance in a nearest neighbor classifier. Mathias
et al. [92] test several features including the gray-scale image, the HOG,
and the pyramid of HOG on different classifiers including nearest neighbor
classifier, sparse representation-based classifier, and SVM. Several dimen-
sion reduction methods such as LDA and sparse representation based linear
projection are also tested. In the work of Khan et al. [87], joint transmission
correlation is used to match an input sign image to a training template in a
joint power spectrum domain. Convolutional neural networks (CNNs) are
used by Ciresan et al. [39], where the raw sign images are used directly as
input to the networks. Their method is tested on the German sign classifi-
cation dataset raised in [36] and achieves very encouraging performance.



Chapter 4

Summary of The Work in
This Thesis

This chapter summarizes the thesis work on salient region detection and
traffic sign recognition. About salient region detection, different proposed
methods are driven by different motivations and target at different aspects.
In traffic sign recognition, this thesis employs salient regions for improved
sign classification, which is new in both saliency detection and traffic sign
recognition communities.

4.1 Salient region detection methods

Attributed to different motivations, the five proposed methods (Method-1
to Method-5) contribute to different categories (Chapter 3), as shown in
Figure 4.1. Below, each method and its main contributions are described.

Heuristic color contrast‐
based methods

Segmentation/clustering‐
assisted methods

Graph‐based saliency 
diffusion/modeling

Learning‐based 
methods

Other methods

Categories of state‐of‐the‐art methods

The main work on salient region 
detection in this thesis

Method‐1
(Section 4.1.1, 

Paper 1)

Method‐2
(Section 4.1.2, 

Paper 2)

Method‐3
(Section 4.1.3, 

Paper 3)

Method‐4
(Section 4.1.4, 

Paper 4)

Method‐5
(Section 4.1.5, 

Paper 5)

Figure 4.1: The summary of the thesis work on salient region/object
detection.
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4.1.1 Method-1: Normalized cut-based saliency detec-
tion by adaptive multi-level region merging

(Summary of Paper 1)

Problem addressed: This method addresses the grouping/clustering is-
sue for salient objects and background, based on the intuition that better
clustering of salient objects and background prior to saliency computation
leads to more accurate saliency estimation.

Basic ideas: For better grouping objects and background so that more
accurate saliency estimation can be conducted, Method-1 proposes the uti-
lization of normalized graph cut (Ncut) for salient region detection. Since
the Ncut normalizes graph cut cost as a fraction of the total edge con-
nections to all graph nodes, it is a biased cut on fairly large set of graph
vertices. Our intuition is to find good grouping of visual contents, usually
large objects, meanwhile prevent grouping of small clusters that are usually
noise. The Ncut rightly satisfies this demand. Additionally, the Ncut is a
global criterion that partitions the graph in a non-parametric way, and is
efficient to compute.

Big picture: The block diagram of Method-1 is shown in Figure 4.2, where
we directly induce saliency maps via eigenvectors of the Ncut. We first im-
plement the Ncut on a superpixel graph (vertices are superpixels) which
captures both intrinsic color and edge information of image data. Starting
from the superpixels, an adaptive multi-level region merging scheme is pro-
posed to seek the cluster information from Ncut eigenvectors. Specifically,
the adaptive multi-level region merging process operates on the reconstruct-
ed graph edge weights eij , which are reconstructed from nvec eigenvectors
v1,v2, ...,vnvec that correspond to nvec smallest non-negative eigenvalues
λ1, λ2, ..., λnvec:

eij =
nvec∑

k=1

1√
λk
|vk(R0

i )− vk(R0
j )| (4.1)

where λk is the corresponding eigenvalue and vk(R0
i ) indicates the value in

eigenvector vk that corresponds to the superpixel R0
i . Such reconstruction

by integrating the differences between values of vertices on the eigenvec-
tors indicates “inter-class distance” after Ncut [104]. During merging, the
pairwise difference between regions at lth level is defined by criterion D:

Dl
ij = D(Rli, R

l
j) = meanvk∈Rl

i,vm∈Rl
j ,ekm∈E{ekm} (4.2)

where Rli and Rlj are two regions at lth level, “mean” is an averaging opera-

tor, and vk, vm are two vertices, namely superpixels in Rli and Rlj satisfying



4.1 Salient region detection methods 41
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Input image
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 Edge detection

Reconstructed graph edge 
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Graph 
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Intermediate saliency & across‐level integration  Integrated map

Post-smoothing

Figure 4.2: The block diagram of Method-1.

that there is graph connection between them. As the merging proceed-
s, the cluster information in Ncut vectors is gradually discovered and is
turned into regions. At each level, three types of regional saliency measures
(figure-ground contrast, center bias, and boundary cropping) are comput-
ed and then combined to generate intermediate saliency maps. The final
saliency map is obtained after across-level integration and post-smoothing.

Main contributions:

• Apply the Ncut to salient region detection, and induce a saliency map
by Ncut eigenvectors for better visual clustering.

• Embed saliency detection in an adaptive multi-level merging scheme
to discover cluster information conveyed by Ncut eigenvectors.

Main results: Method-1 is tested and evaluated on four benchmark dataset-
s including MSRA-1000, SOD, SED, CSSD and compared to 13 state-of-
the-art methods. It is shown to result in uniform object enhancement and
achieve state-of-the-art performance in terms of competent precision, recal-
l and F-measure, meanwhile maintaining the lowest mean absolute error



42 Summary of The Work in This Thesis

SF LR HS

DRFI MR Method‐1  GT

RCInput image

Figure 4.3: An example case where state-of-the-art methods: RC [7],
SF [64], LR [83], HS [31], DRFI [29], MR [57] fail to detect
the entire object. GT means the ground truth annotation.

(MAE). Figure 4.3 shows a visual example. Evaluations on MSRA-1000
(1000 images) [8] and CSSD (200 images) [31] are shown in Figure 4.4.
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Figure 4.4: Quantitative comparison of Method-1 (Ours) to 13 state-
of-the-art methods (CA [20], FT [8], LC [63], HC [7], RC
[7], SF [64], LR [83], GS [81], HS [31], PCA [85], DRFI
[29], GC [79], MR [57]) by precision-recall curves (1st row),
and mean absolute error (MAE) (2nd row) on MSRA-1000
(1st column) and CSSD (2nd column) datasets. For more
quantitative results, please refer to Paper 1.
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4.1.2 Method-2: Saliency detection by fully learning a
continuous conditional random field

(Summary of Paper 2)

Problem addressed: This method addresses the problem of construct-
ing a continuous conditional random field (C-CRF) framework for salient
region detection.

Basic ideas: In existing studies [57, 67, 71, 72], the power of CRF on
feature integration has not been fully exploited. Method-2 proposes to ful-
ly learn a CRF, namely to learn both unary and pairwise parameters in
order to exploit the power of CRF for feature integration. More specifical-
ly, Method-2 investigates a special CRF framework—continuous CRF (C-
CRF) [105]. This is motivated by the idea that saliency detection is conven-
tionally treated as a continuous labeling problem. Fully learning a C-CRF
model allows us to capture more sophisticated interactions between image
parts, leading to enhanced delineation between objects and background in
the resulting saliency maps. To the best of the author’s knowledge, applying
the complete C-CRF learning and inference theories to saliency detection is
the first time.

Graph construction

Unary saliency features (maps)

Pairwise features (matrix form)

Color 
similarity

Histogram 
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Intervening 
edge cue

Input Superpixels
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Figure 4.5: The big picture of Method-2.
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Big picture: As shown in Figure 4.5, an input image is first over-segmented
into superpixels and a superpixel graph is established to capture intrinsic
image context. A C-CRF is defined in conjunction with this graph. Next,
we extract various unary saliency features and pairwise cues, which are used
to compose the unary and pairwise terms in the C-CRF energy function. By
utilizing the off-line learned C-CRF parameters for both unary and pairwise
potentials, the inference of the C-CRF corresponds to a final saliency map
that is continuously valued.

The C-CRF energy function of Method-2 is formulated as:

E(y,x) =

n∑

i=1

d∑

k=1

αk(yi − fi,k)2 +
∑

i,j,i∼j

1

2

h∑

k=1

βkS
k
ij(yi − yj)2 (4.3)

where αk, fi,k are the kth components of unary parameter vector α and
saliency feature vector fi extracted from the ith superpixel. βk is the kth
components of pairwise parameter vector β and Skij is the kth pairwise fea-
ture defined between superpixels. In Method-2, fi is an initial description
for the saliency level of superpixels, whereas Skij is a positive affinity function
that is large if superpixels are similar. Unary feature vector fi comprises 11
features including connectivity-based features, contrast-based features, dis-
tribution heuristics, and clarity-based feature. These features are supposed
to characterize general properties of salient objects. The pairwise features
include color-based features and image edge-based features. Moreover, the
pairwise features consider different spatial ranges (as shown in Figure 4.5)
of graph connections by graph topology decomposition.

The C-CRF learning is formulated as follows: given N training images
x1,x2, ...,xN with their ground truth labels y1,y2, ...,yN , learn C-CRF
parameters α and β. This is equivalent to minimizing the negative log-
likelihood summed over all training images:

min
α,β

N∑

i=1

{− log p(yi|xi) +
λ1

2
||α||22 +

λ2

2
||β||22}

s.t. αk > 0, βk ≥ 0

(4.4)

where λ1 and λ2 are regularization parameters. The above optimization
problem can be solved by gradient descent.

Main contributions:

• Method-2 is the first to apply the complete C-CRF learning and in-
ferring theory to saliency detection, leading to a data-driven way for
feature integration.

• Method-2 differs from existing saliency models that have explicit/implict
relation to CRF, evolving from partially learning unary terms to joint-
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ly learning both unary plus pairwise terms, and from discrete to con-
tinuous field.

• A novel formulation of pairwise potentials for C-CRF defined on a
superpixel graph is proposed. It is conducted by graph topology de-
composition and enables learning pairwise parameters for different
spatial ranges of graph connections. This alleviates the manual effort
of tuning spatial connections of a graph.

• Extensive tests and comparisons show that Method-2 outperforms a
range of state-of-the-art methods. Furthermore, integrating several
best-performing state-of-the-art methods through a C-CRF further
pushes the performance to a new high level.
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Figure 4.6: Quantitative comparisons (precision-recall curves and Fβ
scores) of Method-2 (C-CRF) to the state-of-the-art meth-
ods on 4 benchmark datasets. The best and the second
best Fβ are underlined by red and blue, respectively.

Main results: The power of C-CRF on integrating various unary and pair-
wise features has been tested and evaluated on 6 benchmark datasets. The
results on 4 datasets are shown in Figure 4.6, where Method-2 achieves good
precision-recall curves and F-measure scores that outperform most state-of-
the-art methods. Among the compared methods, LD [21], SA [23], and
GMR [22] are existing CRF-related methods. Besides, integrating existing
models (HS [31], DRFI [29], GMR [57], wCtrO [60], and MB+ [86]) by C-
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CRF further achieves a marked promotion over individual models, as shown
in Figure 4.7.
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Figure 4.7: Integrating five state-of-the-art methods including HS [31],
DRFI [29], GMR [57], wCtrO [60], and MB+ [86] by
Method-2 (C-CRF Integration). The best Fβ are under-
lined by red.
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4.1.3 Method-3: Manifold-preserving diffusion-based
saliency detection by adaptive weight construc-
tion

(Summary of Paper 3)

Problem addressed: This method addresses the problem of exploiting
a diffusion-based detection scheme, where graph weights are autonomously
constructed to adapt to different images.

Basic ideas: Existing methods often employ Gaussian similarity func-
tion with fixed bandwidth to construct graph edge weights, however cannot
adapt to different images. The basic idea of Method-3 is to acquire the
edge weights adaptively by minimizing local reconstruction errors on data
manifold. Therefore, the obtained weights could better reflect the structural
relationship between data points in a manifold perspective. The idea of us-
ing local reconstruction to solve the graph weights is inspired by LLE [106]
and the similarity adaption technique proposed by Karasuyama et al. [107].

Superpixel 
graph 

construction
G=(V,E)

Input image

The closed‐form diffusion 
process by considering 

manifold smoothness and 
local reconstruction

Saliency map

A two‐stage saliency 
detection scheme: 
manifold‐preserving 
diffusion‐based 

saliency
(MPDS)

Adaptive estimation of 
reconstruction matrix A

Adaptive estimation of 
affinity matrix W

MPD

Figure 4.8: The big picture of Method-3. Note there are two contribut-
ed parts, MPD and MPDS, in Method-3.

Big picture: As shown in Figure 4.8, we first propose a novel diffusion
scheme called manifold-preserving diffusion (MPD). MPD builds jointly
upon two assumptions on data manifold, namely the smoothness and local
reconstruction. Then we apply MPD to detect salient objects and propose
a new detection scheme, referred to as manifold-preserving diffusion-based
saliency (MPDS).

To be more specific, the MPD is conducted on a superpixel graph with
n nodes, and the diffused result s is computed by minimizing the following
energy function:
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arg min
s

µ
n∑

i=1

ki(si − yi)2

︸ ︷︷ ︸
weighted fitness term

+
n∑

i=1

∑

j,j∼i

1

2
wij(si − sj)2

︸ ︷︷ ︸
manifold smoothness

+ λ
n∑

i=1

(si −
∑

j,j∼i
aijsj)

2

︸ ︷︷ ︸
manifold reconstruction

(4.5)

where si, yi are the ith elements of the diffused vector s and a pre-defined
seed vector y, wij encodes the similarity between vertices, aij encodes re-
construction contribution of vj to vi, λ ≥ 0, µ > 0 are balancing weights,
and ki > 0 is the weighting coefficient for the ith node. In (4.5), the s-
moothness terms reflect the conditional random field (CRF) property and
enforce similar saliency on similar graph neighbors. Meanwhile, the recon-
struction terms enforce the diffused value of a node to be linearly recon-
structed by its graph neighbors. As wij , aij compose the entries of affinity
matrix W and reconstruction matrix A, Method-3 first estimates W and
A adaptively (Figure 4.8) by minimizing local reconstruction errors in fea-
ture space [45, 106, 107]. The resulting adaptive weights enable adaption
of diffusion to different images.

The block diagram of MPDS is shown in Figure 4.9. MPDS is an ap-
plication of MPD and incorporates boundary prior, Harris convex hull, and
foci convex hull for deriving different seeds for saliency diffusion.

Main contributions:

• Propose an effective graph-based diffusion method: manifold-preserving
diffusion (MPD), that jointly exploits the assumptions of smoothness
and local reconstruction on the manifold.

• Derive two types of graph edge weights by adaptively minimizing lo-
cal reconstruction errors in feature space. Hence the method is more
suitable to be applied on different images. This is different from pre-
vious work where the edge weights of graph are similarity functions
parameterized by manually tuned parameter such as bandwidth.

• Propose a two-stage saliency detection scheme: manifold-preserving
diffusion-based saliency (MPDS), that leverages MPD together with
boundary prior, Harris convex hull, and foci convex hull. The pro-
posed MPDS achieves better performance than 8 recently published
methods on 5 benchmark datasets.

Main results: To validate MPD, we compare between MPD and a pre-
vious diffusion method called graph-based manifold ranking (GMR) [57]



4.1 Salient region detection methods 49

Linear Integration
(      )

t

b

l r

t

b

l r
Boundary seed placement Four border-specified 

saliency maps 

SLIC superpixels

Eye fixation map

Boosted Harris corners Harris convex hull

Foci convex Hull



Initial foreground Final saliency map

Stage1

Stage2

Input image



Ostu's  
algorithm

Superpixel-based mask

Superpixel-based mask

Combinatorial mask

Coarse saliency map



sin

MPD 
  & 
Reverse 

MPD 

Figure 4.9: The block diagram of MPDS (Method-3). Stage 1: In the
top pipeline, by specifying each image border as the back-
ground seeds, MPD (the blue block) is applied to perfor-
m diffusion for four times and generate four intermediate
saliency maps. These four maps are then linearly integrat-
ed; In the middle pipeline, a Harris convex hull is generated
from Harris corners to specify a region of interest; In the
bottom pipeline, a foci convex hull is generated from foci
centers [6] to specify a coarse saliency region. Stage 2: Os-
tu’s algorithm is used to select a foreground mask from the
coarse saliency map obtained after Stage 1. Next, MPD is
applied again to achieve the final saliency map.

that is based on edge weights with fixed bandwidth. As shown in Figure
4.10, when diffusing on the same graph structures from the same seeds, M-
PD achieves better diffusion performance than GMR. Method-3 (MPDS) is
compared with 8 state-of-the-art methods on 5 benchmark datasets. The
results show that Method-3 is robust in terms of consistently achieving the
highest weighted F-measure (Fwβ ) and lowest mean absolute error (MAE),
meanwhile maintaining comparable precision-recall curves. Salient object-
s in different background can be uniformly detected in the final saliency
maps. Several visual comparisons are shown in Figure 4.11. It is worthy
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Figure 4.10: Diffusion evaluation of MPD and GMR [57] on MSRA-
1000 (left) and ECSSD (right) datasets. The dot curves
are the results by diffusion from background seeds (four
image borders), whereas the dash curves are the result-
s by diffusion from foreground seeds (the ground truth
annotations). One can observe that the proposed MPD
(blue curves) outperforms GMR (red curves).

noting that compared to GMR [57] (highlighted in the blue box) which is
less adaptive to the cases where colors of objects and background are simi-
lar, Method-3 (highlighted in the red box) adapts better to different images
and generates clearer object boundaries after diffusion.

Input CB GS HS PCA GC DSR GMR MPDS GTPISA

Figure 4.11: Visual comparisons of Method-3 (MPDS) to 8 state-of-
the-art methods including CB [30], GS [81], HS [31], P-
CA [85], GC [79], DSR [62], GMR [57], PISA [65]. Our
saliency maps show more consistency to the ground truth.
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4.1.4 Method-4: Superpixel based color contrast and
color distribution driven salient object detection

(Summary of Paper 4)

Problem addressed: This method addresses the problem of exploiting
a unified computational scheme for integrating color contrast and color dis-
tribution cues.

Basic ideas: Previous work considers either color contrast [7, 8, 20, 63] or
color distribution [108] for salient region detection, where the color informa-
tion cannot be fully utilized, resulting in limited performance. We employ
superpixels to compute these two color attributes efficiently, as superpixels
are spatially compact atomic regions. In a unified superpixel-based man-
ner, color contrast and distribution can be computed independently and
then integrated. Method-4 exploits three hypotheses on salient objects:

Hypothesis-1. A salient object often has strong color contrast to its
surroundings. (Color contrast)

Hypothesis-2. A salient object is often located close to the image
center attributed to the habit of photographers. (Color distribution)

Hypothesis-3. Colors of a salient object are more compactly distribut-
ed compared to the background. (Color distribution)

Superpixel 
pre‐segmentation

Contrast
saliency map 

 Distribution
saliency map 

Combination by 
multiplication

Refinement
(final map)

Input image

Figure 4.12: The block diagram of Method-4, including SLIC super-
pixel pre-segmentation (superpixel boundaries are visual-
ized in white color superimposed on the original image),
color contrast and color distribution computation, com-
bination, and final refinement.

Big picture: Method-4 is a baseline approach by integrating color at-
tributes to detect salient objects. Such attributes include color contrast and
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color distribution. As shown in Figure 4.12, firstly the input image is over-
segmented into spatially compact superpixels by using SLIC algorithm [56].
Then, two intermediate saliency maps, namely a color contrast map and a
color distribution map, are computed. Considering Hypothesis-1, contrast-
based saliency of a superpixel is computed by its color contrast to all su-
perpixels in the image. The resulting saliency values are weighted by a dis-
tribution prior considering center bias (Hypothesis-2 ), and then refined by
a saliency smoothing process so that superpixels with similar colors receive
similar saliency. The outcome after this stage is the contrast saliency map
as shown in Figure 4.12. Meanwhile considering Hypothesis-3, distribution-
based saliency of a superpixel should be large when the color component it
corresponds to has small spatial variance (namely compactly distributed)
in the entire image. Method-4 models this hypothesis by subtracting the
normalized color spatial variances from value 1.0. The outcome after this
stage is the distribution saliency map as shown in Figure 4.12. Next, con-
trast saliency map and distribution map are superpixel-wisely multiplied. A
refinement process by mean-shift segmentation is adopted to further elimi-
nate noise and artifacts, and generate a coherent saliency map (Figure 4.12).

Main contributions:

• To utilize the three independent hypotheses, color contrast and color
distribution saliency measures are formulated in a unified computa-
tional scheme based on superpixels. The obtained intermediate salien-
cy maps are combined to achieve complementary performance. The
effectiveness of incorporating color contrast with color distribution is
validated qualitatively and quantitatively.

• Additional processes including global saliency smoothing and refine-
ment by mean-shift segmentation are proposed, which enhance the
final performance.

Main results: Tests and evaluation of Method-4 are done on benchmark
datasets MSRA-1000 [8] and SOD [109]. The results are compared with 8 ex-
isting methods including CA [20], IT [6], SR [14], FT [8], LC [63], HC [110],
RC [110], SF [64]. Method-4 is shown to perform well on background sup-
pressing and uniform object enhancement (Figure 4.13). As shown in Figure
4.14 left, higher precision than existing methods is obtained from Method-4,
where noticeable improvement can be observed. The complementary per-
formance of incorporating color contrast with color distribution is validated
on MSRA-1000 (Figure 4.14 right). The exploited distribution cues and
saliency smoothing procedure are shown to be useful for boosting the de-
tection performance. Additionally, we apply Method-4 to the application of
content-aware image resizing (Figure 4.15) and shows its superiority over
existing models RC [110] and SF [64].
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Figure 4.13: Qualitative comparisons of Method-4 (Ours) to 8 existing
saliency methods.
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Figure 4.14: Quantitative evaluation on MSRA-1000. Left: Compar-
isons of precision-recall curves. Right: The impact of
individual phases (ablation experiment).

Original Uniform RC OursSF

Figure 4.15: Apply RC, SF and Method-4 (Ours) to content-aware
resizing, where the “Uniform” means uniform resizing.
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4.1.5 Method-5: Geodesic saliency propagation for im-
age salient region detection

(Summary of Paper 5)

Problem addressed: This method addresses employing geodesics to main-
tain visual coherence of saliency maps. The aim is to uniformly detect salient
objects meanwhile suppress background.

Basic ideas: Objects and background usually show the property of con-
nectivity, namely either objects and background often comprise connected
regions. The basic idea of Method-5 is to utilize geodesic distance, which
is a connectivity measure, to propagate saliency values and enhance salient
objects from a set of coarse saliency maps. After propagation, connected
regions should have coherent saliency.

Original Superpixels

Global contrast

Harris convex hull

Coarse 
saliency

Geodesic 
propagation

Merging

Figure 4.16: The block diagram Method-5. After the proposed
geodesic propagation, the background clutter in the color
contrast map is suppressed whereas a missing object part
beyond the convex hull is recovered.

Big picture: As shown in Figure 4.16, similarly to other proposed method-
s, Method-5 computes saliency upon superpixels. An initial coarse saliency
map is first formulated to detect potential salient regions, where Harris con-
vex hull is adopted to exclude background clutter as much while the color
contrast is employed to highlight salient objects from background. Next,
the coarse saliency values of superpixels are propagated towards all supepix-
els. The extent of propagation between two superpixels is manipulated by
geodesic distance:
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Spropagation
i =

∑

j

fj→iS
coarse
j (4.6)

where Spropagation
i is the transmitted saliency aggregated from superpixels

Rj , and Scoarse
j is the corresponding saliency in the coarse saliency map. The

saliency energy transmitted from a specific superpixel Rj to superpixel Ri
is manipulated by term fj→iScoarse

j , where fj→i is the propagation intensity
specified by:

fj→i =
1

N e−βd(Ri,Rj) (4.7)

where d(Ri, Rj) is the geodesic distance between Ri and Rj , β is a pa-
rameter controlling the transmitting intensity, and N =

∑
j e
−βd(Ri,Rj) is

the normalization factor. Due to such propagation in terms of connectivity,
over-suppressed parts of a salient object can be recovered and falsely detect-
ed background can be suppressed (Figure 4.16). Method-5 differs from the
geodesic saliency method in [81], as [81] defines the saliency of a patch as its
shortest geodesic distance from a specified seed set (equivalent to geodesic
distance transform). In our case, using geodesic transform is not robust
to the noise in the coarse saliency map. Another propagation-related work
is [108]. The main difference from [108] is that [108] conducts propagation
through graph-based PageRank rather than geodesics used by Method-5.

Main contributions:

• A novel saliency propagation method based on geodesic distance is
proposed and tested. Its effectiveness on saliency detection is validated
upon initial coarse saliency maps derived from global color contrast
and Harris convex hull.

Main results: Tests and comparisons are performed on a public dataset
MSRA-1000 (1000 images) and compared with 9 existing methods. As
shown in Figure 4.17, Method-5 achieves improved detection results com-
pared to existing methods including CA [20], IT [6], SR [14], FT [8], LC [63],
HC [110], RC [110], SF [64], and GS [81], where GS [81] also uses geodesic
distance but is based on geodesic transform. Furthermore, the effectiveness
of Method-5 is demonstrated by robust detection from convex hull and color
contrast that are not accurate (Figure 4.18).
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Figure 4.17: Performance comparisons of Method-5 (Ours) to 9 ex-
isting methods. Left: precision-recall curves; Right: F-
measure curves by varying threshold T (x-axis).

Global contrast Convex hull Coarse saliency Propagation

Figure 4.18: Three more examples of propagation, where the initial re-
sults from color contrast (1st column) and Harris convex
hull (2nd column) are not accurate.



4.1 Salient region detection methods 57

4.1.6 Comparison of the proposed saliency methods

(An extended work)

This section aims at benchmarking the proposed saliency methods (Method-
1 to Method-5) under widely used metrics and shows their pros and cons.

Datasets

Four datasets were used for this benchmarking, including ASD [8] (also
called MSRA-1000 interchangeably in some literatures and also the append-
ed papers in this thesis), ECSSD [31], MSRA [67], and DUT-OMRON [57].
They are briefly summarized as follows:

ASD [8]: Contains 1000 images selected from the MSRA database [67].
Pixel-level ground truth is provided by [8]. In this dataset, each image
usually contains one single object. This dataset is extensively used and
very popular for evaluation of saliency methods, e.g., in [7, 31, 79, 85, 111].

ECSSD [31]: Constructed by [31], contains 1000 images extended from
their early CSSD dataset [31] with diversified patterns in both foreground
and background. Ground truth masks are produced by five subjects. The
first edition of this dataset was realized soon after the paper [31] in 2013,
but the ground truths were recently updated in April, 2015.

MSRA [67]: This dataset contains 5000 images most of which have an u-
nambiguous salient object in each image. Originally released ground truths
of this dataset in [67] are only bounding boxes. Lately the pixel-wise ground
truth masks are provided along with the work in [29]. The most popular
ASD [8] dataset takes 1000 images from this dataset. To avoid duplicated e-
valuation on both ASD and MSRA, images that belong to ASD are excluded
from MSRA and the remaining 4000 images are used for our benchmarking.

DUT-OMRON [57]: Constructed by [57], contains 5,168 images manual-
ly selected from more than 140,000 images. Images of this dataset have one
or more salient objects and relatively complex background. Three types of
ground truths are available, i.e., bounding boxes, eye-tracking points, and
pixel-wise masks. In our benchmarking, pixel-wise masks are used for the
evaluation of salient region detection.

The above datasets were chosen based on the following reasons: 1) Being
widely-used, 2) Having a large number of images (≥ 1000), 3) Presenting
different biases (e.g., number of salient objects, background clutter).

Models Compared

We list the compared methods in Table 4.1. We also include a recent method
MB+ [86] into comparison to have a reference to the state-of-the-art perfor-
mance. MB+ was presented in ICCV (International Conference on Com-
puter Vision) 2015 , one of the top conferences in computer vision and
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Table 4.1: Models compared in this section.

Name Description
NCS (Method-1) Normalized Cut Saliency
C-CRF (Method-2) Continuous Conditional Random Field saliency
MPDS (Method-3) Manifold-Preserving Diffusion-based Saliency
CD (Method-4) Color Contrast and Distribution-based saliency
GP (Method-5) Geodesic Propagation-based saliency
MB+ ( [86]) Extended Minimum Barrier saliency

Saliency mapGround truth         

Compare

Figure 4.19: The evaluation problem for salient region/object detec-
tion is formulated by comparing between a binary ground
truth map Gt and a continuous-valued saliency map
Smap. The original image is shown in Figure 1.2.

image processing, as an oral presentation. The method applies minimum
barrier distance (MBD) transform to saliency detection. A preliminary
saliency map B is obtained by computing MBD of image pixels to image
boundary. Then the map is combined with backgroundness cues and further
enhanced by some post-processing. The enhanced map is denoted as B+.
Here abbreviation “MB+” stands for their extended version that generates
the enhanced saliency map B+. We use the public code of implementation
that the authors provide.

Evaluation Metrics

Let a saliency map be Smap and the corresponding binary ground truth be
Gt. Assume that prior to evaluation, Smap is normalized into the range [0,1]

by
Smap−min{Smap}

max{Smap}−min{Smap} , whereas in the groundtruth Gt, pixels are either

labeled as “salient” (with values 1), or “non-salient” (with values 0). The
evaluation problem is to compare between a continuous-valued map Smap
and a binary map Gt, as shown in Figure 4.19. Below we describe four
metrics that are commonly adopted for evaluating a salient region detection
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model. Some of these metrics are adopted in the appended papers in Part
II of this thesis.

1) Precision-Recall (PR) [7, 8] is defined as:

Precision(T ) =
|M(T ) ∩Gt|
|M(T )| , Recall(T ) =

|M(T ) ∩Gt|
|Gt| (4.8)

where M(T ) is the binary mask map obtained by directly thresholding
the saliency map Smap with a threshold T , and | · | is the total area of
the mask(s) in the map. By varying T from 0 to 1, a precision-recall
curve can be obtained.

2) F-measure (Fβ) [7, 8] is a metric integrating precision and recall, which
is defined as:

Fβ =
(1 + β2)Precision · Recall

β2 · Precision + Recall
(4.9)

where β2 is a non-negative harmonic weight between the precision
and the recall. β2 = 0.3 is usually set since the precision is often
weighted more than the recall [8]. In order to get a single-valued Fβ
score instead of a curve, existing works usually first binarize Smap into
a foreground mask map, leading to a single precision value and recall
value. The most common way to do this is the adaptive thresholding
suggested by Achanta et al. [8], where the adaptive threshold is defined
as two times of the mean value of the saliency map.

3) Mean Absolute Error (MAE) [64, 79] is defined as:

MAE =
1

W ·H
W∑

x=1

H∑

y=1

|Smap(x, y)−Gt(x, y)| (4.10)

where Smap(x, y) and Gt(x, y) correspond to the saliency value and
ground truth value at pixel location (x, y), respectively. W and H are
the width and height of Smap. It can be seen that MAE basically is an
accumulation of pixel-wise errors, and the result provides an intuitive
measure of the difference between Smap and Gt.

4) Weighted F-measure (Fwβ ) is recently proposed by Margolin et al.
[112]:

Fwβ =
(1 + β2)Precisionw × Recallw

β2 × Precisionw + Recallw
(4.11)

where Precisionw and Recallw are the weighted precision and recall.
The difference between (4.11) and (4.9) is that Precisionw and Recallw

in (4.11) can directly compare a non-binary map against a binary
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ground truth without thresholding. Since the definition of Precisionw

and Recallw is a bit complex, here they are omitted. Interested readers
are referred to [112] for more details.

Among the above four metrics, high precision-recall curves, high Fβ , Fwβ ,
and low MAE indicate good saliency models. It is worth noting that the
four metrics sometimes do not agree with each other. The same observa-
tion is reported in [27]. The reason is that they have concerned different
aspects and properties of a model. In this sense, they could be instructive
to selecting appropriate models for specific application requirements.

Performance

A. Quantitative comparison

ASD (MSRA‐1000) MSRA

ECSSD DUT‐OMRON
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Figure 4.20: Quantitative comparison by precision-recall curves.

The quantitative comparison results of the six models aforementioned are
shown in Figure 4.20 and Figure 4.21. Figure 4.20 shows the precision-recall
curves. Comparison by Fβ , MAE, and Fwβ are shown in Figure 4.21. Note
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Figure 4.21: Quantitative comparison by Fβ (the top row), MAE (the
middle row), and Fwβ (the bottom row). The upper left
markers ↑ in the figures mean higher criterion values in-
dicate better performance, whereas the markers ↓ mean
lower criterion values indicate better performance.

that since Method-2 (C-CRF) uses 3000 images from MSRA for training
the continuous conditional random field, this method is not compared on
the MSRA dataset. Regarding to the precision-recall curves, several obser-
vations can be found from Figure 4.20: i) The baseline models CD and GP
that integrate the simple color contrast and color distribution or enhance
the saliency maps by geodesic propagation consistently achieve inferior per-
formance comparing to NCS, MPDS, and C-CRF. ii) The NCS, MPDS,
C-CRF achieve state-of-the-art performance.

From Figure 4.21, one can observe that the metrics sometimes do not
agree with each other. Regarding to the Fβ , NCS is the best model on the
three out of the four datasets, namely on ASD, MSRA, and DUT-OMRON.
On ECSSD, C-CRF is the best, which performs slightly better than NC-
S, MPSD and MB+. In terms of the MAE criterion, MPDS consistently
performs the best on ASD, ECSSD and DUT-OMRON. The state-of-the-
art method MB+ is also good at MAE, since it is the best on MSRA and
the second best on ECSSD and DUT-OMRON. Finally regarding to Fwβ ,
MPSD is the best on ASD and DUT-OMRON, whereas MB+ is the best on
MSRA and ECCSD. However, the three metrics in Figure 4.21 agrees with
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the precision-recall curves on the fact that CD and GP still rank bottom.
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Figure 4.22: Qualitative comparison for the methods proposed in this
thesis (CD, GP, NCS, MPDS, C-CRF) and a state-of-
the-art salient region detection model MB+ [86] on four
benchmark datasets. GT means the ground truth.

B. Qualitative comparison
Qualitative comparison results are shown in Figure 4.22, where three sam-
ple images from each image set are included. Several observations can be
found from Figure 4.22. First, regarding to the visual quality, CD and GP
are inferior to the other contenders. Though they could generate decent
results on some simple images (1st, 2nd, 4th rows in Figure 4.22), they still
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have limited capability on emphasizing entire objects in complex scenarios.
CD may be easily distracted by some background clutter with high con-
trast (e.g., 7th row) whereas GP is prone to some small-scale high-contrast
patterns (e.g., 4th, 11th, 12th rows). Second, varied performance of NC-
S, MPDS, C-CRF, and MB+ reveal there should be potential advantages
for each method over the others. For example, only NCS and C-CRF suc-
ceed on highlighting the object meanwhile suppressing the background in
the last row in Figure 4.22. The saliency maps of MPDS are perceptually
the closet to the ground truth in the 1st, 8th, and 9th rows. MB+ often
provides saliency maps with high foreground-background contrast, namely
the saliency assignment is either very high or very low. There are very few
regions with middle-level saliency in the resultant saliency maps. However,
MB+ has some limitation on preserving clear object boundaries in cluttered
scenes, such as the 6th-8th rows in Figure 4.22.

C. Efficiency and speed

The average running time on ASD dataset of the proposed methods is shown
in Table 4.2. The running time was all acquired on an Intel i7-4720HQ
2.6GHz laptop with 8GB memory using non-optimized Matlab code. Re-
garding to the running time, CD and GP are two fastest methods due to
their simplicity in saliency computation. The speed of NCS and C-CRF
is close, since the former requires multi-level region merging and eigenvec-
tor solving whereas the latter needs to extract various unary and pairwise
features. MPDS has the longest running time because it obtains adaptive
graph weights on every image through optimization. Note the computation
time of MPDS varies on different images, from 1 second to about 8 seconds.

Table 4.2: Average CPU time in seconds on ASD dataset. All methods
are based on Matlab implementation without optimization.
We only have compared the running time on Matlab, so
MB+ whose released code is C++ is not considered here.

Methods CD GP NCS MPDS C-CRF
Time(sec) 1.4 0.8 2.6 3.9 2.1

Discussion and Remarks

From the results obtained, the rankings of models based on the average
rankings over all datasets are summarized in Table 4.3. From Table 4.3, we
can conclude that: 1) In terms of precision-recall and Fβ , the top two models
are C-CRF and NCS. 2) Under Fwβ and MAE, MPDS and MB+ perform
the best. 3) About the processing speed, GP and CD are the fastest.

As aforementioned, different metrics are instructive to different applica-
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Table 4.3: Rankings of models under different evaluation metrics over
all datasets. The ranking position of a method is the average
of its ranking over all four datasets. The best two rankings
in each row are highlighted in red and blue.

Methods CD GP NCS MPDS C-CRF MB+
Precision-recall 6 5 2 4 1 3
Fβ 6 5 1 3 2 4
Fwβ 5 6 3 1 4 2

MAE 6 5 3 1 4 2
Time 2 1 4 5 3 null

tions. CD and GP may be good choices on simple images since they run
fast and achieve fairly good results. They may also be suitable for some
efficiency-demanded tasks. NCS and C-CRF achieve good precision-recall
curves and Fβ . They could be decent choices for tasks, e.g., the Saliency
Cut in [7], that benefit from high precision under a pre-defined recall rate.
High Fβ means that the obtained binary masks by simple adaptive thresh-
olding have good accuracy of fitting to entire objects. NCS and C-CRF
hence are also good candidates for applications that require initial object
masks as input but are limited to only efficient segmentation methods due
to hardware/platform constraints. MPDS and MB+ achieve low MAE and
high Fwβ , so their saliency maps present high contrast between foreground
and background and are good approximation to the binary ground truth.
Among the proposed methods, NCS is a good trade-off between precision-
recall curve and Fwβ , since it ranks the second among the proposed methods
on both precision-recall curve (following C-CRF) and Fwβ (following MPDS).
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4.2 Traffic sign recognition methods

This section describes two proposed methods (Method-6 and Method-7)
on traffic sign recognition. As shown in Figure 4.23, Method-6 introduces a
complete traffic sign recognition framework based on coarse-to-fine learning,
together with a sign salient region extraction method based on geodesic
propagation. Inspired by the work in Method-6, Method-7 further proposes
an improved method towards sign salient region extraction, which is based
on signed geodesic transform. In the following we describe each method and
its main contributions in detail.

The main work on traffic sign 
recognition in this thesis

Method‐6
(Section 4.2.1, 

Paper 6)

Method‐7
(Section 4.2.2, 

Paper 7)

1. A coarse‐to‐fine 
recognition framework
2. Salient sign regions by 
geodesic propagation  

Salient sign regions by 
signed geodesic transform

Figure 4.23: The summary of the thesis work on traffic sign recogni-
tion.

4.2.1 Method-6: A novel coarse-to-fine recognition scheme
with salient region features

(Summary of Paper 6)

Problem addressed: This method addresses applying salient region de-
tection to traffic sign recognition (TSR).

Basic ideas: Despite in different countries, traffic signs are usually divided
into several categories. Each category has a certain type of meanings. For
example, the category “prohibitory signs” describes some actions that are
forbidden. Signs in the same category usually share common attributes such
as shapes and colors. Motivated by this, Method-6 formulates sign detec-
tion as coarse classification between sign categories versus the background,
whereas sign classification is formulated as fine classification of signs within
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each category. In the classification stage, a conventional mean to extract
features for classification is to consider an entire detection window [91, 92].
However, since the image within the window could contain structural back-
ground and a not-well-aligned sign, such feature extraction does not provide
accurate characterization of a sign. To enhance classification, Method-6 in-
vestigates a scheme for segmenting salient sign regions. To achieve this, we
modify Method-5 and use the sign detection window to replace the Harris
convex hull that provides a coarse saliency region, and then employ geodesic
propagation to obtain an enhanced sign region.

Non‐maximal 
suppression 

across categories 

Coarse	classification

Fine	classification

Category detector #1
(Integral channel 

features+Adaboost)

Input image
/single video 

frame

Salient region 
detection and 
segmentation 

of signs

 Feature extraction 
and dimensionality 

reduction

Corresponding fine 
classification

(One‐against‐all SVMs)

Sliding 
window‐
based 

sampling

Category detector #2
(Integral channel 

features+Adaboost)

Figure 4.24: The block diagram of Method-6 (a coarse-to-fine learning
scheme) for traffic sign recognition, where salient region
detection (the pink module) is inserted as an intermedi-
ate module. In Method-6 there are two learning stages,
corresponding to coarse classification and fine classifica-
tion, respectively.

Big Picture: As shown in Figure 4.24, sign detection and classification
are designed through learning in a coarse-to-fine manner. In the coarse
stage, classification is performed between individual sign categories and
background. In other words, this stage is equivalent to sign detection. Its
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outcome is a coarse classification result indicating whether a window belongs
to a sign category or background. As shown Figure 4.24, category detectors
in Method-6 uses integral channel features [101, 113] and Adaboost classi-
fiers. Next, a saliency-based method is employed to select an informative
region of sign from a window. In the fine stage, features are extracted from
segmented salient regions, and then classified by one-against-all support
vector machines (SVMs). Figure 4.28 shows an example of salient region
detection and segmentation.

Sign detected!

Cropped (    ) Superpixels Boosted (     ) Propagated (    ) Segmentation

Segmentation proposals

Figure 4.25: Detection and segmentation of a Chinese traffic sign (pro-
hibitory sign) in a street view image. The second row vi-
sualizes some intermediate results. From left to right are:
cropped local image (S), superpixel segmentation, boost-
ed color channel (bt), propagated saliency map (M), and
final segmentation (light blue mask superimposed on the
sign). The last row shows some generated segmentation
proposals, where the one selected automatically is out-
lined by green rectangle.
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Main contributions:

• A learning-based TSR scheme (including both sign detection and clas-
sification) is proposed for street view images, through a coarse-to-fine
process.

• A saliency-based feature extraction method is proposed through salien-
t region detection and segmentation, where geodesic propagation is
employed.

• The work that utilizes salient region detection for sign classification
is new. It differs from previous work where saliency detection is only
applied as a pre-processing step in traffic sign detection [93–95].

Table 4.4: Evaluation of sign detection. TP: True positive. FP: False
positive. FN: False negative

Category
Training
samples

Test
images

TP FP FN Precision Recall

Prohibitory 1367 220 341 19 23 94.72% 93.68%
Warning 980 188 180 8 15 95.74% 92.31%

Chinese prohibitory signs

Chinese warning signs

Figure 4.26: Sign examples of Chinese prohibitory and warning signs
considered in Method-6.
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Main results: Method-6 is tested on recognizing two Chinese sign cate-
gories (prohibitory signs and warning signs) from Tencent street view im-
ages (http://map.qq.com/). The collected street view images are split into
training and testing sets, where each image contains at least one sign from
the two categories. Training samples are then collected from the training
set. In the experiments, sign detection and sign classification are evaluat-
ed separately. Table 4.4 shows the results from sign detection. Method-6
achieves over 90% precision and recall rate on both categories. To test sign
classification, we further collected samples and manually categorized them
into different classes. In the end, each sign class contains approximate 200
sign samples. For exact classes involved, see Figure 4.26. In each class, we
randomly choose 80% samples for training, and the remaining 20% samples
for testing. Such a process is repeated for 20 times. The resulting confusion
matrices (averaged) are shown in Figure 4.28, where Method-6 achieves high
true positive rate and relatively low false positive rate. Figure 4.27 shows
some examples of simultaneous detection, segmentation, and classification.

Figure 4.27: Recognizing multiple categories of signs. Prohibitory
signs are detected as red boxes. Warning signs are de-
tected as cyan boxes. Light blue masks superimposed
on the signs are segmented salient regions. Extracted
feature maps are shown on the bottom left. Artificial
images beside the detected signs mean the classification
results from Method-6.
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Figure 4.28: The classification confusion matrices (zero entries are not
numbered). Top: From 15 classes in the prohibitory cat-
egory; Bottom: From 16 classes in the warning category.
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4.2.2 Method-7: Geodesic distance transform-based salien-
t region segmentation for sign recognition

(Summary of Paper 7)

Problem addressed: The same as Method-6, this method addresses ap-
plying salient region detection to traffic sign recognition (TSR).

Basic ideas: Based on the observation that a sign in a detected window
usually does not touch window boundary, Method-7 proposes to compute a
saliency map through geodesic distance transform from window boundary.
To concern the location prior and also make the detected salient region more
distinguishable from the background, the signed geodesic transform (SGT)
is employed.

Detection window

Superpixels SGD map

 Foreground seed  Background seed

Final segmentation

Segmentation 
proposals and 
shape matching

The sign category 
detector

Shape type

See Paper 7 for details

Figure 4.29: The block diagram of Method-7, which generates a salient
region automatically from the sign detection window.

Big picture: As shown in Figure 4.29, first the image in the detection
window is over-segmented into superpixels. Next, a superpixel-based signed
geodesic distance map (SGD map) is obtained by applying signed geodesic
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transform (SGT) regarding to specified foreground and background seeds.
Finally, a sequence of processes (in the module of “segmentation proposals
and shape matching” in Figure 4.29) are proposed to obtain a segmenta-
tion mask from the distance map. As results, Method-7 can automatically
generate a salient sign region from the detection window.

Main contributions:

• We propose a SGT-based method that is employed after sliding window-
based detection. It is able to automatically extract salient sign regions
with different shapes.

• We propose an effective method that yields the final segmentation
from the signed geodesic distance map. Different from generic object
segmentation, our method incorporates shape constraints and achieves
robust segmentation.

Table 4.5: Classification results (420 images, with/without Method-7).

without with
Method-7 Method-7

Correct classification (signs) 584 673
False classification (signs) 109 20

Classification accuracy 84.27% 97.11%

Main results: The experimental validation of Method-7 is based on the
coarse-to-fine TSR system proposed in Method-6. Following the work of
Method-6, we have further collected 11,683 street images from Tencent
street view. 8,044 images are used for training purpose and 3,639 images
are used for testing. To validate Method-7, we took 420 images from the
testing set as a “segmentation validation set”. The reason for not using
the entire testing set is that the dataset was under construction and the
manual annotations had not been finished. On this validation set, we focus
on the performance on prohibitory signs, where the sign detector achieves
98.3% precision and 97.33% recall (higher than that reported in Method-6
attributed to more training data). A sign detection window is then classi-
fied into one of 30 sign classes (also increased compared to the results in
Method-6). The experiment is conducted with and removing the segmenta-
tion module (namely Method-7) from the TSR system, so that the impact
of Method-7 can be seen. As shown in Table 4.5, incorporating Method-
7 drastically improves the classification accuracy from 84.27% to 97.11%.
Several visual results are shown in Fig.4.30, where extracting features from
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the whole windows leads to false classification (1st row in Fig.4.30) whereas
incorporating Method-7 leads to correct classification (2nd row in Fig.4.30).

Figure 4.30: Effectiveness of the segmentation module (Method-7).
1st row: Erroneous classification without the saliency-
based segmentation (Method-7). 2nd row: Correct clas-
sification by incorporating the saliency-based segmenta-
tion (Method-7). The segmentation masks are indicated
by the light green color superimposed on the signs. The
artificial pictures show the classification results from our
TSR system.
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Extended experiments and results

A. On extended Chinese dataset

Our formal Chinese dataset comprises 8,044 training images and 3,237 test-
ing images. All these images are full-resolution street view images, not sign
images. Training samples are extracted from the training set and then are
manually categorized into different classes. In total, there are three sign
categories with different number of classes, whose introduction is in Table
4.6. Details of classes are shown in Figure 4.31-Figure 4.33. Regarding
to the 3,237 testing images, we manually annotate the ground truth for
sign detection and classification. In Figure 4.34, we show the ground truth
distribution on this testing set.

Figure. 4.35 shows the confusion matrix, precision, recall for category
detection of signs. Our system achieves over 90% precision and recall rate
on all categories. In Table 4.7 we show the classification rate of the proposed
system on sign classification. In Figure 4.36-Figure 4.39, some detection,
segmentation, and classification results from full-resolution street view im-
ages are shown. Our system handles various scenarios, such as multiple
sign categories or classes appearing in a same image (Figure 4.36), signs
in complex background (Figure 4.37), signs in both small and large sizes
(Figure 4.37), signs under various luminance (Figure 4.38), and signs with
slight shape distortion (Figure 4.38). Figure 4.39 shows several failure cases
of sign detection.

B. On German traffic sign classification benchmark

In addition, our system is transferred to the German traffic sign classifi-
cation benchmark (GTSCB) [36] and is evaluated. The German traffic sign
dataset proposed by Stallkamp et al [36] is a well-established and challeng-
ing benchmark containing large number of training and testing samples. It
comprises over 50,000 images (39,209 training samples and 12,630 testing
samples) in total. The signs are categorized into 43 classes. Since our system
is a coarse-to-fine scheme, where the saliency-based segmentation (Method-
7) relies on the detection (coarse classification) of categories to provide shape
prior, we divide all the classes into five categories and train five category
detectors accordingly. Figure 4.40 shows our categorization of the 43 class-
es, which is mainly based on colors and shapes. In the testing stage, a test
sample is first classified by all category detectors and then is assigned to its
most-likely class. Figure 4.42 shows the classification results on GTSCB.
Our system achieves the classification rate 12107/12630 = 95.86%, which
is somewhat comparable to existing methods based on traditional features
and classifiers [36, 114].
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Table 4.6: Numbers of collected training samples in the 3 Chinese cat-
egories.

Category Sample number Class number
Prohibitory 8938 34

Warning 2568 21
Indication 1815 11

Index Class Total q'ty Im'g Index Class Total q'ty Im'g

1 no‐walking 22 18 SpLim:20 57

2 no‐bike 14 19 SpLim:30 129

3 no‐bus 68 20 SpLim:40 619

4 no‐car 76 21 SpLim:50 106

5 no‐entry 194 22 SpLim:60 756

6 no‐explosive 41 23 SpLim:70 49

7 no‐horn 95 24 SpLim:80 769

8 no‐left‐turn 47 25 SpLim:90 195

9 no‐motor‐bike 19 26 SpLim:100 1160

10 no‐parking 464 27 SpLim:110 186

11 no‐stopping 12 28 SpLim:120 1057

12 no‐right‐turn 33 29 no‐overtake 89

13 no‐truck 379 30 enable‐overtake 15

14 no‐U‐turn 1514 31 no‐pass 64

15 SpLm:5 81 32 no‐phone 39

16 combination 76 33 no‐tractor 19

17 SpLim:10 13 34 unknown 481

Figure 4.31: Details of classes in Chinese prohibitory category for
training, as summarized in Table 4.6. The unknown class
contains sign samples in this category but not belong to
the classes listed. In total, there are 8938 training sam-
ples in 34 classes.
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Index Class Total q'ty Im'g Index Class Total q'ty Im'g

1 warn‐cross 61 12 warn‐go‐right 11

2 warn‐right‐T 76 13 warn‐construct 105

3 warn‐left‐T 76 14 warn‐accident 36

4 warn‐zzz 42 15 warn‐cycle 12

5 warn‐human 82 16 warn‐z 47

6 warn‐kids 10 17 warn‐danger 308

7 warn‐light 16 18 warn‐narrow 172

8 warn‐slow 64 19 warn‐left‐turn 211

9 warn‐right‐Lane 805 20 warn‐right‐turn 215

10 warn‐tunnel 30 21 unknown 177

11 warn‐railway 12

Figure 4.32: Details of classes in Chinese warning category for train-
ing, as summarized in Table 4.6. The unknown class con-
tains sign samples in this category but not belong to the
classes listed. In total, there are 2568 training samples in
21 classes.

Index Class Total q'ty Im'g Index Class Total q'ty Im'g

1 min60 896 7 must‐horn 15

2 min70 10 8 must‐left 95

3 min80 209 9 must‐right 95

4 min90 204 10 must‐straight 38

5 min100 89 11 unknown 44

6 min110 120

Figure 4.33: Details of classes in Chinese indication category for train-
ing, as summarized in Table 4.6. The unknown class con-
tains sign samples in this category but not belong to the
classes listed. In total, there are 1815 training samples in
11 classes.
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Index Class GT q'ty Index Class GT q'ty Index Class GT q'ty

1 no‐walking 11 1 warn‐cross 8 1 min60 544

2 no‐bike 5 2 warn‐right‐T 15 2 min70 16

3 no‐bus 31 3 warn‐left‐T 11 3 min80 110

4 no‐car 15 4 warn‐zzz 13 4 min90 100

5 no‐entry 50 5 warn‐human 9 5 min100 46

6 no‐explosive 4 6 warn‐kids 26 6 min110 38

7 no‐horn 18 7 warn‐light 0 7 must‐horn 0

8 no‐left‐turn 9 8 warn‐slow 22 8 must‐left 9

9 no‐motor‐bike 6 9 warn‐right‐Lane 253 9 must‐right 27

10 no‐parking 197 10 warn‐tunnel 2 10 must‐straight 1

11 no‐stopping 1 11 warn‐railway 0 11 unknown 14

12 no‐right‐turn 1 12 warn‐go‐right 4 Total 905

13 no‐truck 60 13 warn‐construct 44

14 no‐U‐turn 535 14 warn‐accident 18

15 SpLm:5 61 15 warn‐cycle 0

16 combination 20 16 warn‐z 0

17 SpLim:10 1 17 warn‐danger 5

18 SpLim:20 62 18 warn‐narrow 65

19 SpLim:30 43 19 warn‐left‐turn 16

20 SpLim:40 316 20 warn‐right‐turn 25

21 SpLim:50 9 21 unknown 168

22 SpLim:60 327 Total 698

23 SpLim:70 62

24 SpLim:80 344

25 SpLim:90 94

26 SpLim:100 592

27 SpLim:110 37

28 SpLim:120 465

29 no‐overtake 69

30 enable‐overtake 19

31 no‐pass 24

32 no‐phone 0

33 no‐tractor 3

34 unknown 55

Total 3546

Prohibitory category  Warning category  Indication category 

Figure 4.34: Ground truth distribution on 3,237 street view images for
testing.
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Category Prohibitory Warning Indication Background

Prohibitory 3475 0 10 61

Warning 0 688 0 10

Indication 24 0 849 32

Background 61 20 24 N.A.

Category Precision Recall

Prohibitory 97.61% 97.99%

Warning 97.18% 98.57%

Indication 97.14% 93.81%

Predicted class

A
ct
u
a
l c
la
ss

Figure 4.35: Confusion matrix and precision, recall rate for category
detection on the Chinese test set (3,237 street images).

Table 4.7: The classification rate (CR) of the proposed system on the
Chinese test set. Two cases, namely “with unknown class”
and “without unknown class”, are considered. “With un-
known class” means that the same as other classes, a classi-
fier (one-against-all SVM) is trained for the unknown class.
An instance to be predicted will have the possibility to be
classified as “unknown”. On the other hand, “without un-
known class” means that the unknown class is totally ex-
cluded from the training set and testing set.

Category With unknown class Without unknown class
Prohibitory CR=95.48% CR=97.40%

Warning CR=85.47% CR=93.97%
Indication CR=93.76% CR=94.49%
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Recognizing signs of different categories and classes

#1 #2

#3 #4

#5 #6

#7 #8

Figure 4.36: Sign recognition from street view images, where an erro-
neous classification in image #6 is highlighted by a yellow
arrow.
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Recognizing signs in complex scenes

Recognizing signs in different scales

#1 #2

#3 #4

#5 #6

#7 #8

Figure 4.37: Recognize signs from street view images having complex
background and signs of different scales.
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Recognizing signs with shape distortion

Recognizing signs under varied luminance

#1 #2

#3 #4

#5 #6

#7 #8

Figure 4.38: Recognize signs from street view images having various
luminance and signs with shape distortion.
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Some erroneous detection and classification

Some other sample results

#1 #2

#3 #4

#5 #6

#7 #8

Figure 4.39: Recognition results, where erroneous detection and er-
roneous classification are highlighted by yellow arrows.
Several interesting results are exhibited in images from
#5 to #8.
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Category 3

Category 4

Category 5

Category 1

Category 2

#0 #1 #2 #3 #4 #5 #6 #7 #8

#9 #10 #14 #15 #16 #17 #32 #41 #42

#11 #18 #19 #20 #21 #22 #23

#24 #25 #26 #27 #28 #29 #30 #31

#33 #34 #35 #36 #37 #38 #39 #40

#12

#13

Total training: 20340

Total training: 8970

Total training: 5639

Total training: 2100

Total training: 2160

Figure 4.40: Categorization of 43 sign classes (ID from #0 to #42)
in the GTSCB dataset for training category detectors in
the coarse learning stage. The class IDs are the same as
those in the GTSCB [36].
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Figure 4.41: Classification confusion matrix for the 12,630 test sign
samples from GTSCB by using the proposed method. In
the above matrix, zero entries are not numbered.

Team Method CR
IDSIA Committee of CNNs 99.46%

INI-RTCV Human Performance 98.84%
sermanet Multi-Scale CNNs 98.31%
CAOR Random Forests 96.14%
Ours Saliency + SVMs 95.86%

INI-RTCV LDA on HOG 2 95.68%
INI-RTCV LDA on HOG 1 93.18%
INI-RTCV LDA on HOG 3 92.34%

Figure 4.42: Comparison of the classification rate (CR) on GTSCB.
Teams are: IDSIA [39], INI-RTCV [36], Sermanet [115],
CAOR [114], and Ours. Note that the parameters of our
system are not carefully tuned for GTSCB.
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4.2.3 Comparison between Method-6 and Method-7

Geodesic propagation (GP) is adopted in Method-6 to derive a saliency map
for segmentation. In contrast, Method-7 utilizes signed geodesic transform
(SGT) to derive the saliency map, where salient sign regions are expect-
ed to be highlighted as well. The main difference between them is that:
Method-7 uses only the information inside the detection window whereas
Method-6 uses contextual information both inside and outside the window.
In Method-6, the propagation is conducted from the inside to the outside of
the window. This means that the propagated saliency map is also affected
by the image contents outside the window. Therefore, the propagation could
be less effective when there is less context, for example when the detection
window is around scene borders. In contrast, Method-7 does not have such
a problem. Another advantage of Method-7 is that it is applicable when
there are only sign images available without any contextual information.
This facilitates the collection of training samples for sign classification, be-
cause no contextual information needs to be stored. This advantage also
makes Method-7 applicable to some other sign datasets (e.g., the German
sign classification benchmark GTSCB [36]) where only sign images (rather
than full street view images) are provided. In all, Method-7 is an improve-
ment over Method-6, and in our current system, we use Method-7 instead
of the GP-based segmentation in Method-6.



Chapter 5

Conclusion

Salient region/object detection is an active research direction in the field of
computer vision and image processing. After investigating existing models,
this thesis proposes 5 new methods towards improved salient region detec-
tion. Considering the contributions in theoretical aspects, we have pro-
posed the utilization of normalized graph cut, continuous conditional ran-
dom field (C-CRF), manifold-preserving diffusion (MPD), color attributes,
and geodesic propagation methods for modeling the properties of salient
objects and developed new computational effective algorithms for salien-
cy detection. Experiments on several benchmark datasets were conducted
to evaluate the performance of the proposed methods. Results, compar-
isons, and evaluations show that these methods achieve comparable/better
performance to the state-of-the-art. Further, comparisons of the proposed
methods show that each of them has its advantages and limitation. This
knowledge can be used for choosing a suitable method for real applications.
In addition, we have applied salient region detection to traffic sign recogni-
tion (TSR) from street view images. Experiments and initial results indicate
the proposed methods are feasible and successful for such an application.

5.1 Future work

Despite significant research progress, robust detection of salient regions re-
mains challenging due to the sophisticated mechanism of human attention.
On some difficult datasets there are relatively large gaps between the state-
of-the-art performance and the perfect one. Thereby, the issue of salient
region detection requires further study. To author’s view, the following
studies are worth continuing: 1) Studying the attention mechanism and
discovering more useful cues and hypotheses, which then can be integrated
to the model design; 2) Powerful learning techniques can be investigated,
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e.g., deep learning and convolutional neural networks, to discover potential
complex rules for feature extraction and fusion; 3) Other applications which
benefit from salient regions may be investigated.
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