
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Machine Learning Methods Using Class-specific
Subspace Kernel Representations

for Large-Scale Applications

Yinan Yu

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2016

Machine Learning Methods Using Class-specific Subspace Kernel Rep-
resentations
for Large-Scale Applications
Yinan Yu
ISBN 978-91-7597-487-3

c© Yinan Yu, 2016.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 4168
ISSN 0346-718X

Department of Signals and Systems
Chalmers University of Technology
SE–412 96 Göteborg
Sweden
Telephone + 46 (0)31 – 772 1000

Typeset by the author using LATEX.

Chalmers Reproservice
Göteborg, Sweden 2016

To my family

Abstract

Kernel techniques became popular due to and along with the rising success of Support
Vector Machines (SVM). During the last two decades, the kernel idea itself has been
extracted from SVM and is now widely studied as an independent subject. Essentially,
kernel methods are nonlinear transformation techniques that take data from an input
set to a high (possibly infinite) dimensional vector space, called the Reproducing
Kernel Hilbert Space (RKHS), in which linear models can be applied. The original
input set could be data from different domains and applications, such as tweets,
ratings of movies, images, medical measurements, etc. The two spaces are connected
by a Positive-Semi Definite (PSD) kernel function and all computations in the RKHS
are evaluated on the low dimensional input set using the kernel function.

Kernel methods are proven to be efficient on various applications. However, the
computational complexity of most kernel algorithms typically grows cubically, or at
least quadratically, with respect to the training size. This is due to the fact that
a Gram kernel matrix needs to be constructed and/or inverted. To improve the
scalability for large-scale training, kernel approximation techniques are employed,
where the kernel matrix is assumed to have a low-rank structure. Essentially, this is
equivalent to assuming a subspace model spanned by a subset of the training data in
the RKHS. The task is hence to estimate the subspace with respect to some criteria,
such as the reconstruction error, the discriminative power for classification tasks, etc.

Based on these motivations, this thesis focuses on the development of scalable
kernel techniques for supervised classification problems. Inspired by the idea of the
subspace classifier and kernel clustering models, we have proposed the CLAss-specific
Subspace Kernel (CLASK) representation, where class-specific kernel functions are
applied and individual subspaces can be constructed accordingly. In this thesis work,
an automatic model selection technique is proposed to choose the best multiple kernel
functions for each class based on a criterion using the subspace projection distance.
Moreover, subset selection and transformation techniques using CLASK are developed
to further reduce the model complexity with an enhanced discriminative power for
kernel approximation and classification. Furthermore, we have also proposed both a
parallel and a sequential framework to tackle large-scale learning problems.

i

Acknowledgement

I would like to take this opportunity to thank Prof. Mats Viberg and Prof. Tomas
McKelvey for giving me the opportunity to join the Signal Processing group as a PhD
candidate. I have been very happy studying and working here.

My deepest gratitude goes to my advisor Prof. Tomas McKelvey. We started the
tradition of our one hour-ish weekly meetings when I did my master thesis project on
radar signal processing, and it has been a long journey since then. I really appreciate
all the technical discussions we had all these years and enjoyed every trip we took
together. You have helped me through so many tough moments with full supports
and great patience. Nothing would have been possible without you. I would also like
to thank my (almost) co-advisor Prof. Konstantinos Diamantaras. I cherish all the
discussions and fun we had, not to mention the wonderful visit in Thessaloniki. I am
always impressed by all your awesome research ideas and your ability in finding crazy
photo opportunities. I would like to express many many thanks to Prof. S.Y. Kung
for being a great advisor and delightful host at Princeton. You always challenge me
and give me genius advice. Thanks for including me in the wrapping up of your book
writing process. The book is exceptional and I have learned so much from you.

I would like to thank Prof. Jian Yang at Chalmers, who was also my advisor
during my master thesis project. You have helped me so much both professionally
and personally. Without you, it would not have been the same.

Many thanks to my co-authors and colleagues from Medfield Diagnostics AB and
Chalmers University of Technology. Hana Dobsicek Trefna, I really enjoyed working
and chatting with you and I will see you soon as we still have some future work to do
together (those rotten wood logs ain’t gonna detect themselves). I would like to thank
Prof. Mikael Persson. Thanks for including me in those interesting and promising
projects, such as the Stroke Finder. It has been very nice working with you and you
are such a delightful person. Many thanks to my co-authors Andreas Fhager and
Stefan Candefjord for the nice collaboration. Also thank you Stefan Kidborg. I have
not seen you for a long time, but all the work we have done together is memorable.
I still kept the candy basket you gave me (only the basket - the candies are gone).
Thank you Ann-Christine Lindbom, Natasha Adler Grønbech, Agneta Kinnander and
Madeleine Persson for your efficient replies and assistances all these years.

This work has in part been funded by the Swedish Research Council (Vetenskap-
srådet) under the contract number A0462701 which is gratefully acknowledged.

Yinan Yu
Göteborg, 2016

iii

List of Included Publications
PAPER 1

Y. Yu, T. McKelvey and S.Y. Kung, “Kernel SODA: a feature reduction tech-
nique using kernel based analysis”, In Proceedings of the 12th International
Conference on Machine Learning and Applications (ICMLA), pages 72-78, Mi-
ami, FL, USA, 2013.

PAPER 2

Y. Yu and T. McKelvey, “Learning hierarchical feature space using CLAss-
specific Subspace Multiple Kernel - Metric Learning for classification”, submitted
to Journal of Machine Learning Research (JMLR).

PAPER 3

Y. Yu, T. McKelvey, K.I. Diamantaras and S.Y. Kung, “Enhanced distance
subset approximation using class-specific kernel functions for supervised learn-
ing”, submitted to Neural Networks and Learning Systems, IEEE Transaction
on.

PAPER 4

Y. Yu and T. McKelvey, “Kernel subspace empirical intersection removal for
kernel approximation and classification”, submitted to Neural Networks and
Learning Systems, IEEE Transaction on.

PAPER 5

Y. Yu, T. McKelvey, K.I. Diamantaras and S.Y. Kung, “CLAss-specific Sub-
space Kernel representations and adaptive margin slack minimization for large
scale classification”, accepted for publication in Neural Networks and Learning
Systems, IEEE Transaction on.

Software Package
https://github.com/yinan16/DeepCLASK

Other Publications
• Y. Yu, K. I. Diamantaras, T. Mckelvey and S.Y. Kung, “Enhanced distance

subset approximation using class-specific subspace kernel representation for ker-
nel approximation”, In Proceeding of IEEE International Workshop on Machine
Learning for Signal Processing, Vietri sul Mare, Salerno, Italy, 2016.

• Y. Yu, K. I. Diamantaras, T. McKelvey and S.Y. Kung, “Adaptive margin
slack minimization in RKHS for classification”, In Proceedings of the 38th IEEE

v

https://github.com/yinan16/DeepCLASK

International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Shanghai, China, 2016.

• Y. Yu, and T. McKelvey, “A robust subspace classification scheme based on
empirical intersection removal and sparse approximation”, Integrated Computer-
Aided Engineering, 22 (1), pages 59-69, 2015.

• Y. Yu, T. McKelvey, and S.Y. Kung, “Feature reduction based on Sum-of-
SNR (SOSNR) optimization”, In Proceedings of the 39th IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 6756-
6760, 2014.

• Y. Yu, K. I. Diamantaras, T. McKelvey and S.Y. Kung, “Multiclass Ridge-
adjusted Slack Variable Optimization Using selected basis for fast classification”,
In Proceedings of the 22nd European Signal Processing Conference (EUSIPCO),
pages 1178-1182, Lisbon, Portugal, 2014.

• Y. Yu, “Classification of high dimensional signals with small training sample
size with applications towards microwave based detection systems”, Licentiate
Thesis, Chalmers University of Technology, 2013.

• Y. Yu, T. McKelvey and S.Y. Kung, “A classification scheme for ’high-dimensional-
small-sample-size’ data using SODA and ridge-SVM with microwave measure-
ment applications”, In Proceedings of the 38th IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada,
2013.

• Y. Yu and T. McKelvey, ”A unified subspace classification framework developed
for diagnostic system using microwave signal”, In Proceedings of the 21st Euro-
pean Signal Processing Conference (EUSIPCO), Marrakech, Morocco, 2013.

• Y. Yu, K. I. Diamantaras, T. McKelvey and S.Y. Kung, “Ridge-Adjusted Slack
Variable Optimization for supervised classification”, In Proceedings of IEEE In-
ternational Workshop on Machine Learning for Signal Processing, Southamp-
ton, United Kingdom, 2013.

• Y. Yu and T. McKelvey, “A subspace learning algorithm for microwave scat-
tering signal classification with application to wood quality assessment”, In
Proceeding of IEEE International Workshop on Machine Learning for Signal
Processing, Santander, Spain, 2012.

• Y. Yu, J. Yang and T. McKelvey “Compact UWB indoor and through-wall
radar with precise ranging and tracking”, International Journal of Antennas
and Propagation, 2012. 2011

• Y. Yu, S. Maalik, J. Yang, T. McKelvey, K. Malmström, L. Landen and B.
Stoew, “A new UWB radar system using UWB CMOS chip”, In Proceedings of

vi

the 5th European Conference on Antennas and Propagation (EUCAP), Rome,
Italy, 2011.

• M. Persson, A. Fhager, H. D. Trefna, Y. Yu, T. McKelvey, G. Pegenius, J-E
Karlsson and Mikael Elam, “Microwave-based stroke diagnosis making global
prehospital thrombolytic treatment possible”, IEEE Transactions on Biomedi-
cal Engineering 61 (11), pages 2806-2817, 2014.

• Q. Jian, J. Yang, Y. Yu, P. Bjorkholmy and T. McKelvey, “Detection of breath-
ing and heartbeat by using a simple UWB radar system”, In Proceedings of the
8th European Conference on Antennas and Propagation (EuCAP), pages 3078-
3081, The Hague, The Netherlands, 2014.

• S. Candefjord, J. Winges, Y. Yu, T. Rylander and T. McKelvey, “Microwave
technology for localization of traumatic intracranial bleedings - a numerical
simulation study”, In Proceedings of the 35th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 1948-
1951, Osaka, Japan, 2013.

• R. Rothe, Y. Yu, and S.Y. Kung, “Parameter design tradeoff between pre-
diction performance and training time for ridge-SVM”, In Proceeding of IEEE
International Workshop on Machine Learning for Signal Processing, pages 1-6,
Southampton, United Kingdom, 2013.

vii

Contents

Contents ix

I Introductory Chapters

1 Introduction 1
1.1 A Machine that Learns . 1
1.2 Learning Process . 2
1.3 Kernel Techniques . 3
1.4 Challenges . 6

1.4.1 Bias and Variance . 6
1.4.2 Robustness . 7
1.4.3 Scalability . 8
1.4.4 Hyperparameter Tuning . 8

1.5 Conclusion . 9

2 Reproducing Kernel Hilbert Space and its Application 11
2.1 Brief Review on Functional Analysis 12

2.1.1 Hilbert Space . 12
2.1.2 Riesz Representation Theorem 16

2.2 Reproducing Kernel Hilbert Space (RKHS) and Feature Maps 17
2.2.1 Reproducing Kernels . 17
2.2.2 Kernel Functions . 18
2.2.3 Constructing Feature Maps from Kernel Functions 21
2.2.4 Dimension of the Feature Space 22

2.3 Structural Risk Minimization and the Representer Theorem 24
2.3.1 Convergence in RKHS . 24
2.3.2 Statistical Learning Theory and Structural Risk Minimization 25
2.3.3 Representer Theorem . 28
2.3.4 Kernel Tricks . 29

2.4 Conclusion . 30

3 Kernel Methods in Practice 33
3.1 Notations . 34
3.2 Kernel Model Selection . 34

ix

CONTENTS

3.2.1 Cross-Validation . 36
3.2.2 Multiple-Kernel (MK) Model 36

3.3 Kernel Approximation . 37
3.3.1 Motivation . 37
3.3.2 Subspace Model for Kernel Approximation 38
3.3.3 Subspace Estimation . 40

3.4 Classification Training . 41
3.4.1 Overview . 41
3.4.2 Connection to Kernel Approximation: 43
3.4.3 Example: LS-SVM . 45

3.5 Conclusion . 49

4 Summary of Included Papers 51
4.1 Kernel Subspace Model . 53

4.1.1 Overview . 53
4.1.2 Included Papers . 53

4.2 CLAss-specific Subspace Kernel (CLASK) Function for Classification 53
4.2.1 Class-specific Subspace Model 53
4.2.2 CLAss-Specific Kernel (CLASK) Function 54
4.2.3 Feature Map . 55
4.2.4 Included Papers . 55
4.2.5 A Feature Transformation System Using CLASK 57

4.3 Software Package: DeepCLASK . 59
4.4 Conclusions . 59

5 Future work 61

References 63

II Included Papers

Paper 1 Kernel SODA: A Feature Reduction Technique Using Kernel
Based Analysis 73
1 Introduction . 73
2 Related Work . 74

2.1 Linear Discriminant Analysis (LDA) 74
2.2 Principal Component Analysis (PCA) 74
2.3 Successively Orthogonal Discriminant Analysis 75

3 Theory of kernel SODA . 77
3.1 KSODA in Intrinsic Space . 77
3.2 KSODA in Empirical Space 78

4 Implementation and approximation 79
4.1 KSODA implementation . 79
4.2 Approximation . 79

x

CONTENTS

4.3 Data selection and numerical invertibility 80
5 Experimental Results . 81
6 Acknowledgment . 83

References 87

Paper 2 Learning Hierarchical Feature Space Using CLAss-specific
Subspace Multiple Kernel - Metric Learning for Classification 91
1 Introduction . 91
2 Problem formulation . 94

2.1 Distance metric and subspace model for a given kernel function 94
2.2 CLAss-specific Subspace Kernel Functions 99
2.3 The CLAss-Specific Multiple-Kernel model 101

3 Algorithms and implementation . 102
3.1 Basis matrix Uc,k . 102
3.2 Kernel function kc . 103
3.3 Summary of the Algorithm . 104
3.4 Remarks . 104

4 Learning Hierarchical CLASMK Feature Network 105
5 Experimental Results . 107

5.1 One Layer CLASK-ML and CLASMK-ML Compared to Single
Kernel Learning . 109

5.2 Multi-Layer CLASMK-ML Compared to Other Multi-Layer MK
Techniques . 111

5.3 Multi-Layer CLASMK-ML Performance with Respect to the
Number of Layers . 112

5.4 Visual Examples of the Estimated Weights 113
6 Conclusion . 114
7 Appendix . 128

7.1 Lemma 2.2 . 128
7.2 Lemma 2.3 . 128
7.3 Proof of Theorem 2.2 . 129

References 131

Paper 3 Enhanced Distance Subset Approximation using Class-specific
Kernel Functions for Supervised Learning 135
1 Introduction . 135
2 Class-specific Kernel Subspace Representation 137

2.1 Notations . 137
2.2 Low Rank Approximation . 137
2.3 Relation to Subspace Model 138
2.4 Class-Specific Subspace Model 139

xi

CONTENTS

2.5 CLAss-Specific Kernel (CLASK) function: Feature Space and
Low Rank Approximation . 139

3 CLASK Parameter Estimation for Classification 142
4 Algorithm . 144

4.1 Description of EDSA . 144
4.2 Computational Details and Complexity 150
4.3 Theoretical Analysis for EDSA 150

5 Related work . 152
6 Results . 153
7 Conclusion . 153
8 Appendix . 155

8.1 Proof of Lemma 3.1 . 155
8.2 Proof of Theorem 5.1 . 155
8.3 Proof of Lemma 3.2 . 157
8.4 Proof of Lemma 3.3 . 157
8.5 Proof of Lemma 3.4 . 158

References 161

Paper 4 Kernel Subspace Empirical Intersection Removal for Kernel
Approximation and Classification 167
1 Introduction . 167
2 Related work . 169

2.1 Metric Learning . 169
2.2 Subspace Classifiers . 170

3 Preliminaries . 171
3.1 Subspace Data Model . 171
3.2 Kernel trick and notations . 171
3.3 Empirical Risk and Learnability 172

4 Kernel Empirical Subspace Intersection Removal 173
4.1 Motivation . 174
4.2 Analysis . 175
4.3 Algorithm . 179
4.4 Multiple Class-KESIR (MC-KESIR) 180
4.5 Applications . 182

5 Experimental Results . 182
5.1 Experiment Setup . 182
5.2 Prototype Subspace . 183
5.3 Results . 183

6 Conclusion . 184
7 Acknowledgement . 185
8 Appendix . 199

8.1 Definition of Subspace Intersection 199
8.2 Proof of Lemma 4.1 . 199

xii

CONTENTS

8.3 Proof of Lemma 4.2 . 200
8.4 Proof of Lemma 4.3 . 200

References 203

Paper 5 CLAss-specific Subspace Kernel Representations and Adap-
tive Margin Slack Minimization for Large Scale Classification 209
1 Introduction . 209
2 Part 1: Feature extraction using CLASK 212

2.1 Preliminary . 212
2.2 CLAss-specific Subspace Kernel (CLASK) representation . . . 214
2.3 Distance metric and its theoretical bound 215
2.4 CLASK-Approximation . 217

3 Part 2: Classification using AMSM 220
3.1 Preliminary . 220
3.2 Adaptive Margin Slack Minimization (AMSM) Algorithm . . . 222
3.3 Implementation . 225

4 Part 3: A scalable framework using CLASK + AMSM 228
4.1 AMSM risk function evaluation based on CLASK feature ex-

traction . 228
4.2 Algorithm CLASK+AMSM for a unit processor 228
4.3 Memory efficient sequential processing (MESP) 229
4.4 Parallelized Sequential Processing (PSP) 230

5 Results and discussion . 231
5.1 Evaluation on CLASK . 232
5.2 AMSM accuracy: unit processor 234
5.3 Scalable framework . 234
5.4 Large Scale Benchmark Datasets 235

6 Conclusion . 236
7 Acknowledgement . 237
8 Appendix: Multiclassification . 237

References 247

xiii

Part I

Introductory Chapters

Chapter 1

Introduction

1.1 A Machine that Learns

Machine learning is a branch of techniques under the subject of Artifical Intelligence
(AI) [1, 2]. Given collected data, it explores the possibilities of a machine making
“correct” decisions based on a learning process. As opposed to a mere lookup table,
a learned machine has the ability to treat the unseen data with a certain accu-
racy, i.e. the ability of “prediction”. There are mainly two types of prediction tasks
that a machine is trying to accomplish by learning: classification and regression.
Classification refers to identifying labels of categorized objects, such as automatically
recognizing the breed of a dog given its picture, and the label information refers to
the breed that the dog belongs to. Regression, on the other hand, refers to the task
of prediction or forecasting. The only difference is that classification has discrete val-
ues as its output, whereas regression produces result that contains continuous values.
Classification and regression are intertwined. For instance, a classification rule usually
involves learning a function with a continuous output and applying a threshold to ob-
tain the discrete value for the classifier. Hence, classification problems can naturally
be represented by regression models. By the same principle, a regression problem can
be modified into classification by quantizing the desired output. Techniques for these
two tasks are interchangeable with minor modifications.

A flowchart illustrating the steps it takes for a machine to complete its mission
can be found in Fig. 1.1. Data acquisition is the first step into our data adventure. It
usually refers to the actions that a user takes to retrieve and manipulate data from
a database. After the query and formatting, an initialization called preprocessing is
applied to clean up data and construct a preliminary feature space. This is a domain
specific process that requires knowledge of information extraction for applications
from different disciplines, such as speech analysis, image processing, medical appli-
cations, text sentiment analysis, etc. The output of the preprocessing are called the
preliminary features, which are then fed into the next step for further processing.
Feature selection [3, 4] is a step that selects a subset of the preliminary features by
removing redundant information, such that the computational complexity and stor-
age requirement can be reduced. Of course, this subset selection intends to preserve

1

Chapter 1. Introduction

Feature	
selec+on	

Feature	
Transforma+on	

Predic+on	
task	

Data	 acquisi+on	

Preprocessing	

Preliminary
Features

Database	

Final
Features Output

Figure 1.1: A framework for learning a classification rule.

the informative structure of the original data. A subsequential block after feature
selection is the feature transformation step, where instead of choosing a subset, the
features are transformed onto a high dimensional space and then possibly restricted
to a subspace of lower dimension. The purpose of this transformation is to create a
new feature space by a linear or nonlinear combination of the selected features. The
resulting features are then used as the input for the prediction task as illustrated in
the previous paragraph.

Given different machine learning frameworks, Fig. 1.1 is modified accordingly. For
instance, the Convolutional Neural Networks (CNN), one of the most popular deep
learning techniques for image processing, integrates the three blocks (“Preprocessing”,
“Feature selection” and “Feature transformation”) into one procedure to determine
final features using a deep network. On the other hand, the classic Artificial Neural
Networks (ANN) has a learning structure such that feature selection, feature trans-
formation and the classifier are all implemented as a part of the backpropagation
algorithm. Some other techniques, such as the Principal Component Analysis (PCA)
with sparse representations [5, 6], perform feature selection and transformation si-
multaneously.

1.2 Learning Process
In order to construct a machine that automatically performs prediction on its own
as shown in Fig. 1.1, a learning process is needed for each block. Before the learning
begins, We need to determine the following components:

• Model selection: It refers to choosing an appropriate family of learning models
for a given machine learning task. In other words, the learning space is restricted
to the selected model family. The learning model contains unknown parame-
ters, which need to be estimated during the learning process. Moreover, model
selection typically involves selecting hyperparameters within the model family,
which are the parameters that one needs to know in advance to be able to solve
for the unknowns. For instance, the number of principal components in PCA,
the number of hidden layers and units in a neural net, the prior information
in a Bayesian framework, etc. These hyperparameters are usually determined
manually by the designer, but they can also be automatically selected using

2

1.3. Kernel Techniques

machine learning techniques as well. This is sometimes called “metalearning”,
since it is “learning” for the learning process.

• Learning objective: It is the mathematical formulation of the goal that the
machine is expected to achieve. Typically, it is presented as an optimization
problem, such as minimizing the squared error in linear regression. Constraints
are often applied to further restrict the searching space in addition to the se-
lected family of learning models. As an example, the learning objective of
Support Vector Machines (SVM) is to find a hyperplane that maximizes the
“margin” of the separation on the training data.

• Searching algorithm: Given the learning model and the objective with some
constraints, the searching algorithm estimates the unknown parameters in the
learning model. The formulation of the learning objective heavily affects the ef-
ficiency and optimality of the searching process. For example, if an optimization
problem is impossible to solve in polynomial time, or suffers from local optima,
searching for the exact solution would be extremely time consuming and diffi-
cult. On the other hand, if the learning objective is a convex problem, various
existing tools would be available for finding the global optimal solution. Hence,
tradeoffs are often being made while designing machine learning algorithms.

The learning process can be categorized into supervised learning and unsupervised
learning. The goal of supervised learning is to determine the intrinsic data structure
and learning rules given both data and their labels for classification tasks or correct
numerical outputs for regression. On the other hand, unsupervised learning does not
require the label information [2]. Unsupervised learning refers to techniques such as
k-means for automatic data clustering [7, 8].

Since the labels are visible to the machine for supervised learning, the parameter
estimation is also called training, as it resembles the learning process trained by a
supervisor. In this case, the data-label pairs are called training data. This thesis work
focuses on the development of supervised learning techniques.

1.3 Kernel Techniques
The kernel method [9, 10, 11, 12] is one of the most popular nonlinear learning tech-
niques, which is based upon the construction of a high (possibly infinite) dimensional
feature space endowed with an inner product. Learning techniques are applied in
this constructed feature space accordingly. By using kernel techniques, the advantage
is twofold:

- The high dimensionality of the constructed feature space provides the possibility
of describing complex data structures;

- All computations are carried out by the kernel function on the original data.
In other words, no explicit computations are required in the high dimensional
feature space.

3

Chapter 1. Introduction

A Demonstration Using Kernel SVM
To gain a better intuition, we demonstrate kernel methods using the Support Vector
Machine (SVM), which is also known as the maximal margin classifier. We try to
limit this introduction to its minimum. One can find more detailed descriptions from,
e.g. [13, 14, 11], and the references therein.

High Dimensional
 Vector Space

Kernel	 Trick	 Inner	 Products	 Large	 Margin	
Classifier	

Input	
Data	

Kernel	 Func;on	

Input Space

Figure 1.2: A flowchart of kernel SVM.

Soft Margin SVM: First, let us leave kernels aside and focus on the formulation
of SVMs. In a classification problem, a SVM tries to find a hyperplane that separates
data from two classes with the largest margin. There are two types of margins: the
hard margin and the soft margin. Different margins reflect different concerns, which
result in their own distinct formulations. Briefly speaking, a hard margin can only
be used when training data are linearly separable, whereas soft margin allows some
misclassified data points during training. In fact, soft margin is more commonly used
in practice due to its robustness [15].

In Fig. 1.2, a soft margin is illustrated in the picture above the “Large Margin
Classifier”. It is defined as the distance between the dashed line (the separating
hyperplane) and the dotted line (the marginal hyperplane). Mathematically speaking,
this distance can be computed using the length of the perpendicular vector (usually
denoted as w) that connects these two lines, i.e. 1

‖w‖2
. Due to the symmetry of

the two marginal hyperplane and also for optimization convenience, one uses 2
‖w‖2

2
to

denote the margin, i.e. the distance between the two marginal hyperplanes. In other
words, every vector w defines a hyperplane that separates the data space into two
disjoint half-spaces.

Now, given a training set{
(xi, yi) : xi ∈ Rp; yi ∈ {−1,+1}; i = 1, · · · , N ; p,N ∈ N+

}
,

and a nonlinear map: ϕ : xi 7→ ϕi ∈ Rq. the objective is to find a vector w ∈ Rq and

4

1.3. Kernel Techniques

a bias b ∈ R such that [13]:

minimize:
w,b

1
2‖w‖

2
2 + η

∑
j

ξj

subject to:
(
wTϕi + b

)
yi ≥ 1− ξi, ∀i

ξi ≥ 0, ∀i

(1.1)

where ξi is called the slack variable, which indicates the signed distance from a mis-
classified data point to the marginal hyperplane. The scalar η is chosen by the user
to control the misclassification rate. Generally speaking, the smaller η is, the larger
number of misclassified data are allowed during training.

More precisely, a given data pair (ϕ, y) is on the marginal hyperplane if and only

if wTϕ + b =

+1, for y = +1
−1, for y = −1

. Therefore, a unified expression for the marginal

hyperplane is
(
wTϕ+ b

)
y = 1. In fact, for any (ϕ, y), the larger

(
wTϕ+ b

)
y is,

the better this data point is separated from the other class and the signed distance
between the marginal hyperplane and (ϕ, y) is expressed by 1−

(
wTϕ+ b

)
y. Given

this analysis, the soft margin SVM can be interpreted as maximizing the margin, while
minimizing the distance from the marginal hyperplane to the misclassified training
data, i.e. data that satisfy 1−

(
wTϕi + b

)
yi ≥ 0.

Duality: To solve the optimization problem in Eq. (1.1), one possibility is to analyze
its duality. By computing the Lagrangian [16] and its KKT condition, we obtain the
dual of Eq. (1.1):

maximize:
α

∑
j

αj −
1
2
∑
i,j

αiαjyiyjϕ
T
i ϕj

subject to:
∑
i

αiyi = 0

0 ≤ αi ≤ η, ∀i

(1.2)

where α is the vector that contains the Lagrangian multipliers and αi denotes the ith
element of α. Moreover, the KKT condition results in the following relation between
the normal vector w and Lagrangian multipliers:

w =
∑
i

αiyiϕi (1.3)

In other words, the normal vector w can be written as a linear combination of training
vectors ϕi’s.

Kernel Trick: When the dimension of ϕi’s is high, the computation of ϕTi ϕj can
be prohibitive. In kernel techniques, one reduces the computational complexity by a
technique called the “kernel trick”.

5

Chapter 1. Introduction

Let xi,xj be any data points sampled from the low dimensional input space. Now
let us define a “kernel function” k, such that

k(xi,xj) , ϕTi ϕj, (1.4)

which means that the computation ϕTi ϕj can be carried out in the low dimensional
input space Rp. Eq. (1.4) is called the kernel trick in the literature. Briefly speaking,
the kernel trick utilizes the kernel function k to produce computations in the high
dimensional space, where the classifier is established. This is an efficient replacement
since inner products ϕTi ϕj are all the computations we need in the high dimensional
space for SVM to estimate the unknown parameters αi’s.

Furthermore, when applying the classifier to an unseen data vector x̃, one has to
evaluate the following:

f(x̃) , wTϕ(x̃) =
∑
i

αiyi ϕ
T
i ϕ(x̃)︸ ︷︷ ︸

kernel trick

=
∑
i

αiyik (xi, x̃) (1.5)

such that the estimated label ŷ for x̃ is computed as:

ŷ =

+1, f(x̃) ≥ 0
−1, f(x̃) < 0

(1.6)

where again, no high dimensional computation is needed in Eq. (1.5).
To summarize, in kernel techniques, the original low dimensional data are mapped

onto a high dimensional feature space using the kernel function to gain better flexibil-
ity, whereas no explicit high dimensional computation is needed thanks to the kernel
trick.

1.4 Challenges
When designing a machine learning system, the selection of the most appropriate
family of learning models is not a trivial task. Various trade-offs need to be taken
into consideration.

1.4.1 Bias and Variance
Given a learning system, estimations for unknown parameters vary with respect to
different training sets. The bias and variance can be computed accordingly for esti-
mated parameters and/or the prediction output. Empirically, the bias and variance
can be approximated using the sample mean and the sample variance, respectively.
A demonstration can be found in Fig. 1.3. Generally speaking, the trade-off between
bias and variance is related to the model complexity. That is, learning models with
high complexity tend to have low bias but high variance, and vice versa. Hence, the
trade-off can be found by choosing a model family that is suitable for the problem at
hand [17].

6

1.4. Challenges

In
cr

ea
si

ng
 b

ia
s

Increasing variance

Increasing model

complexity

Figure 1.3: A visualization of bias/variance with increasing model complexity. The
example shows the estimation of the expected value for some given training sets.
With increasing complexity, the bias of the estimate decreases whereas the variance
will increase.

Example 1.1 (Kernel function and bias-variance trade-off for SVMs). As shown in
Eq. (1.4), the kernel function k(·, ·) defines an inner product as a nonlinear function
of the input data. This is equivalent to constructing a nonlinear map ϕ(x), such that
ϕ : x 7→ ϕ for any input data x, where ϕ is a high dimensional vector. Hence, by
using the kernel function k(·, ·), the higher dimensional ϕ is, the higher complexity
the corresponding SVM has. In other words, when working with SVMs associated with
“simple” kernel functions 1, one expect high bias with low variance, and vice versa.

1.4.2 Robustness
There are mainly two aspects when it comes to the robustness of machine learning
algorithms:

• Overfitting: It refers to the problem of a learning system lacking generalization
ability, which is indicated by achieving a low fitting error on the training data
but suffering from inaccurate prediction on unseen testing data.

• Noise/error handling: Given a learning system, the prediction accuracy will
vary with increasing noise level or measurement error. The robustness from this
perspective can be interpreted as the smoothness and stability of the system.

Example 1.2 (Soft margin SVM and its robustness). First, we introduce the hard
margin SVM. A hard margin SVM is applied when the training data are linearly

1Here a simple kernel function refers to a kernel function corresponding to a low dimension of ϕ.
Detailed description can be found in Chapter 2

7

Chapter 1. Introduction

separable. Intuitively speaking, one attempts to find a separating hyperplane f char-
acterized by its normal vector w = ∑N

i=1 αiϕ(xi), such that i) f categorize all training
data to their correct classes; ii) αi’s are only nonzero for a subset of training data.
Members in this subset is called “Support Vectors”. More precisely, the support vec-
tors are the data points located on the marginal hyperplane. However, a hard margin
does not take into consideration the presence of noise. It completely depends on a
specific subset of training data. In particular, if the training size is small, hard mar-
gin SVMs are especially prone to overfitting. A soft margin SVM, on the other hand,
finds a separating hyperplane in a weighted consensus fashion. That is, if a well
classified data point is “far away” from the marginal hyperplane, its contribution to
constructing the classifier is small, whereas the more “ambiguous” a data point is, the
higher weight it has. The weighting is controlled by the hyperparameter η in Eq. (1.1).
Therefore, in the soft margin SVM, values for αi’s are more smooth compared to the
hard margin SVM, which introduce better robustness to the learning process.

1.4.3 Scalability
The scalability in machine learning usually refers to the computational complexity
and/or the storage requirement for training, which can be improved by the following:

1) using approximations instead of exact solutions;

2) choosing the most suitable programming language with efficient coding scheme;

3) taking advantage of parallel/distributed frameworks;

4) exploiting appropriate data structures;

5) finding the trade-off between computational complexity and storage usage.

Example 1.3 (Scalability of SVM). From the formulation of the soft margin SVM
(c.f. Eq. (1.2), there are mainly three concerns regarding the scalability that one should
take into account:

- Different computational complexity caused by different kernel functions;

- Kernel matrix for large training size;

- Training time with respect to η for large training size N .

1.4.4 Hyperparameter Tuning
Hyperparameters refer to the parameters in the learning model that is not part of
the variables that the training algorithm is solving for. Typically, their values need
to be set manually prior to the learning process. Hyperparameter tuning can be con-
sidered as an outer training loop and it needs to be validated by unseen testing data.
Generally speaking, the more hyperparameters there is, the more flexible the model

8

1.5. Conclusion

is due to the high degrees of freedom. However, one needs to be cautious that high
flexibility often implies high complexity, which might lead to high variance. Moreover,
when the number of hyperparameters is large, the evaluation of their quality requires
high computational complexity and its “optimality” typically lacks theoretical justi-
fication. Hence, one needs to be aware of the trade-off between the flexibility and the
number of hyperparameters.

1.5 Conclusion
In this chapter, we have given a brief introduction on the subject of machine learning,
where the learning process is decomposed into three components: 1) model selection,
2) learning objective and 3) the searching algorithm. Kernel method is then intro-
duced as one of the most popular nonlinear learning techniques and the main con-
cept is illustrated using the Support Vector Machines. Moreover, we have identified
challenges and trade-offs when designing kernel techniques, which gives rise to the
potential areas for further development.

9

Chapter 2

Reproducing Kernel Hilbert Space
and its Application

In this chapter, the theoretical background of kernel techniques is introduced. We
start with the preliminaries for the definition of the Reproducing Kernel Hilbert
Space and its properties, which leads to its applications for solving machine learning
problems.

Given an input space X×Y , where X is a non-empty input set that consists of any
objects, such as numerical vectors, texts, images, DNA strings, pages of websites, etc.
The set Y typically contains scalars that takes either discrete values for classification,
or continuous values for regression. The underlying assumption is that the intrinsic
distribution of such random objects is “well” represented in a high dimensional feature
space F that can be obtained by a nonlinear feature map ϕ : X → F .

The effectiveness of such transformations mainly results from the increased di-
mensionality, i.e. dim(F) � dim(X). To illustrate, let us consider the classification
problem shown in Fig. 2.1, where the “wishful” results is achieved by applying a non-
linear transformation ϕ(·) to a one dimensional input space, such that feature vectors
from different classes in the resulting feature space F = R2 are “better” separated.

!! ℱ!

ℝ!!

ℝ(!)!

ℝ(!)!

Figure 2.1: A demonstration of the nonlinear mapping ϕ : X → F . The crosses
and triangles represent data vectors from two different classes. In order to perform
classification, the class separability, visualized by the Euclidean distance between the
two clusters, is clearly better in the high dimensional space F .

This introductory chapter is organized as follows. After a brief introduction on

11

Chapter 2. Reproducing Kernel Hilbert Space and its Application

some fundamental concepts and definitions in Sec. 2.1, we illustrate the theory be-
hind reproducing kernels and the associated feature spaces. Essentially, the message
of Sec. 2.2 is that for every positive definite kernel function there exists a unique
Reproducing Kernel Hilbert Space (RKHS), where the inner product is well defined.
There also exist other feature spaces that are isometrically isomorphic to the RKHS
associated with the same kernel function. Examples of commonly used kernel func-
tions and the construction of feature spaces are then demonstrated. Given the core
concepts of kernel techniques, practical issues on optimization in feature spaces are
addressed in Sec. 2.3.

2.1 Brief Review on Functional Analysis
In this section, we give a brief introduction on the subject of Reproducing Kernel
Hilbert Space (RKHS). An inner product space induces a metric space, which is
endowed with a corresponding distance metric used as a similarity measure. In kernel
techniques, one constructs an inner product space H with some extra properties and
uses H as the feature space for learning. Typically, the dimensionality of H is very
large or even infinite. A kernel function k : X × X → R is applied to replace the
explicit computation of inner products in H. In fact, the space H is completely
characterized by the kernel function, which allows us to work in the original space
X instead of the high dimensional space H. Since operations are not directly carried
out in the RKHS, the properties of H is rather unclear to us, especially in the infinite
dimensional case. Hence, to gain better understanding, one has to borrow some tools
from mathematical analysis.

This section is fairly self-contained, but we assume a basic familiarity with the
fundamental concepts in functional analysis, such as metric space, normed vector
space, completeness, etc. Throughout this presentation, the field of the scalars for
the vector space is the field of real numbers R.

2.1.1 Hilbert Space
One of the most important concept for a vector space is its basis.

Definition 2.1 (Basis). A basis of a (finite or infinite dimensional) vector space V is
a linearly independent subset {e1, e2, e3, · · · } of vectors that span V . Equivalently, a
subset {e1, e2, · · · } is a basis if and only if every v ∈ V can be uniquely written as

v = a1ei1 + · · ·+ anein
where a1, · · · , an ∈ R for some finite n ∈ Z+ and ij ∈ Z+ for 1 ≤ j ≤ n.

The definition implies an important property for a subset being a basis: the
finiteness in the linear combination for representing any vectors in that space. The
existence of a basis for any finite dimensional vector space is obvious, whereas it is
less clear in the infinite dimensional case. In fact, by accepting Zorn’s Lemma (or
equivalently, the axiom of choice), one can claim that every vector space has a basis.

12

2.1. Brief Review on Functional Analysis

Lemma 2.1 (Zorn’s Lemma). If X is a partially ordered set and every linearly ordered
subset of X has an upper bound, then X has a maximal element.

To show that every vector space has a basis, let T be a collection of all linearly
independent subsets of a vector space V . We then order the elements in T by inclusion
E1 ⊂ E2 ⊂ · · · . Hence, the union of the chain, denoted by U , also belongs to T due to
the definition of T . Now we have found ourselves an upper bound, U . By accepting
Zorn’s Lemma, we know that there is a maximal linearly independent set M in T .
To showM is a basis for V , we have to show that this maximal set spans V . This is
easily proven by contradiction. Assume that there is a element v ∈ V , such that v is
linearly independent of all vectors inM, then we haveM⊂M∪v, which contradicts
the maximality ofM.

In particular, when dim(V) is infinity, the basis is called the Hamel basis.
While the existence of a basis in any vector space does sound comforting, Zorn’s

Lemma is not quite useful, i.e. it does not provide any construction of the basis. In
fact, there is no practical way of finding a Hamel basis in general. This gives rise to
the importance of the orthonormal basis, where infinite sums of linearly independent
vectors are allowed to represent a vector. Moreover, for the infinite sum to make sense,
one needs the definition of convergence on the vector space, which requires the notion
of topological vector spaces. This brings us to the definition of the inner product
space. Note that we have neglected the definitions of other important objects, such
as metric spaces and normed vector spaces, since they are naturally induced by inner
product spaces.

Definition 2.2 (Inner Product). Let H be a vector space. An inner product on H
is a map (v,u)→ 〈v,u〉H from H×H → R such that:

• 〈au + bv, z〉H = a〈u, z〉H + b〈v, z〉H, for all u,v, z ∈ H and a, b ∈ R.

• 〈v,u〉 = 〈u,v〉, for all u,v ∈ H.

• 〈u,u〉 ∈ (0,∞), for all nonzero u ∈ H.

It is obvious that every inner product induces an associated norm ‖u‖ =
√
〈u,u〉H

and thus convergence can be defined accordingly. Without ambiguity, unless neces-
sary, we simply denote the inner product and the induced norm using 〈·, ·〉 and ‖ · ‖,
respectively, without specifying the corresponding vector space.

Definition 2.3 (Pre-Hilbert Space). A vector space equipped with an inner product
is called an inner product space, or a pre-Hilbert space. One advantage of an inner
product space over a normed space is that an inner product space allows us to define
orthogonality.

Definition 2.4 (Orthogonality). Given a pre-Hilbert space H0 and u,v ∈ H0, we
say u and v are orthogonal, denoted as u ⊥ v, if 〈u,v〉 = 0.

Some well-known inequalities and identities are listed below. They are frequently
applied for various proofs in a pre-Hilbert spaces.

13

Chapter 2. Reproducing Kernel Hilbert Space and its Application

• Cauchy-Schwartz Inequality:

|〈u,v〉|2 ≤ 〈u,u〉 · 〈v,v〉 (2.1)

• Triangle Inequality:
|〈u + v〉| ≤ ‖u‖+ ‖v‖ (2.2)

• The parallelogram law:

‖u‖2 + ‖v‖2 = 1
2
(
‖u + v‖2 + ‖u− v‖2

)
(2.3)

• The polarization identity:

〈u,v〉 = 1
4
(
‖u + v‖2 − ‖u− v‖2

)
(2.4)

• Pythagorean Theorem: If u ⊥ v, then

‖u + v‖2 = ‖u‖2 + ‖v‖2 (2.5)

An inner product space without any extra properties is called a pre-Hilbert space for
a reason: a Hilbert space is the “comfort zone” for analysis and to construct a Hilbert
space from a pre-Hilbert space, there is just one step missing.

Definition 2.5 (Hilbert Space). A Hilbert space H is a pre-Hilbert space that is
complete with respect to the norm ‖u‖ =

√
〈u,u〉, for u ∈ H.

To understand completeness, one has to recall the definition of a Cauchy sequence.

Definition 2.6 (Cauchy sequence). Given a metric space (M, d), a sequence u1,u2,u3, · · ·
is called Cauchy if d(um,un)→ 0 as m,n→∞.

Let d be the distance metric induced by the norm ‖ · ‖H, then

Definition 2.7 (Completeness). Completeness means that every Cauchy sequence in
H converges to a limit that is also in H.

Intuitively, a space being incomplete means that it has “holes” in it, i.e. not every
seemingly convergent sequence is converging to a point inside the space. Obviously,
that is problematic when we try to find a nice space to analyze infinite sums. Nev-
ertheless, the completion does not take much extra effort. That is, to complete a
pre-Hilbert space, one simply adds the limit points of sequences that are convergent
in that norm. In other words, to reach any point in a Hilbert space, one simply
constructs a Cauchy sequence converging to that point.

Note that for the remainder of the chapter, we use H to denote Hilbert space.

Remark. Any closed subspace of a Hilbert space is itself a Hilbert space.

14

2.1. Brief Review on Functional Analysis

One important feature of a Hilbert space is that it enables the concept of projec-
tions.
Theorem 2.1. If M is a closed subspace of H, then H = M⊕M⊥; that is, each
u ∈ H can be expressed uniquely as u = y + z where y ∈M and z ∈M⊥. Moreover,
y and z are the unique elements ofM andM⊥ whose distance to u is minimal.

To characterize a Hilbert space and its subspaces, we introduce the definition of
a basis for infinite dimensional space.
Definition 2.8 (Orthonormal Set). A subset {uα}α∈A of H is called orthonormal if
‖uα‖ = 1 for all α and uα ⊥ uβ whenever α 6= β, where A is some index set.
Theorem 2.2. If {uα}α∈A is an orthonormal set in H, the following are equivalent:
• (Completeness) If 〈z,uα〉 = 0 for all α, then z = 0.

• (Parseval’s Identity) ‖z‖2 = ∑
α∈A |〈z,uα〉|2 for all z ∈ H.

• For each z ∈ H, z = ∑
α∈A〈z,uα〉uα, where the sum on the right has only

countably many nonzero terms and converges in the norm topology no matter
how these terms are ordered.

Definition 2.9 (Orthonormal Basis). An orthonormal set having the properties in
Theorem 2.2 is called an orthonormal basis.
Theorem 2.3 (Separable Hilbert space). Every Hilbert space has an orthonormal
basis and a Hilbert space H is separable iff it has a countable orthonormal basis, in
which case every orthonormal basis is countable.

When H is separable (i.e. H contains a countable dense subset), a standard
procedures can be applied to obtain an orthonormal basis. Given {xn}∞1 a linearly
independent subset in H, we recall two such methods:
• Gram-Schmidt process

– Let u1 = x1
‖x1‖ ;

– Having defined {u1, · · · ,uN−1}, set vN = xN−
∑N−1
n=1 〈xN ,unun〉, and uN =

vN
‖vN‖

;
– The resulting set {u1,u2, · · · } is then an orthonormal basis for H.

• Principal Component Analysis
Let X be a matrix with xi as its ith column, for 0 < i ≤ ∞. A set of orthonormal
vectors u1,u2, · · · are called the Principal Components of a space H if uk is the
kth eigenvector of matrix XXT , where indices k’s are sorted with respect to
eigenvalues of XXT in a descending order.

Note that in the literature, separability is usually assumed for Hilbert spaces. In
fact, as Folland [18] has pointed out, “most Hilbert spaces that arise in practice are
separable”. However, the separability is not a property that a Hilbert space possesses
automatically. Interested readers can refer to [18, 19] for more fundamental proofs
and discussions.

15

Chapter 2. Reproducing Kernel Hilbert Space and its Application

2.1.2 Riesz Representation Theorem
The Riesz Representation theorem is one of the most fundamental results in functional
analysis of Hilbert spaces and it provides tools for proving and analyzing the existence
and uniqueness of a RKHS and its associated kernel function.

Definition 2.10 (Linear functional). Given Hilbert space H, a function T : H → R
is called a linear functional if

T (au + bv) = aT (u) + bT (v) (2.6)

where u,v ∈ H and a, b ∈ R.

Definition 2.11 (Bounded). A linear functional T : H → R is called bounded if
there exists C ≥ 0 such that |Tu| ≤ C‖u‖H, for all u ∈ H.

Definition 2.12 (Continuous). If u ∈ H, linear functional T is called continuous
at u if for every neighborhood O of T (u) there is a neighborhood U of u such that
T (U) ⊂ O. In particular, the functional T is called continuous iff T is continuous at
every u ∈ H.

Proposition 2.1. For a linear functional T : H → R, the following are equivalent:

• T is continuous on H.

• T is continuous at 0.

• T is bounded.

So far we have been talking about linear functional T , the domain H of T , and T
being continuous/bounded.

Definition 2.13 (Dual Space). The space of bounded linear functionals on H is
called the dual space of H and is denoted by H∗.

Remark. The dual space of a Hilbert space is a Hilbert space itself.

Theorem 2.4 (Riesz Representer Theorem). If f ∈ H∗, there is a unique u ∈ H,
such that f(v) = 〈v,u〉 for all v ∈ H.

The Riesz Representation theorem has established the relation between a Hilbert
space and its dual through the inner product. It is an essential tool to show the
existence and uniqueness of the kernel function on an RKHS.

The key concepts introduced in this section can be found in Fig. 2.2. To summa-
rize, a Hilbert space is a complete vector space that endowed with an inner product.
Completeness secures the analysis. For instance, completeness makes sense of limits
in that space. Compared to Banach spaces, which are complete normed vector spaces,
Hilbert spaces come with a natural definition of orthogonality and projection. Fur-
thermore, by imposing separability, we can construct a countable orthonormal basis
by using the Gram-Schmidt process. The dual space of a Hilbert space is defined
as the space of all the continuous linear functionals, which is in fact a Hilbert space
itself.

16

2.2. Reproducing Kernel Hilbert Space (RKHS) and Feature Maps

Vector Space

Inner Product

Inner	 Product	
Space	

Complete	

Hilbert Space ℋ! ℝ!

ℋ∗:!Dual Space
Continuous

Linear Functional

Separable	

Countable	 Basis	 Gram-‐Schmidt	

Figure 2.2: A summary of Sec. 2.1.1 and Sec. 2.1.2.

2.2 Reproducing Kernel Hilbert Space (RKHS) and
Feature Maps

2.2.1 Reproducing Kernels

Definition 2.14 (Reproducing Kernel Hilbert Space (RKHS)). Given a non-empty
set X , a Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space H of functions
f : X → R with a reproducing kernel whose span is dense in H. Specifically, a
function k : X × X → R is called a reproducing kernel of H if k satisfies:

• ∀x ∈ X , k(x, ·) ∈ H;

• (The reproducing property) ∀x ∈ X , 〈f, k(x, ·)〉 = f(x), for all f ∈ H. In
particular, 〈k(x, ·), k(x̃, ·)〉 = k(x, x̃).

The span of the reproducing kernel being dense means that k(x, ·) spans H. Note
that we reserve the notation H to denote a Reproducing Kernel Hilbert Space.

From the Riesz Representation theorem, we know that given f ∈ H, if there exists
a function k(x, ·) ∈ H, such that f(x) = 〈f, k(x, ·)〉, then k(x, ·) must be unique.

Remark. For a given reproducing kernel k and x, x̃ ∈ X , let H be the RKHS
associated with the function k. We have the following clarification on the notions:

• k(x, ·) : X → H is a function of x, i.e. we can define a nonlinear map ϕ : X →
H, such that ϕ(x) = k(x, ·). Also, we can view k(x, ·) as a vector in the RKHS.

• k(x, x̃) is a scalar, i.e. k(x, x̃) = 〈k(x, ·), k(x̃, ·)〉H = 〈ϕ(x), ϕ(x̃)〉H, due to the
reproducing property.

• k is symmetric in its arguments, i.e. k(x, x̃) = k(x̃,x)

17

Chapter 2. Reproducing Kernel Hilbert Space and its Application

• Every function f ∈ H can be written as a linear combination of feature maps,
i.e.

f(·) =
m∑
i=1

αik(xi, ·) (2.7)

where αi’s are coefficients. It directly follows that

〈f, k(x, ·)〉 = 〈
m∑
i=1

αik(xi, ·), k(x, ·)〉

=
m∑
i=1
〈αik(xi, ·), k(x, ·)〉

=
m∑
i=1

αik(xi,x)

(2.8)

where m ∈ N and αi’s are coefficients.

Example 2.1. Denote xi =
[
x1
i

x2
i

]
for any index i, let k(xi, ·) =

 x1
i

x2
i

x1
ix

2
i

. For all

x1,x2,x3, · · · ∈ R2 The span of k(x, ·) would be the space spanned by

{k(x1, ·), k(x2, ·), · · · · · · } =

 x1

1
x2

1
x1

1x
2
1

 ,
 x1

2
x2

2
x1

2x
2
2

 , · · ·

The representer k(x, ·) can be interpreted as the nonlinear map ϕ : R2 → R3.

Definition 2.15 (Positive Definite (PD) kernel). A real-valued symmetric function
k : X×X → R is called a positive definite (PD) kernel if for all n ≥ 1, x1, · · · ,xn ∈ X ,
c1, · · · , cn ∈ R

n∑
i,j=1

cicjk(xi,xj) ≥ 0 (2.9)

Theorem 2.5 (Moore-Aronszajn Theorem [20]). To every positive definite function
k on X ×X there corresponds a unique RKHS of real valued functions on X and vice
versa.

Theorem 2.5 is one of the most fundamental results in kernel methods. It guaran-
tees the existence and uniqueness for the RKHS and its corresponding kernel function.
In other words, by defining a PD kernel function, a unique RKHS is generated au-
tomatically. The function norm in the RHKS ‖ · ‖H is thus induced by the kernel
function.

2.2.2 Kernel Functions
As stated above, given a positive definite kernel function, we do not have to worry
about the existence of the corresponding RHKS. The question is then which functions
are positive definite functions.

18

2.2. Reproducing Kernel Hilbert Space (RKHS) and Feature Maps

Examples of Kernel Functions:

• Linear kernel:
k(x, x̃) = xT x̃ (2.10)

• Polynomial kernel:

k(x, x̃) = (〈x, x̃〉+ c)d , c ∈ R+
0 , d ∈ Z+ (2.11)

• RBF kernel:
k(x, x̃) = exp

(
−‖x− x̃‖2

2
2σ2

)
, σ ∈ R+ (2.12)

• Sigmoid kernel:

k(x, x̃) = tanh
(
axT x̃ + b

)
, a, b ∈ R+, x real valued vector (2.13)

• Sinc kernel:
k(x, x̃) = sin (‖x− x̃‖2)

‖x− x̃‖2
(2.14)

• String kernels [21]: Given an alphabet Σ, a string s is a finite sequence of
characters from Σ with cardinality |s|. Let u be a subsequence of s, i.e. there
exists indices {i(1), · · · , i(|u|)} sorted in ascending order, such that uj = si(j) , for
j = 1, · · · , |u|, where |u| < |s|. Denote s[i] := u and l(i) := |s[i]|. Let Σn be the
set of all finite strings of length n and by Σ∗ be the set of all strings

Σ∗ =
∞∑
n=0

Σn

The feature mapping for a string s is given by defining the u coordinate ϕu(s)
for each u ∈ Σn. Define ϕu(s) = ∑

i:u=s[i] λ
l(i), for some λ ≤ 1. Given strings s

and t, the kernel function is then defined as:

kn(s, t) =
∑
u∈Σn
〈ϕu(s), ϕu(t)〉

=
∑
u∈Σn

∑
i:u=s[i]

λl(i)
∑

j:u=t[j]
λl(j)

=
∑
u∈Σn

∑
i:u=s[i]

∑
j:u=t[j]

λl(i)+l(j)

It turns out that the string kernel can be efficiently evaluated using dynamic
programming techniques [21]. One example is shown in Tab. 2.1. The kernel
between the work “car” and “cat” is k(car, cat) = λ4. Since k(car, car) =
k(cat, cat) = 2λ4 + λ6, the normalized kernel is:

k(car, cat)√
k(car, car)

√
k(cat, cat)

= 1
2 + λ2

19

Chapter 2. Reproducing Kernel Hilbert Space and its Application

c-a c-t a-t b-a b-t c-r a-r
ϕ(cat) λ2 λ3 λ2 0 0 0 0
ϕ(car) λ2 0 0 0 0 λ3 λ2

ϕ(bat) 0 0 λ2 λ3 λ2 0 0

Table 2.1: An example of string kernel

Combination of Kernel Functions:

Let k1 and k2 be two PD kernel functions, then the following functions are also valid
PD kernel functions:

- k(x, x̃) = ck1(x, x̃), c ∈ R+

- k(x, x̃) = f(x)k1(x, x̃)f(x̃), where f : X → R

- k(x, x̃) = p (k1(x, x̃)), where p(·) is polynomial with non-negative coefficients

- k(x, x̃) = exp
(
k1(x,x̃)
σ2

)
, σ ∈ R

- k(x, x̃) = exp
(
−k1(x,x)−2k1(x,x̃)+k1(x̃,x̃)

σ2

)
, σ ∈ R

- k(x, x̃) = k1(x, x̃) + k2(x, x̃)

- k(x, x̃) = k1(x, x̃)k2(x, x̃)

- k(x, x̃) = xTAx̃, where A is a symmetric PSD matrix

- k(x, x̃) = (k1(x, x̃) + c)d, where c ∈ R+ and d ∈ Z+

- k(x, x̃) = k1(x,x̃)√
k1(x,x)k1(x̃,x̃)

, normalization of kernel functions

Stationary Kernels k(x, x̃) = k′(|x− x̃|):

A kernel function k(x, x̃) is called stationary or translation invariant if it is a function
of only the distance between x and x̃, i.e. k(x, x̃) = k′(|x − x̃|). For instance, the
RBF kernel is stationary, whereas the polynomial kernel is non-stationary. Since a
non-stationary kernel function depends on not only the relative relation, but also the
position of x and x̃, coordinates need to be chosen to find the basis that describe the
feature space. The origin is usually chosen to be the mass center of the training set
[22].

k(x, x̃) ← (ϕ(x)− E (ϕ(x)))T (ϕ(x̃)− E (ϕ(x̃)))
= ϕ(x)Tϕ(x̃)− E (ϕ(x))T ϕ(x̃)− ϕ(x)TE (ϕ(x̃)) + E (ϕ(x))T E (ϕ(x̃))

20

2.2. Reproducing Kernel Hilbert Space (RKHS) and Feature Maps

where E (ϕ(·)) can be estimated using the training data {x1, · · · ,xN}.

k(x, x̃)← k(x, x̃)− 1
N

N∑
i=1

k(xi,x)− 1
N

N∑
i=1

k(xi, x̃) + 1
N2

N∑
i=1

N∑
j=1

k(xi,xj) (2.15)

More information on the classification and properties of kernel functions can be found
in [23, 24].

2.2.3 Constructing Feature Maps from Kernel Functions
For a given PD kernel function k, the existence and uniqueness of the RKHS is
guaranteed. However, the construction of RKHS is not always convenient in practice.
Fortunately, there exist other features maps ϕ : X → F for k(x, x̃) = 〈ϕ(x), ϕ(x̃)〉F ,
such that the inner product is preserved in the sense that H and F are associated
with the same kernel function. Note that not every feature space is RKHS.

Example 2.2 (Feature spaces are not unique). Given any x, x̃ ∈ R2 with x =
[
x1
x2

]

and x̃ =
[
x̃1
x̃2

]
, let k(x, x̃) = x1x̃1 + x2x̃2 + 2x1x2x̃1x̃2, we can construct the following

feature maps:

- ϕ1(x) =
[
x1 x2

√
2x1x2

]T
- ϕ2(x) =

[
x1 x2 x1x2 x1x2

]T
such that k(x, x̃) = 〈ϕ1(x), ϕ1(x̃)〉 = 〈ϕ2(x), ϕ2(x̃)〉.

Nevertheless, feature space F and RKHS H are closely related, since they share
the same kernel function k. More precisely,

Definition 2.16 (Isomorphism). Hilbert spaces H1 and H2 are said to be isomet-
rically isomorphic if there is a linear bijective map T : H1 → H2 such that
〈u,v〉H1 = 〈Tu, Tv〉H2

Isomorphism preserves inner product between two Hilbert spaces. Clearly, all
feature spaces associated with the same kernel function are isometrically isomorphic.
In this section, we introduce three methods to construct the feature maps ϕ : X → F :
1) the RKHS map; 2) the Mercer map and 3) the kernel matrix decomposition.

- RKHS map:
Let k : X × X → R be a positive kernel function. According to Theorem 2.5,
every positive definite kernel is associated with a unique RKHS H. The feature
map is defined as k(x, ·).

- Mercer Map:
Another way of constructing the feature map is using the Mercer Theorem:

21

Chapter 2. Reproducing Kernel Hilbert Space and its Application

Theorem 2.6 (Mercer Theorem). Let X be compact and k a positive semidef-
inite kernel function that is continuous and satisfies∫

x

∫
y
k2(x,y)dxdy < +∞

Then there exists λ1 ≥ · · ·λ2 ≥ · · · ≥ 0 and functions
{
ψi(·)

}
, such that

k(x,y) =
∞∑
i=1

λiψi(x)ψi(y), ∀x,y ∈ X

The Mercer map is then defined as

ϕ(x) =

√
λ1ψ1(x)√
λ2ψ2(x)

...

 (2.16)

- Kernel matrix decomposition:
Given a kernel k : X × X → R and a finite set {x1, · · · ,xN}, let K ∈ RN×N ,
where Kij = k(xi,xj), 1 ≤ ∀i, j ≤ N . Matrix K is a PSD matrix by def-
inition. Let K = USUT using the Singular Value Decomposition, where

U =
[
u1, · · · ,uN

]T
and S =

λ1 0 · · · 0
0 λ2 · · · 0
0 · · · . . . 0
0 · · · 0 λr

, λi > 0. The feature vectors

can be constructed as
ϕ(xi) = k(xi, ·) = S1/2ui (2.17)

2.2.4 Dimension of the Feature Space
In this section, we show some examples to illustrate some nonlinear mappings ϕ(·)
and their dimensionality.

Given x, x̃ ∈ R2, where x =
[
x1
x2

]
and x̃ =

[
x̃1
x̃2

]
. Let us expand the expressions for

various kernel functions and compare them with the explicit inner product ϕ(x)Tϕ(x̃).

• Polynomial kernel k(x, x̃) =
(
1 + xT x̃

)d
(with degree d = 2):

– Inner product via the kernel function:

k(x, x̃) =
(
1 + xT x̃

)2

=
(

1 +
[
x1 x2

] [x̃1
x̃2

])2

= 1 + 2 (x1x̃1 + x2x̃2) + (x1x̃1 + x2x̃2)2

= 1 + 2 (x1x̃1 + x2x̃2) + x2
1x̃

2
1 + x2

2x̃
2
2 + 2x1x̃1x2x̃2

22

2.2. Reproducing Kernel Hilbert Space (RKHS) and Feature Maps

(Unique))RKHS)))ℋ:)

ℝ!

!:! → ℝ!

!!:!!!⟼ !(!)!!

Input&space&&!&

Feature'space''ℱ!'
!!!

!!!

Isometrically	 Isomorphic	

(Bounded)	

Given	 a	 kernel	
function	 (unique)	 Dual%space%%%ℋ∗%

Dual%space%%%ℱ!∗%

Dual%space%%%ℱ!∗%Feature'space''ℱ!'

Figure 2.3:

– Explicit inner product:
For any z ∈ R2, the nonlinear mapping associated with polynomial kernel
(d = 2) is defined as:

ϕ(z) =
[
z2

1 z2
2 z1z2 z2z1

√
2z1

√
2z2 1

]T
Then we have the expression:

ϕ(x)Tϕ(x) = x2
1x̃

2
1 + x2

2x̃
2
2 + 2x1x̃1x2x̃2 + 2x1x̃1 + 2x2x̃2 + 1

We have shown an example of the explicit mapping ϕ(·) and have verified that
k(x, x̃) = ϕ(x)Tϕ(x̃). Given the polynomial kernel with degree 2, the dimension
of the new feature space dim(H) = 7.

• RBF kernel k(x, x̃) = exp
(
−‖x−x̃‖

2σ2

)
:

We can expand the RBF kernel into a Taylor series [25]:

k(x, x̃) = exp
(
−‖x‖2σ2

) ∞∑
k=1

1
k!

(
xtx̃
σ2

)k exp
(
−‖x̃‖2σ2

)
(2.18)

Let

k(x, x̃) = ϕ(x)Tϕ(x̃)

=
[
ϕ1 · · · ϕdim(H)

]
ϕ̃1
...

ϕ̃dim(H)

 =
dim(H)∑
k=1

ϕkϕ̃k.

Eq. (2.18) indicates that dim(H) =∞.

23

Chapter 2. Reproducing Kernel Hilbert Space and its Application

2.3 Structural Risk Minimization and the Repre-
senter Theorem

Given the input space X × Y , a kernel function k : X × X → R and its associated
RKHS H, the task of kernel techniques is to find an optimal function f ∈ H, such
that f(x) can always approximate y accurately, for all pairs (x, y) ∈ X × Y .

2.3.1 Convergence in RKHS
Definition 2.17. (Evaluation functional) Given a non-empty set X and x ∈ X . Let
H be a Hilbert space of functions f : X → R. A map δx : H → R is called an
evaluation functional if δx : f →| f(x).

It readily follows that evaluation functional is linear, since δx(a1h1 + a2h2) =
(a1h1 + a2h2)(x) = a1h1(x) + a2h2(x) = a1δx(h1) + a2δx(h2), for h1, h2 ∈ H and
a1, a2 ∈ R.

Given this concept, an alternative definition of RKHS is given as follows to show
another interesting property of RKHS, i.e. convergence in f implies convergence of
f(x) for all x ∈ X .

Definition 2.18 (Reproducing Kernel Hilbert Space (via evaluation functional)). A
RKHS is a Hilbert space of functions f : X → R such that all evaluation functionals
are continuous.

In other words, all evaluation functionals

δx(f) = 〈f, k(x, ·)〉H = f(x) (2.19)

are continuous if and only if H is a RKHS, where nonlinear function k(x, ·) is the
representer (c.f. Example 2.1) that can be also interpreted as the feature map.

The proof of the equivalence between Definition 2.14 and Definition 2.18 can be
found in [20].

Corollary 2.1 ([26]). Given an RKHS H, convergence in norm implies point-wise
convergence. That is, if

lim
n→∞

‖fn − f‖H = 0 (2.20)

then
lim
n→∞

|fn(x)− f(x)| = 0, for all x ∈ X (2.21)

It is readily observed using the fact that for a bounded evaluation functional, then
|fn(x)− f(x)| = |δx(fn)− δx(f)| ≤ ‖δx‖H‖fn − f‖H ≤M‖fn − f‖H for some M ≥ 0.
This is an interesting property of RKHS from the viewpoint of optimization: the
convergence of functions in the RKHS implies convergence of functions evaluated at
each point in the original input space X .

24

2.3. Structural Risk Minimization and the Representer Theorem

2.3.2 Statistical Learning Theory and Structural Risk Mini-
mization

Corollary 2.1 provides us the possibility and the freedom of searching for the optimal
solution in RKHS. In this section, a technique called structural risk minimization [13]
is presented to make the concept more tangible.

Risk, Empirical Risk and Family of Functions

Let x ∈ X , y ∈ Y . Given a loss functional L : X ×Y → R+
0 , the risk associated with

f for any joint probability distribution P (x, y) is defined as the expected value of L
evaluated at (x, y):

R(f) = E (L(f(x), y)) =
∫
L (f(x), y) dP (x, y) (2.22)

A learning algorithm with kernel methods is then designed to search for an optimal
f ∗ ∈ F , such that

f ∗ = arg min
f∈H

R(f)

In practice, a finite set of training examples D =
{

(xi, yi)
}N
i=1

are given instead of
the distribution P (x, y) itself. Hence, the risk R(f) needs to be approximated based
on D. This approximation is called the Empirical Risk:

Remp(f) = 1
N

N∑
i=1

L (f(xi), yi) (2.23)

By minimizing Remp(f), we can find the best function f ∗emp ∈ F for the given
training set. However, the ultimate goal of a learning algorithm is to find a function
with a good generalization ability, which is indicated by the actual risk R(f) in
Eq. (2.22). The gap between Remp(f) and R(f) is then of great interest, where the
model complexity plays a key role.

Complexity and VC Dimension

Empirically, the generalization ability can be assessed by the bias/variance trade-off
(c.f. Sec. 1.4.1). Intuitively, a more complex F might lead to a lower bias but a higher
variance, since it is prone to over-fitting (c.f. Sec.1.4.2).

An illustration can be found in Fig. 2.4, where model families F1 · · · Fn are sorted
in an ascending order with respect to their complexities with f ∗i ∈ Fi denoting the
optimal point in each Fi, for i = 1 · · ·n. The point f ∗ indicates the global optimum.
We can see that due to a higher complexity, Fn has a larger search space that includes
the global optimum, which implies the possibility of finding f ∗ by using an efficient
searching algorithm. On the contrary, by employing the model family F1, one simply
cannot find the global optimal f ∗ no matter what searching algorithm one uses,
which indicates a larger bias compared to Fn. On the other hand, by using the same

25

Chapter 2. Reproducing Kernel Hilbert Space and its Application

!
! ℱ!!

!
! ℱ!!

!! !!∗!
!! !!∗!

!! !∗!

Figure 2.4: The black squares represent the optimal point f ∗i that one can find in
the corresponding set Fi, for i = 1, · · · , n. The starred point f ∗ is the global optimal
function that minimizes R. Typically, larger search space Fi leads to lower bias but
higher variance.

searching scheme, a higher variance (w.r.t. different training samples) is typically
obtained for Fn due to the larger search space.

One complexity measure is the Vapnik-Chervonenkis (VC) dimension [13], de-
noted by h. For example, h1 < h∗ < hn holds for F1 ⊂ F∗ ⊂ Fn in Fig. 2.4. Loosely
speaking, the VC dimension is the cardinality of the largest subset of X for which F
can guarantee a zero training error.

To formally define the VC dimension, we first introduce a property of F called
“shattering” [13, 27].

Definition 2.19. A family of functions F shatters a set of data points S if and only
if for every dichotomy 1 of S, there exists some function in F consistent with this
dichotomy.

For instance, a linear classifier in a d dimensional feature space can shatter d+ 1
data points, which is illustrated in Fig. 2.5. Moreover, Fig. 2.6 shows an example of
a dataset consisting of four points that cannot be shattered by a linear classifier in
the two dimensional feature space.

Definition 2.20. The Vapnik-Chervonenkis dimension of F is the maximum number
of data points (training data) that F can shatter.

Note that the definition of the VC dimension h only requires the existence of a
set with cardinality h that can be shattered by F . Generally speaking, a family of
functions F with VC dimension h cannot shatter all sets of h points. A demonstration
can be found in Fig. 2.7, where a three-point dataset that cannot be shattered by the
family of linear classifiers is constructed. However, according to the definition, the
VC dimension of F is still h = d + 1 = 3, since one can indeed find a three-point
dataset that can be shattered by F (for instance, Fig. 2.5).

1A dichotomy of a set S is a partition of S into two disjoint subsets.

26

2.3. Structural Risk Minimization and the Representer Theorem

Figure 2.5: This figure illustrates how the family of linear classifiers F shatters a three-
point dataset in a two dimensional space. The face color of the data points (circles)
indicates the partition of the set. When a linear function f ∈ F is “consistent” with
a partition, it means that f can separate the two groups correctly.

(a) (b) (c)

Figure 2.6: The setup in this figure is the same as in Fig. 2.5, but with a four-point
dataset instead. In cases (a) and (b), there exists a linear classifier that is consistent
with the given partition. However, such a classifier does not exist for (c).

VC Bound and Structural Risk Minimization

A classic result based on VC dimension states that with probability at least 1 − δ,
every f ∈ F satisfies

R(f) < Remp(f) +

√√√√h
(
ln 2N

h
+ 1

)
+ ln 4

δ

N
(2.24)

27

Chapter 2. Reproducing Kernel Hilbert Space and its Application

(a) (b) (c)

Figure 2.7: This figure shows an example of a three-point dataset that cannot be
shattered by the family of linear classifier F . But this existence does not change the
fact that the VC dimension of F is h = d+ 1 = 3.

where h is the VC dimension of F . This is illustrated in Fig. 2.8.
Therefore, the idea of Structural Risk Minimization (SRM) is to find the simplest

function that minimizes the empirical risk function on the finite training set, i.e.,

Rstruct(f) = 1
N

N∑
i=1

L (f(xi), yi) + λΩ(f) (2.25)

where the penalty term λΩ(f) is a smooth function that measures the complexity of
the function f with λ a positive number controlling the trade-off between bias and
variance.

2.3.3 Representer Theorem
Theorem 2.7 (Representer Theorem [9]). Denoted by Ω : [0,∞) → R a strictly
monotonic increasing function, by X a set, and by L an arbitrary loss function. Then
each minimizer f ∈ H of the regularized risk

L ((f(x1), y1) · · · (f(xN), yN)) + Ω(‖f‖H)

admits a representation of the form

f =
N∑
i=1

αiϕ(xi) (2.26)

As a result, given a regularized cost function, each minimizer f(x) is then pa-
rameterized by the weighting coefficients of all training data vectors. An equivalent
formulation, called the Learning Subspace Property (LSP), is given in [11]. LSP states
that the subspace property f ∈ span (ϕ(x1), · · · , ϕ(xN)) is a sufficient and necessary
condition for applying kernel models.

The Representer Theorem motivates and verifies the validity of kernel models.
However, the new feature space H typically has very high dimensionality. In fact,

28

2.3. Structural Risk Minimization and the Representer Theorem

!
! ℱ!!

!
! ℱ∗!

!
! ℱ!!

!
! Empirical!Risk!

!
! Bound!on!the!Risk!

!
! Confidence!Interval!

!
! ℎ!!

!
! ℎ∗!

!
! ℎ!!

Figure 2.8: Figure 4.2 in [13]: The bound on the risk is the sum of the empirical
risk and the confidence interval. The empirical risk decreases with the index of the
element of the structure, while the confidence interval increases. The smallest bound
of the risk is achieved on some appropriate element of the structure.

dim(H) is allowed to be infinite. In such cases, the explicit expression for f is not
practical, or even possible.

2.3.4 Kernel Tricks
The “kernel trick” is a technique applied to resolve the high dimensional problem of
H. Briefly speaking, when we formulate a problem using kernel models, data vector
ϕ(x)’s always show up in the form of inner products with another vector (or itself),
rather than appearing alone. Since the inner products can be computed using the
predefined kernel function, explicit computations in H are thus never needed. We
illustrate this method with an example.

Example 2.3 (The kernel trick). Given training pairs (xi, yi) ∈ X × R and a pre-
defined kernel function k(x, x̃) = ϕ(x)Tϕ(x̃) for any x̃,x ∈ X , where ϕ : X → H.
We are interested in finding a vector w ∈ H, such that for any unseen data ϕ(x)
associated with an output y, wTϕ(x) ≈ y. We formulate this problem as a linear
regression:

y = ΦTw (2.27)

where Φ ∈ Rp×N contains the training data ϕ(xi) ∈ H on its column, for N, p ∈ N+,
p = dim(H) and y ∈ RN . The solution to Eq. (2.27) in the least-squares sense is:

w∗ = (ΦΦT)+Φy (2.28)

29

Chapter 2. Reproducing Kernel Hilbert Space and its Application

where + denotes the pseudoinverse of a matrix, which implies that the solution is
restricted in the column space of Φ, i.e.

w∗ = Φα (2.29)

for some α ∈ RN .
However, when dim(H) is large, such as p = +∞ in the RBF kernel, computations

in Eq. (2.28) are prohibitive. In particular, the matrix ΦΦT ∈ R∞×∞ can not be
constructed. One employs the kernel trick to resolve such issue.

By combining Eq. (2.27) and Eq. (2.29), we have y = ΦTw = ΦTΦα and hence
α∗ = (ΦTΦ)−1y. Note that all elements in the matrix ΦTΦ can be computed using the
kernel function (ΦTΦ)i,j = k(xi,xj) in the low dimensional space X , for 1 ≤ i, j ≤ N .
That means we do not have to deal with the intrinsic dimension p.

For an unseen data x̃, its label y is then estimated as

ŷ = wTϕ(x̃) = αTΦTϕ(x̃) = αT

k(x1, x̃)

...
k(xN , x̃)

 .
The example has shown a simple application of the kernel trick. By using the

kernel trick, heavy computations result from the nonlinear mapping ϕ(·) can always
be replaced by the kernel function k(·, ·), which is operating on the original low
dimensional input space.

Example 2.4 (Large data size). Example 2.3 shows how the kernel trick converts the
construction of ΦΦT ∈ Rp×p into the evaluation of kernel functions k : X × X → R,
so that the computational complexity is reduced from O(p3) for

(
ΦΦT

)+
to O(N3)

for
(
ΦTΦ

)−1
. However, the cubic growth with respect to the training size N can

become impractical for large scale learning problem. Techniques designed to conquer
this problem are called kernel approximation, where a low rank structure of the matrix
ΦTΦ is explored. It is presented in details in later chapters.

2.4 Conclusion
In kernel techniques, the original input space X is mapped to a high dimensional
feature spaceH, called the Reproducing Kernel Hilbert Space (RKHS), where dim(H)
is allowed to be infinite (c.f. Eq. (2.18)). The take-home message of this section is
summarized as follows:

• Why Hilbert Space:

– H is an inner product space. ⇒ The notion of orthogonality and pro-
jections is well defined. Convergence is also well defined by the induced
norm.

30

2.4. Conclusion

– H is complete. ⇒ Convergence of every Cauchy sequence guarantees
convergence of certain greedy algorithms.

– H is assumed to be separable (i.e. it has a countable orthonormal basis).
⇒ It allows us to apply finite dimensional linear algebra to (possibly)
infinite dimensional inner product space.

• Why RKHS:

– The Representer theorem for the structural risk minimization.
– H is a separable Hilbert Space with the reproducing property (RKHS).⇔

Every evaluation functional is continuous. It implies pairwise convergence,
i.e. if f, g ∈ H are close to each other, then f(x) and g(x) are close for all
x ∈ X , which is a desirable property for optimization.

• Relation between an inner product and RKHS:

– An inner product is a positive definite function.
– Positive Definite Function ⇔ Reproducing Kernel ⇔ RKHS.
– RKHS is unique, but feature spaces associated with the same kernel func-

tion is not. Nevertheless, they are all isometrically isomorphic.

• How to find valid kernel functions: from predefined kernels and their combina-
tions.

31

Chapter 3

Kernel Methods in Practice

It is a very common understanding that kernel methods are related to Support Vector
Machines (SVM). Indeed, the primal-dual derivation of SVM (c.f. Eq. (1.3)) natu-
rally leads to the construction of kernel functions and kernel tricks. However, kernel
methods are essentially feature transformation techniques that can be employed by
most linear learning models. In this chapter, we establish an explicit transformation
from linear models to their kernel counterparts using a subspace expression.

We divide kernel methods into three steps: 1) kernel model selection; 2) kernel
approximation; and 3) classification training. Fig. 3.1 shows how this chapter is
organized.

Ch.3.3: Kernel
Approximation

Ch.3.3.2: Subspace
Model

M
ot

iva
tio

n

Classification
Model

Ch.3.4: Classification
Training

Training
Algorithm

Learning Model

Ch.3.2: Kernel
Model Selection

Figure 3.1: The structure of this chapter.

Briefly speaking, kernel model selection determines the kernel type (e.g. RBF,
Polynormial, etc.) and kernel parameter (e.g. σ, d, etc.) before the training. It
is usually considered a tuning process for hyperparameters. Kernel approximation
aims at reducing the model complexity by subset sampling and a subspace transfor-
mation. Subset sampling restricts the representation of the classifier to the subspace
spanned by a subset of the training set to reduce the computational complexity.
RKHS subspace transformation refers to a nonlinear transformation on the selected

33

Chapter 3. Kernel Methods in Practice

subset. Generally, this step has the functionality of further reducing the dimension-
ality while preserving the data structure. One of the most popular techniques is the
PCA whitening in the RKHS. Finally, given the classification model, the learning
objective and the training algorithm, a classifier is produced based on the output of
the kernel approximation.

3.1 Notations

Given a non-empty input set X , which could be a string of texts, a collection of
websites, medical records, etc. Let F be the RKHS associated with a kernel function
k. Denote the mapping ϕ : X → F and the feature vectors ϕ := ϕ(x), ∀x ∈ X .
Without loss of generality, we assume that x’s are vectors with numerical values in
this chapter.

In a classification setup, given a training set D =
{

(xi, yi)
}N
i=1

, N ∈ N and a
subset M ⊆ D, the index set is denoted as IM =

{
i : (xi, yi) ∈M

}
. Moreover, let

XM =
[
xi
]
i∈IM

be a matrix with columns xi’s and ΦM =
[
ϕi
]
i∈IM

be a matrix
with columns ϕi’s. Given a kernel function k, for M,N ⊆ D, denote KMN =
k(XM,XN) =

[
k (xi,xj)

]
i∈IM,j∈IN

= ΦT
MΦN and KM = ΦT

MΦM. In particular, we
write K = ΦT

DΦD. Furthermore, when the size of any matrix M ∈ Rn×m is being
emphasized, it is denoted as Mn×m.

Note that in general, for any random vector a, the notation ai is reserved for
the realization of a associated with sample number i drawn from the multivariate
distribution that generates a.

For the sake of convenience, notations are summarized in Table 3.1.

3.2 Kernel Model Selection

To design learning machines in the RKHS F , we need to construct the space F first.
Theorem 2.5 implies that a (unique) RKHS is generated by a valid kernel function,
which can be found in Sec. 2.2.2, where a list of commonly used kernel functions and
their valid combinations is provided. Thus, the first step is to determine the RKHS
by choosing a valid kernel function.

The choice of the kernel function is twofold: 1) the kernel type and 2) the kernel
parameters. The kernel type refers to the parameterization for the inner product in
the RKHS. For example, if the kernel type “RBF” is selected (c.f. Eq. (2.12)), an
inner product is parameterized using: 〈ϕ (x) , ϕ (x̃)〉F = k(x, x̃) = exp

(
−‖x−x̃‖2

2
2σ2

)
, for

σ ∈ R+. The kernel parameter in this case is then σ, also known as a hyperparameter,
which can be determined using techniques such as grid search and cross-validation.

34

3.2. Kernel Model Selection

Symbol Description

X Non-empty input set.

x ∈ X Input multivariate random variable.

Y Label set.

y ∈ Y
Random variable that represents the label in-
formation.

xi ∈ X
Data vector sampled from X associated with
sample index i.

yi ∈ Y Label associated with data sample xi.

N Training size.

C Number of classes.

D = {(x1, y1), · · · , (xN , yN)} Training set.

IM = {i : (xi, yi) ∈M, M⊆ D} Index set associated with subsetM.

[zi]i∈I = [zi1 · · · zim]

A matrix that contains vector zij on its jth
column, where zij is from any vector space,
and ij ∈ I for index set I, 1 ≤ j ≤ m = |I|
(the cardinality of I).

XM = [xi]i∈IM Data matrix.

k : X × X → R Kernel function.

F The RKHS associated with k.

ϕ : X → F Nonlinear map such that ϕ(·) = k(x, ·)

ϕ = ϕ(x) ∈ F Random vectors in F .

ϕi = ϕ(xi) Data vector sampled from F .

ΦM = [ϕi]i∈IM Data matrix in RKHS.

k(XM,XN)

A matrix, where the (i, j)th entry of the ma-
trix is k(XM(:, i),XN (:, j)), for all i ∈ IM
and j ∈ IN .

K = ΦT
DΦD = k (XD,XD) The Gram matrix.

KMN = ΦT
MΦN = k (XM,XN)

Kernel matrix computed on two subsets.
KM = ΦT

MΦM = k (XM,XM)

Ik×k ∈ Rk×k An k × k identity matrix.

Table 3.1: Notations used in this chapter. 35

Chapter 3. Kernel Methods in Practice

3.2.1 Cross-Validation
Briefly speaking, cross-validation [28, 29, 30] divides training data into two disjoint
subsets: the training set and the validation set. Given the search space for hyperpa-
rameters, the machine learning method is trained on the training set and evaluated
on the validation set. The “best” value is then selected with respect to the best per-
formance evaluated on the validation set. Note that any objective function can be
used as the criterion for finding hyperparameters.

In n-fold cross-validation, the whole training dataset is divided into n disjoint sub-
sets, amongst which, one subset is used for validation and the remainder for training.
One shall repeat such procedure until all data have been used for both training and
validation. A special n-fold cross-validation technique is called the Leave-One-Out
(LOO) validation, where n = N the training sample size. The trained algorithm is
tested on the ith training data point for all i = 1 · · ·N , where data points from ID \ i
are used for training.

3.2.2 Multiple-Kernel (MK) Model
In kernel methods, a positive definite kernel function is selected to construct the
high dimensional feature space. The design of kernel functions is a subject for itself.
Nevertheless, from Sec. 2.2.2, we know that we can generate “new” kernel functions
by applying certain combinations of different existing kernels, which might have a
better potential to provide a more flexible and robust solution. In the literature, this
is called the Multiple-Kernel (MK) models.

Briefly speaking, given a (typically finite and countable) set of kernel functions,
one constructs a new valid kernel function kMK by applying a linear (such as weighted
sum) or a nonlinear (such as multiplication) function to the members from the set to
gain better flexibility, i.e.

kMK = h(k1, · · · , kM ; Θ)

where h : K 7→ kMK is parameterized by a set of parameters Θ. When Θ is unknown,
the estimation of Θ is a learning process itself. As shown in Sec. 1.2, there are three
key components in a learning process: the learning model, the learning objective, and
the searching algorithm. A comprehensive review can be found in [31], where various
techniques are elaborated and compared for each learning component. Generally
speaking, by selecting the MK model h, the learning objectives for estimating Θ are
categorized by [31] into i) similarity-based functions, ii) structural risk function and
iii) Bayesian function. Moreover, according to its strategy, the learning objective can
be further classified into 1) one-step methods, where Θ and the parameters for the
predictor are estimated in one run; and 2) two-step methods, where the searching is
alternating between finding the optimal MK parameters Θ and the optimal solution
for the predictor. The learning objective is usually formulated as a Semidefinite
Programming (SDP) or a Quadratically Constrained Quadratic Program (QCQP),
where standard algorithms for solving convex optimization problems can be applied,
such as the interior point method.

36

3.3. Kernel Approximation

Example 3.1 (MK generated from weighted addition). Let K = {k1, · · · , kM} be a
set of kernel functions, M ∈ N+. A MK model can be selected as (c.f. Sec. 2.2.2):

kMK =
M∑
i=1

aiki (3.1)

where ai ∈ {0} ∪R+ and ∑M
i=1 ai = 1. Hence, instead of using one single kernel from

K, we construct a RKHS by a linear combination of all kernel functions in the set,
where αi’s are unknown parameters that need to be estimated. Given Eq. (3.1), the
estimation of αi’s depends on the learning objective and the searching algorithm. For
example, given training vectors XD one of the most straightforward objective function
is:

minimize:
α1,··· ,αM

∣∣∣∣∣
∣∣∣∣∣K∗ −

M∑
i=1

αiKi

∣∣∣∣∣
∣∣∣∣∣
F

subject to: αi ≥ 0,
M∑
i=1

αi = 1
(3.2)

where ‖ · ‖F is the Frobenius norm and Ki = ki (XD,XD). The matrix K∗ is the op-
timal kernel matrix corresponding to the classification task. For example, the optimal
kernel matrix for a binary classification problem is:

K∗binary = yyT =

y1
...
yN

 [y1 · · · yN
]
, where yi ∈ {−1,+1}.

Convex optimization techniques can be applied accordingly.

3.3 Kernel Approximation

3.3.1 Motivation
As shown in Sec. 2.3.4, when it comes to kernel methods, we are always encouraged to
take advantage of the kernel trick. Indeed, the kernel trick is the portal that connects
the high dimensional RKHS F (or its isometrically isomorphic equivalences) and our
computational world with a limited computational power. In practice, it means that
we only use the kernel matrix K to describe data in RKHS through the kernel trick.
More precisely, given a kernel function k, the kernel matrix K can be computed using
Kij = k(xi,xj), for 1 < i, j ≤ N . Once K is computed, the entire data structure is
characterized by K and the original training data can be left aside for the classification
training.

However, by completely relying on the kernel matrix, one might suffer from the
following drawbacks:

• High computational complexity and storage requirement. With a growing sam-
pling size N , the demand for computations and storage for a N × N kernel
matrix K becomes prohibitive.

37

Chapter 3. Kernel Methods in Practice

• Low flexibility of the learning algorithm, i.e., one always needs to reformulate
linear techniques into their “kernelized” version, where only inner products of
data vectors are involved, so that training data can be replaced by the kernel
matrix. This turns out to be inconvenient in some scenarios.

• Overfitting problem. The high (possibly infinite) dimensional space F implies
high model complexity. Moreover, the Representer Theorem 2.7 states that
the intrinsic data structure is determined by the subspace spanned by training
vectors in F . This highly data dependent learning model with high model
complexity typically leads to overfitting.

To resolve the above issues, kernel approximation techniques are introduced, where
the kernel matrix is assumed to have a low rank structure. A N × r matrix G is then
constructed with r � N , such that K ≈ GGT .

In many kernel techniques, such as Least-Square SVM (LS-SVM), Gaussian Pro-
cesses (GP), Kernel Principal Component Analysis (KPCA), etc, given ρ the regular-
ization parameter [32] and I the identity matrix, one needs to invert the regularized
kernel matrix (K + ρI), which results in a computational cost of order O(N3). By
constructing the matrix G, there are two ways of utilizing this approximation to
reduce the computational complexity:

i. Matrix inversion by the Woodbury identity [33]:

(K + ρI)−1 ≈ 1
ρ
− 1
ρ2 G

(
I + 1

ρ
GTG

)−1

︸ ︷︷ ︸
∈Rr×r

GT (3.3)

ii. Using the explicit feature vector:

From K ≈ GGT , one can construct an explicit feature vector:

βi = G(i, :)T ∈ Rr (3.4)

where G(i, :) denotes the ith row of matrix G, and linear techniques can be
applied in the space Rr consequently.

In both cases, the complexity is reduced from O(N3) to O(r3 + rN).

3.3.2 Subspace Model for Kernel Approximation
Aiming at potential problems such as high computational complexity and overfitting,
an explicit subspace model is suggested, where feature vectors are assumed to be a
composition of a “noise-free” part and the noise vector. The noise-free vector takes
values in a deterministic subspace, denoted by V ⊂ F , and the noise vector lies in the
whole space F .

38

3.3. Kernel Approximation

More precisely, given a matrix U ∈ Rq×r with orthonormal columns, where q =
dim(F) and r < q. Let ψ ∈ V be the noise-free coordinates and ζ ∈ F the zero-
mean random noise vector with a finite covariance. For a given data vector ϕ, the
underlying model assumption is as follows:

ϕ = Uψ + ζ (3.5)
= Uψ + UUT ζ + U⊥UT

⊥ζ (3.6)
= U

(
ψ + UT ζ

)
︸ ︷︷ ︸

β

+ U⊥UT
⊥ζ︸ ︷︷ ︸

e

= Uβ + e (3.7)

where β is the random vector containing coordinates in the subspace spanned by U
and the residual e ∈ F \ V , i.e. U ⊥ e.

In the typically high dimensional RKHS, a subspace model makes perfect sense,
since it implies the underlying assumption that the data distribution is not com-
pletely arbitrary in the ambient space F . Instead, data are clustering around a low
dimensional subspace.

Low Rank Approximation

Given assumption Eq. (3.7) and U ∈ Rq×r with r � N � q, K can be decomposed
as follows:

K =
[
Uβ1 + e1, · · · , UβN + eN

]T [
Uβ1 + e1, · · · , UβN + eN

]
=

[
UB + E

]T [
UB + E

]
= BTB + ETE
= ΦT

DUUTΦD + ETE (3.8)

where B =
[
β1 · · ·βN

]
and E =

[
e1 · · · eN

]
. Given the Frobenius norm ‖ · ‖F , if

‖ETE‖F ≤ B, for B ∈ R and B < +∞, we have:

‖K−ΦT
DUUTΦD‖F ≤ B (3.9)

i.e. K can be approximated using:

K ≈ ΦT
DUUTΦD (3.10)

up to an error bounded by B. Hence, Eq. (1) can be applied to the learning model,
where

G = ΦT
DU. (3.11)

Explicit Feature Map

Given Eq. (2) and Eq. (3.11), we know that for any ϕ(x) ∈ F , an explicit feature
map β can be constructed as:

β(x) = UTϕ(x) ∈ Rr (3.12)

39

Chapter 3. Kernel Methods in Practice

Explicit feature map enables us to employ linear classification techniques in Rr, which
leads to a nonlinear boundary in the original input space.

Remark. Note that by using Eq. (3.11) and Eq. (1), we still work in a subspace
of the RKHS, whereas Eq. (3.12) leads us to a high dimensional Euclidean space,
where linear techniques are applied. Despite being algebraically equivalent from a
kernel approximation point of view, they lead to different classification models and
formulations for the classification training. We shall see the illustration of this in
Section 3.4.

3.3.3 Subspace Estimation

In practice, the subspace basis matrix U is unknown and needs to be estimated from
training data. This is typically done by finding an index set IG with G ⊆ D, such
that ∣∣∣∣∣∣K− k(XD,XG)k(XG,XG)+k(XG,XD)

∣∣∣∣∣∣
∗

(3.13)

is small, where ‖ · ‖∗ is any matrix norm. Given IG, to obtain the basis matrix U
with orthonormal columns, Kernel Principal Component Analysis (KPCA) whitening
[34, 35, 36] is applied. Hence, the output are the index set IG and a transformation
matrix A ∈ R|G|×r, such that ATk(XG,XG)A = Ir×r.

There are various kernel approximation techniques existing in the literature, some
of which are summarized below.

• Based on Random Sampling

- Fourier Transform: Bochner’s Theorem [37] states that every kernel func-
tion k is the inverse Fourier transform of a non-negative measure. In par-
ticular, if k is normalized, it is the inverse Fourier transform of a proper
probability distribution. This enables the possibility of a random parame-
terization of k, whose solution can be approximated by Monte Carlo meth-
ods [38].

- Nyström Method and Its Modifications: Another popular class of low-
rank approximation algorithms are from the family of Nyström methods
[39, 40, 41]. Briefly speaking, they select random columns from kernel
matrix K to construct a matrix C, such that K ≈ CWCT , where C ∈
RN×d for d ≤ N and W ∈ Rd×d is the intersection of the selected columns
and the corresponding rows in the kernel matrix K. Different sampling
techniques (such as [42]) are proposed and a comparison can be found in
[43].
In [44], the authors have concluded that when there is a large gap in the
eigenspectrum of the kernel matrix, Nyström based methods outperform
random Fourier features in terms of generalization error bound.

40

3.4. Classification Training

• Based on Subspace Innovation Another family of techniques interpret the kernel
matrix approximation as a subspace estimation problem. Given a training sam-
ple, a subspace is iteratively constructed by the selection and transformation of
the “innovative” subset [45].

- Incomplete Cholesky Decomposition: One of the most commonly applied
techniques is the incomplete Cholesky decomposition [46, 47], where the
kernel matrix is approximated by K ≈ R(1 : d, :)TR(1 : d, :) with d <
N . This is realized by the Gram-Schmidt process (c.f. 2.1.1) applied on
the training data in a sequential manner, where only the pivot vectors
are kept to construct R, such that K = ΦTΦ = RTQTQR = RTR.
Extensions using side information are proposed in [48], where they take into
consideration not only the reconstruction error ‖K−R(1 : d, :)TR(1 : d, :)‖,
but also the objective function for the classifier.

- Greedy Spectral Embedding: In [45], a greedy search algorithm called
Greedy Spectral Embedding (GSE) is presented, where they select basis
vectors incrementally to minimize an upper bound of the approximation
error in an iterative manner. That is, for a new training data, if the
projection distance to the constructed subspace is high, it is considered
“informative” and hence selected to be a part of the approximation. The
resulting selected basis vectors is a subset of the columns in the full kernel
matrix K.

• Based on Special Structures
Some techniques approximate K by utilizing special structure within the ker-
nel matrix, such as the Memory Efficient Kernel Approximation (MEKA) [49],
where dominating behaviors of the diagonal sub-matrices are observed after
clustering the data in the original input space. Data vectors are first clustered
and basis vectors for the diagonal blocks are estimated, which leads to small
values on the off-diagonal blocks.

3.4 Classification Training

3.4.1 Overview
Classification training consists of three essential elements:

1) Classification model:
In kernel methods, the classification model refers to the parameterization of
the prediction function f : X → R, where f ∈ F . In particular, for a binary
classification problem, the label y for an unseen data vector x can be estimated
as:

ŷ =

+1, f(x) ≥ 0
−1, f(x) < 0

41

Chapter 3. Kernel Methods in Practice

2) Learning objective:

The learning objective specifies optimization criteria for finding a desirable f ∗
for a specific parameterization. The learning objective usually consists of an
objective function to be optimized and some constraints to restrict the search
space. The choice of the learning objective determines the bias-variance trade-
off via the model complexity.

3) Training algorithm:

Given the classification model f and the learning objective, the training algo-
rithm is the approach that one employs for finding the unknown parameters in
f by optimizing the objective function in the learning objective with respect to
the given constraints. The training algorithm produces the final output of the
classification training, which is the classifier f ∗.

Example: For an illustrative example, recall the Support Vector Machine (Sec.
1.3):

- Classification model: f = ∑N
i=1 αiϕi.

- Learning objective:

maximize:
α

∑
j

αj −
1
2
∑
i,j

αiαjyiyjϕ
T
i ϕj

subject to:
∑
i

αiyi = 0

0 ≤ αi ≤ C, ∀i

(3.14)

- Training algorithm: Solve Eq. (3.14) for optimal α′is using appropriate algo-
rithms, such as the Sequential Minimal Optimization (SMO) algorithm [50].

The output of the classification training is then the parameterization of f : α∗1, · · · , α∗N .
SVM is a classic application of the Structural Risk Minimization (SRM) framework

presented in Sec. 2.3. Generally speaking, the objective function of SRM has the
following form:

R(f) = 1
N

N∑
i=1

L(f(xi), yi) + λΩ(‖f‖F) (3.15)

where Ω : [0,∞) → R is a strictly monotonic increasing function and L is an arbi-
trary loss function. The parameterization of f is given by the Representer Theorem
(c.f. Theorem 2.7): f = ∑N

i=1 αiϕi for unknown αi ∈ R. Both Ω and L are thus
parameterized by αi’s, which then can be solved by a proper learning algorithms.

42

3.4. Classification Training

Classification model
(a) fa = ∑N

i=1 αiϕi ∈ F
(b) fb = ∑N

i=1 αiUβi ∈ F
(c) fc =

[
w1 · · · wr

]T
∈ Rr

Learning objective

Objective L

(a)
fa(x) = ∑N

i=1 αiβ
T
i β +∑N

j=1 αjeTj e
= ∑N

i=1 αik (xi,x)

(b)
fb(x) = ∑N

i=1 αiβ
T
i β

= ∑N
i=1 αik (xi,XG) AATk (XG,x)

(c)
fc(x) = ∑r

i=1wivTi β
= ∑r

i=1wivTi ATk (XG,x)

Regularizer Ω
(a) Ω (‖fa‖F) = αTΦT

DΦDα
(b) Ω (‖fb‖F) = αTBTBα
(c) Ω (‖fc‖2) = wTw

Table 3.2: This table shows how different parameterizations of kernel approximation
affect the classification training for a given noise-free subspace basis matrix U.

3.4.2 Connection to Kernel Approximation:
Different outputs from the kernel approximation step lead to various classification
models. More explicitly, we have three possible outcomes from kernel approximation:
(a) full kernel matrix without approximation; (b) low rank approximation; and (c)
the explicit feature map, which can be respectively expressed as follows:

K (a)=

ϕT1
...
ϕTN

 [ϕ1 · · · ϕN
]

(3.16)

(b)
≈

(UUTϕ1)T

...
(UUTϕN)T

 [UUTϕ1 · · · UUTϕN
]

(c)=

βT1
...
βTN

 [β1 · · · βN
]

Kernel Approximation(3.17)

where UUTϕTi is the Projection onto subspace col(U) and βi = UTϕi = ATk (ΦG,xi)
is the explicit feature vector, for i = 1, · · · , N .

As aforementioned, despite of being algebraically equivalent from a kernel approx-
imation point of view, (b) and (c) results in different classification models due to the
different spaces they live in. By using (b), the classifier is a vector in F while being
restricted to the column space of U. On the other hand, using (c) implies that the
classifier is a linear vector in Rr. In particular, from Eq. (3.15), we know that for a

43

Chapter 3. Kernel Methods in Practice

given classification model f , the learning objective L depends the evaluation of f .
More precisely, given Eq. (3.17) and the subspace model ϕ(x) = Uβ+ e, where e

represents the residual, various classification models result in different evaluations as
follows.

Evaluation of fa: When using the classification model (a), no kernel approximation
is applied. From the Representer Theorem, we have:

fa(x) =
N∑
i=1

αiϕ
T
i ϕ(x)

=
N∑
i=1

αi (Uβi + ei)T (Uβ + e)

=
N∑
i=1

αiβ
T
i β +

N∑
j=1

αjeTj e

=
N∑
i=1

αik (xi,x)

(3.18)

Evaluation of fb: The kernel function is projected onto the subspace spanned by
the columns of U by using classification model (b), which leads to the following
expression for the evaluation:

fb (x) =
(

N∑
i=1

αiUUTϕi

)T
UUTϕ(x)

=
N∑
i=1

αiϕ
T
i ΦGAATΦT

Gϕ

=
N∑
i=1

αik (xi,XG) AATk (XG,x)

(3.19)

where ΦG and A ∈ R|G|×r are defined in Sec. 3.3.3, where |G| � N .

Evaluation of fc: When using the explicit feature map, for given {v1, · · · ,vr} a
set of orthonormal vectors in Rr, we have:

fc (x) =
r∑
i=1

wivTi
(
UTϕ(x)

)
=

r∑
i=1

wivTi β

=
r∑
i=1

wivTi ATΦT
Gϕ︸ ︷︷ ︸

β

=
r∑
i=1

wivTi ATk (XG,x)

(3.20)

44

3.4. Classification Training

!
!

RKHS!!ℱ!!!

!
! ℱ! !

!
! ℱ! !

!
! ℱ! !

!
! ℝ! !Isometrically

Isomorphic

Figure 3.2: Fa, Fb and Fc are the search space specified by parameterizations fa, fb
and fc, respectively. As we can see that Fa,Fb ⊂ F , whereas Fc ⊆ Rr. The shadowed
part of Fb, which represents the subspace spanned by data that are not a part of the
training set, is “invisible” to us. When the basis matrix U is unknown and needs to
be estimated from training data, it can only be derived as a subspace spanned by the
training data, but not the shadowed part.

One achieves faster evaluation time by using Eq. (3.20), since r < N .
The comparison is summarized in Table 3.2 and Fig. 3.2, where search spaces

Fa, Fb and Fc correspond to parameterizations fa, fb and fc, respectively. From
the analysis in this section, we know that Fa = span (ϕ1 · · ·ϕN) ⊂ F and Fb =
span (u1 · · ·ur) ⊂ F , where r � N . The shadowed subset indicates the subspace

Shadow = span (u1 · · ·ur) \ (span (u1 · · ·ur) ∩ span (ϕ1 · · ·ϕN))

which is unknown to us if the subspace span (u1 · · ·ur) is not given but estimated
from training data. Given the subspace model in Eq. (3.7), search space Fa leads to
a higher variance compared to Fb (c.f. Fig. 2.4).

Furthermore, for any given U =
[
u1 · · · ur

]
, Fb and Fc are isometrically iso-

morphic (c.f. Eq. (3.17)), which means they are spaces induced by the same kernel
function.

3.4.3 Example: LS-SVM

We use the LS-SVM as an example to demonstrate what has been discussed so far.
Briefly speaking, LS-SVM finds the separating hyperplane by tuning the marginal
hyperplanes, which is done by fitting all training data to the closest marginal hyper-
plane.

Given training pairs (ϕi, yi) with yi ∈ {−1,+1} for i = 1 · · ·N and a hyperparam-
eter η ∈ R+, which controls the trade-off between the size of the soft margin and how
many misclassified patterns are allowed within the marginal hyperplanes. Compared

45

Chapter 3. Kernel Methods in Practice

to Eq. (1.2), the Learning Objective for LS-SVM is formulated as follows:

minimize:
w,b

1
2‖w‖

2
2 + η

2

N∑
i=1

ξ2
i

subject to: ξi = 1−
(
wTϕi + b

)
yi

(3.21)

or alternatively,

minimize:
w,b

1
2‖w‖

2
2 + η

2

N∑
i=1

e2
i

subject to: ei = yi −
(
wTϕi + b

) (3.22)

Note that Eq. (3.21) and Eq. (3.22) are equivalent, where Eq. (3.22) is also suitable
for regression tasks.

• Training Algorithm Option 1): training in the dual:

– Lagrangian of Eq. (3.22):

L(w, b, e1, · · · , eN ,α) = 1
2wTw + η

2

N∑
i=1

e2
i −

N∑
i=1

αi
(
wTϕi + b+ ei − yi

)
(3.23)

where αi’s are the Lagrangian Multipliers.

– KKT conditions:
Taking derivative with respect to all variables and setting to zero, we obtain
the following:

w =
N∑
i=1

αiϕi

N∑
i=1

αi = 0

ei = yi −
(
wTϕi

)
+ b, for i = 1 · · ·N

αi = ηei, for i = 1 · · ·N

(3.24)

– Solution to α and b:
The solution to Eq. (3.24) can be readily derived as:

[
α

b

]
=

[
K + 1

η
I eN

eTN 0

]−1 [y
0

]
(3.25)

where I is the identity matrix, y = [y1 · · · yN]T and eN is an all-one vector
with size N .

46

3.4. Classification Training

– Low rank approximation:
By using the Woodbury identity, we have:[

K + 1
η
I eN

eTN 0

]−1

=

T−1
(
I− NT−1

eTNT−1eN

)
T−1eN

eTNT−1eN
eTNT−1

eTNT−1eN
− 1

eTNT−1eN

 (3.26)

where T = K+ 1
η
I. Therefore, Eq. (3.25) implies a complexity of O(N3) for

the matrix inversion, since the computation is dominated by T−1. Now we
demonstrate how the complexity can be reduced by kernel approximation

K ≈ ΦT
DUUTΦD = k (XD,XG) AATk (XG,XD)

By once again applying the Woodbury,(
K + 1

η
I
)−1

≈
(
k (XD,XG) AATk (XG,XD) + 1

η
I
)−1

= η
(
I− ηk (XD,XG) A

(
I + ηATk (XG,XD) k (XD,XG) A

)−1
ATk (XG,XD)

)
{
By applying the explicit feature map B , ATk (XG,XD) ∈ Rr×N

}
= η

I−BT

(
1
η
I + BBT

)−1

B

 (3.27)

where notations are referred to Eq. (3.8).
Eq. (3.27) shows that for given U ∈ Rq×r, where r � N � q, the
complexity of LS-SVM is reduced from O(N3) to O (max(N, r2)r).

• Training Algorithm Option 2): training in the primal:

– with Representer Theorem (classification model fa, no kernel approxi-
mation):
o The Representer Theorem: w = ∑N

i=1 αiϕi = ΦDα reformulates the
objective function in Eq. (3.21) as:

l(α, b) = 1
2α

TΦT
DΦDα+ η

2

N∑
i=1

(
1−

(
αTΦT

Dϕi + b
)
yi
)2

(3.28)

= 1
2α

Tk (XD,XD)α+ η

2

N∑
i=1

(
1−

(
αTk (XD,xi) + b

)
yi
)2

o Solution: Setting derivatives of Eq. (3.28) to zero with respect to α
and b, we obtain:[

α

b

]
=
[
K(K + 1

η
I) KeN

eTNK N

]−1 [Ky
eTNy

]
(3.29)

where K = k (XD,XD) ∈ RN×N .

47

Chapter 3. Kernel Methods in Practice

– with low rank approximation (classification model fb):
o For a given U = ΦGA, the low rank approximation leads to the ex-
pression

K ≈ ΦT
DUUTΦD = k (XD,XG) AATk (XG,XD) . (3.30)

The representation of the classifier is written as

w =
N∑
i=1

αiUβi = UUTΦDα = ΦGAATΦT
GΦDα = ΦGAATk (XG,XD)α

The objective function in Eq. (3.21) becomes:

l(α, b) = 1
2α

TΦT
DΦGAATΦT

GΦDα

+ η

2

N∑
i=1

(
1−

(
αTΦT

DΦGAATΦT
Gϕi + b

)
yi
)2

= 1
2α

Tk (XD,XG) AATk (XG,XD)α (3.31)

+ η

2

N∑
i=1

(
1−

(
αTk (XD,XG) AATk (XG,xi) + b

)
yi
)2

o Solution: Due to the approximation in Eq. (3.30), the solution pre-
sented in Eq. (3.29) becomes[

α
b

]
=
[
Kβ(Kβ + 1

η
I) KβeN

eTNKT
β N

]−1 [Kβy
eTNy

]
(3.32)

where Kβ = k (XD,XG) AATk (XG,XD).
Similar to Eq. (3.26) and Eq. (3.27), by using the Woodbury identity, the
dominating computation can be reduced thanks to this approximation,
which leads to an overall complexity of order O (max(N, r2)r), for N � r.

– with explicit feature map (classification model fc):
o Given the explicit feature vectors:

βi = ATΦT
Gϕi = ATk (XG,xi) ,

we can construct an orthonormal matrix V = [vi, · · · ,vr], where
vi ∈ Rr, i = 1 · · · r. The objective function in Eq. (3.21) becomes:

l(w, b) = 1
2wTw + η

2

N∑
i=1

(
1−

(
wT

(
VTATΦT

Gϕi
)

+ b
)
yi
)2

(3.33)

= 1
2wTw + η

2

N∑
i=1

(
1−

(
wT

(
VTATk (XG,xi)

)
+ b

)
yi
)2

where w ∈ Rr. Hence, we are solving a r dimensional linear classifica-
tion problem.

48

3.5. Conclusion

Remark. Note that we can also use

l(w̃, b) = 1
2w̃T w̃+η2

N∑
i=1

(
1−

(
w̃T

(
k (XG,XG) AATk (XG,xi)

)
+ b

)
yi
)2

(3.34)
with w̃ ∈ R|G|, |G| ≥ r, to avoid the computation for constructing the
basis matrix V.

o Solution: Let B =
[
β1 · · · βN

]
,

[
w
b

]
=
[
BBT + 1

η
I BeN

eTNBT N

]−1 [By
eTNy

]
(3.35)

where we can directly see that the computational complexity is of order
O (max(N, r2)r).

This example shows the relation between the three different classification models fa,
fb and fc, where fa directly follows the Representer Theorem; fb results from the low
rank approximation using a subspace model for a given basis matrix U; and fc is
the linear classifier using explicit feature vectors. The classification learning objec-
tive is the LS-SVM and the three classification models lead to different formulations
and computational complexities. The dual and primal training algorithms are both
presented. Note that from the viewpoint of simplicity, it is more natural to train the
classifier with fb in the dual, but with fc in the primal. We can see that fb results in
a lower complexity compared to fa in both primal and dual cases.

3.5 Conclusion
Given training data, kernel approximation techniques are typically needed for reduc-
ing the computational complexity. This approximation can be interpreted using a
subspace model in the RKHS (c.f. Eq. (3.8) and Eq. (3.17)), which further implies
the possibility of using an explicit feature vector (c.f. Eq. (3.12)) instead of the kernel
matrix. When using explicit feature vectors, we are moving away from the RKHS,
but instead working in a high dimensional Euclidean space. Linear models and algo-
rithms are then applied at the classification training step. The advantage is that one
does not need to reformulate/approximate linear techniques using their kernelized
counterpart, which leads to a simpler modeling procedure. However, some might find
it a bit unnatural, since RKHS is indeed what provides us all the elegant and handy
properties. Nevertheless, one should keep in mind that the explicit feature vector is
a result of the very existence of the RKHS.

Furthermore, different representations in Eq. (3.17) result in distinct classifica-
tion models and learning objectives, which then lead to various modeling simplicity,
robustness and computational complexity. This is illustrated in both Sec. 3.4 as a
general principal (c.f. Table 3.2 and Fig. 3.2) and in Sec. 3.4.3 using LS-SVM as a
concrete example.

49

Chapter 4

Summary of Included Papers

In this thesis, we have developed kernel methods for classification tasks using subspace
models in the Reproducing Kernel Hilbert Space (RKHS). The included papers are
summarized in this chapter. The contribution is divided into two sections with respect
to different subspace models:

- Kernel subspace model (Sec. 4.1): Given a kernel function, we assume that data
vectors span a subspace in the RKHS.

- Class-specific subspace model (Sec. 2.2): Data from different classes are assumed
to span an individual subspace in a Hilbert space that is induced by a class-
specific kernel function.

An overview of this chapter and its relation to Chapter 3 can be found in Fig. 4.1.
According to this categorization, a list of included papers and their summaries are
shown as follows:

• Kernel subspace model:

– Paper 1. Kernel Successive Orthogonal Subspace Analysis: A
RKHS subspace transformation technique for maximizing the ratio be-
tween the between-class data separation and within-class data separation.

• CLAss-Specific Subspace Kernel (CLASK) model:

– Paper 2. Learning Hierarchical Feature Space Using CLAss-
specific Subspace Multiple Kernels - Metric Learning for Classi-
fication: A model selection technique that chooses kernel types and pa-
rameters from a given set of kernel functions using class-specific multiple
kernels.

– Paper 3. Enhanced Distance Subset Approximation Using CLAss-
specific Subspace Kernel for Supervised Learning: A sampling tech-
nique for kernel approximation using class-specific subspace data model,
which is aiming at enhancing the between-class distance.

51

Chapter 4. Summary of Included Papers

Ch.3.2: Kernel Model
Selection

Ch.3.3: Kernel
ApproximationCh.3.3.2: Subspace

Model Motivation

Classification
Model

Ch.4.3: Class-
specific subspace

model

Ch.3.4: Classification
Training

Training
Algorithm

Learning Model

Ch.4.2.2 EDSA
(subset selection)

Extension

Ch.4.1.1 KSODA

Ch.4.1.2 AMSM

Ch.4.2.1 CLASMK-ML
(kernel model selection)

Ch.4.2.3 KESIR
(linear transformation)

Ch. 4.2
CLAss-Specific Subspace Kernel

(CLASK) Model

Ch. 4.1
Kernel Subspace Model

Figure 4.1: The organization of this chapter and the reference to Chapter 3.

– Paper 4. Kernel Subspace Empirical Intersection Removal for
Kernel Approximation and Classification: A metric learning tech-
nique is proposed for kernel approximation using CLASK model. The goal
is to find class-specific subspaces that have large canonical distance.

– Paper 5. CLAss-specific Subspace Kernel Representations and
Adaptive Margin Slack Minimization for Large Scale Classifica-
tion: In this paper, a classification framework for large scale training is
proposed based on 1) the CLASK model, and 2) a novel data selection
scheme using an adaptive margin with sequential and parallel framework.

52

4.1. Kernel Subspace Model

4.1 Kernel Subspace Model

4.1.1 Overview
The kernel subspace model (c.f. Eq. (3.7)) is essentially the underlying assumption
behind kernel approximation, where we assume that the data generating mechanism
follows a subspace structure in the RKHS F that is common for all classes. This
subspace is then used for low rank approximation and the quality of the approxima-
tion is evaluated by the reconstruction error. Based on this model assumption, we
developed the following techniques for classification tasks.

4.1.2 Included Papers

Paper 1: Kernel Successively Orthogonal Discriminative Anal-
ysis (SODA)
The Linear Discriminative Analysis (LDA) and its kernel counterpart KLDA are
popular for solving classification problems, due to its intuitive formulation, theoretical
properties and the closed form solution. The goal is to project the data points onto
a low dimensional subspace, where the ratio between the between-class scattering
and within-class scattering is maximized. However, one drawback is that given C
classes, LDA can only find a C − 1 dimensional subspace. In this work, we have
tackled this discriminative learning problem using an recursive formulation called
Kernel Successively Orthogonal Analysis (KSODA) and found the optimal solution by
an iterative algorithm. KSODA can be applied as a RKHS transformation technique
for kernel approximation in classification tasks.

4.2 CLAss-specific Subspace Kernel (CLASK) Func-
tion for Classification

4.2.1 Class-specific Subspace Model
The classical kernel approximation techniques are based on the kernel subspace model
presented in the previous section. However, in many applications, one subspace is
not adequate to describe the intrinsic data structure. Hence, some machine learning
techniques, such as subspace clustering [51, 52, 53] and subspace classifiers [54, 55,
56, 57] are based on a multiple-subspace model.

In particular, in a classification problem, one is interested in finding subspaces
that capture complex intrinsic data structures, while having discriminative ability for
different classes.

To this end, we adopt a class-specific subspace model. More precisely, given data
vector ϕ ∈ class c ∈ {1 · · ·C}, the model assumption is as follows:

ϕ = Ucβ + e (4.1)

53

Chapter 4. Summary of Included Papers

! = !!

(a) RKHS ℱ!

! = !! !!
!!!

!!!!
! !

(b) Representer Space

! = !!! !

(c) Subspace Model
 with a deterministic !!

!! = !!!!! !

(d) Class-specific Subspace Model
 with deterministic !! ’s#

Figure 4.2: Four projections are illustrated.

where matrix Uc ∈ Rp×mc has orthonormal column vectors, β ∈ Rmc and e ⊥ Uc is
the vector containing residuals. Moreover, in addition to the subspace structure for
different classes, we assume that individual kernel functions may apply.

An illustration can be found in Fig. 4.2. In Fig. 4.2 (b), given a set of training
data D and the Structural Risk Minimization (SRM) [9] framework, the Representer
theorem [9] states that the optimal function f ∗ learned from D can be written as a
linear combination of all training data, i.e. f ∗ ∈ col(ΦD). It means that without low
rank approximation, the optimization problem for finding an optimal classifier given
D is equivalent to projecting all training data onto col(ΦD). Fig. 4.2 (c) interprets
the classical low rank approximation using the subspace model in Eq. (3.7), whereas
Fig. 4.2 (d) illustrates how the subspace model in Eq. (4) results in a different setup
compared to Fig. 4.2 (c).

4.2.2 CLAss-Specific Kernel (CLASK) Function
Given the class-specific subspace model in Eq. (4), we define the CLAss-Specific
Kernel (CLASK) function as follows.

Definition 4.1 (CLAss-Specific Kernel (CLASK) function:). Given C classes and
an ordered set of kernel functions {k1, · · · , kC}, the CLASK function is a function

54

4.2. CLAss-specific Subspace Kernel (CLASK) Function for Classification

h : X × X → R defined as:

h(x, x̃) =
C∑
c=1

kc(x, x̃) (4.2)

for any x, x̃ ∈ X

4.2.3 Feature Map
Given the class-specific subspace model in Eq. (4) and the CLASK function in Def-
inition 3.1, let FC denote the Hilbert Space induced by CLASK. For a data vector
x ∈ class c, one feature map ϕ : X → FC can be defined as:

ϕ(x) =

k1(x, ·)

...
kC(x, ·)

=

U1 0 0
0 . . . 0
0 0 UC

β1
...
βC

+

e1
...

eC

= Uβ + e (4.3)

where {k1, · · · , kC} are the given kernel functions from Definition 3.1; βr and er are
the weight vector and the residual associated with subspace basis Ur ∈ Rp×mr .

Given the model assumption Eq. (4), the subsequent questions are:

• How to incorporate the class-specific subspace model into the framework of
kernel methods?

• When estimating unknown subspaces, what desired properties are we looking
for?

4.2.4 Included Papers
Motivated by the class-specific subspace model, we have developed a sequence of
learning techniques that attempt to answer these questions. A brief summary is
presented in the following papers.

Paper 2: CLASMK-ML for Kernel Model Selection
Kernel model selection is one of the major issues for kernel techniques, since the ker-
nel function completely determines the similarity (i.e. the inner product) defined on
the RKHS. In this paper, we have proposed a series of optimization criteria based on
the class-specific subspace model to automatically select the optimal kernel function
from a given finite countable set. There are three scenarios: 1) one unified optimal
kernel function is identified for all classes; 2) different optimal kernel functions are al-
lowed for each individual class; and 3) Multiple-Kernels (MK) with different weights

55

Chapter 4. Summary of Included Papers

are selected for different classes. Cases 2) and 3) are proposed based on a kernel
function that enables the possibility of describing data from different categories us-
ing their own kernel functions. The learning process is based on a metric learning
framework and the corresponding techniques are called the CLAss-specific Subspace
Kernel- Metric Learning (CLASK-ML) and CLAS-Multiple-Kernel- Metric Learning
(CLASMK-ML).

A hierarchical learning structure is also proposed to improve the classification
performance for a given base classifier by feature augmentation. As a future direction,
tests using more types of kernel functions are under progress. Moreover, feature
pruning strategies are needed at each layer for large scale datasets. We are also
investigating the possibilities of integrating the feature augmentation technique into
a deep kernel network.

Paper 3: EDSA Sampling Technique for Kernel Approxima-
tion
In this paper, by assuming the class-specific subspace model, we propose a novel
kernel function called the CLAss-specific Subspace Kernel, which is incorporated
into the kernel approximation framework. Given an ordered set of kernel functions
{k1, · · · , kC} and the underlying model assumption Eq. (4), CLASK is associated to a
feature space FC , such that

[
k1 (x, ·)T , · · · , kC (x, ·)T

]T
∈ FC for all x ∈ X . The idea

is to estimate a subspace spanned by kc (x, ·), ∀x ∈ class c, for every c ∈ {1, · · · , C}.

The final basis matrix is then described using U =

U1 · · · 0
0 . . . 0
0 · · · UC

, where Uc is the

estimated subspace basis matrix for class c. Moreover, when restricted to the sub-
space col (U), a probability bound on the class separability is proposed as a function
of both the between-class projection and the within-class projection. To achieve this
goal, an optimization criterion is formulated to find the most appropriate subspace
matrices. Due to the high computational complexity, the solution is approximated by
a sampling technique called the Enhanced Distance Subset Approximation (EDSA).

Paper 4: Kernel Empirical Subspace Intersection Removal
(ESIR)
In standard subspace classification techniques, an individual subspace basis is learned
for each class in the training data. For an unlabeled testing pattern, the classification
criterion is to identify the subspace corresponding to the smallest projection distance.
This criterion provides a natural measure of the discriminative power for each indi-
vidual subspace. Particularly, from a statistical learning point of view, for a given
classification accuracy on the training data, the complexity of the subspaces (which
is characterized by the VC dimension) influences the generalization ability of the
subspace classifier. That is, with a high model complexity, the classifier is prone to

56

4.2. CLAss-specific Subspace Kernel (CLASK) Function for Classification

overfitting. To obtain a high generalization performance, one strategy is to reduce the
subspace dimension of the learning model without sacrificing the training accuracy.
In this paper, we are aiming at learning such basis matrices for kernel approximation
based on the aforementioned criteria. The goal is to select as few subspace directions
as possible, which provide the best generalization ability on the class discrimination.
This can be achieved using metric learning techniques, which usually require the per-
formance evaluation on the training set. On the contrary, our method only demands
the computations on the subspace bases, which is a much smaller set compared to
the training data. After learning the subspace bases, they can be used for kernel
approximation and classification with any base classifiers.

Paper 5: CLASK Feature Extraction and Large Scale Classi-
fication

The contribution of this paper is the development of classification frameworks for
large-scale problems, which is based on a novel classification training technique called
the Adaptive Margin Slack Minimization (AMSM) that employees an adaptive data
selection scheme using LS-SVM as its base classifier.

LS-SVM is a simple but efficient classification technique, where the separating
hyperplane is identified by performing linear regression on the training data using
their closest marginal hyperplane [58]. L2-SVM, when training on the primal given
the Representer theorem (c.f. Theorem 2.7), can be considered as an extension to
LS-SVM, where only the marginally misclassified patterns are included for training
at each iteration. In this paper, we further extend the idea of subset selection using
an adaptive margin. The margin is selected based on a greedy mechanism such that
convergence is guaranteed.

Furthermore, we have explored the possibilities of using the kernel function CLASK
as the feature extractor in combination with the proposed AMSM algorithm.

To handle large-scale datasets, we have proposed two frameworks: the Memory
Efficient Sequential Processing (MESP) framework and the Parallel Sequential Pro-
cessing (PSP) framework, which can be efficiently implemented using a queue and
a stack data structure, respectively. The framework MESP can be employed when
only one processor is available, whereas PSP is efficient for multithread or distributed
processing.

4.2.5 A Feature Transformation System Using CLASK

In Fig. 4.3, we have shown a feature transformation system using the kernel function
CLASK. It also serves as a summary of the techniques proposed in the aforementioned
papers. The output of the system is a finite dimensional vector space that can be
used as the new feature space.

57

Chapter 4. Summary of Included Papers

Standard Kernel Approximation Techniques
 (e.g. Sequential KPCA, Incomplete Cholesky)

Class 1 Class cClass 1 Class C

EDSA (PAPER 2)

CLASMK-ML (PAPER 1)

KESIR (PAPER 3)

A CLASK feature construction system

Testing data
Compute Explicit Feature

Figure 4.3: This figure shows how the techniques presented in the included papers are
aggregated into a feature transformation system using the kernel function CLASK.

58

4.3. Software Package: DeepCLASK

4.3 Software Package: DeepCLASK
A MATLAB package called DeepCLASK and its documentation can be found in the
following link: https://github.com/yinan16/DeepCLASK.

The package is an implementation (with some extensions) of the aforementioned
algorithms developed in this thesis work. A brief summary of the software structure
is illustrated in Fig. 4.4.One may refer to the website for further demonstrations,
documentations and future updates.

4.4 Conclusions
Kernel methods became popular due to the success of Support Vector Machines in
various domains, where a nonlinear map is implicitly constructed by the definition
of a positive semi-definite kernel function. Although it is mostly known that kernels
are closely tied to SVMs, one shall not neglect the fact that kernel techniques can be
used as feature transformation for gaining better data descriptive power.

However, kernel methods usually involve pairwise evaluation on the training set.
When the training size N grows large, the operations and storage needed for the
N ×N kernel matrix might become prohibitive.

To overcome such issues, kernel approximation techniques can be applied, which
gives rise of the subspace model in the Kernel Reproducing Hilbert Space. Further-
more, for classification problems, one aims at enhancing the class-separability with
approximate solutions, where the class-separability can be defined in various ways
with essentially two elements: the within-class distance and the between-class dis-
tance. With optimization techniques such as metric learning, one can approximate
the optimality by enhancing the within-class distance, while suppressing the between-
class distance.

In this thesis, we first explored the underlying structure of kernel subspace models
and proposed the CLAss-specific Subspace Kernel function for kernel approximation
and classification. Given the CLASK function, a kernel feature transformation system
is presented. The system consists of three parts: 1) Multiple-Kernel model selection;
2) Subset selection for kernel approximation; and 3) Linear transformation in the
RKHS, where the class-separability is enhanced at each step. Moreover, the algo-
rithms are designed to handle large scale problems on two levels. First of all, from a
algorithmic point of view, given C classes, the order of the computational complexity
of the class-specific subset selection and learning individual transformation matrices
are both scaled down by a factor of C2 compared to the one kernel subspace model.
Secondly, large scale computational frameworks are proposed for sequential learning
and parallelization, which can be then used with distributed computing infrastruc-
tures.

59

https://github.com/yinan16/DeepCLASK

Chapter 4. Summary of Included Papers

Feature
Selection

Kernel Model
Selection

Kernel
Approximation

Subsampling

Transformation

Classifier

KPCA ()

EDSA ()

EDSA_COMMON_K ()

KSODA ()

KESIR ()

AMSM

Feature Selection on the Input Set (e.g. Fisher Score)

CLASK_OPT ()

CLASK_OPT_BOOST ()

Feature Space
Construction FS_CONST ()

Clustering in the Original Space

Figure 4.4: The training framework of the package DeepCLASK. This figure shows
the main functions (indicated by blue windows) contained in DeepCLASK. The loop
indicates the multilayer structure of the learning model.

60

Chapter 5

Future work

In this thesis, we have explored the class-specific subspace model in the RKHS using
class-specific kernel functions for feature transformation and kernel approximation.
Besides promising results within the scope of this thesis, there are three main di-
rections yet to be investigated. Firstly, one future direction would be to apply our
feature extraction system (c.f. Fig. 4.3) with the CLASK model to various appli-
cations using domain specific kernel functions, such as natural language processing,
image/video processing, medical applications, etc. Secondly, with the growing needs
for big data processing capabilities and the development of distributed and parallel
computing frameworks, it is important to adapt our algorithms to the state-of-the-art
software architectures for solving large scale learning problems. The scalability can be
achieved in different ways. One way to look at the problem is to analyze the stochastic
properties of the learning system with respect to random training sets. For instance,
when using a “divide-and-conquer” type of learning framework, the consistency of the
learning model and the training algorithm plays a key role in the learnablility of the
system. On the other hand, some approaches (such as utilization of Graphic Process-
ing Units) use a large amount of small computing units for speeding up the process.
In this case, adaptations of our algorithms can be made in order to benefit from such
frameworks. Lastly, further testing of the system as a whole is to be conducted in
order to establish its strengths and boundaries.

61

References

[1] C. M. Bishop, Pattern Recognition and Machine Learning. Cambridge, U.K.:
Springer, 2006.

[2] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning:
Data mining, Inference, and Prediction. New York: Springer, 2009.

[3] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and
new perspectives,” Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 35(8), pp. 1798–1828, 2013.

[4] A. Jain, R. Duin, and J. Mao, “Statistical pattern recognition: a review,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 22(1), pp. 4–37,
2002.

[5] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component analysis,”
Journal of Computational and Graphical Statistics, vol. 15(2), pp. 262–286, 2006.

[6] A. d’Aspremont, L. Ghaoui, M. Jordan, and G. R. G. Lanckriet, “A direct for-
mulation for sparse PCA using semidefinite programming,” SIAM Review, vol.
49(3), pp. 434–448, 2007.

[7] J. MacQueen, “Some methods for classification and analysis of multivariate ob-
servations,” in Proceedings of 5th Berkeley Symposium on Mathematical Statistics
and Probability, vol. 1, 1967, pp. 281–297.

[8] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “NP-hardness of Euclidean
sum-of-squares clustering,” Machine Learning, vol. 75, pp. 245–249, 2009.

[9] B. Schölkopf and A. Smola, Learning with Kernels. MIT Press, 2002.

[10] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. New
York, NY, USA: Cambridge University Press, 2004.

[11] S. Y. Kung, Kernel Methods and Machine Learning. Cambridge Press, 2014.

[12] S. Theodoridis, Machine Learning, A Bayesian and Optimization Perspective.
Academic Press, 2015.

[13] V. N. Vapnik, The Nature of Statistical Learning Theory. Springer-Verlag, 1995.

63

REFERENCES

[14] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th ed. Academic
Press, 2009.

[15] C. Cortes and V. N. Vapnik, “Support-vector networks,” Machine Learning, vol.
20(3), 1995.

[16] L. Vandenberghe and S. P. Boyd, Convex Optimization. Stanford University,
2004.

[17] [Online]. Available: https://en.wikipedia.org/wiki/Occam%27s_razor

[18] G. Folland, Real Analysis: Modern Techniques and Their Applications, 2nd ed.
Wiley, 1999.

[19] D. Montgomery, “Non-separable metric spaces,” Fundamenta Mathematicae, vol.
1(25), pp. 527–533, 1935.

[20] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the American
Mathematical Society, vol. 68(3), pp. 337–404, 1950.

[21] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins, “Text
classification using string kernels,” Journal of Machine Learning Research, pp.
419–444, 2002.

[22] C. Corinna, M. Mehryar, and R. Afshin, “Algorithms for learning kernels based
on centered alignment,” Journal of Machine Learning Research, vol. 13, pp. 795–
828, 2012.

[23] M. G. Genton, N. Cristianini, J. Shawe-taylor, and R. Williamson, “Classes
of kernels for machine learning: a statistics perspective,” Journal of Machine
Learning Research, vol. 2, pp. 299–312, 2001.

[24] K. Ghiasi-Shirazi, R. Safabakhsh, and M. Shamsi, “Learning translation invariant
kernels for classification,” Journal of Machine Learning Research, pp. 1353–1390,
2010.

[25] G. Arfken, Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic
Press, 1985.

[26] A. Berlinet and C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Prob-
ability and Statistics, 1st ed. Springer NY, 2004.

[27] G. Carlos, “Lecture notes,” Machine Learning Course, 2007.
[Online]. Available: http://www.cs.cmu.edu/~guestrin/Class/15781/slides/
learningtheory-bns-annotated.pdf

[28] R. Picard and D. Cook, “Cross-validation of regression models,” Journal of the
American Statistical Association, vol. 79(387), pp. 575–583, 1984.

64

https://en.wikipedia.org/wiki/Occam%27s_razor
http://www.cs.cmu.edu/~guestrin/Class/15781/slides/learningtheory-bns-annotated.pdf
http://www.cs.cmu.edu/~guestrin/Class/15781/slides/learningtheory-bns-annotated.pdf

REFERENCES

[29] S. Geisser, Predictive Inference. NY: Chapman and Hall, 1993.

[30] S. Varma and R. Simon, “Bias in error estimation when using cross-validation
for model selection,” BMC Bioinformatics, vol. 7(91), 2006.

[31] M. Gönen and E. Alpaydin, “Multiple kernel learning algorithms,” Journal of
Machine Learning Research, vol. 12, pp. 2211–2268, 2011.

[32] A. Hoerl and R. Kennard, “Ridge regression: Biased estimation for nonorthogo-
nal problems,” Technometrics, vol. 42, pp. 80–86, 1970.

[33] W. Hager, “Updating the inverse of a matrix,” SIAM Review, vol. 31(2), pp.
221–239, 1989.

[34] K. Diamantaras and S. Y. Kung, Principal Component Neural Networks. John
Wiley, 1996.

[35] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis as
a kernel eigenvalue problem,” Neural Computation, vol. 10(5), pp. 1299–1319,
1998.

[36] ——, “Kernel principal component analysis,” Advances in Kernel Methods - Sup-
port Vector Learning, pp. 327–352, 1999.

[37] W. Rudin, Fourier Analysis on Groups. Wiley-Interscience New York, 1994.

[38] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in
Advances in Neural Information Processing Systems, 2007.

[39] C. Williams and M. Seeger, “Using the Nyström method to speed up kernel
machines,” in Advances in Neural Information Processing Systems, vol. 13, 2001,
pp. 682–688.

[40] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping using the
Nyström method,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 26(2), pp. 214–225, 2004.

[41] P. Drineas and M. Mahoney, “On the Nyström method for approximating a
gram matrix for improved kernelbased learning,” Journal of Machine Learning
Research, pp. 2153–2175, 2005.

[42] K. Zhang, I. Tsang, and J. Kwok, “Improved Nyström low-rank approximation
and error analysis,” in International Conference on Machine Learning, 2008, pp.
1232–1239.

[43] S. Kumar, M. Mohri, and A. Talwalkar, “Sampling methods for the Nyström
method,” Journal of Machine Learning Research, vol. 13, pp. 981–1006, 2012.

65

REFERENCES

[44] T. Yang, Y. Li, M. Mahdavi, R. Jin, and Z. Zhou, “Nyström method vs random
Fourier features: a theoretical and empirical comparison,” in Advances in Neural
Information Processing Systems, 2012.

[45] M. Ouimet and Y. Bengio, “Greedy spectral embedding,” in Proceeding of the
10th International Workshop on Artificial Intelligence and Statistics, 2005, pp.
253–260.

[46] S. Fine and K. Scheinberg, “Efficient SVM training using low-rank kernel repre-
sentations,” Journal of Machine Learning Research, vol. 2, pp. 243–264, 2001.

[47] F. Bach and M. Jordan, “Kernel independent component analysis,” Journal of
Machine Learning Research, vol. 3, pp. 1–48, 2002.

[48] ——, “Predictive low-rank decomposition for kernel methods,” in Proceeding of
International Conference on Machine Learning, 2005.

[49] S. Si, C. J. Hsieh, and I. Dhillon, “Memory efficient kernel approximation,” in
Proceedings of the 31st International Conference on Machine Learning, 2014, pp.
701–709.

[50] J. Platt, “Fast training of support vector machines using sequential minimal
optimization,” Advances in Kernel Methods, pp. 185–208, 1999.

[51] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face recognition
via sparse representation,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 31(2), pp. 210–227, 2009.

[52] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory, and
applications,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
2013.

[53] V. Zografos, L. Ellis, and R. Mester, “Discriminative subspace clustering,” in
Computer Vision and Pattern Recognition (CVPR), IEEE Conference on, 2013,
pp. 2107–2114.

[54] E. Oja, Subspace Methods of Pattern Recognition. Research Studies Press, Letch-
worth and J. Wiley, 1983.

[55] L. Scharf and B. Friedlander, “Matched subspace detectors,” Signal Processing,
IEEE Transactions on, pp. 2146–2157, 1994.

[56] S. Watanabe, P. F. Lambert, C. Kulikowski, J. Buxton, and R. Walker, “Evalua-
tion and selection of variables in pattern recognition,” Computer and Information
Sciences, vol. 2, pp. 91–122, 1967.

[57] K. Tsuda, “Subspace classifier in the Hilbert space,” Pattern Recognition Letters,
vol. 20, pp. 513–519, 1999.

66

REFERENCES

[58] J. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,”
Neural Processing Letters, vol. 9(3), pp. 293–300, 1999.

67

