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Abstract: Molecular solar-thermal energy storage systems

are based on molecular switches that reversibly convert
solar energy into chemical energy. Herein, we report the syn-
thesis, characterization, and computational evaluation of

a series of low molecular weight (193–260 g mol@1) norbor-
nadiene–quadricyclane systems. The molecules feature

cyano acceptor and ethynyl-substituted aromatic donor
groups, leading to a good match with solar irradiation,

quantitative photo-thermal conversion between the norbor-

nadiene and quadricyclane, as well as high energy storage
densities (396–629 kJ kg@1). The spectroscopic properties and
energy storage capability have been further evaluated

through density functional theory calculations, which indi-
cate that the ethynyl moiety plays a critical role in obtaining

the high oscillator strengths seen for these molecules.

Introduction

Reversible photoinduced isomerization of organic or organo-
metallic compounds into metastable isomers has been recog-

nized as a means of storing solar energy,[1] a strategy frequent-
ly referred to as molecular solar-thermal (MOST) energy stor-
age.[2] A number of different systems have been proposed, in-

cluding anthracene,[3] stilbene,[4] azobenzene,[5] dihydroazu-
lene,[6] and tetracarbonyl-fulvalene-diruthenium[7] derivatives.

The system that has received most attention, as a large
amount of energy can be stored in a small ring, is probably
norbornadiene (1), which undergoes an endothermic photoin-
duced [2++2] cycloaddition to its valence isomer quadricyclane
(2).[8] The reaction is reversible, and by thermal or catalytic in-

duction the reverse reaction regenerates norbornadiene with
release of heat (Scheme 1).

To design a practically useful MOST system, several require-
ments have to be fulfilled: 1) solar spectrum match for the ab-

sorption of the parent compound (in this case norbornadiene),
2) high photoisomerization quantum yield, 3) no spectral over-
lap between the parent compound and the photoisomer (the

photoisomer should not compete for photons) and, 4) a highly
endergonic reaction profile with a high activation energy for

the reverse reaction.[1c] Another important factor affecting the
performance is the molecular weight, which together with the

storage energy gives the storage density. Moreover, for practi-
cal flow device applications, a liquid is required, which means

that the solubilities of both the parent compound and the
photoisomer become crucial.[9]

The absorption onset of unsubstituted norbornadiene 1 is

267 nm, but since the intensity of solar radiation below around
300 nm is very low at sea level, norbornadiene is essentially

inert to sunlight. To prepare quadricyclane, high-power ultra-
violet lamps are employed, typically in the presence of a photo-

sensitizer. Approaches to red-shift the absorption of 1 have

previously been studied, and one method is to introduce elec-
tron-donating and electron-accepting substituents to create

a push–pull conjugated system.[8d] However, the introduction
of large substituents is at the expense of a high molecular

weight, which in turn lowers the energy storage density. Com-
putational work has shown that the molar storage energy is

Scheme 1. Photoinduced isomerization of norbornadiene 1 to quadricyclane
2 and the back conversion.
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largely independent of substitution pattern, implying that the
molecular weight is the most important optimization parame-

ter in this regard.[10] In previous studies by our group, a series
of electron-donating and electron-accepting diaryl-substituted

norbornadienes with an improved solar spectrum match com-
pared to 1 was synthesized (Table 1).[11] The most red-shifted

compound (3 e) has an absorption maximum at 365 nm and
an absorption onset of 462 nm. However, this significant red-
shift comes at the expense of a rather high molecular weight,

355 g mol@1 for 3 e, compared to 92 g mol@1 for 1 (Table 1).

Although compound 3 e allowed the evaluation of a solar-
collecting device, there is plenty of room for improvement in

terms of molecular weight, half-life of the photoisomer, solubil-
ity, as well as solar spectrum match. As mentioned above,

a recent computational study suggested that the molecular
weight is a key optimization parameter when aiming for high

energy density in these systems.[10] Inspired by this hypothesis,

our approach here was to find a robust low molecular weight
electron-accepting substituent to replace the p-substituted
phenyl groups in compounds 3 a–e. Herein, we report a series
of new cyano-substituted norbornadiene derivatives with im-

proved photochemical properties yet significantly reduced mo-
lecular weight.

Results and Discussion

Since the cyano group is one of the smallest electron-accept-
ing groups, with a molecular weight of only 27 g mol@1 com-

pared to 103 g mol@1 for the p-C6H4CN group, our first choice
for modification of the previously reported norbornadiene

system (Table 1, 3 a–e) was to attach a cyano group directly at

a vinyl carbon atom (C2) thereof. 2,3-Dicyanonorbornadienes
with aliphatic substituents in different positions have been re-

ported to have high solubility in organic solvents.[12] 2,3-Dicya-
nonorbornadiene has been investigated as an MOST candidate,

both in the free state[13] and as a ligand in ruthenium com-
plexes,[14] but to the best of our knowledge, 2-cyanonorborna-

dienes bearing electron-donating aryl substituents at the 3-po-
sition have not hitherto been described. Therefore, a new syn-
thetic route had to be developed.

Conformational analysis of 3 a–e revealed that steric hin-

drance forces the aromatic substituents out of plane, reducing
the overlap between the p-systems of these substituents and

the norbornadiene carbon-carbon double bond.[15] We hy-
pothesized that reduced steric hindrance would allow for
greater orbital overlap and hence a more red-shifted absorp-

tion spectrum. Based on this analysis, an ethynyl linker was in-
troduced between the aromatic donor group and the norbor-
nadiene C3 atom. This has the additional effect of extending
the conjugated system and thus further red-shifting the ab-
sorption. Only a few examples of ethynyl-substituted norbor-
nadienes have been reported, which have included conjugated

polymers,[16] photochromic bridges to link dinuclear ruthenium

complexes,[17] and starting materials for the synthesis of ethyn-
yl cyclopentadiene derivatives by retro-Diels–Alder reactions.[18]

To the best of our knowledge, no application of these com-
pounds for MOST energy storage has been proposed. Thus,

this new series of norbornadiene derivatives is characterized
by a cyano group in the 2-position and a variety of aromatic

donor groups attached via a @C/C@ linker to the C3 carbon

atom. The selected target compounds 4 a–d are depicted in
Figure 1. In addition, compound 5 was prepared to allow

direct comparison between the systems with and without eth-
ynyl substitution.

Table 1. Diaryl-substituted norbornadienes (3 a–e) previously designed in
our group, the absorption maxima, absorption onsets, half-lives of the
corresponding quadricyclanes, and molecular weights.[11]

Entry R1 R2 Amax

[nm]
Aonset

[a]

[nm]
t1/2

[h]
MW

[g mol@1]

3 a H H 308 389 1030 244
3 b H OMe 309 402 751 274
3 c CF3 OMe 318 414 70 342
3 d CN OMe 350 431 209 299
3 e CF3 NMe2 365 462 1.9 355

[a] Absorption onset defined as log e= 2.

Figure 1. Second-generation norbornadienes 4 a–d and 5 with their molecu-
lar weights.
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Synthesis

Norbornadienes 4 a–d could be synthesized through a Sonoga-
shira[19] cross-coupling reaction between 2-cyano-3-chloronor-

bornadiene (6) and the corresponding donor-substituted acet-
ylene (Scheme 2 a), whereas 5 could be obtained by a Suzuki[20]

cross-coupling reaction between 6 and phenylboronic acid
(Scheme 2 b).

Consequently, an efficient synthesis of 6 was essential. Only
one synthetic procedure for 6 has been described in the litera-

ture.[21] In this procedure, a four-step synthetic route affords

1,1-dichloro-2,2-dicyanoethylene (12),[21a,b] which is allowed to
react with cyclopentadiene through a Diels–Alder reaction to

provide the norbornene derivative 14. Finally, treating 14 with
potassium hydroxide gives 6.[21c] The overall procedure is thus

a six-step route resulting in a moderate overall yield (22 %) of
6, and includes steps that appeared less attractive to us, such
as bubbling highly toxic chlorine gas through a solution of 10
for 8 h. It has recently been reported that 2,3-dibromonorbor-
nadiene reacts with copper(I) cyanide to give 2-bromo-3-cya-
nonorbornadiene in 35 % yield,[22] and since we have previously
reported[23] a one-pot route to 2-bromo-3-chloro-norborna-
diene, 15, it appeared logical to use 15 as a precursor for 6.
Indeed, 15 was found to react with copper(I) cyanide in N-

methylpyrrolidone to give the desired product 6 (Scheme 3). In
order to suppress the formation of 1,3-dicyanonorbornadiene,
an excess of 15 was used, which could be easily recovered and
recycled. The reaction mixture proved to be easy to separate.
It was applied to a silica pad and consecutively eluted, first

with pentane to recover unreacted 15, which could be reused
without further purification, and then with dichloromethane to

afford 6. The yield, based on consumed 15, was 88 %.
With 6 in hand, the next step towards 4 a–d and 5 was to

perform Sonogashira[19] or Suzuki[20] cross-couplings

(Scheme 2). The Sonogashira reaction to obtain symmetrical
norbornadiene-2,3-diynes from 2,3-dichloronorbornadienes

was first explored in 1997 by Durr et al.[24] as an alternative to
previous methods in which 2,3-diiodonium norbornadiene

salts were treated with lithium alkynyl-cuprates.[25] An alterna-
tive route, in which triflate groups are utilized as coupling part-
ner instead of a halogen, has also been explored.[26] Syntheses
of symmetrical and unsymmetrical norbornadiene-2,3-diynes

through palladium-catalyzed Sonagashira reactions using di-
chlorobis(triphenylphosphine)palladium(II), copper(I) iodide,

and trimethylamine have been reported by Tranmer et al.[27]

For the double-Sonogashira coupling reaction leading to sym-
metrical norbornadiene-2,3-diynes, the reactions were reported

to be more selective using toluene as solvent compared to
THF, whereas for the monocoupled products the opposite

effect was observed and THF provided purer products. More-
over, higher yields were obtained by rigorously excluding di-

oxygen and water. Therefore, dry degassed THF became our

solvent of choice. The Sonogashira reactions proceeded
smoothly in THF for all of the ethynyl derivatives using dichlor-

obis(triphenylphosphine)palladium(II), copper(I) iodide, and tri-
methylamine or diisopropylamine as the base. At room tem-

perature, the reactions were completed within 2–4 h and the
products were easily purified by flash column chromatography

to obtain 4 a–d in satisfactory yields (56–77 %). The Suzuki cou-

pling between 6 and phenylboronic acid was performed in
THF at reflux temperature with cesium fluoride, tri-tert-butyl-

phosphine, and tris(dibenzylideneacetone)dipalladium(0). In
order to obtain a satisfactory yield, plenty of the catalyst was

added (26 mol %) and after purification 5 was obtained in 57 %
yield.

Photoisomerization

The UV/Vis absorption spectra of 4 a–d and 5 in toluene are
shown in Figure 2 a, and the absorption onsets, absorption

maxima, and molar extinction coefficients are listed in Table 2.
The absorption maximum for 5 is 309 nm and the onset is
358 nm, whereas the maxima for 4 a–d are all in the range

331–398 nm with onsets in the range 374–456 nm. The most
red-shifted absorption was observed for 4 d, with a maximum

at 398 nm and an onset at 456 nm. Thus, among the synthe-
sized compounds, 4 d is the norbornadiene that best meets
the requirements of solar spectrum match. For comparison,
2,3-dicyanonorbornadiene has an onset of around 360 nm and
a maximum close to 300 nm.[13]

By comparing the absorption spectra of 4 a and 5, it be-
comes clear that the ethynyl unit not only exerts a significant

effect on the absorption onset, but also doubles the extinction
coefficient. The top candidate in our previous studies regard-

ing solar spectrum match (3 e, Figure 1) showed an absorption
maximum of 365 nm and an onset of 462 nm. Thus, compared

Scheme 2. a) Sonogashira cross-couplings to obtain 4 a–d. For 4 a :
R1 = phenyl, 4 b : R1 = p-methoxyphenyl, 4 c : R1 = 2-thiophenyl, 4 d : R1 = p-di-
methylaminophenyl. b) Suzuki cross-coupling to obtain 5.

Scheme 3. New route to 2-chloro-3-cyanonorbornadiene.
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to 3 e, compound 4 d has a sharper absorption peak with a sig-
nificant red-shift of the absorption maximum (398 nm;

+ 33 nm). The difference in onset of absorbance is smaller
(456 nm; @6 nm), which reflects the comparable spectrally

wider absorption band of 3 e compared to that of 4 d. This
could be a consequence of the steric hindrance between the

phenyl groups as well as thermally activated rotation of the
side groups in 3 e, which results in a distribution of phenyl ro-

tation angles, and thus electron communication between the

donor and acceptor groups leading to spectral broadening.
The overall solar spectrum match is roughly the same for the

two compounds; however, the molar extinction coefficient is
about three times higher for 4 d than for 3 e, which should be

taken into account in future device implementation.
To study the photoisomerization of 4 a–d and 5 to the corre-

sponding quadricyclanes (16 a–d and 17, Scheme 4), the nor-

bornadienes were irradiated with a metal-halide lamp. The for-
mation of the quadricyclanes was monitored by both NMR and

UV/Vis spectroscopies. In the UV/Vis absorption spectra
(Figure 3), no spectral overlap between the norbornadienes

and the quadricyclanes was observed in the visible region, al-
lowing for quantitative conversion between the two isomers

and thus meeting one of the important requirements for an ef-
ficient MOST system.

Furthermore, isosbestic points were detected in the UV/Vis

spectra of 4 a–d, indicating that only two species were present
in the solution (Figure 3). For 5, with the least red-shifted spec-

trum, the expected isosbestic point could not be observed in
toluene due to overlap with the absorption onset of the sol-

vent. However, NMR observation indicated that photoisomeri-
zation and back-conversion proceeded with little or no degra-

dation for 5 as well. To demonstrate that the compounds

could be fully converted by unfiltered solar light, a solution of
4 d in a quartz cuvette was exposed to 1.5 AM standard solar

spectrum in a solar simulator. After about 10 s, it was possible
to observe full conversion of 4 d to 16 d. This experiment

showed how 4 d has the potential to be employed as an MOST
system in testing devices with sunlight-induced conversion
(see Figure SI6 in the Supporting Information).

Photoisomerization quantum yields were determined in tolu-
ene using potassium ferrioxalate as a chemical actinometer.[28]

The measurements were carried out using a 365 nm or 310 nm
light-emitting diode and the quantum yields are reported as

Table 2. Absorption onsets, absorption maxima, molar extinction coeffi-
cients, and quantum yields of conversion to the corresponding quadricy-
clanes for 4 a–d and 5, determined in toluene.[a]

Entry emax

[m@1 cm@1]
Amax

[nm]
Aonset

[b]

[nm]
F

[%]

4 a 15.7 V 103 331 374 39
4 b 22.9 V 103 355 391 38
4 c 15.5 V 103 340 395 47
4 d 29.8 V 103 398 456 28
5 7.72 V 103 309 358 58

[a] Quantum yields (F) for the photoisomerization of norbornadienes
4 a–d and 5 to quadricyclanes 16 a–d and 17 reported as averages from
two to three individual measurements. Samples were irradiated at
365 nm (4 b, 4 c) or 310 nm (4 a, 5), each dissolved in toluene. [b] Absorp-
tion onset defined as log e= 2.

Figure 3. UV/Vis spectra of the formation of quadricyclanes (thick black
lines) by irradiation of norbornadienes (red lines): a) formation of 16 a from
4 a, b) formation of 16 b from 4 b, c) formation of 16 c from 4 c, d) formation
of 16 d from 4 d.

Figure 2. A) UV/Vis absorption spectra for 4 a–4 d, and 5 recorded in tolu-
ene. B) Absorption spectra of 4 a–4 d and 5 calculated at the B3LYP level
(top) in comparison with experiments (bottom). A scissors shift of 0.3 eV as
well as broadening of 0.20 eV were applied.

Scheme 4. Photoisomerization of 4 a–d and 5 to obtain 16 a–d and 17. For
4 a, 16 a : R1 = phenylethynyl; 4 b, 16 b : R1 = (p-methoxyphenyl)ethynyl; 4 c,
16 c : R1 = (2-thiophenyl)ethynyl; 4 d, 16 d : R1 = (p-dimethylaminophenyl)e-
thynyl ; 5, 17: R1 = phenyl.
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an average of two or three determinations (Table 2). The high-
est quantum yields were observed for 5 and 4 c at 59 % and

47 %, respectively, whereas those for 4 a and 4 b were lower at
39 % and 38 %, respectively. The top candidate with regard to

solar spectrum match (4 d) has a quantum yield of around
28 %.

Back conversion

To evaluate the thermal stabilities of the photoisomers (16 a–d
and 17), a kinetic study was performed to determine the en-
thalpies and entropies of activation for the thermally induced

reverse reactions. The experiment was carried out by determin-

ing the rate constants, k, at six different temperatures (Sup-
porting Information, Figure S3). The norbornadienes were con-

verted to the quadricyclanes by irradiation, and the back-con-
version was studied by measuring the increase in absorbance

by UV/Vis spectrophotometry. From the rate constants at these
different temperatures, the enthalpies and entropies of activa-

tion were estimated using the Eyring equation (Table 3).

The experiments showed 17, without an ethynyl unit, to be
much more stable than 16 a–d, with a half-life of around

55 days at room temperature. Among the norbornadienes with
the ethynyl linker, 16 a and 16 b have the longest half-lives of

approximately 22 and 16 h, respectively, whereas 16 c and 16 d
are less stable, with half-lives of approximately 7 and 5 h, at
room temperature. Thus, back-conversions of 16 c to 4 c and of

16 d to 4 d proceed much more rapidly than those of 16 a and
16 b. Nevertheless, 16 d has a 2.6 times longer half-life than

the previously studied photoisomer of 3 e, which has a storage
half-life of 1.9 h.

Energy storage

All compounds were photoisomerized to the corresponding
quadricyclanes, and the enthalpies of the back-conversion to

the norbornadienes were determined by differential scanning

calorimetry (DSC). In addition, NMR spectroscopy and thermal
gravimetric analyses were performed to verify that photoiso-

merization and heat release occurred with little or no degrada-
tion.

All of the compounds show exothermic peaks upon isomeri-
zation to the norbornadienes. Isomerizations of 16 d to 4 d and

of 17 to 5 each show one exothermic peak (Figure 4), and the
measured values of the heat release are 103 and 122 kJ mol@1,

respectively, corresponding to energy storage densities of 396–
629 kJ kg@1 (Table 4).

However, for compounds 16 a, 16 b, and 16 c, two exother-
mic peaks were observed for the thermal back-conversion

(Supporting Information, Figure S4), which we speculate may
be due to complex phase behavior in the mixture of norborna-

diene and quadricyclane. Since distinguishing the heat release

peak from other eventual phase transitions was troublesome
for these compounds, it was not possible to precisely deter-

mine the values, and hence they are not reported here.

Insight from electronic structure calculations

To elucidate the features of the measured absorption spectrum
and to rationalize the experimental findings, we performed
regular as well as time-dependent density functional theory

(TD-DFT) calculations at the B3LYP/6-311 + G* level[29] on each

Table 3. Thermodynamic data for the thermal reactions from quadricy-
clanes 16 a–d and 17 to norbornadienes 4 a–d and 5, determined in tolu-
ene.

Entry DH*

[kJ mol@1]
DS*

[J K@1 mol@1]
t1/2

[a]

[h]

16 a !4 a 104 5.57 22.0
16 b!4 b 102 3.86 15.8
16 c!4 c 101 5.65 7.43
16 d!4 d 92.5 @19.1 5.05
17!5 112 @1.31 1320

[a] Half-lives of the photoisomers 16 a–d and 17 determined from Eyring
parameters at 25 8C.

Figure 4. DSC thermograms showing the heat release peaks for the thermal
back-conversion of quadricyclanes 16 d and 17 to the corresponding norbor-
nadienes. Melting of 16 d was observed at around 120 8C.

Table 4. Energy storage densities for 16 d and 17, determined by DSC.

Entry DH
[kJ mol@1]

DH
[kJ kg@1]

DH
[kcal mol@1]

16 d!4 d 103 396 25
17!5 122 629 29
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of the compounds. Based on a systematic comparison of differ-
ent exchange-correlation functionals with MP2 as well as com-

plete active space calculations,[10] we have previously estab-
lished that the B3LYP functional yields absorption spectra and

geometries in good agreement with both experiment and
higher-level calculations.

The calculated absorption spectra are generally in good
agreement with experiment (Figure 2 b). The most notable dif-

ference with respect to experimental spectra is the absence of

a shoulder on the high-energy side of the first excitation peak
for compounds 4 a–d. We suggest that this feature can be at-

tributed to the presence of the ethynyl bridge in these com-
pounds. The ground-state geometry maximizes the conjuga-

tion of the p-system that extends from the double bond in the
norbornadiene part of the molecule via the ethynyl bridge to
the functionalized phenyl group. Rotations about the triple

bond in the bridge are very soft and therefore readily sampled
under ambient conditions. At the same time, these rotations
reduce the conjugation, causing a blue-shift of the first excita-
tion maximum, which is dominated by the HOMO–LUMO tran-

sition and is therefore most sensitive to changes in the p-
system. If these effects are superimposed, they give rise to

a pronounced shoulder on the high-energy side of the first ab-

sorption maximum. This interpretation is supported by the ob-
servation that the shoulder feature is specific to the com-

pounds that contain an ethynyl bridge (4 a–d) and absent in
compounds that have aryl substituents attached via single

bonds (compound 5 in the present work as well as the com-
pounds in our previous report[11]).

Most crucially, the calculations correctly capture all of the

relevant trends, namely the increasing red-shift on going from
4 a to 4 d and the large difference in the magnitude of the ex-

tinction coefficient between equivalent compounds with (4 a)
and without (5) an ethynyl bridge.

The shift of the absorption spectrum with the strength of
the donor species is in line with our earlier calculations.[10, 15]

More interesting in the present context is the strong enhance-

ment of the dipole oscillator strength (Table 5) that results
from insertion of an ethynyl bridge on going from 4 a to 5,
and gives rise to a large increase in the extinction coefficient.
The lowest excitation in both cases is dominated by HOMO–

LUMO transitions. The dipole oscillator strength depends on
the transition dipole moment, hLUMOĵrjHOMOi, which illus-

trates that the transition strength is sensitive to the spatial
overlap between the orbitals involved, in particular near the
nodes. It is therefore instructive to compare the relative align-

ment of the HOMO and LUMO states in 4 a and 5 (Figure 5).
This reveals a near-perfect alignment of the orbitals across the

triple bond in 4 a, with the node in the LUMO being located
precisely at the midpoint between the two C atoms. In con-

trast, in the case of 5, the bond angle across the C=C double

bond to the phenyl ring distorts both the LUMO and HOMO,
and shifts the LUMO node away from the maximum of the

HOMO state at the center of the C@C bond. The ethynyl group
in 4 a thus minimizes the distortion of the conjugated p-

system between the parent compound and the donor group,
which enhances both the red-shift and the dipole strength.

After geometry relaxation, vibrational contributions to stor-
age enthalpies were calculated for each rotamer and the re-

sulting DH values are reported in Table 5.
For systems with multiple rotamers, the enthalpies of the

norbornadiene and quadricyclane systems were Boltzmann-
weighted before calculating the final storage enthalpy. For the

molecules 4 d and 5, for which energy differences between the
quadricyclane and norbornadiene form are available, the calcu-

lated energies show good agreement with experimental obser-

vation.

Conclusions

A series of substituted donor–acceptor norbornadienes with
cyano acceptors and ethynyl-aryl donor units has been synthe-

sized and evaluated in the context of molecular solar-thermal
energy storage. A key step in the synthesis is a procedure for

Table 5. Calculated storage energies (DH) and dipole oscillator strengths
for the first excitation (f) for compounds 4 a–d and 5.

Entry DH [kJ mol@1] f [a.u.]

4 a 118.46 0.44
4 b[a] 121.00 0.66/0.64
4 c[a] 119.03 0.53/0.52
4 d 124.46 0.83
5 114.27 0.16

[a] Data for both rotamers are provided.

Figure 5. HOMO (left) and LUMO (right) isosurfaces for: a) 4 a, and b) 5. The
stronger distortion of the orbitals across the bridging bond between parent
compound and donor group in the case of 5 relative to 4 a reduces the
dipole strength of the HOMO–LUMO transition in the former case and leads
to a lower overall attenuation coefficient.
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the formation of 2-cyano-3-chloronorbornadiene from readily
available starting materials. Carbon-carbon bond-forming reac-

tions based on Suzuki or Sonogashira cross-couplings have
been established in order to prepare the target compounds in

57–77 % yields from 2-cyano-3-chloronorbornadiene. The pho-
tophysical properties of the compounds have been investigat-

ed, which confirmed that the applied substitution pattern is ef-
fective in red-shifting the absorption of norbornadiene (1) by

up to 189 nm (absorption onset 456 nm) for compound 4 d,

this being obtained in a system with a molecular weight of
only 260 g mol@1. In comparison, previously reported 3 e shows
a similar onset of absorption (462 nm), but at the expense of
a much higher molecular weight of 355 g mol@1. Nevertheless,

the absorption onset of 4 d is still 200 nm away from the “opti-
mal” onset of absorption of 656 nm, which could be a parame-

ter for future optimization.[9] The storage density recorded

upon heat-releasing conversion of quadricyclane to norborna-
diene showed energy densities of up to 629 kJ kg@1, exceeding

the energy densities typically found in phase-change materi-
als.[30] The half-lives of the photoisomers 16 a–d are in the

range 5–22 h, which means that for future applications where-
by long-term storage as well as an optimal solar spectrum

match are needed, the molecular system still needs some opti-

mization and compounds akin to 17 may be more suitable.
The compounds 4 a–d developed in the present study show

significantly higher extinction coefficients than the systems
3 a–e that we investigated previously.[11] Through first princi-

ples calculations, we have shown that the ethynyl group is re-
sponsible for this enhancement as it reduces the distortion of

HOMO and LUMO states across the bond between the parent

compound and the donor group. This interpretation has been
confirmed by the experimental realization of compound 5, the

ethynyl-free analogue of 4 a. The maximum extinction coeffi-
cient of 5 is indeed both blue-shifted and halved compared to

that for 4. This finding suggests that the insertion of triple
bonds could be employed for similar purposes in other chro-

mophore systems.

Experimental Section

General

All commercial chemicals were used as received. 2-Bromo-3-chloro-
norbornadiene was prepared according to published procedures.
Tetrahydrofuran (THF) was dried using an MBraun MB SPS-800 sol-
vent purification system. All glassware was dried overnight at
150 8C. Column chromatography was performed on a Biotage Iso-
lera One instrument using pre-packed silica columns (25 g or 50 g
BiotageS SNAP Cartridge). All spectrophotometric analyses were
performed using a Cary 50 Bio or a Cary 100 UV/Vis spectropho-
tometer. Quantum yields were determined using potassium ferriox-
alate as a chemical actinometer and a fiber-coupled LED (M365 F1
(365 nm) or M310 L3 (310 nm)) for irradiation. 1H and 13C NMR spec-
tra were obtained at 400 and 100 MHz, respectively, on a Varian
400/54 spectrometer. 13C NMR spectra of the quadricyclanes 16 a–d
were obtained on a Varian 500 MHz spectrometer. Chemical shifts
are reported in ppm with residual protonated solvent as an inter-
nal standard (CHCl3 dH = 7.26 ppm, CHCl3 dC = 77.16 ppm). Elemen-
tal analyses were performed at the Mikroanalytisches Laboratorium

Kolbe, Melheim, Germany. IR analyses were carried out on a Perkin-
Elmer Frontier FTIR spectrometer. Differential scanning calorimetry
(DSC) experiments were performed on a Mettler Toledo DSC 2 ap-
paratus.

Synthesis

2-Cyano-3-chloronorbornadiene (6): 2-Bromo-3-chloronorborna-
diene (15 ; 10.2 g, 0.0500 mol) was dissolved in N-methylpyrroli-
done (20 mL) and the solution was degassed. Copper(I) cyanide
(3.58 g, 0.0400 mol) was added, and the mixture was stirred at
100 8C under nitrogen for 7 h. The reaction mixture was cooled
and mixed with 1 m aqueous sodium cyanide solution (100 mL)
and diethyl ether (100 mL). Vigorous shaking may result in an
emulsion. The phases were separated, the aqueous phase was ex-
tracted with diethyl ether (5 V 50 mL), and the volume of the com-
bined organic phases was reduced to about 30 mL in vacuo. The
solution was washed with water (3 V 10 mL) and brine (10 mL), and
then concentrated. The product was diluted with pentane to
about twice the volume and applied to silica gel moistened with
pentane (ca. 25 mm silica layer in a Ø 65 mm sintered glass
funnel). The product was eluted from the silica with pentane
(150 mL) followed by dichloromethane (200 mL). The pentane frac-
tion was concentrated to give 15 (2.7 g) as a colorless liquid. The
dichloromethane fraction was dried over Na2SO4 and concentrated
to give 6 as a slightly yellow liquid (4.92 g; 88 % yield based on
consumed 15). Analytical data were consistent with previous re-
ports. 1H NMR (CDCl3): d= 6.92 (ddd, J = 5.1, 2.9, 0.7 Hz, 1 H), 6.86
(ddd, J = 5.1, 3.0, 0.9 Hz, 1 H), 3.86 (dddd, J = 4.4, 2.7, 1.7, 0.9 Hz,
1 H), 3.62 (ddtd, J = 3.1, 2.4, 1.6, 0.7 Hz, 1 H), 2.41 (dt, J = 6.9, 1.6 Hz,
1 H), 2.25 ppm (dt, J = 6.9, 1.7 Hz, 1 H); 13C NMR (CDCl3): d= 165.58,
142.87, 140.43, 120.37, 114.51, 72.85, 58.22, 53.84 ppm.

Sonogashira cross-coupling (general procedure): 2-Cyano-3-
chloronorbornadiene (1 equiv.), copper(I) iodide (10 mol %), and di-
chlorobis(triphenylphosphine)palladium(II) (5 mol %) were taken up
in THF (5 mL mmol@1) in a dry flask under nitrogen atmosphere.
Dry triethylamine or diisopropylamine (0.33 mL mmol@1) was added
dropwise over 15 min to the reaction mixture. A solution of the
acetylene derivative (1.1 equiv.) in THF (1 mL) was slowly added,
and the resulting mixture was stirred at room temperature for 2–
4 h. It was then diluted with dichloromethane (30 mL) and filtered
through a short silica plug. The solvents were evaporated, the resi-
due was dissolved in diethyl ether (30 mL), and the solution was
washed with water (10 V 3 mL) and brine (10 mL). The crude prod-
uct was purified by automated column chromatography.

2-Cyano-3-(phenylethynyl)norbornadiene (4 a): 2-Cyano-3-chloro-
norbornadiene (400 mg, 2.6 mmol, 1 equiv.), copper(I) iodide
(50 mg, 0.26 mmol, 10 mol %), bis(triphenylphosphine)palladium(II)
dichloride (92 mg, 0.13 mmol, 5 mol %), diisopropylamine
(0.82 mL), and phenylacetylene (290 mg, 2.8 mmol, 1.1 equiv.) were
reacted according to the general procedure. The crude product
was purified by automated column chromatography (CH2Cl2/hep-
tane, 3:7) to provide 2-cyano-3-(phenylethynyl)norbornadiene 4 a
(405 mg, 1.9 mmol, 73 %) as an off-white solid. 1H NMR (CDCl3): d=
7.54–7.48 (m, 2 H), 7.42–7.32 (m, 3 H), 6.87 (qdd, J = 5.1, 2.9, 0.9 Hz,
2 H), 3.90 (ddt, J = 2.3, 1.7, 1.0 Hz, 1 H), 3.85 (dtd, J = 2.9, 1.5, 0.7 Hz,
1 H), 2.33 (dt, J = 7.0, 1.5 Hz, 1 H), 2.23 ppm (dt, J = 7.0, 1.6 Hz, 1 H);
13C NMR (CDCl3): d= 154.20, 142.27, 141.39, 132.02, 129.69, 128.62,
128.45, 122.12, 116.47, 107.90, 83.26, 72.91, 57.34, 54.19 ppm; IR:
ñ= 3005.8, 2978.1, 2907.1, 2859.8, 2812.4, 2107.0, 2153.6, 1607.3,
1567.8, 1516.5, 1437.6, 1358.7, 1287.7, 1226.6, 1058.9, 1171.3,
1102.3, 1017.5 (m), 936.57, 818.2, 806.37, 739.3, 693.93, 668.29,
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561.76, 530.2, 472.99, 453.26 cm@1; elemental analysis calcd (%) for
C16H11N: C 88.45, H 5.10, N 6.45; found: C 87.69, H 5.26, N 6.49.

2-Cyano-3-((4-methoxyphenyl)ethynyl)norbornadiene (4 b): 2-
Cyano-3-chloronorbornadiene (110 mg, 0.73 mmol, 1 equiv.), cop-
per(I) iodide (12.5 mg, 0.07 mmol, 10 mol %), bis(triphenylphosphi-
ne)palladium(II) dichloride (23 mg, 0.03 mmol, 4 mol %), triethyla-
mine (0.27 mL), and 1-ethynyl-4-methoxybenzene (110 mg,
0.83 mmol, 1.1 equiv.) were reacted according to the general pro-
cedure. The crude product was purified by automated column
chromatography (CH2Cl2/hexane, 1:1) to provide 2-cyano-3-((4-me-
thoxyphenyl)ethynyl)norbornadiene 4 b (139 mg, 0.56 mmol, 77 %)
as an off-white/yellow oil. 1H NMR (CDCl3): d= 7.48–7.43 (m, 2 H),
6.90–6.83 (m, 4 H), 3.89–3.87 (m, 1 H), 3.83 (s, 3 H), 3.83–3.81 (m,
1 H), 2.31 (dt, J = 7.0, 1.7 Hz, 1 H), 2.21 ppm (dt, J = 7.0, 1.6 Hz, 1 H);
13C NMR (CDCl3): d= 160.82, 154.51, 142.32, 141.30, 133.75, 126.97,
116.75, 114.34, 114.21, 108.54, 82.64, 72.70, 57.35, 55.54,
54.07 ppm; IR: ñ= 3002.5, 2940.4, 2874.4, 2835.6, 2206.8, 2160.3,
1604.7, 1569.7, 1499.9, 1487.8, 1463.0, 1296.1, 1247.6, 1172.0,
1104.0, 1057.4, 1022.5, 927.4, 869.18, 834.25, 810.96, 791.55, 733.33,
706.16, 673.17, 640.18, 620.78, 580.02, 558.68, 531.5, 506.28,
453.88 cm@1; elemental analysis calcd (%) for C17H13NO: C 82.57, H
5.30, N 5.66; found: C 82.37, H 5.37, N 5.74.

2-Cyano-3-(thiophen-2-ylethynyl)norbornadiene (4 c): 2-Cyano-3-
chloronorbornadiene (120 mg, 0.79 mmol. 1 equiv.), copper(I)
iodide (12.5 mg, 0.07 mmol, 9 mol %), and bis(triphenylphosphine)-
palladium(II) dichloride (23 mg, 0.03 mmol, 4 mol %), triethylamine
(0.27 mL), and 2-ethynylthiophene (78 mg, 0.72 mmol, 0.9 equiv.)
were reacted according to the general procedure. The crude prod-
uct was purified by automated column chromatography (CH2Cl2/
hexane, 3:7) to provide 2-cyano-3-(thiophen-2-ylethynyl)norborna-
diene 4 c (90 mg, 0.40 mmol, 56 %) as a yellow powder. 1H NMR
(CDCl3): d= 7.40 (dt, J = 5.1, 1.0 Hz, 1 H), 7.34 (dt, J = 3.7, 1.0 Hz,
1 H), 7.04 (ddd, J = 5.1, 3.7, 0.9 Hz, 1 H), 6.90–6.84 (m, 2 H), 3.90 (dtd,
J = 3.0, 1.5, 0.8 Hz, 1 H), 3.86 (dtq, J = 3.0, 1.6, 0.7 Hz, 1 H), 2.33–2.30
(m, 1 H), 2.22 ppm (dt, J = 7.0, 1.6 Hz, 1 H); 13C NMR (CDCl3): d=
153.54, 142.31, 141.32, 133.92, 129.79, 127.79, 127.69, 121.96,
116.49, 101.17, 87.29, 72.75, 57.33, 54.27 ppm; IR: ñ= 3095.7,
2979.2, 2940.4, 2913.2, 2866.7, 2203.0, 2160.3, 1571.7, 1554.2,
1503.8, 1416.4, 1305.8, 1284.5, 1230.1, 1203.0, 1171.0, 1113.7,
1098.2, 1036.0, 1014.7, 855.6, 834.25, 820.66, 797.37, 743.04, 711.99,
688.7, 624.66, 605.25, 566.44, 506.28, 483.0, 463.58, 451.94 cm@1; el-
emental analysis calcd (%) for C14H9NS: C 75.31, H 4.06, N 6.27;
found: C 75.39, H 3.93, N 6.07.

2-Cyano-3-((4(dimethylamino)phenyl)ethynyl)norbornadiene
(4 d): 2-Cyano-3-chloronorbornadiene (100 mg, 0.66 mmol,
1 equiv.), copper(I) iodide (17 mg, 0.09 mmol, 14 mol %), bis(triphe-
nylphosphine)palladium(II) dichloride (25 mg, 0.04 mmol, 6 mol %),
triethylamine (0.22 mL), and 4-ethynyl-N,N-dimethylaniline (105 mg,
0.73 mmol, 1.1 equiv.) were reacted according to the general pro-
cedure. The crude product was purified by automated column
chromatography (CH2Cl2/hexane, 1:1) to provide cyano-3-((4-(dime-
thylamino)phenyl)ethynyl)norbornadiene 4 d (120 mg, 0.46 mmol,
70 %) as a yellow powder. 1H NMR (CDCl3): d= 7.41–7.36 (m, 2 H),
6.89–6.81 (m, 2 H), 6.63 (dd, J = 8.9, 1.8 Hz, 2 H), 3.89–3.84 (m, 1 H),
3.83–3.80 (m, 1 H), 3.01 (s, 6 H), 2.29 (dt, J = 6.9, 1.6 Hz, 1 H),
2.18 ppm (dt, J = 6.9, 1.7 Hz, 1 H); 13C NMR (CDCl3): d= 154.89,
151.02, 142.35, 141.18, 133.58, 124.61, 117.22, 111.75, 110.80,
108.50, 82.79, 72.34, 57.48, 53.91, 40.22 ppm; IR: ñ= 3072.4, 3002.5,
2936.5, 2979.2, 2866.7, 2203.0, 2187.4, 1598.9, 1575.6, 1556.2,
1482.4, 1435.8, 1329.1, 1286.4, 1226.3, 1203.0, 1160.3, 1117.6,
1065.2, 1010.8, 925.46, 906.05, 871.12, 830.37, 760.50, 721.69,
688.7, 628.5, 597.5, 570.32, 523.74, 471.35, 455.82 cm@1; elemental

analysis calcd (%) for C18H16N2 : C 83.04, H 6.19, N 10.76; found: C
83.35, H 6.32, N 10.76.

2-Cyano-3-phenylnorbornadiene (5): Cesium fluoride (0.5 g,
3.3 mmol), phenylboronic acid (146 mg, 1.2 mmol), and tris(diben-
zylideneacetone)dipalladium(0) (150 mg, 0.26 mmol, 26 mol %)
were dissolved in dry THF (2 mL) under nitrogen. 1-Chloro-2-cyano-
norbornadiene (150 mg, 1 mmol) was added, followed by tri-tert-
butylphosphine (1 m in toluene, 0.20 mL, 0.2 mmol). The mixture
was heated under reflux for 24 h then allowed to cool. The product
was filtered through a silica pad, which was eluted with dichloro-
methane until the eluate was colorless; concentration of the com-
bined filtrate and eluate gave a red oil. The crude product was pu-
rified by automated column chromatography (CH2Cl2/hexane, 3:7)
to provide 2-cyano-3-phenylnorbornadiene 5 (110 mg, 0.57 mmol,
57 %) as a clear oil. 1H NMR (CDCl3): d= 7.75–7.70 (m, 2 H), 7.48–
7.36 (m, 3 H), 6.96–6.92 (m, 1 H), 6.87 (ddd, J = 5.1, 3.1, 0.8 Hz, 1 H),
4.13 (ddtd, J = 3.3, 2.4, 1.6, 0.8 Hz, 1 H), 3.94 (ddtt, J = 3.0, 2.2, 1.5,
0.7 Hz, 1 H), 2.29 (dt, J = 6.9, 1.7 Hz, 1 H), 2.20 ppm (dt, J = 6.9,
1.6 Hz, 1 H); 13C NMR (CDCl3): d= 170.95, 143.24, 140.45, 133.23,
130.25, 129.03, 126.58, 118.55, 117.07, 71.36, 55.13, 54.33 ppm; IR:
ñ= 3056.5, 2997.7, 2939.0, 2876.1, 2192.6, 1586.8, 1559.5, 1485.1,
1440.0, 1320.5, 1226.1, 1203.0, 1161.1, 1077.3, 1031.1, 1001.8,
880.16, 819.35, 762.74, 721.1, 687.26, 662.10, 582.42, 481.77,
456.61 cm@1; elemental analysis calcd (%) for C14H11N: C 87.01, H
5.74, N 7.25; found: C 87.02, H 5.75, N 7.21.

Preparative photoisomerization (general procedure): The norbor-
nadiene was dissolved in degassed chloroform or toluene and irra-
diated with a 150 W HQI lamp (Osram) for 30–50 min. The photoi-
somerization was confirmed by 1H and 13C NMR spectroscopies;
the product was not isolated.

2-Cyano-3-(phenylethynyl)quadricyclane (16 a): 2-Cyano-3-(phe-
nylethynyl)quadricyclane was obtained according to the general
procedure. 1H NMR (CDCl3): d= 7.42 (ddt, J = 5.3, 3.1, 1.3 Hz, 2 H),
7.31–7.27 (m, 3 H), 2.57 (ddd, J = 5.0, 2.5, 1.0 Hz, 1 H), 2.45 (dd, J =
12.1, 1.4 Hz, 1 H), 2.37 (ddd, J = 4.9, 2.6, 1.0 Hz, 1 H), 2.32 (dt, J = 4.9,
1.4 Hz, 1 H), 2.21 (dd, J = 12.1, 1.4 Hz, 1 H), 2.09 ppm (dt, J = 4.8,
1.4 Hz, 1 H); 13C NMR (500 MHz, CDCl3): d= 131.81, 129.69, 128.38,
128.28, 123.04, 122.14, 118.22, 85.79, 83.99, 83.27, 33.54, 32.37,
25.65, 25.06, 18.43, 14.80 ppm.

2-Cyano-3-((4-methoxyphenyl)ethynyl)quadricyclane (16 b): 2-
Cyano-3-((4-methoxyphenyl)ethynyl)quadricyclane was obtained
according to the general procedure. 1H NMR (CDCl3): d= 7.38–7.34
(m, 2 H), 6.84–6.80 (m, 2 H), 3.80 (s, 3 H), 2.56 (dd, J = 5.0, 2.6 Hz,
1 H), 2.45 (dt, J = 12.0, 1.4 Hz, 1 H), 2.34 (dd, J = 4.9, 2.6 Hz, 1 H), 2.31
(dq, J = 5.0, 1.4 Hz, 1 H), 2.19 (dt, J = 12.1, 1.5 Hz, 1 H), 2.06 ppm (dq,
J = 4.9, 1.4 Hz, 1 H). 13C NMR (500 MHz, CDCl3): d= 159.69, 133.36,
118.34, 115.15, 114.04, 85.61, 82.40, 55.42, 33.59, 32.36, 32.22,
25.64, 24.86, 18.52, 14.85 ppm.

2-Cyano-3-(thiophen-2-ylethynyl)quadricyclane (16 c): 2-Cyano-3-
(thiophen-2-ylethynyl)quadricyclane was obtained according to the
general procedure. 1H NMR (CDCl3): d= 7.23 (ddd, J = 5.2, 1.2,
0.3 Hz, 1 H), 7.20 (ddd, J = 3.6, 1.2, 0.3 Hz, 1 H), 6.95 (ddd, J = 5.2,
3.7, 0.3 Hz, 1 H), 2.58 (dd, J = 5.0, 2.5 Hz, 1 H), 2.46 (dt, J = 12.1,
1.4 Hz, 1 H), 2.40 (dd, J = 4.9, 2.6 Hz, 1 H), 2.33 (dq, J = 5.0, 1.4 Hz,
1 H), 2.21 (dt, J = 12.1, 1.5 Hz, 1 H), 2.11 ppm (dq, J = 4.9, 1.4 Hz,
1 H); 13C NMR (500 MHz, CDCl3): d= 123.59, 127.31, 127.05, 123.14,
118.12, 110.16, 88.01, 78.58, 33.53, 32.78, 32.36, 25.56, 18.50,
14.83 ppm.

2-Cyano-3-((4-(dimethylamino)phenyl)ethynyl)quadricyclane
(16 d): 2-Cyano-3-((4-(dimethylamino)phenyl)ethynyl)quadricyclane
was obtained according to the general procedure. 1H NMR (CDCl3):
d= 7.32–7.29 (m, 2 H), 6.63–6.58 (m, 2 H), 2.96 (s, 3 H), 2.54 (dd, J =
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5.0, 2.5 Hz, 1 H), 2.44 (dt, J = 12.0, 1.4 Hz, 1 H), 2.33–2.28 (m, 2 H),
2.18 (dt, J = 12.0, 1.5 Hz, 1 H), 2.04 ppm (dq, J = 5.0, 1.5 Hz, 1 H);
13C NMR (500 MHz, CDCl3): d= 133.66, 118.02, 112.57, 87.80, 82.13,
40.00, 33.31, 32.38, 32.20, 25.16, 24.88, 19.47, 15.78 ppm.

2-Cyano-3-phenylquadricyclane (17): 2-Cyano-3-phenylquadricy-
clane was obtained according to the general procedure. 1H NMR
(CDCl3): d= 7.40–7.32 (m, 2 H), 7.30–7.22 (m, 3 H), 2.68 (dt, J = 4.9,
2.4 Hz, 1 H), 2.48 (dt, J = 11.9, 1.3 Hz, 1 H), 2.42 (dq, J = 5.0, 1.3 Hz,
1 H), 2.32–2.24 (m, 2 H), 1.94 ppm (dq, J = 5.1, 1.4 Hz, 1 H); 13C NMR
(CDCl3): d= 136.02, 128.65, 126.61, 126.09, 119.62, 35.39, 32.40,
31.85, 31.25, 26.77, 22.21, 14.33 ppm.

Calculations

Regular and time-dependent density functional theory (TD-DFT)
calculations were carried out at the B3LYP/6–311 + G* level[29] for
all compounds. Based on a systematic comparison of different ex-
change-correlation functionals with MP2 as well as complete active
space calculations,[10] we have previously established that the
B3LYP functional yields absorption spectra and geometries in good
agreement with both experiment and higher-level calculations
(Figure 2).

For compound 4 b, we consider the two isomers (rotamers) that
result from 1808 rotations of the aryl group with respect to the
bridging oxygen atom. The spectra were subsequently obtained
by averaging over the isomers weighted by their respective Boltz-
mann factors.[15] All calculations were carried out using the
NWChem 6.5 software package.[31]

The molar attenuation coefficient (e wð Þ) was obtained from the cal-
culated oscillator strengths (f k) and energies (wk) of vertical excita-
tions at minimum geometry according to:

e wð Þ ¼ Na

ln10
pe2

2e0mcc

X
k

f k g wk;s
E C

where gðwk; s) is a normalized Gaussian function. An artificial
broadening of 0.2 eV was employed to simulate the effect of vibra-
tions.
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