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The role of Swedish single-family dwellings in the electricity system 
-The importance and impacts of solar photovoltaics, demand response, and energy storage 

EMIL NYHOLM 
Energy Technology 
Department of Energy and Environment 
Chalmers University of Technology 

Abstract 

This thesis investigates the role Swedish single-family dwellings can play in the electricity system. 
Both through becoming electricity producers through the use of solar photovoltaic (PV) systems, 
and the possibilities of demand response (DR) and energy storage in combination with this, and 
through the DR of electric space heating in the dwellings. The methodology used builds on the use 
of optimization models, which describe the relevant parts of the dwellings and technical systems, 
measured household load profiles, and modeled space heating demand. The developed models are 
linked to an existing model that performs a cost optimal dispatch of the electricity generation 
system. Thereby, allowing for co-optimization of the dispatch of supply side electricity generation 
and DR, and the evaluation of impacts on the supply side of the system from actions taken on the 
demand side and vice versa. 

The results indicate that given that there is added value in self-consumption of PV generated 
electricity, i.e., not paying taxes and variable grid fees on self-consumed PV generated electricity, 
an expansion of household PV systems in Sweden that is driven by economic incentives appears 
to be robust with regards to the composition of a future electricity system. The households� 
economic potential for battery investments is found to be dependent to a large degree upon the 
economic value of utilizing them for arbitrage and in the economic value of increased self-
consumption of PV generated electricity. Furthermore, a practical limit on the ability of batteries 
to increase the self-consumption of PV generated electricity in Swedish households is identified. 
For the DR of household loads the economic value provided to a household�s investment in a PV 
system is small, except in the case of hydronic heating loads. It is also shown that for future 
evaluations of large scale investments of household PV-battery systems there is a need to include 
feedback mechanisms between the supply and demand sides of the electricity system. 

A significant DR potential is identified for the electric space heating in the dwellings. The economic 
value of the DR is found to depend on the future electricity system composition. In a future system 
that is dominated by variable wind power, DR offers economic value through decreasing the 
number of start-ups, obviating the need for part-load operation of thermal power plants, and 
avoiding the operation of peaking gas power plants. In an electricity system less dominated by wind 
power the value of DR is low. The DR is found be used to a large extent for valley filling, increasing 
load during low load hours, and peak shaving, decreasing load during high load hours.  

Keywords: Demand side management, Demand response, Distributed generation, Solar 
photovoltaics, Batteries, Single-family dwellings, Electricity system models, Optimization, 
Electric space heating 
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1. Introduction 

The harnessing of energy is to an increasing extent one of the main drivers of the development of 
human civilization. Since the 19th Century, a key supplier of this energy has been, and still is, fossil 
fuels. Since fossil fuels are abundant and cheap, they drive technological progress at an increasingly 
rapid pace. However, the burning of fossil fuels has brought with it environmental costs, in that it 
constitutes the largest source of anthropogenic greenhouse gas emissions and, consequently, is the 
main cause of climate change.  

The Paris Agreement reached at the COP21 meeting established the long-term goal of keeping the 
global long-term average temperature increase well below 2°C relative to pre-industrial levels, and 
it aims to limit the increase to 1.5°C.  To reach the 2°C target with a likely degree of certainty, 
greenhouse gas emissions will need to be reduced by 40%�70% by Year 2050, as compared to the 
Year 2010 levels [1]. As the global energy system is currently dominated by fossil fuels, achieving 
these reductions requires a rapid transformation of the energy system. A major part of this 
transformation concerns the electricity system due to its high share of fossil fuels. 

In all the conceivable scenarios for this transformation, the demand side, which is the main focus 
of this thesis, plays important roles in decreasing energy use, creating efficiency improvements, 
generating electricity, and helping to balance supply and demand within the system. The concepts 
of prosumers (producing consumers) and demand-side management (DSM) have become popular 
recently [2]. In addition, the increase in information and expansion of the communication 
infrastructure pave the way for a more system-beneficial utilization of distributed resources, which 
was not possible previously. Figure 1 gives an overview of the impacts of DSM and prosumers on 
the remaining electricity system. The value of more consumers engaging in renewable generation 
of energy is clear, i.e., the possibilities to reduce fossil-based energy generation. The usefulness of 
DSM, however, can be more diverse. Since demand can be used both to optimize the use of the 
existing infrastructure and to avoid the need for new investments, DSM can play various roles in 
the different pathways proposed for a more sustainable energy system. In scenarios that have high 
levels of variable renewable electricity generation, e.g., those proposed by Delucchi and Jacobson 
[3] and Lund and Mathiesen [4], DSM could help to avoid curtailment of generated electricity 
through shifting demand or reducing the amount of needed generation by introducing efficiency 
measures. Furthermore, DSM could play similar roles in scenarios that propose massive expansion 
of the electricity grid so as to harvest remote renewable energy sources, as discussed by  
Chatzivasileiadis et al. [5], or in the development of the Smart grid [6]. Scenarios that involve 
extensive deployment of carbon capture and storage technologies, as investigated by Odenberger 
and Johnsson [7], could benefit from DSM through more efficient operation of power plants.  
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Figure 1. Different ways in which demand-side management and prosumers can help to manage the energy system. 
Adopted from [8]. 

Given the multiple benefits that can be derived from DSM and distributed generation, it is highly 
likely that the demand sector of the energy system will play an important role in a future, more-
sustainable energy system. Therefore, it is important to investigate the actual potentials and 
limitations of DSM and distributed generation.  

1.1 Aim and Scope 

As mentioned in the Introduction, the demand side of the electricity system is likely to play a more 
active role in the future electricity system than has been the case historically. This is likely to have 
consequences for the evolution of the surrounding system. Therefore, it is useful to assess the 
technical and economic potentials and limitations for the participation of different demand sectors. 
This thesis and the appended papers do this for Swedish single-family dwellings. The dwellings are 
investigated with regard to their roles as prosumers, i.e., producers of electricity, and the use of 
their loads for the purpose of demand response (DR). The aim is to evaluate this from both the 
perspective of individual dwellings and the perspective of the surrounding electricity generation 
system. More specifically, the overall aim can be divided into two objectives: 

 Investigate the technical and economic potentials of Swedish single-family dwellings 
becoming prosumers through the use of solar photovoltaic (PV) systems, taking into 
account possibilities for flexibility in consumption patterns through DR and energy storage, 
and investigate how such systems might interact with the surrounding electricity generation 
system. 

 Identify the technical potential of DR of electric space heating in Swedish single-family 
dwellings, and investigate the value of this potential for the surrounding electricity 
generation system, as well as for the individual dwelling. 

Special emphasis is placed on the interactions between households and the electricity system, 
including the feedback dynamics that influence the benefits of large-scale employment. The 
inclusion of feedback, so that it is not only a reactive evaluation of a given situation, fills a 
knowledge gap in the literature and is the major contribution from this work. The geographic scope 
with regards to the description of DR and households is limited to Sweden. However, the electricity 
system implications of the households� behaviors are evaluated in terms of the European electricity 
system. The questions are addressed with regard to both current conditions and future conditions. 
The two objectives specified above are investigated through modeling of the relevant parts of the 
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energy system. The modeling is in the form of optimization models. The results from the models 
are not geared towards simulating current reality or predicting an exact outcome of the future, but 
rather exploring the dynamics and responsiveness of the interactions between households and the 
general electricity generation system given certain constraints. 

1.2 Overview of the appended papers 

In accordance with the objectives, the thesis can be divided into two themes: 1) the interaction 
between household PV installations and the possibility to increase the value of such installations 
through DR and batteries, as covered in the appended Papers I, II, and III; and 2) the possible 
value and usefulness of the DR of single-family electric space heating, which is covered in Papers 
IV and V. Here follows a short summary of each paper. 

Paper I investigates the extent to which the DR of household appliances and hydronic space 
heating can help to increase the economic value of investments in PV in Swedish households. 
Furthermore, the impacts of DR measures are compared to the impacts of different electricity 
pricing schemes, subsidies, and changes in economic factors. In the paper, a model for the DR of 
household load is developed.  

Paper II investigates the technical limitations of household PV-battery installations in terms of 
their abilities to increase the self-consumption of PV-generated electricity and thereby, also their 
abilities to increase the electricity self-sufficiency of the household. The investigation is made in 
the context of Swedish households, i.e., using PV electricity generation profiles valid for Northern 
European conditions. Several different combinations of PV-panel sizes and battery capacities are 
investigated for 2,103 different households.  

Paper III investigates the impacts of household PV-battery investments on the surrounding 
electricity system and vice versa. This is done through iteratively optimizing two optimization models: 
one PV and battery investment model for households, and one electricity system dispatch model. 
The models are dependent upon each other in that the hourly electricity price generated by the 
electricity system dispatch model will influence the investment in PV panels and batteries by the 
households. In turn, the level of investments made by the households will influence the electricity 
load profile and the overall electricity demand, which will have an impact on the dispatch of the 
electricity system. 

Paper IV aims to identify the technical and short-term economic potentials for DR of electric 
space heating in Swedish single-family dwellings. The DR is modeled by describing the heat balance 
across the dwellings, thereby allowing for variations in indoor temperature and the storage of 
energy in the building mass. In total, 571 dwellings are modeled, and these are subsequently scaled 
up to represent the entire Swedish single-family dwelling building stock.  

Paper V investigates the system-optimal way of utilizing the DR of electric space heating identified 
in Paper IV. This is done through integrating an updated version of the electric space heating 
model introduced in Paper IV and using an electricity system dispatch model. This integration 
allows the operation of the DR to be co-optimized with the dispatch of the electricity system and 
thereby be utilized in a system-optimal manner. The paper investigates the extent to which the DR 
can help lower system running costs depending on future electricity system compositions and the 
value of engaging in this DR for individual dwellings. Furthermore, it introduces a new method for 
controlling the indoor temperature of dwellings in a system optimization model. 
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1.3 Outline 

The thesis is organized as follows. Chapter 2 gives an introduction to the concepts of DR, 
distributed generation, and distributed resources, with the focus on their applications in the 
residential sector. Chapter 3 gives a literature overview of the methods used for modeling 
residential energy demand. Furthermore, a review of the current literature in the field of modeling 
DR is presented, with a focus on residential demand response, and the modeling of residential PV-
battery systems. Chapter 4 presents the methodology used in the papers presented in this thesis, 
giving the model descriptions and definitions of the concepts used. Chapter 5 gives a description 
of the data applied. Chapter 6 provides an overview and a discussion of the results from the 
appended papers. Chapter 7 discusses the methods and data applied. Chapter 8 presents the 
conclusions reached with regards to the research questions posed. Chapter 9 proposes some future 
work. 
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2. Distributed resources 

Distributed resources can be defined as all the demand-side and supply-side resources that can be 
deployed throughout an electric distribution system [9]. Thus, it encompasses all the technologies 
investigated in this thesis, i.e., distributed electricity generation, demand response, and distributed 
energy storage. A definition of these sub-categories for distributed resources is given below. 

The idea of DR, which is applied in Papers I, IV and V, is part of the broader concept of DSM. 
DSM encompasses a broad set of measures that can be applied to the demand side of the energy 
system. The objective here is to diminish, increase or reshape the electricity/energy demand 
according to a specific goal. Included in the concept are: 1) energy efficiency measures, involving 
decreasing total load/demand either through technical or behavioral changes, and fuel-switching 
measures, such as replacement of oil boilers with heat pumps; and 2) demand response measures, 
which aim at reshaping the demand without necessarily changing the total demand [10]. While the 
idea of influencing demand has been around since the 1970s, it is only recently, owing to the 
increased availability of variable renewable energy sources and the emergence of an information 
communication technology infrastructure, that interest in DSM has grown. Traditionally, DSM, 
and particularly DR, has had the goal of increasing the efficiency of the existing generation capacity, 
through increasing its load factor, as well as increasing utilization of the grid infrastructure, thereby 
alleviating the need for additional investments in peak generation facilities and grid reinforcements 
[11]. This has been achieved through reducing the load during peak hours, known as �peak clipping�, 
which decreases the need for peaking capacity, and building load during off-peak hours, known as 
�valley filling�, thereby increasing the load factor of base-load generation. Therefore, the main aim 
of DR is to reduce peak demand (Fig. 2a). However, as more variable generation is introduced into 
the power system, a reduction in peak demand is not necessarily the desired outcome of DR.  
Depending on the generation profile of the variable source, a buildup of higher peak demand might 
be desirable (Fig. 2b).  

a) b) 
Figure 2. Difference between demand response strategies in a traditional electricity system (a) and one with a 
considerable level of variable generation (b) [12].  The arrows represents the moving of demand. 
 

 

 

 

 

 



6 
 

The concept of distributed generation is generally not included in definitions of the DSM concept, 
as it is not a consumer load. It is defined by Ackermann et al. [13] as: 

�Distributed generation is an electric power source connected directly to the distribution network or on the customer 
side of the meter.� 

Thus, it is not to be assumed that distributed generation is owned and operated by consumers. The 
distributed solar generation investigated in Papers I, II, and III should thus be more accurately 
defined as consumer-based distributed generation.  

Although distributed energy storage does not fall within the concept of distributed generation, as 
it does not generate any surplus energy in and of itself, the definition used for distributed generation 
can also be applied to distributed energy storage. Similarly to distributed generation, the definition 
of the energy storage used in this thesis and in Papers II and III should be narrowed to �consumer-
based energy storage�. 

2.1 The use of demand response and energy storage coupled with variable 

generation 

As mentioned in the Introduction section, DR and energy storage can contribute to the resolution of 
several issues within the power system.  

On a time-scale of milliseconds to minutes, stability issues concerning frequency and voltage can 
occur. The possibility of using DR to modulate such instabilities is outside the scope of this thesis, 
although it has been investigated by others, e.g., Short et al. [14], who looked at frequency control. 
Short et al. [14] concluded that allowing refrigerators to react to frequency fluctuations created the 
potential to confer frequency stability in cases that involved sudden increases/decrease in demand 
or generation and during fluctuations related to wind power generation. The benefit of batteries 
for frequency regulation has also been covered in the literature, e.g., Oudalov et al. [15]. 

On longer time-scales, i.e., extending from minutes to days, the problem is that 
scheduled/predicted generation must meet the predicted demand. Increased variable generation 
introduces two issues concerning this requirement: uncertainty; and the shortage or surplus of 
available generation capacity. Uncertainty arises from the need to predict scheduled generation 
from variable sources through the use of forecasts. Any errors in the forecast will result in a 
discrepancy between scheduled generation and actual generation. This will increase the need for 
generation that is traded on intra-day and intra-hour markets. In such situations, DR could be used 
to handle the issue rather than activating additional generation. The possibility of using DR for 
managing forecast errors is also beyond the scope of this thesis, although it has been investigated 
by Madaeni and Sioshansi [16] and others. Madaeni and Sioshansi [16] concluded that DR in the 
form of real-time pricing could reduce the cost of wind uncertainty in the Texas electricity system 
(in which wind power accounts for 18% of installed capacity) by $0.20�2.27/MWh of wind power 
generation, depending on the level of uncertainty and the responsiveness of the demand. 

There is also the issue of low or high levels of predicted generation. As the scheduling of generation 
from the variable sources is dependent upon uncontrollable weather patterns, it cannot be based 
on predicted demand. As a consequence of this, and assuming that there is sufficient variable 
generation in the system, the level of generated electricity can be higher than the demand for 
electricity. By the same token, when generation from variable sources is low there is a substantial 
need for dispatchable generation. The difference between demand and variable generation, i.e., the 
demand for electricity minus the level of variable electricity generation, is often referred to as the 
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�net load�. The load and net load for the Danish system during Year 2014 (with 40% of electricity 
supply coming from wind power) are shown in Figure 3. It is clear that the net demand takes on a 
negative value during parts of the year, indicating that generation is higher than demand, 
necessitating curtailment of that excess generation. In the case of Denmark, although excess 
generation can sometimes be exported to neighboring countries, there are still hours of curtailed 
generation. 

 

Figure 3. The total and net electricity loads in Denmark for two winter weeks in Year 2014. 

Similarly, there are periods during which the net load is almost equal to the total demand. In these 
situations, DR can be used to shift load to hours with curtailment and away from hours with lack 
of generation, yielding a higher utilization/capacity factor for the variable generation and reducing 
the need for back-up generation. The impact on utilization times has been investigated by 
Hedegaard et al. [17], who concluded that DR could help to reduce fuel costs and CO2 emissions 
in the Danish energy system, which contains 50% wind power (on an energy basis), through 
increasing the utilization of wind power and thereby, decreasing the need for fossil fuel plant 
operation. 

In Papers I, IV, and V, the DR of energy, and in Papers II and III, the use of energy storage on 
an hourly basis are investigated. Paper I investigates the DR from the consumer perspective in 
terms of increased value of self-generated electricity, which means that system aspects are not 
investigated. In Paper IV, the system implications of DR given a static supply side, as well as the 
benefits to consumers of individual consumers acting in their own best interests are investigated. 
Paper V investigates the system-optimal use of DR. Likewise, batteries are investigated from the 
consumer perspective in Paper II, and from a combined system and consumer perspective in 
Paper III.  
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2.2 Demand response programs  

DR can be implemented through several different methods or programs, depending on the 
intended purpose and the time-frame. On a broad scale, DR can be divided into price-based programs 
and incentive-based programs [18, 19]. The difference between these two programs is the way in which 
consumers are incentivized towards shifting or reducing load. In price-based programs, the 
instantaneous underlying cost of generating electricity is to varying degrees passed on to the end-
consumer. The end-consumer is thereafter free to react to the price by shifting or reducing load. 
However, since acting on the price signal is entirely voluntary, consumer involvement is not 
guaranteed, i.e., consumers can choose to pay the higher price rather than reducing/shifting load. 
Thus, the precise magnitude of the load reduction is not known when using price-based programs. 
In contrast, incentive-based programs are based on contractual arrangements between consumers 
and other actors in the electricity market (e.g., grid operators and utilities), so they can be regarded 
as dispatchable.  Consumers who are enrolled in an incentive-based program are paid for either 
contract-agreed or measured load reductions. Although participation in an incentive-based 
program is voluntary, if pre-contracted consumers fail to respond when asked they usually are 
penalized. An additional difference between the two DR types is that price-based programs can be 
applied to affect demand either continuously or only during critical periods for the power system, 
whereas incentive-based programs are only used during critical periods. The two programs also 
diverge with regard to the time-scales and electricity market segments in which they operate (see 
below). 
 
The United States Department of Energy [20] defines the following DR programs:  
A. Incentive-based DR programs 
 

 Direct load control (DLC), whereby the utility or distribution system operator can control 
remotely the costumers� loads and use them as it sees fit. In return for making their load 
available, the costumers receive a fixed payment or electricity rate discounts, regardless of 
whether or not the load is used. The load is primarily used on short time-scales (>15 min). 

 Interruptible/Curtailable (IC) programs are related to DLC, with the difference being that the 
utility or DSO does not have direct control over the consumers� loads. Instead, the 
customers are asked to reduce their load to an agreed-upon level. If the customers fail to 
comply they face penalties. These programs operate on an hourly time-scale. 

 Capacity programs work in the same way as IC programs, i.e., customers offer load 
curtailments in the form of system capacity to replace conventional generation or delivery 
resources. However, the customers only receive payment for load that is actually curtailed.  
Customers typically receive one day of notice of events.  

 Ancillary services programs are similar to capacity programs, except that the load is used on the 
reserve market and customers must thus be ready to reduce load at short notice. 

 In Demand bidding/buyback programs, end-users can offer their load curtailment at a desired 
price on the day-ahead market, which is analogous to bidding on generation capacity. 

B. Price-based programs 

 For Time-of-Use (TOU) pricing, electricity prices are set at different levels during a given time 
period, corresponding to diurnal variations, off-peak and peak hours, and even seasonal 
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variations. These prices are generally fixed months in advance to reflect the average 
generation cost during the specified period.  

 Critical peak pricing applies the same pricing structure as TOU pricing, with the added 
possibility to change prices during extreme peak hours at short notice. 

 Real-time pricing is a system in which the customers are charged an hourly fluctuating 
electricity price. The final electricity price can be set on a day-ahead basis or on a real-time 
(hour-ahead) basis, and it is supposed to reflect the actual hourly cost of electricity 
generation. 

In Papers I and IV, DR through real-time pricing is applied. Paper III also applies real-time pricing, 
this as the operation of a household�s battery is also influenced by the choice of DR program. This 
tool was chosen because it is commonly regarded as the primary way to activate DR in residential 
demand, given that the �instantaneous� cost of generating electricity is passed on to the consumer 
[21-24]. Furthermore, following the installation of smart meters in Swedish households, it is 
possible for consumers to take advantage of real-time pricing. In Paper V, the system-optimal way 
of operating DR is investigated. In this case, the operation of DR constitutes a form of direct load 
control, whereby the utility has direct control over the operation of the DR. 

2.3 Distributed generation in the residential sector 

Distributed generation in the residential sector has existed since the dawn of electricity generation, 
with one of the first hydroelectric power stations being built in the country house of Cragside in 
England in 1870 [25]. However, residential electricity generation is nowadays dominated, in terms 
of installed capacity, by solar power. The value of distributed generation can be higher for 
consumers in the residential sector, as compared to other actors in the electricity system. The 
reason for this is that in addition to the wholesale price of electricity, residential consumers pay 
fees and taxes on the electricity that they purchase from the grid. In the case of distributed 
generation in Sweden, which is considered in Papers I and III, an energy tax, a value added tax, 
and a markup are all added to the wholesale price. Furthermore, a grid fee per unit of bought 
electricity has to be paid to the grid owner. Thus, electricity that is generated �behind the meter� 
can side-step the need to buy electricity, which means that it has a higher value than if the generated 
electricity is sold on the spot market. This difference also increases the residential consumers� 
incentive to engage in DR and invest in batteries, as increasing the self-consumption of generated 
electricity can be more lucrative than simply shifting between high-price and low-price hours. 

There are several different pricing schemes for compensating residential solar PV owners for the 
electricity that they feed into the grid: 

 An hourly RTP scheme: in similarity to the RTP scheme described in Chapter 2.2, electricity 
is sold and bought by the hour. 

 Monthly electricity price: electricity is still sold and bought by the hour, albeit at a fixed 
monthly electricity price.  

 Net metering scheme, whereby a bill/payment is received for the monthly net 
consumption/generation. 

 Tax reduction: as currently available in Sweden, for each kWh fed into the grid a fixed 
amount is added to the price the prosumer receives for selling the electricity. 

 Feed-in tariffs, whereby consumers receive a guaranteed price for their generated electricity. 
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 Net billing, which is similar to net metering, except that instead of paying for net 
consumption a discount is received on the following electricity bill. In this scheme, the 
consumer still has to pay taxes and fees on all the electricity drawn from the grid.  

In Paper I, the first four schemes are investigated. Feed-in tariffs are not included, as they are only 
dependent upon electricity generated from PV-panels, which means that there is no interplay with 
demand. In Paper III, the RTP scheme is applied. 

2.4 Batteries as energy storage in the residential sector 

The use of batteries in the residential sector has traditionally served the purpose of backup power 
in case of power outages or has been used to enable off-grid operation. Historically, lead acid 
batteries have been the dominant battery technology, as they have been cheaper than competing 
batteries. However, different forms of lithium ion batteries have recently become more popular 
due to considerable price reductions [26]. The batteries investigated in Papers II and III are 
assumed to have the characteristics of lithium ion batteries. In addition to the added benefit of 
increasing self-sufficiency and thereby reducing electricity costs, as discussed in Section 2.3, 
batteries can be used for arbitrage in the electricity market. This arbitrage is accomplished through 
charging the battery with electricity from the grid during hours with low electricity prices and 
discharging the batteries during high-price hours to avoid buying electricity or to sell electricity to 
the grid. However, it should be noted that in the case of selling electricity to the grid, the price 
received is the market price for electricity, while the price paid for the electricity when charging the 
battery includes V.A.T., energy tax, and distribution grid fees. Thus, the price difference between 
the charging and discharging hours needs to be sufficiently large to make up for this additional cost 
of purchased electricity. 

2.5 Demand response in the residential sector 

The residential sector comprises numerous loads of various magnitudes, both in terms of specific 
load size and the overall level of energy used. In relation to these loads, different potentials can be 
specified. In Papers I and IV, the technical potential is identified and the economic potential for DR is 
investigated. The technical potential constitutes the actual physical potential that is present, e.g., 
the load of space heating and the maximum time-frame within which it can be shifted. The 
economic potential is the share of the technical potential that can be utilized in an economically 
optimal way. This potential can be viewed from a system perspective, i.e., minimizing total system 
costs, as is done in Paper V. However, in Papers I and IV, the economic potential is investigated 
only in part, as the supply side of the electricity system is considered to be static. Since the economic 
potentials are seldom reached, a third type of potential needs to be introduced: achievable potential. 
This potential constitutes the share of the economic potential that is actually utilized. The size of 
this potential is dependent upon several factors. For the residential sector, the factors may include 
whether the consumer is informed of the possibility of achieving economic savings through DR or 
if they feel that the eventual inconvenience of using DR outweighs the savings. Defining the 
achievable potential for DR is outside the scope of this thesis, as any investigation of this potential 
would require a behavioral analysis. Such an analysis has not been performed. Nevertheless, 
identifying the achievable potential is useful for identifying the gap between the achievable and 
economic potentials, as well as the measures that must be taken to close this gap. However, the 
achievable potential should not be regarded as an upper limit as to what can be attained by 
implementing DR [27].  
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As previously stated, the residential sector consists of a myriad of different loads, ranging from 
home entertainment systems to heat pumps. Theoretically, almost all of these loads are flexible if 
the price of electricity is sufficiently high, thus making the total technical potential for DR 
substantial (residential electricity demand constitutes 23% of the total Swedish electricity demand). 
However, it is difficult to distinguish those residential loads that are actually suitable for DR and 
to discern to what extent these loads are available for DR. As residential consumers, compared to 
industrial or commercial consumers, are to a lesser extent rational cost-minimizing entities, they do 
not necessarily follow financial logic. Furthermore, the utility that one consumer extracts from a 
certain load might be totally different than that obtained by another consumer, i.e., one person may 
be happy to postpone starting the dishwasher for 12 hours, whilst another individual is always in 
dire need of clean cups and runs the dishwasher as soon as it is full. The selection of loads used 
for the DR in Papers I, IV, and V is based on an evaluation of the literature regarding the DR 
potential of residential loads, in terms of energy and power, but also in terms of acceptance among 
consumers.  

Mert et al. [28] investigated consumer attitudes concerning smart appliances, i.e., appliances that 
have the possibility to communicate and can thus be used for DR, in five EU countries (Austria, 
Germany, Italy, Slovenia, and the United Kingdom). They found that consumer acceptance of 
smart appliances was high, i.e., consumers were willing to adopt smart appliances as long as they 
had control over the finishing time of the appliance. The study investigated only those loads that 
could be shifted without having a strong impact on the service that they provided; thus, loads (such 
as cooking appliances and televisions) that require more extensive behavioral changes were 
omitted. Paetz et al. [29] conducted a study of consumer acceptance of smart meters, variable 
tariffs, and smart appliances, which included all residential loads. Similar to the findings of Mert et 
al. [28], consumers in the study were generally positively inclined to adopt smart technologies, 
listing monetary savings and environmental benefits as the primary motivations for doing so. 
However, the need to change ones routine and the experience of decreased personal flexibility 
limited the willingness of the subjects to engage with smart technologies. Thus, loads that must be 
serviced instantly, such as lighting, cooking, and entertainment, were often seen as non-shiftable 
by consumers. Several other studies that investigated consumer acceptance, such as Hargreaves et 
al. [30], Stragier et al. [31], and Fell et al. [32], have reached the same general conclusion, that 
consumers are not willing to make major behavioral changes. Other obstacles/fears perceived by 
consumers included misuse of the measured data. Assessing the impacts of such concerns is not 
within the scope of the present work but obviously needs to be addressed if the potential for DR 
is to be realized.  

Based on the work of Mert et al. [28], Seebach et al. [33] assigned residential appliance loads to four 
qualitative classifications with respect to their suitability for DR: 1) specific load during operation; 
2) availability; 3) shifting flexibility; and 4) convenience for consumers. Where the specific load during 
operation relates to the size of the shiftable appliance load, a larger load is obviously better for DR. 
Availability relates to how often the load can be accessed for DR. Shifting flexibility relates to how far 
ahead in time the load can be shifted, where the possibility to shift the load for a long period of 
time obviously is beneficial. Convenience for consumers reflects the degree to which the DR operation 
of the appliance is likely to avoid causing inconvenience to the costumer. Table 1 shows the 
resulting indicators for nine different appliances. The indicators range from low (red color), 
indicating that the specific load performs poorly in relation to the classification, to very high (dark 
green), indicating that the load performs well in relation to the classification. One further 
classification that is important but that is not explicitly shown is the total shiftable energy, although 
it can be extrapolated by combining the specific load during operation and availability classifications. 
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Electric heating (EH; investigated in Papers I, IV and V) and water heating (WH; investigated in 
Paper I) are the most promising candidates. The remaining loads studied in Paper I have both 
pros and cons, with dishwashers (DW), washing machines (WM), and driers (TD) allowing for a 
high load to be shifted, although they have low availability. For refrigerators/freezers, the opposite 
is true.  

Table 1. Classification of nine different residential loads in relation to four different aspects that are important for DR 
potential. The colors indicate how well the different loads perform in relation to the different classifications, ranging 
from red (poorly) to dark green (very well). Adopted from Seebach et al. [33]. 

 WM TD DW RF FR AC WH EH CP 

Specific load during operation high high high low low mod. high 
very 
high 

low 

Availability low low low high high low mod. mod. mod. 
Shifting flexibility mod. mod. high low low low mod. high mod. 
Convenience for consumers low low mod. high high low mod. high mod. 
Abbreviations: WM, Washing machine; TD, tumble dryer; DW, dishwasher; RF, refrigerator; FR, freezer; AC, air 
conditioner; WH: water heating; EH, electric heating; CP, circulation pump; mod., moderate. 

 

It is clear from these studies that washing machines, dryers, dishwashers, refrigerators, freezers, 
tap-water heating, and space heating are the loads that are the most accepted by consumers for use 
in DR, as well as being among the largest loads in the residential sector. Therefore, the initial 
modeling and analysis of DR in the residential sector focused on these loads.  

The demand side of the energy system could be used as a tool to address several different issues 
that can arise as the energy system is transformed, ranging from frequency regulation on the 
millisecond scale to the shifting of energy demand over days. As shown, there are several ways to 
incentivize DR, distributed generation, and energy storage in the residential sector. The 
combination of DR or energy storage with distributed generation could also generate additional 
benefits for consumers through increasing the value of the distributed generation. Papers I, II, 
and III shed light on the possibilities for this combination. Furthermore, it is shown that electric 
heating (space heating and hot tap-water heating) has the largest potential for DR in terms of 
energy, load, convenience, and flexibility. Thus, it is of interest to investigate the potential for DR 
of electric space heating and how it can be used (Papers IV and V).  
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3. Related research 

This chapter presents research that is related to the work presented in this thesis. The chapter is 
divided into two sections. In the first section, an overview of residential electricity demand models 
and their applicability to DR and energy storage modeling is presented. The second section 
comprises an overview of the literature related to the research described in the appended papers. 

3.1 Modeling of residential electricity demand for energy system models 

Electricity demand models have been reviewed in several publications [34-37]. However, the utility 
of these different models in terms of DR modeling has not been studied. When modeling electricity 
demand for DR purposes, some requirements that are not essential for traditional demand 
modeling have to be met. First, a time resolution that is sufficiently high to address the intended 
purpose of the DR is required, i.e., if the purpose is to model frequency response a resolution of 
milliseconds is needed, whereas for energy balances in, for example, the Nordic electricity market 
an hourly resolution is adequate. Second, the method should ideally be able to generate specific 
load profiles for different end-uses. However, it is not required to know these profiles in order to 
model DR. Third, if the storage of energy is to be included, e.g., through thermal inertia of 
buildings, hydronic heating systems or a battery, a description of the characteristics of that storage 
needs to be represented. Fourth, if a country/region-wide potential is desired the model needs to 
be scalable. This chapter gives a brief overview of residential electricity demand models and their 
suitabilities for DR modeling with respect to these requirements. Concerning demand modeling 
for the purpose of operation of household battery systems, the requirements are less strict. There 
is no need to have load profiles for specific end-uses. Instead, load profiles representative of the 
location of the electricity storage are required, i.e., at the household level for household installations 
and at the system level for system installations. Below, the most common approaches to demand 
modeling and their applicabilities to DR will be presented briefly.  

There are two overarching forms of modeling frameworks used in demand modeling: top-down 
and bottom-up. Top-down approaches make use of macroscopic data, such as GDP, appliance 
prevalence, floor area, and other factors that can influence electricity demand, so as to create 
econometric models. Such models are not suitable for modeling DR, as they do not allow for a 
sufficiently high temporal resolution, and so they are not covered in this overview. 

Bottom-up models can be broadly divided into statistical models and engineering models. These 
models have in common that they, in contrast to top-down models, model the electricity demand 
and profile based on individual houses/households and thereafter scale up/extrapolate to represent 
the entire building stock or a targeted type of consumer. For statistical models, such 
house/household load profiles are created through regression analysis, more specifically conditional 
demand analysis (CDA) [38] in the case of individual loads, or through evolutionary or supervised 
learning algorithms. Such algorithms can be artificial neural network models (ANNs) [39] and support 
vector machines for supervised learning or genetic algorithms in the case of evolutionary algorithms. 
Other types of algorithms have also been used in conjunction with those mentioned above. As 
ANNs are the most commonly used, they are the only models covered here. Engineering models 
work by modeling each end-use separately using data that describe the end-use. The behaviors of 
occupants can also be included. The different approaches used in engineering models include 
probabilistic models [40] and archetype/sample models [41]. 

The CDA method was first developed by Parti and Parti [38]. In contrast to other regression model 
approaches used for demand prediction, CDA breaks down the contributions of the individual 
loads to the total household load. Here, selected appliances are used as some of the independent 
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variables to explain the total demand, which is set as the dependent variable. The minimum 
requirement in terms of data is the total electricity demand curve for individual households and the 
existence or non-existence of appliances. A disadvantage of CDA is that appliances with a high 
penetration rate cannot be distinguished from the remaining load due to multicollinearity. This is 
a drawback because these appliances include a large share of appliances that are considered suitable 
for DR. The time resolution that can be achieved is dependent upon the available data. New loads 
cannot be introduced, as the profiles are extracted from existing data. Furthermore, there is no 
possibility to represent energy storage possibilities.  

An ANN employs statistics to reveal the relationship between the input values and desired output 
values, without relying on an actual physical description of the loads. Park et al. [39] were the first 
to use this method to describe electricity demand. The method uses several layers of what are called 
neurons, where the layers are classified as the input layer, hidden layers, and output layer. The 
signal/information, which can be the time of day or flows from the input layer that continue 
through the hidden layers and arrive at the output layer, e.g., electricity consumption for 
dishwashers. The output from each neuron, with the exception of the input neurons, is generated 
by passing through a function the weighted output values from all the neurons in the previous 
layer. The values of the weights in each layer are determined by a learning/training algorithm, which 
adapts the weights using an input set and a target output set. The weights are changed until the 
error between the output and the target output becomes sufficiently small. The target/training 
output set may comprise the actual measured load curves, and the input could be the temperature 
or time of day. With this method, a sufficiently high time resolution is achievable, given that 
consumption data are available. Similar to CDA, new loads cannot be introduced because the 
profiles are extracted from existing data. Furthermore, to represent the storage input, data that 
describe the storage, e.g., indoor temperature or water storage temperature, need to be collected. 

In engineering modeling approaches, synthetic load profiles are created based on appliance and/or 
building data, e.g., cycle times and power demands of appliances or the thermal behaviors of 
buildings. These models can also be coupled with functions that describe the behaviors of the 
household inhabitants. Models that incorporate inhabitant behavior for an individual household 
level can be classified as probabilistic models. These probabilistic models aim to mimic the behaviors 
of household inhabitants, e.g., the time when they leave the house or the time when they use the 
dishwasher, and thereby construct load curves for different end-uses. This is accomplished by 
assigning probabilities to occupancy and occupant behaviors. The level of detail used to describe 
the behaviors varies between models. Paatero and Lund [42] used a random factor to determine 
occupancy level. Others have based their behavior analyses on so-called �use of time� surveys where 
participants are asked to keep a diary of their daily activities, together with information on where 
the activities were performed and with whom [40, 43-45]. These data are then used to create a 
model of occupancy behavior. To create descriptions for a specific region, all the households in 
the region are modeled and then aggregated into a single load curve. The models allow for very 
detailed DR modeling, as the actions of individual occupants are considered, and given that the 
data for appliance behaviors are available, a high time resolution is possible. New loads can be 
introduced to the model if the corresponding technical data are available. Since the occupant 
behavior for the new specific load cannot be modeled, it must instead be based on assumptions. 
In a similar way, storage can be added. However, if the DR in an electricity system on a country 
scale is to be investigated, resolution at the individual occupant level is not feasible.  

Models that use archetypes or samples include a limited number of households, which are 
supposedly representative of the diversity within the region being modeled. These parameters are 
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then weighted so that the total load for the region is calculated. In the case of archetypes, this is 
achieved through creating a set of typical representations for the load that is to be modeled. For 
the samples approach, a sample of the existing demand composition is selected to be representative 
of the total and subsequently assessed, in the form of either measuring the actual load or a physical 
description of the buildings. Papers IV and V are based on this concept and use a physical building 
model, i.e., an energy balance model, developed by Mata et al. [41]. Occupancy behavior in the 
form of probabilistic models for archetype households can be incorporated into archetype models. 
Shimoda et al. [46] applied a use of time study to specify 460 archetypes composed of 23 household 
types and 20 dwelling types. The model was used to describe the load profiles of end-uses and the 
total load for the city of Osaka, Japan. The time resolution can be high given that appliance data 
are available. However, if weather-dependent loads, such as space heating, are modeled the 
resolution of the available weather data would also limit the time resolution. Storage can also be 
included. Scaling up the results is easy, as the archetypes/samples are selected to represent the 
region being modeled. In Papers I, II, and III, samples in the form of measured household loads 
are used; the samples have not been selected to be representative of a region.  

Table 2 summarizes the presented modeling approaches, as well as their suitability for DR 
modeling. All these approaches, with the exception of the top-down macroeconomic approach, 
can be used in DR modeling. However, if some form of energy storage or new load is to be 
introduced engineering approaches are the most suitable choice. Furthermore, the use of CDA or 
learning algorithms requires extensive measured data in order be useful for modeling in a larger 
context. Therefore, an archetype engineering or sample approach seems to be the most suitable for 
modeling large systems.  

Table 2. Overview of the suitability of different electricity demand modeling approaches for system-scale DR and energy 
storage modeling. 

Modeling 
approach 

Time 
resolution 

Load 
resolution 

Storage 
representation 

Scalability Suitability 
for DR  

Top-down 
macroeconomic 

Low High No Yes Not suitable 

CDA/regression 
[38] 

High Medium No 

Yes, given 
that data 

are 
representati

ve 

Suitable, 
requires 

extensive 
data 

Learning/genetic 
algorithms [39] 

High High Yes 

Yes, given 
that data 

are 
representati

ve 

Suitable, 
requires 

extensive 
data 

Engineering 
probabilistic [40] 

High High Yes 

Low/High 
if coupled 

with 
archetypes 

Suitable for 
small-scale 

or in 
combinatio

n with 
archetypes 

Engineering 
archetype/sampl
e [41] 

High High Yes High Suitable 
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3.2 Overview of related research 

The choice of demand representation is dictated by the chosen method for modeling the DR. 
Depending on the potential that is to be investigated, the approach to DR modeling varies. In a 
comprehensive literature review of model-based assessments of DR, Boßmann and Eser [47] 
proposed six main features that can be used when classifying DR models: thematic; methodologic; 
temporal; spatial; technological; and practical. These features are useful for classifying the 
numerous DR studies that have been published. Here follows a classification of the appended 
papers in line with their thematic features. The thematic features concern the research focus of the 
paper, which the authors divide into four main groups: 1) pricing schemes, which is an economic 
analysis of the different pricing schemes presented in Section 2.2 and the impacts of these on 
different actors; 2) electricity system, which investigates the economic and technical use of DR in a 
system context; 3) specific end-uses, which investigates specific end-uses accounting for technical 
constraints; and 4) control strategies, which investigates specific control algorithms for controlling the 
dispatch of DR end-uses given signals from a DR program. The different groups can also be 
combined, for example to represent specific end-uses (group 3) in the context of an electricity 
system model (group 2). The DR-focused papers appended to this thesis can be categorized as 
follows: Papers I and IV are a combination of groups 1 and 3, investigating specific end-uses 
under a specific pricing scheme (RTP). Paper V is a combination of groups 2 and 3, investigating 
electric space heating in a system context. In the literature overview presented below, papers that 
deal exclusively with group 1 or 4 will not be covered as these are outside the scope of this thesis.   

The classification system used for DR modeling can to a large extent also be used for describing 
the PV-battery modeling papers. While Paper II can be categorized as group 3, focusing solely on 
the technical limitations of PV-battery systems in Swedish households, Paper III is a combination 
of group 2 and group 4, as it investigates the impacts on the system of investments in PV-battery 
systems in Swedish households. 

Presented below is an overview of the studies in the literature that fall within the same categories 
as the appended papers.  

Demand response with a household focus 

Several studies have investigated the DR of specific end-use technologies in the context of different 
pricing schemes, i.e., combinations of thematic categories 1 and 3 presented above. For the 
residential sector, the main focus has been primarily on the loads presented in Section 2.3, although 
some groups, e.g.,  Setlhaolo et al. [48], have investigated the DR scheduling of every appliance 
load in a typical South African household under a TOU pricing scheme. They showed that savings 
of up to 25% of the households electricity cost could be achieved. However, the level of savings 
was highly dependent upon the flexibility demonstrated by the consumer. Similar studies conducted 
by Zheng et al. [49] and Setlhaolo and Xia [50] utilized measured load profiles in their DR modeling. 
There are also several papers that have used  probabilistic models to investigate DR. Paatero and 
Lund [42] used load curves created from their probabilistic model (based on a random factor for 
occupancy), to investigate the possibility of cutting the peak load. This was achieved by generating 
10,000 household load curves and thereafter applying predefined shifting schemes. Gottwalt et al. 
[51] used hourly variable electricity prices together with a probabilistic model to apply DR to 
household loads. Widén et al. [44] introduced a different DR modeling approach, in which the 
probability of a load being activated was to some degree governed by the electricity price, resulting 
in more loads being initiated during low-price periods and vice versa. This allows the model to 
capture the actual potential, as not all the loads are moved and the behavior is not deterministic.  
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All of the above-described studies have focused on the DR as the sole activity in which the 
households engage. DR in conjunction with other end-user engagements, such as investment in 
PV-panels (investigated in Paper I), has been studied to a lesser extent. Castillo-Cagigal et al. [52] 
studied the DR of a washing machine, dryer, and dishwasher coupled with PV in a self-sufficient 
solar house in Spain. The aim was to increase self-consumption of the electricity generated by a 
5.5-kWp installation, with no investigation of any economic benefits derived from engaging in DR. 
The DR was shown to increase the self-consumption of electricity by 15 percentage points. Based 
on the measured load profiles of households in Sydney, Australia, Oliva H and MacGill [53] 
modeled the DR in combination with household PV installations. The economic benefits of this 
combination were investigated with regards to one time-invariant and one time-dependent feed-in 
tariff, as well as a TOU-type electricity price scheme. The DR was not modeled at an appliance 
level; instead, fixed percentages of the load were considered shiftable. These authors concluded 
that the economic savings for households were modest. For Swedish conditions, i.e., seasonally 
skewed household load profiles and PV electricity generation profiles, Widén et al. [54] investigated 
the technical ability of DR, among other things, to increase the self-sufficiency of households with 
PV-panels. They showed that for small PV installations, DR had a relatively low impact irrespective 
of the share of the load considered for DR, increasing self-sufficiency by at most 2 percentage 
points. This was because most of the generated electricity was already consumed in-house. For 
large PV installations, the impact was more pronounced, with an increase in self-sufficiency of up 
to 13 percentage points. Widén [55] investigated the economic potentials of DRs in terms of 
increasing self-consumption of PV-generated electricity in Swedish single-family buildings. Widén 
investigated the DR scheduling of washing machines, clothes dryers, and dishwashers, together 
with PV-panels that ranged in size from 3 kWp to 9 kWp in 200 buildings. The DR was governed 
through a RTP scheme that used historic electricity prices for Sweden and optimized using a 
heuristic approach. The economic benefits of DR were found to be small, maximally �20 per year 
and household. The increase in PV-self consumption was also small, with increases of a few 
percentage points of the total generated electricity from the investigated PV-panels. 

Paper I appended in this thesis investigates further the economic value of DR coupled with PV-
panel investments for Swedish households. The paper includes hydronic heating loads in 
conjunction with the DR loads investigated by Widén [55]. The study described in Paper I further 
compares the impact of DR to other factors that can influence the economic value of a households 
PV-installation, such as electricity pricing schemes, interest rates, and PV-panel prices.  

System-level demand response  

All of the above-mentioned papers have focused primarily on the consumer and the benefits they 
might be achieved through engaging in DR. Studies investigating the system impacts of the DR of 
specific end-uses are also available albeit fewer in number. Patteeuw et al. have published 
extensively regarding the DR of single-family dwelling space heating in a system context [56-60]. 
In similarity to the work regarding DR of space heating presented in this thesis, they employed an 
energy balance model over the dwellings as a way to limit the behavior of DR. This approach is 
combined with the archetype approach (presented in Section 3.1) to scale up the DR to a system 
level. The energy balance model is then integrated with an electricity system dispatch model so as 
to capture the feedback between the two components. The geographic scope of the papers 
published by Patteeuw and colleagues [56-60] is Belgium, i.e., the building stock modeled is aimed 
at describing the future Belgian building stock and the electricity system is inspired by the Belgian 
system. In Patteeuw et al. [60], the CO2 abatement cost for heat pumps (HPs) was investigated:  
they compared the investment cost of HPs, which is higher than the cost of the commonly used 
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condensing gas boiler, versus the potential lower CO2 emissions and operational costs that result 
from replacing the boilers with HPs. They investigated different HP types, the impact of the degree 
of renovation of the buildings, whereby a higher degree of renovation meant better insulation, and 
the impact of DR. They found that the most effective approach to lowering the abatement cost for 
air-source HP was to engage in DR. The lowest abatement cost was found for thoroughly 
renovated buildings with air-source HP coupled with floor heating and DR. From the system 
perspective, replacing the gas-fired boilers with HP increases the electricity demand and the amount 
of electricity generated by gas-fired power plants. The reason that the use of HPs reduces CO2 
emissions is thus the higher overall efficiency that results from the shift to HPs. If the HPs also 
engage in DR, a small fraction of the increased electricity demand can be covered through reducing 
the curtailment of variable RES. In Arteconi et al. [56], using the same modeling framework as was 
used by [58], the impact of the market penetration of DR was investigated by examining how the 
number of dwellings engaging in DR influences the system benefits and the cost savings per 
participant. They found that the annual cost saving per dwelling decreased with increasing DR 
penetration; this was the case because the amount of load shifted per household decreased. As a 
consequence of this there was also lower thermal losses per dwelling. The cost savings for the 
household range from �35 to �112 per customer per year for 100% and 5% participation, 
respectively. These savings can be tripled if one accounts for deferred investment costs resulting 
from reductions in peak demand. They also show that increased usage of variable renewables in 
the system increases the value of the DR, with an increase from a 30% RES penetration level to a 
50% RES penetration level generating an increase in savings of around �30 per dwelling.  It should 
be noted here that no start-up costs for the power plants is included in the modeling.  

Archetype models have been used by Hedegaard and Balyk [61] to model the DR of space 
heating/HP and investments in different heat storage options, such as accumulation tanks and 
control systems for the DR of the HP, in Denmark. The system model used represents Denmark 
in Year 2030 with a wind penetration of around 60% and also includes a representation of the 
surrounding countries� electricity systems. The paper concluded that investment in a control system 
for DR was profitable in 34% of the households with HP installations. However, investment in 
additional accumulation tanks was shown to be not feasible economically.  They concluded that 
while an advantage of DR is that it can reduce the need for peak and reserve capacity investments, 
the model does not account for the start-up costs, minimum load requirements or part-load 
efficiencies of the power plants. Hedegaard et al. [17] and Papaefthymiou et al. [62] investigated 
the economic potential of the DR of HPs in two future German electricity systems with RES 
penetrations of 36% and 47%. This was achieved by incorporating the HPs into a mixed-integer 
stochastic optimization model, which dispatches electricity generation and includes uncertainty 
related to the wind forecast. They did not include the investment cost for the HPs, but instead 
evaluated the value of the HPs in terms of their ability to reduce the system cost. The authors 
concluded that at a penetration level of 47%, DR could achieve a system cost reduction of up to 
�50 million, corresponding to 0.5% of the total system costs. 

There have also been studies of the system impacts of DR of electric space heating, among other 
loads, without utilizing a physical description of the building stock. Gils [63] performed an 
extensive evaluation of the technical potential of DR in Europe, which included all the demand 
sectors and appropriate loads within each sector. Each load was assigned a characteristic load 
profile based on metering data or characteristic load profiles taken from other sources. Gils 
concluded that there was a minimum load reduction potential of 61 GW and a maximum load 
increase potential of 68 GW in the European electricity system for every hour of the year. The 
potential identified by Gils was evaluated from a system perspective in the study of Gils [64] for 
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the case of Germany, and in the study of Brouwer et al. [65] for the case of Western Europe. 
Brouwer et al. [65] showed that in a system with 60% RES, DR reduced the total system costs by 
1.7%�2.5%, given that 47 GW of DR was available. The savings arose from deferred investments 
in peak power plants and decreased running costs that resulted from a shift from peak power plants 
to base-load power plants. These publications give good indications of the potential of DR. 
However, the simplified descriptions of the space heating loads disregard the increase in electricity 
demand that might result from the DR operation, as well as the constraints linked to weather 
conditions, i.e., outdoor temperature and solar irradiation levels.  

The system-scale modeling of DR of electric space heating through the use of energy balance 
models has, as shown above, been investigated for a number of different countries. However, 
studies of the Swedish building stock are lacking, a deficit that is addressed in the appended Papers 
IV and V. Furthermore, most studies have been confined to investigating the interactions between 
supply and demand for a single country, thereby ignoring the impacts of interconnections with 
neighboring countries and regions. In Paper V, the dispatch of DR of electric space heating in 
Swedish single-family dwellings is investigated in a multiregional model that represents parts of 
central and northern Europe. For system-scale models, there is also a need for models that can 
handle both upward and downward regulation of the indoor temperature. Current optimization 
models predominantly utilize a method that only allows for upward regulation of the indoor 
temperature. Paper V introduces a modeling approach that allows for both upward and downward 
regulation of the indoor temperature. 

Household PV-battery installations 

The potential of batteries to increase the self-consumption and self-sufficiency levels of the PV-
generated electricity of a household and the households benefits of such an arrangement have been 
investigated in numerus studies [52, 66-71]. The focus in the papers is either on the technical 
potentials of the batteries for increasing self-consumption / self-sufficiency (i.e., the degree to 
which the batteries reduce the need to purchase electricity from the grid) or on the economic 
potential (i.e., under which circumstances is investment in batteries profitable). The appended 
Paper II investigates the technical potential of a large sample of Swedish households.  

With regards to the technical potential of batteries to increase the degree of self-sufficiency under 
Swedish irradiation conditions, Widén et al. [54] investigated the technical potentials of PV and 
batteries in Swedish households. For smaller-size PV installations, they concluded that the 
inclusion of a battery has a negligible impact, as all the generated electricity is already consumed in-
house. For larger-size PV installations, they showed that self-sufficiency can be improved by up to 
28 percentage points given a battery size of 2 Wh/Wp. Thygesen and Karlsson [72] investigated 
battery installations with capacities in the range of 5�24 kWh (actual usable energy capacity), 
together with a PV installation of 5.2 kWp in a Swedish building. For the batteries with capacities 
of 5 kWh and 24 kWh, PV electricity self-consumption increased by 18 percentage points and 33 
percentage points, respectively, relative to a case in which a battery is not used, indicating a reduced 
marginal benefit of the additional increase in battery capacity. Widén and Munkhammar [73] 
studied several battery and PV combinations for a Swedish household. They found that a 5-kWp 
PV installation coupled with a 3-kWh battery (actual usable energy capacity) increased PV electricity 
self-consumption by 614 kWh/year. Furthermore, they showed that doubling the battery size 
increased PV electricity self-consumption by only an additional 358 kWh/year. There are also 
studies of the impacts of batteries under non-Swedish conditions [52, 66-71]. The results of these 
studies suggest that the potential for self-consumption of generated PV electricity is higher in 
regions that lie closer to the equator. 
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While numerous studies have examined the potentials of batteries to increase the amount of PV-
generated electricity that is self-consumed, a systematic approach that uses a sufficiently large 
sample of buildings to give a reasonable representation of a true building stock is lacking. There 
are also considerable differences between the levels of self-consumption and self-sufficiency 
achieved for different geographic locations, which suggests that studies that relate to different 
latitudes and climates are warranted. These concerns are also put forward in the review paper 
concerning PV electricity consumption authored by Luthander et al. [74]. Paper II appended to 
this thesis gives such an overview for Swedish conditions.  

Household PV-battery installations in an electricity system context 

Investigations of the interactions that occur between household PV-battery systems and the 
surrounding electricity system have not been published to date. Studies regarding investments in 
household PV-battery systems have focused primarily on the views of the households and have 
assumed a static supply side. Some studies have made assumptions as to future electricity prices. 
For example, Mulder et al. [75] investigated investment in PV-battery systems for Belgian 
households taking into account changes in future electricity prices through an assumed price 
increase relative to Year 2012 prices. However, there were no interactions between the demand 
side, i.e., the households, and the supply side. This analysis also assumes a time-invariant electricity 
price during the year. Given this assumption, Mulder et al. [75] concluded that for batteries to 
become a valid option without any form of subsidy, the general electricity price level would have 
to increase by at least 4%. A similar approach for Germany was adopted by Hoppmann et al. [76], 
who performed a modeling exercise to identify the cost-optimal combination of investments for 
PV and batteries, using one standard load profile from a utility and an electricity tariff that was 
constant over the year, but that developed from year to year over the life-time of the investments. 
Thus, they showed that there already exists (Year 2014) an economic rationale for small residential 
PV systems. They also pointed out that if households were not allowed to sell excess electricity on 
the wholesale market, the economic viability of storage for residential PV would be particularly 
high. However, they did not consider any feedback between the households and the supply side.  

If large-scale implementation of household PV systems occurs, it will in all likelihood have an 
impact on the supply side of the electricity system and vice versa. The incentives for a household to 
purchase PV panels and batteries, as well as the way in which the householder operates the battery 
are dependent upon the price they have to pay for electricity. However, if a sufficiently high 
percentage of the households invest in PV panels and batteries, their investments will have a 
significant impact on the overall demand for electricity. A change in demand will lead to a change 
in the dispatch of the system, which may promote a change in the electricity price. This might in 
turn affect the incentive to invest in PV panels and batteries. Therefore, approaches that 
incorporate the feedback mechanisms between these two sides of the electricity system are needed. 
Paper III introduces the idea of such a mechanism between Swedish households and the dispatch 
of parts of the central and northern European electricity system.  
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4. Methodology 

The research questions and aims listed in Section 1.1 are addressed by means of models, which 
represent the relevant technical and economic parts of the systems. The following four models are 
developed: Electric Space Heating Dispatch; Demand Response Appliance; PV-battery; and Solar 
Heat and Power. In addition, two models that were not developed by the author are used: the 
ELectricity INvestment (ELIN) model; and the Electric POwer Dispatch (EPOD) model. The 
solar heat and power model is a simulation model, whereas the remaining five models are 
optimization models. The simulation model is implemented in Matlab and the optimization models 
are implemented in the General Algebraic Modeling System (GAMS). All the optimization models 
have perfect foresight. Furthermore, the Demand Response Appliance model is a mixed integer 
model and the remaining four models are linear optimization models. In brief, the developed 
models entail: 

 Electric space heating dispatch, which models the energy balance over building envelopes and 
optimizes the dispatch of space heating equipment. For this model a one zone and two 
zone version is developed (Papers IV and V). 

 DR appliance, which optimizes the dispatch of different household appliance loads, e.g., 
dishwashers and washing machines (Paper I). 

 PV-battery, which is essentially an extension of the DR appliance model that optimizes the 
dispatch of batteries in households. In addition to the dispatch of batteries, investments in 
PV-panels and batteries for the households can also be modeled (Papers II and III). 

 Solar heat and power model, which simulates the electricity generation and/or heat generation 
for eight solar energy technologies (Papers I, II, III, IV, and V). 

As mentioned above, two additional models that where not developed by the author are used: 

 ELIN, which is a partial equilibrium optimization model that optimizes the investments in 
electricity generation and infrastructure in Europe up to Year 2050. 

 EPOD, which is an electricity generation dispatch model that optimizes the dispatch of 
power plants in a given energy system. 

The models presented above are used separately or in combination in the appended papers. Figure 
4 shows which model is used in which paper, with the different types of boundaries representing 
the different papers. 
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Figure 4. Connections between the six models and the five appended papers. 

The one-zone version of the electric space heating dispatch model is used in Paper IV, while in 
Paper V the two-zone version is used. 

The optimization objectives differ between the papers. Paper I and Paper IV minimize the annual 
electricity costs of the individual households/dwellings through the dispatch of DR loads, given a 
static supply side. Paper II maximizes the self-consumption of household-generated PV electricity 
through the dispatch of batteries. Paper III iteratively optimizes initially the dispatch of the 
electricity system through minimizing the total system cost and subsequently, the household 
investment in PV-panels and batteries, as well as the dispatch of said batteries through minimizing 
the household electricity cost; the results from each optimization influence the inputs to the other 
optimization. Paper V minimizes the total electricity system dispatch cost with the inclusion of the 
dispatch of the electric space heating equipment. All the modeling, except for the investment model 
ELIN, are performed over a time horizon of 1 year and with a temporal resolution of 1 hour.  

There follows a definition of the indicators used in this work, a description of the above-mentioned 
models, and a description of the connections between the models and the appended papers. 

4.1 Definitions of indicators 

A number of different indicators are used for the sizing of PV-panels (Papers I, II, and III) and 
batteries (Papers II and III). Furthermore, the concepts of self-sufficiency and self-consumption 
used with regards to PV installations in households are defined (Papers II and III).  

Sizing of PV-panels and batteries 

The sizes of PV-panels for household use are often measured in kilowatt peak (kWp) units, as this 
results in panel sizes of single- or double-digit numbers. For the same reason, battery sizes for 
household use are usually measured in kWh. However, as households vary widely in terms of annual 
electricity consumption, comparing the absolute sizes of PV-panels and batteries between 
households can be problematic, especially when trying to discern trends within a large set of 
households. For instance, the self-sufficiency of a household with an annual electricity 
consumption of 25,000 kWh and a 4-kWp PV-panel is significantly lower than a household with an 
annual electricity consumption of 6,000 kWh and a 4-kWp PV-panel. To allow for more comparable 
sizing of the PV-panels, the concept of Array-to-Load ratio (ALR) is used [54]. The ALR of a PV 
installation is the size of the PV-panel in kWp divided by the average load over a chosen time period 
of the household/consumer in kW. The result is a dimensionless number that correlates the size 
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of the PV-panel to the size of the household�s annual load, thereby allowing for a comparison 
between households with different magnitudes of electricity demand. The definition of ALR is as 
follows: ��� = ����� ���� (��)������� ������ ���� (�) (1) 

 
The choice of time period over which the average load is calculated is dependent upon the purpose 
of the installed PV-panel. If the PV-panel is installed to cover electricity demand for a specific time 
period, e.g., for a month during which a summer home is used, then that month would be a suitable 
time period to use. In this work, the focus is on permanent households and the time period used 
is 1 year, as this captures all the seasonal variations in household demand. 

Analogous to the sizing of PV-panels, the sizing of batteries in absolute numbers can pose a 
problem when comparing different households due to the variability of electricity demand across 
households. Thus, there is a need for a sizing parameter for batteries that allows for comparison 
between households. As the batteries in this thesis are only investigated in the context of an existing 
PV-panel, the batteries presented in the results are related to the ALR of the PV-panels installed. 
The PV-panels and the batteries are related to each other through the Relative Battery Capacity 
(RBC), which is a concept/indicator that was previously used by Luthander et al. [74], [69] and 
Mulder et al. [68] (although not termed as RBC in those studies). The RBC is the size of the installed 
battery in kWh divided by the annual amount of electricity generated by the installed PV-panel in 
MWh. It can be written as: ��� = ������� ������ �������� (�ℎ) × 1000������ ��������� �� ����������� (�ℎ) (2) 

 
The use of the amount of electricity generated in the denominator ensures that the variations in 
electricity generated by geographic location or placement of the PV-panel are taken into account 
when sizing the battery in relation to the size of the PV-panel.  

Self-consumption and self-sufficiency 

The formulations for self-consumption and self-sufficiency applied in this thesis are those 
formulated by Luthander et al. [74]. Self-consumption and self-sufficiency are concepts that are 
used in relation to distributed generation that occurs on the consumer side of the meter. Self-
consumption of electricity generated by a distributed electricity source is a measure of the share of 
generated electricity that is consumed by the consumer at whose residence the source is installed. 
Self-sufficiency, which is closely related to self-consumption, is the share of the electricity demand 
of the consumer that is supplied by the distributed generation source. Figure 5 shows curves that 
represent the electricity load profile of the consumer and the electricity generation profile for the 
distributed electricity source. The load profiles are divided into three regions: region A is the part 
of the electricity load profile in which electricity has to be supplied from the grid; region B is the 
part in which generated electricity is consumed locally by the consumer; and region C is the part of 
the electricity generation profile in which electricity is fed to the grid. The self-consumption is then ��� = �� + � (3) 
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From Figure 5 it is also possible to deduce the level of self-sufficiency: ��� = �� + � (4) 

 

 

 

Figure 5. Conceptual description of a household load and PV electricity generation profile. A, The household load 
supplied by grid electricity; B, the household electricity supplied by PV-generated electricity; and C, PV-generated 
electricity fed to the grid. 

The timeframe used when calculating the two indicators is arbitrary and should be determined by 
the context of the question one is trying to answer. However, as both the electricity load for the 
consumer and the generation of many distributed generation sources are weather-dependent, which 
in turn is correlated to the earth�s rotation around the sun, an annual timeframe should be sufficient 
for capturing the overall picture of the interactions between the consumer and generation source.  

For a more precise mathematical formulation of the definitions of self-consumption and self-
sufficiency used, see Paper II. 

4.2 Electric space heating dispatch model 

The one-zone energy balance model used in Paper IV is the same as that described by Mata et al. 
[41] with one zone representing the entire dwelling. For the two-zone model used in Paper V, the 
described approach is extended, with one zone representing the building envelope and one zone 
representing the internal parts of the dwelling. Figure 6 shows the two approaches, with the left 
panel depicting the one-zone model, in which the entire building is the zone, and the right panel 
illustrating the two-zone model, in which the indoor and envelope are separated (the arrows 
indicate energy flows).  Obviously, both zone descriptions are simplifications of the energy 
transport that occurs within a building, e.g., different rooms in the building and the differentiation 
of different parts of the envelope could also be included. The model can either be used by its own 
with a static supply side (Paper IV) or integrated into the EPOD model (Paper V). 
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Figure 6. Conceptual description of the one-zone (left panel) and two-zone (right panel) energy balance models for a 
building. The arrows represent the different energy flows.    

The formal description of the electric space heating dispatch model is as follows (variables in the 
optimization are bolded). When used with a static supply side as in Paper IV the model minimizes 
the total cost of purchasing electricity: ���� = � ������� × ��,������∈��∈��  (5) 

 
where �� is the set of all modeled sample dwellings, and � is the set of all time-steps. Furthermore, ����� is the price for purchasing electricity at time-step �. The price includes the electricity market 
spot price per unit of electricity, an energy tax per unit of electricity, a surcharge, a renewable energy 
certificate charge, and a distribution grid charge. All of these items are also subject to value added 

tax. The amount of electricity purchased by dwelling ℎ at time-step � is represented by ��,����.  
The amount of electricity purchased is determined by the heating demand for each dwelling and is 
subject to: ��,���� = ��,����� × ��� × � ��,���,��∈�  ∀  ℎ ∈ ��, � ∈ � (6) 

 

where ��,����� is the energy transfer in W from the heating equipment in dwelling ℎ at time-step �. 
This is multiplied by the time-step length,  ���, to get the energy for heating at time-step �. The set � is the set of all types of heating equipment. The conversion from demand for energy for heating 
to demand for electricity is dependent upon the type of heating equipment available in the dwelling, 
and ��,� is the share of heating equipment � in dwelling ℎ. Each heating equipment type � has 
an associated efficiency, ��,� (or the reciprocal of the coefficient of performance in the case of 
heat pumps). 

The energy demand for heating is in turn governed by the need to maintain the indoor temperature 
at a predefined level or within a predefined temperature interval. For this reason, the model is 
subject to the intertemporal energy balance: 

��,��� = ��,����� + ���,����� + ��,����� + ��,����� + ��,���� + ��,�� + ��,������ × ���������  
∀  ℎ ∈ ��,  � ∈ � 

(7) 
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where ��,���  is the indoor temperature in dwelling ℎ at time-step �. The energy balance also contains 

the variables ��,�����, which is the energy transfer through the ventilation system, ��,�����, which is the 

energy transfer through the building envelope, and ��,�����, which is the energy transfer due to natural 

cooling, i.e., opening a window, for each dwelling ℎ at time-step �. The remaining two parameters 

are ��,����, which represents the internal energy gains, i.e., the energy from people and machines in 

the dwelling, and ��,�� , which is the energy derived from solar irradiation. ������ is the total thermal 

mass of dwelling ℎ. 

Each energy transfer term is subject to an energy balance, with ��,����� being subject to: ��,����� = ����� × ������,���� − ��,��� � ∀  ℎ ∈ ��, � ∈ � (8) 
 
where ����� is the overall heat transfer coefficient, and ��� is the building envelope surface area 
for dwelling ℎ. Furthermore, ��,���� is the outside temperature for dwelling ℎ at time-step �. 
The energy transfer through the ventilation differs depending on whether or not the dwelling has 
a heat recovery ventilation system. If the dwelling has a recovery system it is subject to: ��,����� = �� × ����� × ������,����� − ��,��� � ∀  ℎ ∈ �����,  � ∈ � 

(9) 

 

where ����� ⊂ �� is the set of all dwellings with a heat recovery system. All dwellings are assumed 

to have the same ventilation air flow per m2, ��, and �����, which is the volumetric heat capacity 
of air. In addition, ��� is the heated floor area of dwelling ℎ, and ��,����� is the ventilation 

temperature in dwelling ℎ at time-step �. 
The ventilation temperature is dependent upon the outside temperature according to: ��,����� = ��,���� + ���� × ���,��� − ��,����� ∀  ℎ ∈ �����, � ∈ ���� 

(10) 

 
where ���� is the heat recovery efficiency. However, Eq. (10) is only applied for the time-steps in 

set ���� ⊂ �, which contains the time-steps for which ��,���� is ≤15°C. 

For all the time-steps in which ��,���� is >15°C, the set ������ ⊂ �, ��,����� is simply expressed as: ��,����� = ��,���� ∀  ℎ ∈ �����, � ∈ ������ 
(11) 

 
Thus, for outdoor temperatures >15°C, it is assumed that the heat recovery system does not 
operate. 

For all dwellings that do not have a heat recovery system, the set of dwellings ������� ⊂ ��, the 
energy transfer through the ventilation system is: ��,����� = �� × ����� × ������,���� − ��,��� � ∀  ℎ ∈ �������, � ∈ � 

(12) 
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The possible energy transfer from the heating system is subject to: ��,����� ≤ �ℎ� ∀  ℎ ∈ ��, � ∈ � (13) 
 
where �ℎ� is the maximum heating capacity in dwelling ℎ. 

The ability of a dwelling to store energy is dependent upon the allowed variation in the indoor 

temperature ��,��� . This allowed variation is limited by: ��,��� ≤ ����� ∀  ℎ ∈ ��, � ∈ � (14) ��,��� ≥ ����� ∀  ℎ ∈ ��, � ∈ � (15) 

 

where ����� is the maximum allowed indoor temperature, and ����� is the minimum allowed 
indoor temperature at time-step �. This approach to limiting the indoor temperature variations is 
named the fixed interval method. 

The internal heat gains are defined as: ��,���� = ��,���� + ��,���� + ��,������ + ������ ∀  ℎ ∈ ��, � ∈ � (16) 
 

where ��,���� is the heat from appliances, ��,���� is the heat from occupants, ��,������ is the heat from 

lighting, and ������ is the heat from the ventilation fan in dwelling ℎ at time-step �. 
These four sources of energy are in turn defined as follows:  ��,���� = ���� × �� × ��� ∀  ℎ ∈ ��, � ∈ � (17) ��,���� = ���� × �� × ��� ∀  ℎ ∈ ��, � ∈ � (18) ��,������ = ���ℎ�� × �� × ��� ∀  ℎ ∈ ��, � ∈ � (19) ������ = ��ℎ� × ��� ∀  ℎ ∈ ��, � ∈ � (20) 
 
where ����, ����, and ���ℎ�� are the profiles for the appliances, occupation, and lighting, 
respectively. The parameters ��, ��, �� and ��ℎ� are given in units of W/m2 for appliances, 
occupation, lighting, and fan heat, respectively. 

The solar energy gains are:  ��,�� = ��� × ��� × ��� × ��� × ���,� × 0.65 ∀  ℎ ∈ ��, � ∈ � (21) 
 
where ���, ���, ���, ��� and ���,� are the window solar transmittance, solar shading coefficient 
for a window, the frame coefficient of the window, the total surface area of the windows of the 
building, and the global irradiation on a horizontal surface, respectively.  

Here follows a description of the two-zone extension of the model presented above. In addition, 
an alternative to the fixed interval method for limiting the variation in indoor temperature is 
introduced. In this alternative to the temperature interval, the indoor temperature is allowed to vary 
without limitation; instead there is a penalty cost associated with deviating from an indoor set-point 
temperature. This method is called deviation cost method. 

The modification of the energy balance model involves replacing Eq. (7) with the following: 
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��,��� = ��,����� + ���,����� + ��,����� + ��,������ + ��,���� + ��,�� + ��,������× ��������  
∀  ℎ ∈ ��,  � ∈ � 

(22) 

 
The change from Eq. (7) is the removal of ��,����� and the introduction of ��,������. The new variable ��,������ represents the energy transfer between the newly introduced temperature zone and the 

indoor air for dwelling ℎ at time-step �. The newly introduced zone represents the entirety of the 
building envelope. Furthermore, the thermal mass of the building is divided among the two zones 

of the dwelling, such that the ����� value represents the thermal mass of the indoor temperature 
zone. 

An intertemporal energy balance is introduced for the new temperature zone: 

��,���� = ��,������ + ���,����� − ��,������� × ���������  ∀  ℎ ∈ ��, � ∈ � (23) 

 
where ��,���� is the temperature of the building envelope for dwelling ℎ at time-step �, and ������ 

is the thermal mass of the building envelope in dwelling ℎ. 

Equation (8), which represents the energy transfer between the dwelling and the outside, is altered 
to give: ��,����� = ����� × ������,���� − ��,����� ∀  ℎ ∈ ��, � ∈ � (24) 
 

where ��,���� replaces ��,���  , as it is assumed that only the building envelope is in contact with the 
outside. 

The transfer of energy between the building envelope temperature zone and the indoor air 
temperature zone is governed by: ��,������ = ℎ��� × ������,���� − ��,��� � ∀  ℎ ∈ ��, � ∈ � (25) 
 
where ℎ���is the heat transfer coefficient between the indoor zone and the building envelope. 

The alternative to having a fixed interval for the temperature variation, i.e., Eq. (14) and Eq. (15), 
involves a change in the objective function, as in Eq. (5), to the following: ���� = � ������� × ��,���� + ��,���� × ���� + ��,���� × ���� + ��,��� × ��� + ��,��� × �����∈��∈��  (26) 

 

where ��,���� is the low-cost temperature increase, ��,���� is the high-cost temperature increase, ��,���  

is the low-cost temperature decrease, and ��,���  is the high-cost temperature decrease for dwelling ℎ at time-step �. Furthermore, ����, ����, ��� , and ��� are the costs for the low-cost temperature 
increase, high-cost temperature increase, low-cost temperature decrease, and high-cost temperature 
decrease, respectively. 

For those cases in which this alternative objective function is used, the indoor temperature, ��,��� , 
is calculated as follows: ��,��� = ��,���� + ��,���� + ��,���� − ��,��� − ��,���  ∀  ℎ ∈ ��, � ∈ � (27) 
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where ��,���� is the setpoint temperature from which the increase and decrease in temperatures are 

allowed to vary for dwelling ℎ at time-step �. Furthermore, ��,���� can also be allowed to vary within 
a temperature range without the dwelling incurring any additional penalty costs. 

The allowed temperature interval for ��,���� is governed by: ��,���� ≤ �����,��� ∀  ℎ ∈ ��, � ∈ � (28) ��,���� ≥ �����,��� ∀  ℎ ∈ ��, � ∈ � (29) 
 

where �����,��� is the maximum allowed temperature, and �����,��� is the minimum allowed 

temperature for ��,���� at time-step �. 
The low-cost temperature increase, ��,����, and the low-cost temperature decrease, ��,��� , are subject 

to: ��,���� ≤ �����,��� ∀  ℎ ∈ ��, � ∈ � (30) ��,��� ≤ �����,�� ∀  ℎ ∈ ��, � ∈ � (31) 
 

where �����,��� and �����,�� are the maximum values for the low-cost temperature increase and 
low-cost temperature decrease at time-step �, respectively. 

The following variables can only have positive values: ��,��� ,��,����,��,���� ,��,����.��,��� ,��,��� ,��,����� ,��,����, ��,����,��,����� ,��,����� ≥ 0 ∀  ℎ ∈ ��, � ∈ � (32) 
 

The following variables can take on both positive and negative values: ��,�����,��,������,��,����� ���� ∀  ℎ ∈ ��, � ∈ � (33) 
 

To obtain the system-level impact of dispatching the electric space heating, each dwelling ℎ is 
scaled up according to:  ����� = � ���,���� × �� ��∈��  ∀  � ∈ � (34) 

 

where ����� is the total electric space heating demand at time-step � , and ��  is the weighting of 
the dwelling ℎ, i.e., the extent to which the specific dwelling represents part of the total number of 
dwellings in the Swedish single-family dwelling building stock. 

4.3 Demand response appliance model 

The DR appliance model used in Paper I optimizes the dispatch of household loads subject to 
certain constraints. The loads can be divided into appliance loads and thermal loads. Appliance 
loads include dishwashers, washing machines, and dryers. For these loads, a timeframe for shifting 
is set. However, if there is a need to operate the load earlier than the end of the shifting timeframe 
then that takes precedence, i.e., if the allowed shifting timeframe for a dishwasher is 24 hours but 
there is a need in the household to run the dishwasher again after just 12 hours, the shifting time 
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becomes 12 hours. The thermal loads include refrigerators, freezers, hot tap-water heating, and 
hydronic heating. For the cold appliances, the load can be shifted by 1 hour, either to a preceding 
or a succeeding hour, signifying a change in temperature inside the appliance. For the hydronic 
space heating and hot-water demands, there is the possibility to store heat, meaning that the shifting 
time variable is only limited by the size of the storage.  

The model minimizes the total cost of electricity as follows: min������ = � ������� × ��,���� − ������ × ��,����� + ��� × ��� × ��� + ��� × �����∈��∈���× ���� + �� × ���� 
 

(35) 

 

where ��� is the set of all households modeled. The electricity purchasing price, ����� is the 
electricity market spot price per unit of electricity, an energy tax per unit of electricity, a surcharge, 
a certificate charge and a distribution grid charge. All of these values are also subject to value added 

tax. While ������ is the price received for selling electricity to the grid (the wholesale price of 
electricity and a reimbursement from the distribution grid owner) at time-step �. The electricity 

bought from the grid is as previously stated ��,����, and ��,����� is the electricity sold to the grid by 

household ℎ at time-step �. The households also have to pay the cost of investing in a PV-panel, 
where ��� denotes the size of the PV-panel investment made by household ℎ. As it is assumed 
that the inverter has a shorter lifespan than the rest of the system, ��� represents the size of the 
investment in the inverter made by household ℎ. Furthermore, �� is the maintenance cost, ��� is 

the cost of the PV-panel, ���� is the cost of the inverter, and ��� and ���� are the annuity factors 
for the PV-panel and inverter, respectively. The annuity factor is defined as: � = �1− (1 + �)�� 

 
(36) 

 
where � is the interest rate, and � is the lifetime of the investment. 

The dispatch of the DR loads and the charging of the hot-water storage are subject to: ��,����� + ��,����� + ��,���� + ����,�,���� + ��,�,���� ��∈�= ��,���� + ���,� + ��,���� 
∀ ℎ ∈ ��� , � ∈ � (37) 

 
where � is the set of all DR loads, with the exception of hot-water storage. The parameter ��,����� is 
the electricity demand from all non-DR loads in household ℎ at time-step �. Furthermore, ��,���� is 

the energy added to the hot-water storage, and ��,���� is the energy removed from the hot-water 

storage in household ℎ at time-step �. The DR loads are represented by ��,�,����  and ��,�,���� , where ��,�,����  is the electricity demand from DR load � in household ℎ at time-step �. The second variable, ��,�,����  , is the additional demand for loads that operate for two time-steps. Each � variable is 

binary and can thus only attain the value 0 or the load size of the load � that it is representing. The 
parameter ���,� is the electricity generated by the PV panel in household ℎ at time-step �. 
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To ensure the DR loads are dispatched within the allowed shifting timeframe, the dispatch of the 
DR loads is subject to: ��,�,���� + ��,�,������ + ⋯+ ��,�,������ = ��,���� ∀  ℎ ∈ ��� , � ∈ ��,�, � ∈ � 

(38) 

 
where ��,� ⊂ � is the set of time-steps � that are DR starting hours for household ℎ and DR load �, i.e., these are time-steps within which the load must be dispatched. � ⊂ � is the set of DR loads 
that have a running time of one time-step. The DR loads are summed until time-step � + �, where � is the number of time-steps for the given shifting timeframe, and must equal ��,���� , which is the 

electricity demand for DR load � in household ℎ. 

DR loads that have a running time of two time-steps, the set � ⊂ �, are subject to:  ��,�,���� + ��,�,������ + ⋯+ ��,�,��(���)��� = ��,���� ∀  ℎ ∈ ��� , � ∈ ��,�,  � ∈ � 
(39) 

 
where the only change from Eq. (38) is that the shifting timeframe is now � − 1. This is necessary, 
as otherwise there is a risk that the load in the second time-step coincides with the load in a new 
shifting timeframe. 

The additional demand is subject to: ��,�,���� = ��,�,������  ∀  ℎ ∈ ��� , � ∈ ��,�,  � ∈ � 
(40) 

 
thereby ensuring that the loads are consecutive. 

The fridge and freezer DR loads, the set � ⊂ �, are treated differently, as follows:  ��,�,����� = ��,�,���� − ��,����� ∀  ℎ ∈ ��� , � ∈ �,  � ∈ � 
(41) 

 

where ��,�,����� is the storage level of the fridge or freezer � in household ℎ at time-step � , and ��,����� 

is the per time-step electricity demand for fridge or freezer � in household ℎ.  

To ensure that the storage level is not too low for longer than the allowed timeframe, it is subject 
to: ��,�,����� + ��,�,������� ≥ −��,����� 

∀  ℎ ∈ ��� , � ∈ �,  � ∈ � 
(42) 

 
where Eq. (42) ensures that the fridge or freezer storage level cannot remain at a low level for more 
than one time-step.  

Furthermore, the storage level is subject to: ��,�,����� ≥ −��,����� 
∀  ℎ ∈ ��� , � ∈ �,  � ∈ � 

(43) ��,�,����� ≤ ��,����� 
∀  ℎ ∈ ��� , � ∈ �, � ∈ � 

(44) 
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which ensures that the level is maximally one per time-step demand down or up. 

The total electricity demand for the fridge or freezer needs to be the same as the total per time-
step demand during the modeled period: ���,�,�����∈� = ��,����� × |�| ∀  ℎ ∈ ��� ,� ∈ � (45) 

 
 

The hot-water storage level is subject to: ��,���� = ��,������ × ���� − ��,���� + ��,���� ∀ ℎ ∈ ��� , � ∈ � (46) 
 
where ��,���� is the storage level of the hot-water storage in household ℎ at time-step �. For each 
time-step, some of the energy in the storage is lost; the amount lost is governed by the per time-
step efficiency of the hot-water storage, ���� .  
The energy removed from the storage is subject to:  ��,���� ≤ ��,���� ∀ ℎ ∈ ��� , � ∈ � (47) 
 
where ��,���� is the demand for hot water (either for hydronic or tap-water purposes, or both) in 

household ℎ at time-step �. The equation ensures that the stored hot water is not used for anything 
other than hydronic heating or hot tap-water. 

The storage operation is also limited by the maximum power capacity of the heating system 
according to: ��,���� + ��,���� − ��,���� ≤ ����� ∀ ℎ ∈ ��� , � ∈ � (48) 
 
where ����� is the maximum power capacity per time-step of the heating system in household ℎ.  

The possible storage level is limited according to: ��,���� ≤ ����� ∀ ℎ ∈ ��� , � ∈ � (49) 
 
where ����� is the maximum amount of energy that can stored in household ℎ. 

The following variables can only take on positive values: ��,���� , ��,����, ��,����, ��,����,��,����� ≥ 0 ∀ ℎ ∈ ��� , � ∈ � (50) 
 
 

4.4 PV-battery model 

The PV-battery model can be regarded as an extension of the DR appliance model and is used in 
Papers II and III. The battery is modeled using a simplified representation of a lithium-ion battery 
system, similar to the descriptions used in Weniger et al. [69] and Mulder et al. [68]. The 
simplifications imposed are that the battery is assumed not to self-discharge and that the efficiency 
of charge and discharge of the battery is assumed to be constant. Moreover, there is no accounting 
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for degradation of the battery due to its operation. Furthermore, no depth of discharge is taken 
into account, i.e., the modeled battery only represents the usable part of the battery. The battery-
PV system is assumed to be to be AC/DC-coupled. The detailed model description follows below. 

The PV-battery model can be used to maximize self-consumption of PV-generated electricity, 
which is equivalent to maximizing the self-sufficiency of a household, i.e., minimizing the amount 
of purchased electricity, this is done in Paper II. Thus, the optimization model minimizes the total 
amount of purchased electricity according to: ������� = � ���,�����∈��∈����  (51) 

 
where the set ���� is the set of all households ℎ , and � is the set of all time-steps �. As previously 

noted,  ��,���� is the electricity purchased by household ℎ at time-step �.  
To ensure that the electricity demand is met for each household, the optimization is subject to: ��,���� + ��,����� + ��,���� = ��,���� + ���,� + ��,���� × ���� ∀ ℎ ∈ ����, � ∈ � (52) 
 

where ��,� is the electricity demand from household ℎ at time �. Furthermore, ��,���� is the energy 

added to the battery, and ��,���� is the energy removed from the battery for household ℎ at time �. 
The removed energy is multiplied by the battery discharge efficiency, ����, to capture energy losses 
from operating the battery. In addition, ���,� is the electricity generated by a PV-panel that belongs 
to household ℎ at time �.  
The energy storage level of the battery is defined as: ��,� = ��,��� − ��,���� + ��,���� × ���� ∀ ℎ ∈ ����, � ∈ � (53) 
 
where ��,� is the storage level of a battery that belongs to household ℎ at time �. 
The possible storage level and the capacity for charge and discharge are subject to: ��,���� ≤ ����� ∀ ℎ ∈ ����, � ∈ � (54) ��,���� ≤ ����� ∀ ℎ ∈ ����, � ∈ � (55) ��,���� ≤ ����� ∀ ℎ ∈ ����, � ∈ � (56) 
 

where ����� is the power capacity per time-step of the battery, and ����� is the energy capacity of 
the battery in household ℎ.  

All of the variables can only assume positive values: ��,����;  ��,�����; ��,����; ��,����; ��,���� ≥ 0 ∀ ℎ ∈ ����, � ∈ � (57) 
 

The objective function of the model can be changed to minimize the household electricity cost 
which is done in Paper III. The new objective minimizes the total electricity cost for all households 
according to: 



34 
 

min���� = � � ����,���� × ��,�,���� − ��,����� × ��,�,����� + ��,� × ���� × ���� + ���,��∈��∈������∈�× ��� × ��� + ���,� × ���� × ����� 
 

(58) 

 

where � ⊂ � represents the set of regions of all regions � that contain household load profiles, 

and ����� is the set of households in region �. Similar to Eq. (35), ��,���� is the price for purchasing 

electricity from the grid (i.e., the electricity price, V.A.T., energy tax, distribution grid fee), and ��,����� 
is the price for selling electricity to the grid (the electricity price plus reimbursement from the 

distribution grid owner) in region � at time �. Furthermore, ��,�,����  is the amount of electricity 

purchased from the grid, and ��,�,����� is the amount of electricity sold to the grid in region � by 

household ℎ at time �. For the investments, ��,� is the size of the battery investment, ���,� is the 

size of the PV-panel investment, and ���,� is the size of the inverter investment in region � made 

by household ℎ. In addition, ���� is the cost of the battery, ��� is the cost of the PV-panel, ���� 

is the cost of the inverter, and ���� , ��� , and ���� are the annuity factors for the battery, PV-
panel, and inverter, respectively. The annuity factor is defined according to Eq. (36). The variables 
and parameters in Eqs. (52�57) now also operate over the set �. 

4.5 Energy system models 

Two energy system models are used in conjunction with the models presented above, both of 
which are partial equilibrium optimization models, in that they only model the electricity sector of 
the economy. The ELIN model is a bottom up, long-term, dynamic optimization model that 
optimizes the investments in the power sector for the EU-27 countries, as well as Norway and 
Switzerland. The modeled countries are divided into 50 regions (Fig. 6). This division is based on 
the current bottlenecks in the European electricity system. The model has a time horizon of Years 
2010�2050, with investment decisions being made each year. For each year, there is an intra-annual 
time resolution of 16 time-steps, representing day and night for weekdays and weekends for four 
seasons. For a more detailed description of the ELIN model, see Odenberger et al. [77] and 
Göransson et al. [78]. The results for a given scenario from the ELIN model are used as the input 
to the electricity system dispatch model EPOD. EPOD takes the description of the power system 
from a selected ELIN year and carries out optimization, in order to find the least-cost hourly 
dispatch of the system over 1 year for all regions in Figure 7. For a more detailed description of 
EPOD, see Unger and Odenberger [79], Göransson et al. [78], and Goop et al. [80]. Both the 
electric space heating dispatch model and the PV-battery model are connected to EPOD. The 
Electric space heating dispatch model operates over the Swedish regions SE1, SE2, SE3, and SE4 
and the PV-battery model operates over regions SE1 and SE2. The modifications applied to the 
EPOD model arising from these connections are described below. 
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Figure 7.  Regional divisions used in the EPOD and ELIN models. 

The two-zone electric space heating dispatch model is included in the system for which EPOD 
optimizes the dispatch, i.e., EPOD has control over the operation of the heating equipment in the 
dwellings (Paper V). As a consequence of the inclusion of the electric space heating model, some 
of the equations and input data in EPOD are modified. The energy balance constraint is changed 
to: 



36 
 

��,����� + � ���,���� × �� ��∈��� ≤ � ��,��∈�� +���,�,��∈����
 ∀  � ∈ �, � ∈ � (59) 

 

where ��,����� is the electricity demand in region � at time-step � , excluding the electric space heating 

demand in � ⊂ �, where � is the set of Swedish regions. In addition, ��,� is the power generated 

in plant � at time-step �, and ��,�,� is the electricity traded between regions � and � at time-step �. 
The set �� is all power plants in region �, and ��� is the set of all dwellings in region �. To capture 
the impact on the overall electricity demand of changes in the dispatch of the heating equipment, 
a baseline electric space heating demand is defined. Once calculated, it is scaled up and subtracted 

from the electricity demand profile in EPOD, i.e., as stated, the parameter ��,����� is the electricity 

demand with the baseline electric space heating demand subtracted in region � at time-step � for 
the set �. 

The extent of the modification of the objective function in EPOD is dependent on whether the 
fixed interval method is used for the allowed indoor temperature change in the dwellings, as in Eqs. 
(14) and (15), or on whether the deviation cost method is used, as in Eqs. (27�31). If the fixed interval 
method is used there is no change to the objective function, as the change in total cost is captured 
by changes in the demand and thereby, changes in the electricity generation. For the case in which 
the deviation cost method is introduced, this penalty cost must be included in the objective function, 
as follows:  min�������� = � � �����,���� × ��,� + ��,����� + ��,� × �� ��∈��∈���∈����∈�  (60) 

 

where ��,���� is the running costs, and ��,����� is the cycling costs (the sum of the start-up and part-

load costs) for plant � at time-step �. The introduced variable ��,�, is the cost penalty for deviating 

from the set-point temperature for dwelling ℎ at time-step �. 
The variable ��,� is in turn subject to:  ��,� = ���,���� × ���� + ��,���� × ���� + ��,��� × ��� + ��,��� × ���� ∀  ℎ ∈ ���, � ∈ � (61) 
 

 

The PV-battery model, Eqs. (52�58), is iteratively optimized together with EPOD (Paper III). 
This approach is used so as to capture the feedback effect between the households that are 
optimizing their investments and EPOD. The iterative procedure is as follows: 

1. The electricity system composition is generated in ELIN. The system composition for 1 
year is extracted from ELIN and fed into EPOD. 

2. EPOD optimizes the dispatch of the system over 1 year, generating a marginal cost of 
electricity (market price of electricity) for each region and time-step. 

3. The marginal cost of electricity is used as electricity prices in the PV-battery investment 
model. This model then optimizes the investment levels of PV-panels and batteries for 
each household, as well as the dispatch of the batteries. 
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4. The new household net loads [see Eq. (62)] are scaled up to represent all households in 
the regions. 

5. The demand/load curve in EPOD is changed with regard to the new household net load. 
6. Steps 2 to 5 are repeated until the convergence criteria or the maximum number of 

iterations are reached. 
 

The households� net load is: ��,���� = � ����,���� − ��,� + ��,���� − ��,���� × ����� × �������∈�����  ∀  � ∈ �, � ∈ � (62) 

 
which is simply the households� total load, ��,����, minus the PV-generated electricity plus the energy 
added to the energy storage minus the energy removed from storage multiplied by the weighting 
of each household.  

4.6 Solar heat and power model 

In Norwood et al. [81], an extensive modeling framework is presented that incorporates the 
following different solar energy systems: non-tracking photovoltaics (four different PV 
technologies are included: poly-Si, mono-Si, CdTe, and CIGS); 2D-tracking photovoltaics; high-
concentration photovoltaics; flat-plate thermal; evacuated tube thermal; concentrating trough 
thermal; concentrating solar combined heat and power; and hybrid concentrating 
photovoltaic/thermal. In the modeling, empirically verified models are used for thermal and PV 
collectors. The empirical models for the PV technologies are taken from the studies of King et al. 
[82] and Huld et al. [83]. The models are not presented here but can be found in the sources 
presented above, as well as in the detailed description provided by Norwood et al. [81]. 
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5. Data 

The data used in this thesis and in the appended papers primarily concern either 
household/dwelling loads or weather. The data concerning household/dwelling loads comes in 
two categories;1) measured loads from actual households, which in turn comes from two different 
sources, Zimmermann [84] and E.ON. [85]; and 2) data describing the building envelope and other 
physical characteristics of dwellings, enabling modeling of the space heating demand. Weather data 
also comes in two categories; Typical Meteorological Year (TMY) data and year specific data.  

Additional data that are required is the composition of the surrounding energy system, i.e. the 
results from the ELIN model, and economic and technical data for all papers. The ELIN scenarios 
used are presented below and technical and economic parameters used in all papers are presented 
in appendix A.  

5.1 BETSI 

The data used as input to the electric space heating dispatch model is a dataset called BETSI 
(Byggnaders Energi, Tekniska Status och Inomhusmiljö) [86]. BETSI contains data describing the 
building envelope, other building data (e.g. size), the geographical location, and weighting 
(reflecting the share of the total building stock represented by the dwelling) of 826 Swedish single-
family dwellings as well as a number of multi-family dwellings and locales. The dwellings have been 
selected to be representative of the Swedish buildings stock. From this data all single-family 
dwellings with some form of electric space heating are extracted and used as input for the papers, 
resulting in a total of 571 dwellings. Thus, the representation of the electric space heating is only 
included in regions SE1-SE4 (Sweden, see Figure 7), as these are the regions for which there is 
available data. The data contains most parameters presented in the model description in section 4.2 
except the power capacity of the heating equipment, coefficient of performance (COP) values for 
the heat pumps, profiles for the internal heat gains, thermal mass of the indoor air zone, and 
weather data.  

For the methods used for assigning the missing data and validation of the data see Papers IV and 
V.  

5.2 Appliance loads 

For the DR appliance model, load profiles measured on an appliance basis are used as input data. 
The load profiles are taken from a measurement study performed by the Swedish energy agency 
[84]. The aim of the study was to investigate energy efficiency potentials in Swedish households. 
In the study 40 single-family households and apartment households were measured for a period of 
one year and 360 single-family households and apartment households were measured for one 
month. From the measured households the single-family households with a measurement period 
of one year where selected as input to the model, i.e., 21 households are modeled. The loads have 
been measured with a temporal resolution of 10 minutes which are aggregated to the 1 hour 
temporal resolution used in the model. 

The loads that are used for DR are dishwashers, washing machines, dryers, fridges, freezers, hot 
tap water, and hydronic space heating. The washing machine and dryer are treated as one machine, 
i.e., it is assumed that there is no need to transfer laundry between the two machines. For each 
household and each appliance the set ��,� is created indicating the starting time step from which it 
is possible to shift the load forward in time. The starting time is based on the load profile of the 
appliance, with each indication of a load start on the measured load profile translating to a starting 
time for the DR of the load. The size of the shiftable appliance loads are set to the average size of 
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the appliance load for each household, the resulting load sizes can be seen in Appendix A. For the 
cold appliance loads, i.e., the fridge and the freezer, the hourly load is set to the average load as 
well. For the hot tap water and hydronic space hearting the measured demand needs to be fulfilled 
in each time step. The maximum power that can be used for hot water purposes is set to either 9 
kW, for households with hydronic space heating and hot tap water heating, or 3 kW, for households 
with only hot tap water heating. For each household with hot water storage possibilities the storage 
size is assumed to be either 10.2 kWh, for households with hydronic space heating, or 5.8 kWh, 
for households with hot tap water heating.  

5.3 Household loads 

For the PV-battery model, the input data is measured household load profiles. The measurement 
dataset comes from a measuring campaign performed by E.ON in Sweden [85]. The original dataset 
consists of 10,086 household measured over a 1-year period (February 1, 2012 to January 31, 2013) 
with a 1 hour resolution. In addition to the load profiles there are data concerning geographical 
location, heating system, and number of inhabitants. Of the 10,086 measured household loads 
2,104 are used in the modeling. The reduced number of households used is due to lack of 
supplementary data and missing measurements. Households that did not include supplementary 
data are removed since this information is required in order to assign solar PV generation profiles 
to the households and in the scale up.  With regards to the missing measurements all households 
missing ≥ 5 % of the data points are removed from the dataset. For a complete description of the 
data treatment see Paper II. 

The households in EPOD regions SE3 and SE4 are scaled up to represent all single-family 
households in the two regions. The scaled up done through assigning weightings to each household 
in the used dataset. The weighting of each household is calculated using geographical location and 
heating technology data included in the dataset and statistics for the number of households with 
specific heating technologies in the two regions modeled. For further detail on the scale up and the 
validation of it see Paper III. 

5.4 Weather data 

Weather data is used for both the creation of PV electricity generation profiles as well as for 
outdoor temperatures used in the modeling of space heating demand. As mentioned two different 
type of datasets are used depending on the modeling purpose, TMY data and year specific data. 

TMY datasets are created to, as the name indicates, represent a typical meteorological year. The 
TMY (more precisely TMY3 standard) dataset used consists of data for Europe with a spatial 
resolution of 0.25°×0.25° and a temporal resolution of 1 hour [87]. The data set consist of direct 
normal radiation, diffuse horizontal radiation, outdoor temperature, wind speed, albedo, and the 
suns position.  

Year specific data is taken from the MERRA-2 dataset from NASA [88]. The MERRA-2 dataset 
has a spatial resolution of 0.5°×0.625° and a temporal resolution of 1 hour. Most the parameters 
available in the TMY dataset are available in the MERR-2 data, except for direct normal radiation, 
diffuse normal radiation, and sun position. For the solar radiation the dataset instead contains 
global horizontal radiation. However, as the direct normal and diffuse horizontal radiation is 
required for the modeling framework developed in Norwood et al. [81], the global horizontal 
radiation is split into these two parts using the method proposed by Ridley et al. [89]. The suns 
position is also calculated for each location and time-step using the methods described in Iqbal 
[90]. 
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5.5 ELIN scenarios 

A description of the European electricity system is needed in order to model the dispatch of said 
system. The systems are created through the use of the ELIN model. Three different scenarios are 
modeled; Green Policy (GP), Climate Market (CM), and Regional Policy (RP). The scenarios reach 
a decrease in CO2 emissions from the electricity sector of 95% (GP and CM) or 99% (RP) relative 
to 1990 levels. The different scenarios have different driving forces with regards to the 
development of the electricity system. The GP scenario is driven by a tightening cap on CO2 
emissions but also includes targets on RES based electricity, not allowing for nuclear or fossil fuel 
(even if equipped with CCS) by Year 2050 and a moderate electricity demand increase. For the CM 
scenario the driving forces are an increased cap on CO2 emissions and a high electricity demand 
increase. The RP scenario is driven by an increased cap on CO2 emissions, targets on RES based 
electricity and no electricity demand increase. Figure 8 shows the development of the technology 
mix in total European electricity generation from Year 2010 to Year 2050 for a) the GP scenario, 
b) the CM scenario, and c) the RP scenario. As can be seen the system compositions vary 
considerably. GP is dominated by wind power, RP has relative large amounts of wind power, and 
CM showing a more diverse composition. 
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Figure 8.  The development of the European electricity generation mix in the two scenarios: (a) Green Policy, (b) 
Regional Policy and (c) Climate Market. Faded colors represent contribution from existing power plants whereas clear 
colors describe contribution from new investments. 

5.6 Use of the data in appended papers 

The use of different data sources is motivated by the data characteristics required in order to answer 
the questions posed in the different papers. Table 3 shows which dataset that is used in which 
paper, a gray box indicates that the data has been used in the paper. For the weather data TMY is 
used in Paper II as the paper aim to give an average picture of what the expected power generated 
from the PV panels will be. Furthermore, the households investigated in this paper are investigated 
in isolation, i.e., there is no surrounding system whose description needs to be correlated with the 
data. For Papers I, III, IV, and V year specific weather data are used as other parameters which 
works as input to the models, e.g., electricity prices and system load curve, are year specific. 
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Through using the same time period for the different datasets possible correlations between data 
are hopefully preserved. All three scenarios are used in Paper III while GP and CM are used in 
Paper V. From each scenario the system composition for the year 2032 is selected and used for 
the dispatch modeling in EPOD. The scaled up household loads used in Paper III cover regions 
SE1 and SE2 and the dwellings in Paper V represent the whole of Sweden (SE1-SE4). 

Table 3. The datasets used in each of the appended papers, a grey box indicates that the data has been used in the paper. 

 

BETSI Appliance 
loads 

Household 
loads 

TMY 
weather 

data 

Year 
specific  
weather 

data 

ELIN 
scenarios 

Paper I       
Paper II       
Paper III       
Paper IV       
Paper V       
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6. Overview and discussion of the results 

In this chapter, the key results from the appended papers are presented and discussed. The chapter 
is divided into two sections. Section 6.1 concerns household PV-systems and the technical and 
economic impacts that the DR and batteries can have on such systems. Section 6.2 concerns the 
technical potential and system value of DR of electric space heating in the Swedish single-family 
dwelling stock. The presented results are an overview and should not be viewed as exhaustive.  

6.1 Solar photovoltaics in Swedish single-family dwellings 

As mentioned in Section 2.3, the value of the PV installation of a household is dependent upon 
the degree of self-consumption of PV-generated electricity, as self-consumption implies that no 
taxes or fees are paid on the consumed electricity. Furthermore, if the electricity sold by prosumers 
is subject to the market price for electricity during the period of selling, i.e., through an RTP 
scheme, there may be additional incentives to increase self-consumption in the case of low 
electricity prices or to decrease self-consumption when electricity prices during hours with 
electricity generation are sufficiently high. A change in self-consumption can be accomplished by: 
1) moving loads to or from the hours of excess PV electricity generation; or 2) charging or 
discharging energy storage units (batteries or hot-water tanks) during hours of excess electricity 
generation. Here follows the results from Papers I�III concerning the technical capability for and 
economic value of changing the level of self-consumption in Swedish single-family households. 
First, the technical potentials in terms of self-consumption of PV-generated electricity and self-
sufficiency of PV-battery systems in Swedish households are presented. Second, the techno-
economic potentials for DR and PV are presented, assuming a fixed supply side. Third, the techno-
economic potential of PV-battery systems and the possible feedback with the surrounding 
electricity system arising from such investment are presented. The results are shown for the sizing 
of the PV-panels in terms of ALR and for the sizing of the batteries in terms of RBC. For a 
clarification of the concepts, see Section 4.1. 

The technical potential of batteries 

The combination of PV panels and batteries allows for the storage of excess electricity generated 
during daytime, which can be used subsequently to meet in-house electricity demand during 
evening, night-time or cloudy hours. Described below are the results concerning the technical 
limitations of batteries with regards to increasing the self-sufficiency and self-consumption of PV-
generated electricity in Swedish single-family households, taken from Paper II. The PV-panel sizes 
in parentheses represent the ranges for the investigated households. 

Figure 9 shows the resulting absolute values for self-sufficiency for ALRs of 0.5 (0.07�2.55 kWp), 
1.5 (0.21�7.65 kWp), 3 (0.42�15.3 kWp), and 6 (0.85�30.6 kWp), with each dot representing one of 
the 2,104 modeled households and the lines representing the median household in terms of self-
sufficiency. For the ALRs studied, self-sufficiency of up to 60% can be achieved. However, for 
higher ALRs, there is a difference between households of up to 30 percentage points for a given 
RBC. As shown in the figure, in the absence of a battery (values for the median household at an 
RBC of 0), the difference in the degree of self-sufficiency between ALRs becomes smaller with 
increasing ALR, e.g., an increase in ALR from 3 to 4.5 increases self-sufficiency by 2 percentage 
points (19% to 21%), while an increase in ALR from 1.5 to 3 results in an increase in self-sufficiency 
of 7 percentage points. This phenomenon is explained by the concentrated electricity generation 
profiles of the PV-panels for Swedish conditions; as the PV panel size is increased, most of the 
new generation occurs during hours with excess generation. Although an increased battery size 
helps to exacerbate the difference in self-sufficiency between the ALRs relative to having no 
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battery, the difference between the median values for a given RBC still becomes smaller with 
increasing ALR, i.e., increasing the ALR for a given RBC gives diminishing returns in terms of 
increased self-sufficiency. 

 

Figure 9. Self-sufficiency (in percent) for four different ALRs, plotted against the relative battery capacity. Each point 
represents a modeled household and the lines give the median value for the given ALR. Figure taken from Paper II. 

The resulting absolute values for the self-consumption of PV-generated electricity for ALRs of 0.5, 
1.5, 3, and 6 are shown in Figure 10, with each dot representing one of the modeled households 
and the lines representing the median household in terms of self-consumption of PV electricity. 
For the median household, the practical maximum PV electricity self-consumption ranges from 
65% to almost 100%, depending on the ALR. Self-consumption of electricity can obviously be 
limited either by the attainment of 100% self-consumption or by limitations as to the available 
battery capacity (It should be noted that 100% PV electricity self-consumption cannot be reached 
through the help of a battery, as there are energy losses associated with operating the battery). For 
most of the investigated setups, it is the battery that is limiting, i.e., few households reach their 
practical (accounting for energy losses) maximum level of self-consumption. For ALRs ≥4.5, the 
practical maximum level of self-consumption of PV-generated electricity is never reached for any 
household, i.e., for all households with ALRs ≥4.5, PV electricity self-consumption is limited by 
the battery capacity, given the battery capacities investigated here. The ALRs for which the median 
household is limited due to reaching the practical maximum level of self-consumption are ≤1.5. 
However, even for ALRs of 1.5, batteries with an RBC of up to 2 to 3 are required by most of the 
households, i.e., batteries of considerable size compared to the PV installation (e.g., 5�7 kWh for 
a 2.5-kWp installation).  
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Figure 10. PV electricity self-consumption (in percent) for four different ALRs, plotted against relative battery capacity. 
Each data-point represents a modeled household and the lines indicate the median value for the given ALR. Figure taken 
from Paper II. 

The explanation for the decrease in marginal benefit seen with increasing battery capacity seen in 
Figures 9 and 10 is down to two factors concerning the relationship between the electricity load 
profile and the PV electricity generation profile.  

 The first factor that reduces the marginal benefit of adding battery capacity is that it is likely 
that there will be fewer occasions on which energy has to be moved from a period of excess 
generation to a period without excess generation, i.e., on some days, the existing battery 
can handle all the excess PV generation, rendering the extra battery capacity redundant 
during these periods.  

 The second factor is that for sufficiently high ALRs, a further increase in battery capacity 
will eventually result in a battery that can store more than enough energy to meet the night-
time demand during days in which daytime excess PV generation is higher than the night-
time demand. As a result, the battery will not be completely discharged before the next 
period of charging. As a consequence of the battery not being fully discharged, some of the 
excess PV electricity generated during the following day may not be stored, thereby 
decreasing the utilization of the battery.  

Both these factors are enhanced for Swedish conditions due to that both load and PV generation 
profiles are skewed, i.e., the electricity demand is highest during winter and the PV electricity 
generation is highest during summer. 

Overall, it can be seen that the marginal benefit of additional battery capacity becomes smaller and 
smaller as battery size increases. Which RBC is economically optimal is obviously dependent upon 
the cost of the PV-battery system and the value of additional self-consumption. This value is in 
turn dependent upon the composition of the surrounding electricity system, as well as the policies 
regarding self-consumption that are put in place. However, given the behavior displayed in Figure 
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9, it seems unlikely that batteries with RBCs >2�3 will be installed for any purpose related to PV, 
be it economical or with the aim of maximizing self-sufficiency. 

The values of demand response and hydronic storage for PV investments 

As previously stated, engaging in DR is one possible way of increasing the value of a households 
PV installation. Figure 11a shows the improvement in annual electricity cost that can be achieved 
by combining the DR of hydronic loads and solar PV for the households investigated in Paper I. 
The improvements are compared to having an hourly RTP scheme without DR at the given ALR, 
i.e., assuming that the investment in a PV-panel has already been made. The maximum, minimum, 
and the 25th and 75th percentiles, as well as the mean value for the investigated households are 
shown. Figure 11b shows the corresponding data for the DR of appliances assuming a potential 
shifting time of 24 hours. As shown in Figure 11a, as the ALR increases the DR exhibits an s-curve 
with regard to its ability to improve the yearly electricity costs. The impact of combining PV and 
DR is negligible up to an ALR value of 0.5, owing to the absence of excess electricity generation 
from the PV panels. As all the electricity is already being used in-house, there is no additional gain 
to be derived from shifting loads. For all the households, diminishing returns for the benefit of DR 
are apparent at an ALR of 3. This happens even though the available shiftable load is considerably 
larger than the total PV electricity generation at this ALR value, with an average of 8,100 kWh/year 
of available hydronic DR compared to an average of approximately 4,000 kWh/year of electricity 
generated. Thus, the observed s-curve indicates that most of the new solar electricity generation at 
an ALR >3 occurs during hours in which there is no possibility to utilize the additional available 
DR loads.  

There is a noticeable spread in the values among the investigated households, which increases with 
increasing ALR. The spread can be explained by the share of the shiftable load compared to the 
total annual load, as well as the initial match between the load and PV electricity generation. 
However, they all show the same s-curve.  

For the appliance loads shown in Figure 12b, an s-shaped curve is also observed, showing the same 
properties as the hydronic DR. In addition, the improvements in annual electricity cost essentially 
level off for ALR values ≥3. This leveling off of the improvements shows that the technical 
limitations of the synergetic effects of appliance DR and solar generation are reached even when a 
generous shifting time of 24 hours is applied. However, it should be noted that the largest appliance 
loads, those for refrigerators and freezers, are not as flexible (±1 hour), which reduces their 
usefulness. Furthermore, the synergetic effects of appliance DR and solar PV are less pronounced 
than those of the DR of hydronic loads, with improvements in electricity cost of <1% compared 
to 4.5% for the hydronic loads. However, the maximum value shows a considerably higher increase 
with increasing ALR. This is attributed to one single household and is explained by the fact that 
the appliance load constitutes a relatively large part of the total load of that household. Thus, it 
exhibits a lower ratio for generated electricity to shiftable load, as compared to the other 
households.  
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a) b) 
Figure 11. Improvements in annual electricity costs compared to an hourly pricing scheme for different ALRs for: a) 
DR of hydronic loads; and b) DR of appliance loads. Adopted from Paper I. 
 

The impact of the DR measures can be compared to other factors that can affect the value of a 
households PV investment. Figure 12, a and b shows the impacts that a net metering scheme (a) 
and the current Swedish tax reduction scheme (b) have on improvements in annual electricity cost, 
compared to having an hourly RTP without DR. Figure 12, c and d shows the impact that a PV-
panel price reduction of �290/kWp (c) and a lower discount rate (moving from 2.5% to 0%) for 
the PV investment (d) have on the improvement in annual electricity cost, assuming an hourly RTP 
scheme.  

The use of subsidy schemes has a considerably stronger impact than either DR approach at ALRs 
>2. The monthly net metering scheme shows a behavior similar to the DR, i.e., the marginal benefit 
tapers off at higher ALRs. This behavior is due to the fact that at higher ALRs the monthly level 
of PV electricity generation during summer months is higher than the monthly demand, effectively 
eliminating the benefit of net metering for these months. The spread in values between households 
reflects the differences in the monthly match between PV electricity generation and electricity 
demand. Households with a low seasonal match will benefit less for a given ALR. The tax reduction 
scheme does not show this type of behavior, as it effectively works as an annual net metering 
scheme.   

Both the reduction in PV-panel price and the discount rate show a linear trend with increasing 
ALR, as they only affect the investment cost. The effect of the reductions in both cases is stronger 
improvements in annual electricity cost than are accomplished by the DR measures. It should be 
noted that the price of PV panels has previously dropped at twice the rate shown in Figure 12c in 
a single year, although the price has stagnated in recent years [91].  

The impacts of the above-mentioned factors significantly outweigh those achieved through the use 
of appliance DR, while the impact of using hydronic DR is comparable at lower ALRs. However, 
a direct comparison between the impact of DR and the impacts of the other factors is not entirely 
fair, as the net metering and tax reduction schemes are subsidies and DR is not. Nevertheless, the 
comparison is interesting in the sense that it shows the relative strength of DR as a possible factor 
in the decision of a household to purchase a PV-installation. For instance, it can be seen that the 
discount rate that the household applies can have a considerable impact. As this value can fluctuate 
considerably depending on the household (see Harrison et al. [92]), reducing this value for 
households will have a strong impact, whereas attempting to incentivize DR of appliance loads will 
have only a minor effect.  
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a) b) 

  
c) d) 

Figure 12. Improvements in annual electricity costs compared to an hourly RTP for different ALRs for: (a) a net 
metering scheme; (b) a tax reduction scheme; (c) a reduction in PV-panel price; and (d) a reduction in the interest rate 
for ALRs in the range of 0�6. Adapted from Paper I. 

The techno-economic potential of PV-battery systems 

A major expansion of PV or PV-battery systems in Swedish single-family households is likely to 
have an impact on the surrounding electricity system. Presented below are the results from Paper 
III showing the investment levels in PV panels and battery systems for households based on the 
iterative method presented in Section 4.5, which accounts for such feedback. The results are shown 
for the three electricity systems scenarios presented in Section 5.5: Green Policy (GP); Climate 
Market (CM); and Regional Policy (RP). It should also be noted that the only benefit of increased 
self-consumption for the households here is the avoidance of taxes and distribution grid fees. In 
order to investigate the sensitivity of the investments to changes in grid fees or taxes, a GP scenario 
with the variable grid fee removed is also investigated. This case is denoted as �Fixed grid�. The 
households shown are based on the scale-up of the 2,104 households presented in Section 5.3. For 
cost assumptions regarding the PV and batteries, see Appendix A. 

The resulting hourly electricity price profiles (i.e., the marginal electricity generation cost from 
EPOD) for the Swedish regions vary considerably across the different scenarios. As the price signal 
is the only feedback that the households receive from the system, these will influence their desire 
to invest in PV panels and batteries. Figure 13 shows the resulting electricity price duration curve 
for the SE1 region before the first iteration step, i.e., before any investments by the households. 
The price curve can broadly be categorized into: �High and stable� for the CM scenario; �Low and 
stable� for the RP scenario; and �High and variable� for the GP scenario. The very stable prices 
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seen in the RP and CM scenarios are due to Nordic hydropower. Figure 14 shows the aggregate 
levels of PV and battery investments (i.e., the investments made by all the households in both 
regions) after convergence of the iterations for the four cases. All cases result in some form of 
investment by the households. However, the level of investment differs significantly. In addition 
to that, the following can be concluded: 

 The largest investment in both PV panels and batteries is seen for the GP case, 8 GWp and 
8 GWh respectively. The relatively high electricity price level, as well as the strong variations 
in electricity price help to drive these investments. The large variations in electricity price 
allow for the use of the batteries for arbitrage, i.e., purchasing electricity from the grid at 
an hour with a low electricity price for charging the battery, and thereafter discharging the 
battery during an hour with a high electricity price, in order to avoid purchasing electricity 
from the grid at that hour. This helps to increase the value of the battery investment. Such 
operation of the battery is prevalent and has a significant impact on the surrounding system 
in that it helps to reduce the number of hours with high marginal generation cost. For more 
details, see Paper III. 

 While the CM case shows almost the same level of PV investment as the GP case, the level 
of investments in batteries is 75% lower. This indicates that the level of investment in 
batteries is highly dependent upon the variations in electricity price seen in the GP case. 
The stability of the PV investments indicates that PV investments are more dependent 
upon the actual level of the electricity price than its variability. 

 The RP scenario shows a considerably lower level of PV investments, 62% lower than the 
GP and CM cases, and there is basically no investment in batteries. The low and stable 
prices seen in this scenario reduce the incentives for PV investments. The lower amount 
of excess PV electricity generation, due to the small PV installation, and the stable electricity 
price entirely removes the incentives for battery investments.  

 The removal of the variable grid fee (the Fixed grid case) has a considerable impact, 
decreasing investments in PV panels by 25% and investments in batteries by 70% relative 
to the GP case. The significant reduction in battery investments indicates that much of the 
value of the battery investment arises from the possibility to increase self-consumption. As 
the value of arbitrage also is of importance, as evidenced by the difference between the CM 
and GP cases, it can be concluded that both drivers are needed for large investments in 
batteries. The reduction in the value of self-consumption need not come from a change in 
the grid fees. A decision to tax self-consumed electricity with an energy tax in a manner 
similar to that imposed on purchased electricity will have the same impact, i.e., future policy 
decisions in this field are expected to have considerable impacts. 

It should be noted that the investment levels shown in Figure 14 are not reached after the first 
iteration loop, i.e., the household investments in PV will affect the surrounding system. For 
instance, the first iteration in the GP case gives an investment of 16 GWp and 15 GWh, i.e., twice 
the investment levels seen in the final iteration in Figure 14. This demonstrates the need for 
feedback between the electricity system and household investments when analyzing potential large-
scale investments PV panels and batteries in the residential sector. For further results related to 
this topic, see Paper III. 
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Figure 13. Duration curve for the marginal cost of electricity (which is the same as the electricity price seen by the 
households) for region SE1 before any household investments in PV panels or batteries have been made. Figure taken 
from Paper III. 

 

Figure 14. The households� levels of investment in PV panels and batteries after 15 iterations in the Green Policy case 
and 10 iterations for the remaining three cases. Adapted from Paper III. 

Figure 15 shows the resulting investments in PV panels in terms of ALR, and Figure 16 shows the 
resulting battery investments in terms of RBC for all the households after scale-up, i.e., all 
household in the SE1 and SE2 regions are represented. It can be seen that the southernmost region, 
SE1, on average shows a higher ALR than the SE2 region. The difference in investment incentives 
could be due to both the better solar irradiation conditions and the lower electricity consumption 
for heating, due to warmer climate, in the SE1 region.  In the GP cases, the average ALR in the 
SE2 region is around 3, and the average RBC is slightly less than 1. For an average Swedish 
household (annual electricity consumption of 15,000 kWh), this would correspond to a PV 
installation of 5.2 kWp and a battery size of 5.2 kWh.  One can compare the results shown in Figures 
15 and 16 with the results concerning levels of self-sufficiency and self-consumption for a given 
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ALR and RBC in Figures 9 and 10. The combinations of ALR and RBC seen for the GP case result 
in a self-sufficiency level in the range of 15%�30% for the households in SE2 and 20%�35% for 
the households in SE1.  

 

Figure 15. Levels of investment in PV panels per household in terms of ALR in the two SE regions modeled, SE1 and 
SE2, for: (a) the Green Policy scenario; (b) the Regional Policy scenario; (c) the Climate Market scenario; and (d) the 
Fixed Grid version of the Green Policy scenario. Figure taken from Paper III. 
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Figure 16. Levels of investment in batteries per household in terms of RBC in the two SE regions modeled, SE1 and 
SE2, for: (a) the Green Policy scenario; (b) the Regional Policy scenario; (c) the Climate Market scenario; and (d) the 
Fixed Grid version of the Green Policy scenario. Figure taken from Paper III. 

Discussion  

From the results presented in Paper III it can be seen that the economic value of the battery is 
highly dependent upon the additional value of self-consumption of PV-generated electricity. It is 
reasonable to assume that this is also true for the economic value of DR in Paper I. A significant 
fraction of this value is attributable to the avoidance of grid fees. Thus, a high penetration of 
household PV in the distribution grid could result in a considerable loss of income for distribution 
grid owners. In such a situation, it is possible that the price structure of the grid fees would be 
pushed towards a structure with higher fixed price and lower variable price or there might be a 
transition from using power tariffs to using energy tariffs. Sweco [93] has shown that the variable 
cost, i.e., the cost linked to energy losses when transferring the electricity, constitutes only a minor 
part of the total distribution grid cost, indicating that a move to grid fees that are less dependent 
upon the amount of electricity transferred could be justifiable. If such a move implies the 
introduction of power tariffs, batteries and DR could still play important roles in terms of limiting 
power spikes from the households. The value of DR in combination with power tariffs has been 
shown by for instance Steen [94]. However, a move towards a larger fixed price share would be 
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detrimental for PV, battery, and DR household investments, as it would decrease the value of self-
consumption.  

The results for the DR and battery presented above aim to increase the value of a households PV 
investment and thus, in a sense, these two systems are competing with each other. A battery 
effectively works as an intermediate DR, i.e., instead of temporally moving the load to the generated 
electricity, the generated electricity is moved to the load. In other words, the occupants of the 
household can pay for a battery so as to avoid the inconvenience of DR. If batteries become 
sufficiently cheap for households to invest in them, the households� incentives to engage in any 
form of inconvenient DR will diminish considerably, as the marginal benefit of engaging in DR 
will decrease. Thus, there is the risk that the two paths towards increasing the value of a PV 
investment investigated here are to an extent mutually exclusive. 

As both the Swedish PV electricity generation profile and the electricity demand profiles are very 
specific to northern latitudes, the results presented cannot readily be transferred to other electricity 
systems, other than countries at similar latitudes. Moreover, the availability of large amounts of 
hydropower in the Nordic power system has a dampening impact on the electricity price, which 
was shown to be detrimental to battery investments. For systems with less hydropower, the value 
of batteries is probably higher. 

6.2 Demand response of electric space heating in Swedish single-family 

dwellings 

This section presents the results concerning the demand response of electric space heating in 
Swedish single-family dwellings. First, the technical potentials identified in Paper IV are presented 
and thereafter, the system and dwelling values from Paper V. The system values from Paper V are 
shown for the GP and CM scenarios presented in Section 5.5. For each of the scenarios, three 
cases are presented. The first case is DR, which allows for variations around the set-point 
temperature using the temperature deviation cost method presented in Section 4.2. The remaining 
two cases incorporate energy savings measures in the form of decreasing the indoor temperature 
of the dwellings during night-time hours (18°C) and daytime working hours (15°C). The two cases 
that incorporate this are the D15N18DR case, which allows for both the DR and the temperature 
decrease, and the D15N18Fix case, which only allows for the indoor temperature to decrease. For 
further details of the cases, see Appendix A, Table A.4. The changes for the three cases are 
compared to a baseline case in which the electric space heating demand is calculated for a fixed 
temperature of 21.2°C. The cases are only modeled for the period extending from the 15th of 
September to the 15th of May. 

Technical potentials 

In Paper IV, the calculated available electric heating capacity is found to be 7.3 GW (assuming 
fixed COPs for the available heat pumps). This value should be seen as the upper limit, given that 
it is based on the current recommendations regarding the sizing of heating equipment from The 
Swedish National Board of Housing Building and Planning [95]. As a large part of the building 
stock is of advanced age, it is possible that the sizes of the heating equipment are different than the 
recommended sizes. For further details, see Paper IV. The amount of energy that can be shifted 
varies depending on the variations in indoor temperature that the occupants of the dwellings are 
willing to accept. In Paper IV, where temperatures are allowed to increase by up to 3°C relative to 
a baseline temperature of 21.2°C, up to 8 GWh of energy are shifted in each shifting segment, 
which here refers to the period between an increase in load and a subsequent decrease in load. 
Similar values are shown in Paper V, which applies the deviation cost method. 
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System value of DR of electric space heating 

The system value of the DR investigated is the lowering of system dispatch cost, i.e., the running 
costs for generating electricity and the cycling cost that arises from ramping and part-load operation 
of power plants. Figure 17 shows the decrease in total system cost (gray bars), the share of this 
decrease that accrues from reductions in running costs (black bars), and the share of this decrease 
that is derived from cycling costs (white bars) (all in millions of Euros). As a fraction of the total 
system costs, the reductions in system cost observed for the DR case correspond to 0.12% in the 
GP scenario and 0.02% in the CM scenario. However, as a share of annual system electricity 
demand, the shiftable load only constitutes 0.9%, and of this share only a fraction is actually 
shiftable given the indoor temperature constraints.  

The economic value of pure DR, i.e., in the DR cases, is higher for the GP scenario than for the 
CM scenario. This is due to the higher penetration of wind power in the GP scenario, especially 
considering that the levels of wind power Sweden and the regions closest to Sweden are 
considerably higher. More specifically, the increased economic value of DR can be ascribed to the 
following: 

 The need for part-load operation and start-ups of dispatchable power plants is higher in 
the GP scenario due to the higher level of variable power in the form of wind. The 
availability of DR reduces these costs. The lower frequency of such events in the CM 
scenario removes part of the costs that DR can mitigate. 

 For the GP scenario, the high variability in electricity generation linked to the higher share 
of wind power requires the use of fast-responding gas power plants. The DR enables 
decreased use of some of the gas power plants, instead increasing the use of CHP. As the 
variable operational cost is lower for CHP power plants, the DR helps to lower the running 
cost of the system. This occurs to a much lesser extent in the CM scenario. 

  In the GP scenario, there are more instances of wind being curtailed that can be exploited 
using DR. Thereby, decreasing the operation of power plants with higher variable costs. 

 In the GP scenario, DR also helps to reduce congestion in the transmission grid, allowing 
for better utilization of hydropower, which was previously curtailed. Thereby, decreasing 
the operation of power plants with higher variable costs. These congestion issues are not 
as prevalent in the CM scenario. 

 The use of DR results in an increase in electricity demand due to an increase in the indoor 
temperature from the DR. 

For more details of the changes in dispatch, see Paper V. 

In the D15N18DR case, in which the night-time and daytime temperatures are allowed to drop to 
18°C and 15°C, respectively, while still allowing for system-optimal DR dispatch, the annual system 
savings increase in both scenarios, see Figure 17. The increases in savings are almost exclusively 
derived from reductions in running costs. In both scenarios, the decrease in demand, as obtained 
from the reduced set-point temperature, results in altered dispatch of hydropower, enabling more 
long term storage of hydropower. For the GP scenario, this hydropower is used to replace the use 
of gas power, primarily during the summer months. In contrast, in the CM scenario, the stored 
hydropower is utilized primarily to reduce CHP operation during the autumn months. 

When the possibility for DR is removed, as in the D15N18Fix case, the system savings decrease 
(compared to the D15N18DR case) in both scenarios. The impact on the CM scenario is minor, 
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indicating that efficiency measures in the form of reducing temperatures without any feedback 
from the system result in an operation that is similar to the system-optimal situation. However, the 
GP scenario entails a considerably larger decrease in savings. The removal of DR in the GP scenario 
results in an increase in the amount of wind that is curtailed in the system. The level of wind power 
in the system is sufficiently high that the reductions in demand linked to the fixed temperature 
decrease occasionally, leading to hours during which the level of wind power generation is higher 
than the load. 

 

 

Figure 17. The annual system cost reductions (positive values) for the entire modeled system (in M�) relative to a base 
case, resulting from the different DRs and temperature-lowering cases. The different bars represent the total cost 
reductions (gray), running cost reductions (black), and cycling cost reductions (white). Adopted from Paper V. 

Changes to the load curve 

Figure 18 shows the hourly operation of the DR in Swedish region SE2 (see map in Figure 6), 
which is the region with the highest space heating load, for the DR case in the GP scenario. Shown 
on the x-axis are hours of the day, and on the y-axis are the days of the year; the colors represent 
the GWh/h operation of the DR, where a darker blue color indicates a decrease in load and a 
brighter yellow color indicates an increase in load relative to the base case. Two types of patterns 
can be discerned: 

  A daily pattern with an increase in load during night-time and early mornings (00-6) and a 
subsequent decrease in load during the late morning and noon hours (8-12). Thus, the DR 
is engaging in valley filling and peak clipping, increasing the load during low-load night-
time hours and decreasing the load in the subsequent higher-load morning hours.  

 A pattern in which there are increases in load during the afternoon hours (14-17) and 
decreases in load during the early evening hours (18-20). This behavior also corresponds 
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to the shape of the diurnal system load curve, which has its peak in the early-evening hours, 
i.e., during hours when the load is reduced.  

It can be concluded that even in a system dominated by wind power, the operation of DR is to a 
large extent governed by the system load curve. However, there are occasional hours where the 
availability of cheap electricity is high, i.e. high wind power generation, where new system peaks 
can be created. 

 

Figure 18. The hourly operation of DR for region SE2 in the DR case for the Green Policy scenario. The yellow coloration 
indicates an increase in load relative to the base case, and the blue coloration indicates a decrease in load relative to the 
base case. Adopted from Paper V 

The consequences for the dwellings 

The annual system cost reduction per dwelling based on their DR participation (here considered 
as the amount of down-regulation in load relative to the base case) is in the range of �1��205, with 
most dwellings in the �20��75 range. The range of cost reductions per dwelling depends on the 
absolute amount of DR in which each dwelling has engaged. The absolute amount of DR depends 
on a combination of the following factors: the DR suitability of the dwelling, i.e., a low U-value 
and high thermal mass per m2; the size of the building, i.e., the heated floor area of the dwelling; 
the region in which the dwelling is situated, i.e., northern regions with large amount of hydropower 
engage in less DR due to the dampening effect of the hydropower; and the electric heating power 
available, i.e., the dwellings ability to increase or decrease its electricity consumption in at a given 
moment. For more details, see Papers IV and V. 

The DR results in indoor temperature fluctuations in the dwellings. Figure 19 shows the mean 
indoor temperature for all dwellings (adjusted for the weighting of the dwellings in terms of 
representing the building stock), ranked from lowest to highest, resulting from the DR for the 
modeled period of the 15th of September to the 15th of May. As can be seen, there are roughly 2000 
hours during which the temperature is increased and only 300 hours during which it is decreased. 
Overall, it can be said that the DR exerts a clear impact on the indoor temperature. Figure 20 shows 
for the modeled period of 15th of September to the 15th of May: (a) the mean indoor temperature; 
and (b) the variance of the indoor temperature for all dwellings. The mean temperature is above 
the baseline temperature of 21.2°C for all the dwellings, indicating that no dwelling is constantly at 
a low indoor temperature. The variance can give an indication of the extent of the fluctuations in 



59 
 

indoor temperature, which is fairly low for most of the dwellings.  However, the variance does not 
say anything about the rate of change of temperature fluctuations that the dwellings have to endure. 
During the most intense DR periods, the DR setup modeled here results in temperature changes 
of up to 3.8°C (23.15°C down to 19.5°C), within a few hours for the dwellings that are most 
intensively engaged in DR.  

 

Figure 19. The mean indoor temperature duration curve for all dwellings (accounting for the share of the total building 
stock that each dwelling represents) for the DR case in the GP scenario. Only the hours modeled are shown, i.e., for the 
period from the 15th of September to the 15th of May. Adopted from Paper V. 

 

  
a) b) 

Figure 20. (a) Average indoor temperatures for all the modeled dwellings; and (b) the variance in indoor temperature for 
all the modeled dwellings for the DR case in the Green Policy scenario. Adopted from Paper V. 

Discussion 

As the cost reduction per dwelling is fairly low � the annual �20��75 is equivalent to 0.07%�0.3% 
of the median per-person disposable income for people living in Swedish single-family dwellings � 
the willingness to accept DR in the form of direct load control of space heating could be limited. 
Broberg and Persson [96] investigated the willingness of Swedish households to accept different 
scenarios for direct load control of their space heating and concluded that the households demand 
annual reimbursements in the range of �66��280 to partake in DR. Thus, attitudes to DR need to 
change if the DR potentials identified in the GP DR case are to be realized. However, the cases 
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that include reductions in electricity demand, D15N18DR and D15N18Fix, could prove more 
attractive to these households. The households pay taxes, both energy tax and VAT, and variable 
grid fees on each unit of purchased electricity, i.e., in addition to the reduced system costs there is 
additional value for the households in reducing electricity consumption. If actors interested in 
utilizing the DR capabilities of the electric space heating also offered to ensure reduced electricity 
consumption for the households, resulting in an increased economic compensation, the 
households� willingness to partake in DR programs could increase. 

The influences of Nordic hydropower on the Swedish electricity system, as well as the northern 
latitudes make it difficult to extrapolate the results presented here to other systems. However, since 
hydropower can act in the same manner as DR, its presence has a dampening impact on the system 
value of DR. Thus, DR is likely to have a greater contribution in systems that lack hydropower.  
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7. Reflections on the methods and data used 

The methods and data used in this thesis obviously have some restrictions, which are considered 
in this section. 

Even though the feedback from the traditional supply side of electricity system is captured in the 
modeling performed in Paper III, other sectors of society have drivers similar to those of the 
single-family dwelling sector in terms of becoming active electricity producers. An expansion of 
PV installations in the tertiary sector or in the multi-family dwelling sector is likely to be sufficiently 
large to influence the electricity system. Such an expansion would thus dampen the effects seen in 
Paper III.  However, as the results relate to all-out expansion from all households, which is 
improbable, the expansion of PV-battery systems should be seen as an indication of the limitations 
of all sectors that are subject to the same benefits of self-consumption as single-family dwellings. 
Furthermore, as the DR in Paper I is evaluated by assuming a static supply side, the results 
presented therein should be regarded as being valid for households that are early adopters, i.e., 
there is no relevant feedback due to DR between the demand and supply sides. Analogous to the 
results described for batteries in Paper III, the value of DR in Paper I is likely to depend on the 
composition of the future electricity system. The composition of the electricity system assumed in 
Paper I is that for Year 2007 (with sensitivity analysis for Year 2010, see Paper I). Thus, an 
investigation of DR under a GP scenario could increase its economic value as such a scenario 
entails considerably higher variations in the electricity price.  However, the observed difference in 
value between the use of hydronic loads and appliance loads is unlikely to change. 

The system chosen for modeling the dynamics of the energy flow in buildings will have an impact 
on the outcomes. In Paper IV, the whole building is represented by one temperature, whereas 
Paper V separates the building envelope and the interior of the building. Both Harb et al. [97] and 
Reynders et al. [98] have investigated the use of gray-box models for predicting the thermal 
behaviors of buildings. They have concluded that a one-zone model is likely to dampen changes in 
indoor temperature variations caused by changes in the energy flow within the building. A 
consequence of dampened temperature variations is overestimation of the utilization of DR, i.e., 
the rate at which the limits set on the indoor temperature are reached is lower, allowing for more 
energy to be stored in the building. The adoption of a two-zone model improves the model 
behavior in this regard. However, as pointed out by both Harb et al. [97] and Reynders et al. [98], 
a two-zone model still suffers from some level of underestimation of the temperature variations, 
such that a three-zone model might be preferred. Thus, the results described in Papers IV and V 
may represent overestimations. However, it should be noted that increasing the number of 
temperature zones carries a computational cost, as it increases both the number of variables and 
the number of equations in the model, i.e., there is a trade-off between the accuracy of the model 
and reasonable modeling times.  

The connection with the surrounding system of the household PV-battery systems described in 
Paper III and the DR of electric space heating described in Paper V allow for the capturing of 
feedback between the supply and demand sides. However, to capture the full value of DR, there is 
a need to investigate how these parameters also influence investments. As indicated by both 
Brouwer et al. [65] and Patteeuw et al. [60], possibilities exist to reduce the need for investments in 
peak power plants through the help of DR.  Furthermore, an expansion of DR or demand-side 
PV-battery systems in the surrounding countries could also influence the results, potentially 
decreasing the value of DR. 
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The use of an hourly temporal resolution for the modeling could have an impact on the PV results 
presented above. The temporal resolution used in the discretization can influence the values for 
self-consumption and self-sufficiency, thereby affecting indirectly the levels of investments in PV 
panels and batteries. A too-coarse resolution can result in overestimation of both self-consumption 
and self-sufficiency, as variations in the electricity generation and consumption at a higher 
frequency than the temporal resolution used are filtered out. The impact of the choice of temporal 
resolution has been investigated by Widén et al. [99], Cao and Sirén [100], and Beck et al. [67]. The 
general conclusion is that hourly averaging can lead to significant errors with regards to the 
maximum load of the household load curve, while the impact on PV output is less significant. For 
the combination of load and PV output errors occur primarily with small PV sizes, where the load 
and the PV generation profile are of similar magnitudes. However, for sizing household PV-battery 
systems, Beck et al. [67] have concluded that an hourly resolution is sufficient. The consequences 
for the results presented above related to the use of hourly data should be most pronounced for 
the appliance DR results. The appliance loads used have load curves with peaks in demand, which 
is filtered out by hourly averaging. However, the hydronic heating load should be able to operate 
in a fashion similar to that used in the modeling, e.g., through the use of a stepless heater. This 
means that the impact of the DR of appliance loads is overestimated, especially at lower ALRs. As 
the potential value of DR of appliances was found to be low, the indication that it is overestimated 
further decreases its potential value. For the results presented in Paper II and Paper III, the largest 
errors should occur for those cases with no PV installation or a small PV installation, e.g., the value 
that the households derive from the PV installations seen in the RP scenario could be exaggerated. 

The BETSI dataset used in Papers IV and V is representative of the current composition of the 
Swedish single-family dwelling building stock. However, as any large-scale implementation of DR 
lies in the future, the characteristics of the building stock are expected to change. The degree of 
transformation will depend on the rate of new construction, as well as on incentives to retrofit the 
current building stock. Energy efficiency measures will probably lower the U-values, the capacity 
of the heating equipment, and the overall demand, all of which will have impacts on the DR 
potential.  

A significant fraction of the dwellings with electric space heating have hydronic systems. In the 
present work, these been modeled without any buffering capacity for such systems. The inclusion 
of water storage tanks in the systems in the model would increase the potential for DR in these 
households. Moreover, the use of storage tanks would avoid the indoor temperature fluctuations 
to which the dwellings are exposed. 

The household load data used in Paper I, which cover 21 actual household demand profiles with 
appliance-level resolution, vary considerably in terms of electricity demand and should therefore 
give a reliable picture of how electricity is used in Swedish households. However, this is a rather 
small sample size, so the results presented may not be representative of the Swedish household 
sector as a whole.  
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8. The contribution of this thesis 

As the development of the future electricity system moves forward, it seems likely that we will see 
more active participation of actors on the demand side of the system. This thesis aimed at 
investigating specific aspects of such a development. The overall aims set out for this thesis were 
to: 

 Investigate the technical and economic potentials of Swedish single-family dwellings 
becoming prosumers through the use of solar photovoltaic (PV) systems, taking into 
account possibilities for flexibility in consumption patterns through DR and energy storage, 
and investigate how such systems might interact with the surrounding electricity generation 
system. 

 Identify the technical potential of DR of electric space heating in Swedish single-family 
dwellings, and investigate the value of this potential for the surrounding electricity 
generation system, as well as for the individual dwelling. 

With regards to the first aim, the following can be concluded. The technical capacity of a battery 
to increase both the self-sufficiency and self-consumption of PV-generated electricity in Swedish 
single-family dwellings shows a diminishing return with increasing battery size. These limitations 
are due to the skewed generation profile of PV electricity generation under Swedish conditions. 
Thus, it is unlikely that batteries with RBC values >2�3, approximately corresponding to 10�15 
kWh for a 5-kWp PV panel, will be installed in Swedish households for any purpose related to PV, 
whether that purpose is economical gain or is designed to maximize self-sufficiency.  

Regarding the economic potential of household PV-battery systems, it is clear that all the 
investigated future electricity system compositions result in the households investing in PV-
systems. This indicates that given that the added value conditions for self-consumption are 
preserved, i.e., not having to pay taxes and variable grid fees on self-consumed electricity, an 
expansion of household PV systems in Sweden that is driven by economic incentives appears to 
be robust with regards to the composition of a future electricity system. However, the level of PV 
investments and potential investments in batteries are shown to depend on both the electricity 
system composition and the additional value of self-consumption. A relatively high and stable 
electricity price and an electricity price that is more variable both result in substantial PV 
investments, up to 8 GWp for the assumed costs for PVs and batteries in this work. A future in 
which electricity prices remain stable and low results in a 60% reduction in the installed level of 
PV. The economic potential of battery investments is found to be dependent to a large degree 
upon both large variations in electricity price, enabling the use of batteries for arbitrage, and upon 
the economic value of increased self-consumption of PV-generated electricity. If both conditions 
are present investments up to 8 GWh are seen in this work. 

The DR of hydronic heating and hot tap-water are found to yield the highest economic value for 
household investment in PV of all the household loads investigated, due to its relatively large size 
in terms of energy, and the fact that it can act as an energy storage system. In contrast, for the DR 
of appliance loads, e.g., dishwashers and washing machines, the economic value provided to a 
household investment in PV is small, even when generous shifting timeframes are employed. The 
skewed generation profile of PV electricity generation results in diminishing returns for DR as the 
ALR exceeds 3, as excess electricity generation will primarily occur during hours in which the 
possibility for DR has been exhausted. This effect is especially pronounced for the DR of appliance 
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loads, where essentially no increase in economic value is seen from combining DR and PV for 
ALR values >3 for most households. 

It can also be concluded that in future evaluations of large-scale investments of household PV-
battery systems that are driven by a dynamic electricity price, i.e., an RTP scheme, there is a need 
to include mechanisms of feedback between the supply and demand sides. If such a feedback 
mechanism is excluded there is a risk of overestimating the households� potential investments in 
PV-battery systems.  

Concerning the second aim listed above, it can be concluded that there is a technical potential for 
DR of electric space heating in Swedish single-family dwellings that corresponds to 7.3 GW 
(assuming fixed COP values). The amount of energy that is available for DR depends on the 
willingness of the household to accept variations in the indoor temperature; in the modeling 
performed in this work, up to 8 GWh of energy were shifted. The value of DR through direct load 
control is found to be highly dependent upon the composition of the future electricity system. In 
a future system that is dominated by variable wind power, DR offers economic value through 
decreasing the number of start-ups, obviating the need for part-load operation of thermal power 
plants, and avoiding the operation of peaking gas power plants. In a future electricity system that 
is dominated by wind power to a lesser extent, the value of DR is small. Furthermore, in a scenario 
in which households engage in energy efficiency measurers through decreasing the indoor 
temperature during periods of the day, there is a risk of increased curtailment of wind power; this 
risk can be mitigated by the use of DR.  It can also be concluded that the large share of hydropower 
in Nordic electricity systems helps to mitigate some of the need for DR, as it can fulfill the same 
role.  

Although DR to a large extent helps to decrease costs associated with wind power variations, the 
operational pattern of DR is found to be governed by the shape of the system load curve. The DR 
is mainly used for valley filling, increasing the load during low-load hours, and for peak shaving, 
decreasing the load during high-load hours. The system cost reduction per dwelling for 
participation in DR is found to be low, in the range of �1��200 per year, even in the electricity 
system composition that has the highest value for DR.  
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9. Further research 

The work presented in this thesis is by no means an end point but rather opens up new pathways 
for research. For example, the representation of an active demand side in energy system models 
should be of interest. 

The modeling framework presented in Paper V, which connects the dispatch of electric space 
heating and the dispatch of the electricity system, should be extended with data that are 
representative for other countries present in the EPOD model. In this context, the work of Mata 
et al. [101] has produced archetype building stock descriptions for France, Germany, Spain, and 
the UK. The implementation of these descriptions in the EPOD modeling framework would allow 
for the modeling of DR electric space heating and air-conditioning loads in the listed countries. 
The inclusion of DR in other countries would enable evaluations of DR in systems that are not as 
heavily influenced by high levels of hydropower. As hydropower is shown to have a dampening 
effect on the value of DR, such investigations of DR might show a higher value for DR. This 
would also allow for investigations into how the value of DR is affected by a more system-wide 
implementation of DR. Moreover, as the diurnal variations in PV electricity generation are more 
in line with the timeframe within which DR can operate, the inclusion of DR of space cooling 
loads might reveal both a higher system value and a higher value for the individual household than 
the contributions observed from space heating loads in Papers I, IV and V. The building stock is 
also likely to evolve, through retrofitting of existing buildings, as well as new construction. 
Understanding the effects of this evolution on the potential for DR should be of interest. A good 
basis for studies of possible future retrofits and energy efficiency measures is the work of Mata 
[102], which investigates potential routes to energy conservation in building stocks. 

In this thesis and in the appended Papers IV and V, only the electric space heating in Swedish 
single-family dwellings is investigated. However, a considerable part of the heating demand in 
Sweden is met using district heating, especially for multi-family dwellings. The generation of this 
energy is linked to the electricity system through both CHP power plants and the operation of 
large-scale heat pumps. There are possibilities for longer-term storage in such systems. Thus, 
variation management through the use of non-electric heating could prove to be an important 
source of DR. In this regard, the work of Kensby [103] is seminal, in that it demonstrates the 
possibility of utilizing thermal energy storage in multi-family dwellings in Gothenburg for flattening 
the heat demand profile in Gothenburg�s district heating system.  

While the impacts of DR on the dispatch of the electricity system have been investigated in this 
thesis, additional value might be derived from DR in relation to its potential to defer investments 
in electricity generation and transmission infrastructure. Addressing such questions would require 
the implementation of a representation of the DR in electricity system investment models similar 
to ELIN (presented in Section 5.5). Such an implementation would also enable a comparison to 
be made between DR and other variation management strategies, such as transmission grid 
expansions, energy storage investments, and electricity generation investments. Such evaluations 
are needed in order to fully understand the system value that DR can supply.  

There is also a need to develop models and data that allow in a meaningful way for the upscaling 
of loads to an electricity system level, facilitating studies similar to the one conducted in Paper III. 
The possibility to generate and assess data that would allow for the creation of sample households 
that are statistically representative of different demand segments would be of major value for 
energy systems modeling. As an example of this, Sandels [104] has developed a bottom-up 
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modeling approach to modeling electricity consumption profiles in the Northern European 
building stock, accounting for end-user behavior. 
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Nomenclature 
a Annuity factor (-) 
Ac Average appliance heat (W/m2) 
app Profile for appliances  (-) 

ar Heated floor area (m2) 

b Storage capacity (Wh) 

c Costs  (�) 

C Objective value for cost  (�) 

cp Volumetric heat capacity of air (J/(m3 K)) 

d Energy demand  (Wh) 

e Electricity purchased or sold  (Wh) 

f Electricity trade  (Wh) 

g Generated electricity (Wh) 

h Heat transfer coefficient indoor zone to building envelope (W/(m2 K)) 

in Inverter size (W) 

Ir Global irradiation on a horizontal surface (W/m2) 

k Cost of temperature variation (�) 

l Fridge/freezer/battery storage level (Wh) 

Lc Average lighting heat (W/m2) 

light Profile for lighting (-) 

m DR loads (Wh) 

n Lifetime (years) 

Oc Average occupancy heat (W/m2) 

occ Profile for occupancy  (-) 

om Operational and maintenance share  (-) 

p Electricity price (�/Wh) 

Pfh Average fan heat (W/m2) 

pn PV panel size (W) 

PV Electricity generated by PV panel (Wh) 

q Energy flow (W) 

r Interest rate (-) 

s Charge/discharge energy (Wh) 

sh Installed heating capacity (Wheat) 

sa Surface area of building (m2) 

Sw Total window surface area (m2) 

T Temperature (K) 

TC Thermal mass (Wh/K) 

Ts Window solar transmittance  (-) 

U Overall heat transfer coefficient (W/(m2 K)) 

w Weighting  (-) 

vc Ventilation rate (m3/(s m2)) 

Wc Solar shading coefficient (-) 

Wf Frame coefficient of the window (-) 

y Power capacity of batteries or water heater (Wh/time-step) 

γ Share of heating equipment type (-) 

η Efficiency (-) 
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Appendix A 
Table A1. The different combinations of pricing scheme, DR measures, pricing structure, PV system investment cost, 
discount rate, and REC price used Paper I and the result section in this thesis. 

Pricing scheme DR measure Price 
structure 

PV investment 
cost, �/kWp 

Discount 
rate, % 

REC 

price, 
�/MWh 

Hourly 

Appliance 
Sweden, 2007 2300 2.5 29 
Sweden, 2010 2300 2.5 29 

Germany, 2010 2300 2.5 29 
Hydronic Sweden, 2007 2300 2.5 29 

Hydronic and Appliance 
Sweden, 2007 2300 2.5 29 
Sweden, 2010 2300 2.5 29 

Germany, 2010 2300 2.5 29 

None 
Sweden, 2007 

2300 

0.1 29 

2.5 

29 
19 
10 
0 

5.0 29 
7.5 29 

2010 2.5 29 
1720 2.5 29 
1430 2.5 29 

Sweden, 2010 2300 2.5 29 
Germany, 2010 2300 2.5 29 

Tax Reduction 

Hydronic Sweden, 2007 2300 2.5 29 

None 
Sweden, 2007 2300 2.5 29 
Sweden, 2010 2300 2.5 29 

Germany, 2010 2300 2.5 29 

Monthly None 
Sweden, 2007 2300 2.5 29 
Sweden, 2010 2300 2.5 29 
German, 2010 2300 2.5 29 

Net metering None 
Sweden, 2007 2300 2.5 29 
Sweden, 2010 2300 2.5 29 

Germany, 2010 2300 2.5 29 

 

Table A2. Cycle demands, durations, and yearly available energy levels of DR loads used in Paper I. The indicated 
ranges represent the differences between different households. 

Load Cycle demand, 
kWh 

Cycle duration time, 
hours 

Yearly electricity 
demand, kWh 

Dishwasher 0.67�1.77 2 70-720 
Washing machine 0.71�1.64 1 62-350 
Dryer 0.89�2.09 1 50-310 
Fridge and Freezer 
(Aggregated) 

0.04�0.31(hourly 
load) 

1 400-1400 

Hydronic space 
heating 

Continuous Continuous 8000-17500 

Tap-water heating Continuous Continuous 1600-3100 
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Table A.3 shows the values used for V.A.T., energy tax, distribution grid fees, used in Paper I. The taxes and 
distribution fees are also used in Paper V. 

Parameter   
Total investment cost of PV system  �2300/kWp  

Investment cost of Inverter  13% of total investment cost 

Panel, BoS, and installation Cost  87% of total investment cost 

Yearly operation and maintenance 
cost 

 0.17% of investment cost per year  

Lifetime of PV panel  25 years 

Lifetime of inverter  15 years 

Heat storage efficiency  99% per hour 

Discount rate  2.5%  
VAT rate  25% 

Electricity tax  �0.0417/kWh 

Maximum heating power  9 kW (SH), 3 kW(HW) 
Size of heat storage  10.2 kWh (SH), 5.8 kWh (HW) 

Distribution fee  �0.0345/kWh 

Renewable electricity certificate  �0.029/kWh 

Deduction from selling price  �0.0046/kWh 

Network income  �0.0064/kWh 
Price add-on   �0.0046/kWh 
Tax reduction  �0.069/kWh 

 

Table A.4 The allowed temperature ranges for the D15H18DR cases and the minimum allowed temperature for the 
D15H18Fix case for different segments of the day and week in the modeled cases.  

Cases 
Weekday 
(5:00-9:00 
15:00-23:00) 

Weekday 
(9:00-
15:00) 

Weekday 
(23:00-
05:00) 

Weekend 
(05:00-
23:00) 

Weekend 
(23:00-
05:00) 

D15H18DR 21.2-24°C 15-24°C 18-24°C 21.2-24°C 18-24°C 
D15H18Fix 21.2°C- n/a 15°C- n/a 18°C- n/a 21.2°C- n/a 18°C- n/a 

 

Table A.5 shows the different penalty costs applied for deviating from the set point temperature in Eq. 26. 

Case 
Low cost 

temperature 
increase 

High cost 
temperature 

increase 

Low cost 
temperature 

decrease 

High cost 
temperature 

decrease 
DR 0.0005 0.005 0.0025 0.025 

 

Table A.6 Key assumptions for the investment options in the household model in Paper III. 

Technology Inv. cost 
Lifetime 
[years] 

Battery �150-300/kWh 12.5 
PV �1200-1600/kWp 30 
Inverter �100/kWp 15 
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