
Chalmers Publication Library

pyFC: a TRIM-based fission chamber pulse shape simulator

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Citation for the published paper:
Elter, Z. (2015) "pyFC: a TRIM-based fission chamber pulse shape simulator".

Downloaded from: http://publications.lib.chalmers.se/publication/242459

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/242459

 CTH-NT-318 NOVEMBER 2015

 pyFC: a TRIM-based fission chamber pulse shape simulator
 Documentation

 Zsolt Elter

 NUCLEAR ENGINEERING

 DEPARTMENT OF APPLIED PHYSICS
 CHALMERS UNIVERSITY OF TECHNOLOGY

 S - 412 96 GÖTEBORG, SWEDEN

 ISSN 1653-4662

pyFC: a TRIM-based fission chamber pulse shape

simulator

Documentation

Zs. Elter

Abstract

This report presents the code system pyFC (python-based simulation
of F ission Chambers) which simulates the pulse creation in fission cham-
bers. The current pulses in a fission chamber are generated due to the
ionization of the filling gas by the heavy ion emitted from the neutron
induced fission in the fissile deposit. In pyFC the path of the heavy ion
and the spatial distribution of the charges emerging from the ionization
process are simulated with the TRIM code, and the parameters of the
charge collection between the electrodes are computed with the BOLSIG
software. The coupling of the codes is done in Python.

The report presents the physical and geometrical considerations im-
plemented in pyFC and the verification of the code through comparison
with the results of Chester, a CEA code for simulation of fission chambers.

Contents

1 Introduction, motivation 1

2 Physical processes in fission chambers 2

3 Code suite 2

4 Geometrical considerations, TRIM results 4
4.1 The TRIM geometry and its limitations 5
4.2 The target depth in the x-y plane 6

4.2.1 Inner electrode coated . 7
4.2.2 Outer electrode coated . 8

4.3 The target depth in the x-z plane 9
4.4 The final target depth estimation 10
4.5 Rotation, angle sampling, translation 10
4.6 The final trajectory . 11

5 Spatial charge distribution 11

6 Electron transport, induced current 12
6.1 BOLSIG version and electron cross sections 12
6.2 The induced current, time sampling 13
6.3 Constant electron mobility . 13
6.4 Numerical solution . 14

7 Verification, comparison with Chester 16

8 Input form, tutorial 20

9 Conclusions 21

1 Introduction, motivation

The simulation of the pulse shape generation is not a new topic. It was already
achieved with the Chester code suite [1] developed at CEA, which is based on
the Garfield software (the suite was named only after the publication, but in this
document the code suite will be referred as Chester). Garfield is an open source
suite [2], which has been developed at CERN to simulate drift chambers and
has been extended to deal with other types of gas detectors. Those detectors
are routinely used in particle physics and share many features in common with
fission chambers: in both cases energetic particles ionize gas within which reigns
an electric field, ensuring the separation and eventually the collection of the
electron/ion pairs, yielding an electric current.

Some issues were identified with the clustering procedure of Garfield, which
resulted artificial heavy ion trajectories as shown in Fig. 1 (the trajectories
are rather jagged while in reality the heavy ion has a rather smooth path as
described in Sec. 7). As a consequence of this behaviour, a large fraction of the
paths starting from a given electrode returns almost immediately to the same
electrode. It was verified that after eliminating these returning paths, the mean
pulse shapes provided by Chester became realistic. Nevertheless, calculating
these artificial paths and then eliminating them is not a practical solution;
rather, their calculation should be avoided. For instance, in case of a detailed
sensitivity and uncertainty analysis, a large amount of computations has to be
performed. This means the waste of a large amount of computational time,
which is not affordable.

Figure 1: A sample simulated path in a CF4 chamber with Chester

To alleviate this problem, a new code system was developed, which does not
use the Garfield software.

The code pyFC (python-based simulation of F ission C hambers) employs
TRIM [3] as a heavy ion transport simulation engine. TRIM is the transport
code of SRIM, which was already shown to be suitable for fission chamber
simulations [4]. TRIM computes the heavy ion paths and the ionization in the
filling gas. The parameters of the charge collection between the electrodes are
determined with the BOLSIG software [5]. The electron transport is solved
within pyFC based on the transport parameters.

The documentation first gives a short description of the processes leading
to current creation in the fission chamber (i.e. the processes to be simulated).

1

After a general description of the code system and a summary of the underlying
assumptions are given. Then the geometrical and physical considerations imple-
mented in pyFC are discussed. The verification of the implementation is made
by comparing the pyFC results to Chester outputs (as it was mentioned earlier,
although certain issues related to the heavy ion paths were identified, the results
of Chester were previously verified, therefore the comparison gives adequate in-
sights about the implementations in pyFC). Finally the report presents a user
guide to explain how to set up the code system, how to prepare input files and
run calculations.

2 Physical processes in fission chambers

Fission chambers are nuclear detectors that are widely used to deliver online
neutron flux measurements. This type of detector is an ionization chamber
containing fissile material in order to detect neutrons. The most common design
consists of one or more electrode pairs, at least one electrode is coated with a
fissile layer from a few micrograms to a few grams. The spacing between each
anode and cathode goes from tens of microns to few millimeters. The chamber
itself is filled with an argon-based gas pressurized at a few bar. The processes
leading to a current pulse after a neutron entering the chamber are the following:

(a) When a neutron reaches the fissile coating, it is likely to induce a fission
event which generates (usually) two heavily charged ions, the fission prod-
ucts emitted in two nearly opposite directions.

(b) The heavy ion which is emitted out of the fissile layer ionizes the filling gas
along its trajectory (therefore creates electron/ion pairs).

(c) A DC-voltage of a few hundred volts is applied between the electrodes,
therefore the electrons and positive ions drift across the filling gas in opposite
direction towards the anode and cathode respectively

(d) During the drift both the electrons and the gas ions induce a current pulse
(named in this document as electronic and ionic pulse) in the electrodes.

3 Code suite

pyFC is a code suite implemented in Python language. Its may goal is to
simulate the processes described in the previous section. It is built around five
modules:

• pyFC.py: samples the fission products, their energies and their emission
angles; performs the necessary rotations of the heavy ion track to simulate
the correct fission chamber geometry (see in Sec. 4); calculates the charge
generation and the pulse generation in the chamber (see in Sec. 5 and Sec.
6)

2

• trim.py: creates and runs the TRIM inputs; extracts the outputs

• bolsig.py: creates and runs the BOLSIG inputs; extracts the outputs

• input.py: contains the user defined description of the simulation job and
the fission chamber (see in Sec. 8)

• main.py: couples all the above mentioned modules

Figure 2: The structure of the code

The basic structure is illustrated in Fig. 2. The code first reads its input
file (detailed in Sec. 8). Then it creates the electric field in the chamber, and

3

calls BOLSIG to compute the electron mobility between the electrodes (these
are needed to simulate the processes (c) and (d) mentioned in Sec. 2; for more
details see Sec. 6). Subsequently the fission fragments entering the filling gas are
sampled for each fission event (process (a) in Sec. 2), and then the code system
calls TRIM to determine the path of the fragments, the amount of electrons
created and their locations in the chamber (process (b) in Sec. 2). Finally
pyFC computes the induced current by the moving charges (process (d) in Sec.
2).

The underlying approximations are discussed in the related sections, but
here a brief summary of them is given:

• No recombination events and no avalanches are considered (i.e. the cham-
ber is in the saturation regime)

• Only one of the fission fragments emerging from the fission event ionizes
the gas

• The space charge effects are neglected (each fission product entering the
inter-electrode space ionizes the gas independently)

• The filling gas is homogeneous

• Only the current induced by the electrons is considered (since the mobility
of the ions created by the fission fragment is much lower)

• The self-absorption of the fission fragments within the coating is neglected

• The mean energy to create an electron/ion pair W is assumed to be 26.4
eV for pure argon and 26.9 eV for argon-nitrogen mixtures (for details,
see [6])

4 Geometrical considerations, TRIM results

The fission chambers considered in pyFC consist of two coaxial electrodes from
which one electrode is fissile coated. More complex chambers (multi-electrode
chambers, multi-coating chambers) can be investigated with superposition, i.e.
combining the results of two or more runs, each corresponding to one fissile
coating, by assuming that the inter-electrode spaces are mutually independent
and by neglecting the space charge effects.

Hence the geometrical description is quite simple. One has to define the
radius of the electrodes, the length of the chamber, and the sensitive lengths.
In the following the inner and outer electrode radii are denoted as RI and
RE , respectively. As a default, the anode is considered to be the inner and
the cathode the outer electrode, the related radii being denoted as Ra and Rc,
respectively. Therefore in this document RI = Ra and RE = Rc for simplicity.
Nevertheless, pyFC can handle cases when the cathode is the inner and the
anode is the outer electrode (the electric field may be negative). To avoid

4

confusion, the notation of this document applies the inner and outer radii while
describing the geometrical considerations, whereas it uses the anode and cathode
radii when describing the electric field.

The fission chamber length and the sensitive length are denoted as lfc and
lsens, respectively.

4.1 The TRIM geometry and its limitations

TRIM defines the target material as a 3-dimensional bulk cuboid. The user
defined target depth lies on the x axis, while the geometry is infinite in the y
and z directions, as shown in Fig. 3. (Note that although the figure shows fairly
straight trajectories, this is not necessarily always the case: in denser filling gas
the heavy ions can experience serious lateral straggling, i.e. the spread of the
trajectories.) The user has the option to set the incident angle of the heavy
ion, and the location of the source. The results are given in tables as illustrated
in Fig. 4. The energy and the electronic stopping can be printed periodically
when the ion loses a certain amount of energy at locations (xTk , y

T
k , z

T
k), where

k = 1, ...S and the number of locations S varies since the heavy ion is tracked
by TRIM until it either looses all its energy or it reaches a defined target depth.
The superscript T indicates that the positions are TRIM coordinates. These
locations build up the trajectory of a given heavy ion. The energy decrease of
the heavy ion includes both the nuclear and the electronic stopping.

In fission chambers the target material (filling gas) has a cylindrical shape
(see in Fig. 5), therefore some geometrical considerations are needed to trans-
form the TRIM geometry. The issue comes from the fact that depending on the
incident angle, the heavy ion sees a different target depth (e.g. the length of the
IhiEhi vector in Fig. 5). To overcome the differences between the TRIM geome-
try and the fission chamber geometry, in the pyFC system TRIM is always called
with the source at (0, 0, 0), and the heavy ions are always entering the target
perpendicularly to the border of the target (zero incident angle). Hence only the
depth of the gas layer has to be changed in each TRIM run. And subsequently
the trajectories defined by the locations (xTk , y

T
k , z

T
k) have to be transformed

into the fission chamber geometry (xpk, y
p
k, z

p
k), where the superscript p indicates

pyFC coordinates..
In pyFC the emission source is at the (R, 0, zrand), where R is the radius

of the inner or outer electrode (depending on the problem) and zrand is the
random position along the z -axis (zrand ∈ [−lsens

2 , lsens

2], where lsens is the
sensitive length of the fission chamber). As this shows, azimuthal symmetry is
assumed.

In TRIM the heavy ion travels along the x -axis until it reaches the depth
seen by the heavy ion in the fission chamber. Hence, to reconcile the geometry of
the fission chamber with the geometry of TRIM, a translation and a rotation of
the TRIM results are performed. The translation consists of moving the TRIM
source (0, 0, 0) to the pyFC source location (R, 0, zrand)), whereas the rotation
is a “virtual” one with the incident angles, since the coordinate system is not
rotated (more details on this later).

5

Figure 3: TRIM geometry example

Figure 4: TRIM output example

The first task is therefore to determine the target depth seen by the heavy
ion. This way the code can optimize the computational time of TRIM (since it
guarantees that sufficient target depth is set in TRIM for each pulse event: long
enough to let the ion either reach the opposite electrode or loose its energy, but
not much longer than needed to save computational time). First, the emission
angles in the coordinate system of the fission chamber (see Figs 6 - 9) are
sampled, and with these, the maximum depth traveled by the ion is estimated
(due to the lateral straggling of the ion this will be just an estimation). The
problem can be separated into the depth estimation in the x-y plane and in the
x-z plane.

4.2 The target depth in the x-y plane

In this case the target depth is different for the cases when the inner or the
outer electrode is coated.

6

Figure 5: Fission chamber geometry

4.2.1 Inner electrode coated

The source of the heavy ions is the point I(RI , 0, zrand). The heavy ion is
emitted along the vector dx defined by an emission angle α. The task is to
determine the length dx from the known quantities RI , RE and α (see Fig. 6).

Figure 6: Target depth in the x-y plane: inner electrode

7

Applying the sine law twice consecutively (with the notation of Fig. 6):

RE

sinα
=

RI

sinβ
(1)

allows one to determine the angle β as

β = arcsin
(RI

RE
sinα

)
from which with yet another application of the sine rule relation one obtains

dx =
RE

sinα
· sin(π − α− β) (2)

4.2.2 Outer electrode coated

The case related to the coated outer electrodes is more complex. As one can
see in Figs 7 and 8, the problem has to be separated into two different cases.
One can define the angle ϕt belonging to the tangential drawn from the source
point E1(RE , 0, zrand) towards the inner electrode. The two cases when ϕ > ϕt

and ϕ < ϕt, where ϕ is the emission angle, need to be treated separately.
If the emission angle ϕ is greater than ϕt(= arcsin RI

RE
), then the target

depth dx is a chord of the outer electrode and can be determined by applying
the cosine law (with the notations of Fig. 7):

Figure 7: Target depth in the x-y plane: outer electrode 1.

8

dx =
√

2R2
E − 2R2

E cos(π − 2ϕ) (3)

If the emission angle is smaller than ϕt then by applying the law of sines
one gets (with the notation of Fig. 8):

Figure 8: Target depth in the x-y plane: outer electrode 2.

RI

sinϕ
=

RE

sinβ
(4)

where

β = arcsin
(RE

Ri
sinϕ

)
and therefore

dx =
RI

sinϕ
· sin(π − ϕ− β) (5)

4.3 The target depth in the x-z plane

Axially there is no major difference between the coated inner or coated outer
electrode cases. The target depth contribution of the axial direction is (with
the notation of Fig. 9:

9

Figure 9: Target depth in the x-z plane

dz =
RE −RI

sin θ
(6)

4.4 The final target depth estimation

The final depth which is set up in TRIM becomes:

d =
√
d2x + d2z · 1.2 (7)

where the 1.2 multiplier is introduced because the heavy ion trajectory is not
a straight line due to the lateral straggling. In this way the code overestimates
the depth. Note that in fission chambers with high pressure filling gas the heavy
ions may not reach the opposite electrode, but this is not a problem since with
Eq. (7) the target depth is still overestimated.

4.5 Rotation, angle sampling, translation

The sine of the emission angle in the x-y-plane (ϕ) and that of the angle in the
x-z -plane (θ) was uniformly sampled between [−1, 1].

To create the pyFC coordinates from the TRIM results, first one has to
perform a rotation about the z -axis:

10

Rz(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 (8)

and afterwards about the y-axis:

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (9)

and the final transformation includes the rotations, the translation in x direction
with the radius of the source electrode and the translation in z direction with
the random axial coordinate:xpkypk

zpk

 = RyRz

xTkyTk
zTk

+

 R
0

zrand

 =

 (zTk sin θ + xTk cosϕ cos θ − yTk cos θ sinϕ) +R
yTk cosϕ+ xTk sinϕ

(zTk cos θ − xTk cosϕ sin θ + yTk sinϕ sin θ) + zrand

 (10)

(Note: for the outer electrode case the xTk coordinate has to be multiplied with
−1.)

4.6 The final trajectory

Since the target depth was overestimated, the rotated trajectories may end out-
side of the chamber. Thus after the rotation and the translations the locations
are kept only if the following conditions are fulfilled:

(xpk)2 + (ypk)2 ≥ R2
I ∩ (xpk)2 + (ypk)2 ≤ R2

E ∩ zpk ≤
lfc
2

∩ zpk ≥
−lfc

2

where k = 1, ...S′ and the updated number of locations S′ is less than or equal
to the number of locations in the TRIM output S. The equality holds for cases
when the heavy ion is absorbed before reaching the opposite electrode (i.e. in
cases when the filling gas pressure is high).

5 Spatial charge distribution

Next the charge creation along the trajectory is determined within the pyFC
module. Each heavy ion ionizes the gas separately. Only the number of electrons
is determined because due to the lower mobility of the positive ions, they can
be considered as stationary during the time it takes to collect the electrons.

TRIM outputs the electronic stopping loss ESk at each location (xk, yk, zk)
in ev/Å as it is shown in Fig. 4. After determining the distance sk between

11

consecutive trajectory locations, the ionization loss ILk and the number of
generated electrons Ne, k can be computed at each location:

sk =
√

(xk − xk−1)2 + (yk − yk−1)2 + (zk − zk−1)2 (11)

where k = 1, ...S′ and (x0, y0, z0) is the source location.

ILk = ESk · sk (12)

Ne,k =
ILk

W
(13)

where W is the mean energy to create an electron/ion pair. It is considered as
26.4 eV for pure argon and 26.9 eV for argon-nitrogen mixtures (details in [6]).
Thus the charge at each location along the trajectory is given as

qk = Ne,k · qE (14)

where qE is the electron charge.
TRIM also provides the kinetic energy of the heavy ion, hence the determi-

nation of the time of the charge generation (when the heavy ion reached the
given location) is also possible. The user has an opportunity to choose whether
the charge creation is instantaneous or not. The impact of this is detailed later.

6 Electron transport, induced current

After that pyFC determined the amount of electrons created in the TRIM com-
putations, it calculates the electron transport between the electrodes. The BOL-
SIG software is employed to compute the electron mobility in the filling gas.

pyFC is capable to work with two approximations. The first assumes that
the electron mobility is independent from the radial position of the charges.
In this case an analytic solution of the induced current is applied. The other
option assumes that the mobility depends on the radial position. Then the
computation of the induced current is solved numerically.

In both cases the induced current is assumed to occur according to the
Shockley-Ramo theorem [7]. The following subsections provide more details on
both options.

6.1 BOLSIG version and electron cross sections

In pyFC the 07/2015 version of BOLSIG is used. This version provides a console
application, therefore it is possible to run it via scripts. The cross sections are
extracted from the MAGBOLTZ code, version 8.9 March 2010 (downloaded
from the LXcat, an open-access website) [8].

The drift velocity computed by BOLSIG using the above mentioned cross
sections was compared with the experimental results of [9]. Fig. 10 shows that
the computed results show good agreement with the measured data. According

12

to Ref. [9], the error of the measurements is estimated to be less then 1%, hence
the error bars shown in the figure correspond to this value.

Figure 10: BOLSIG results with Biagi-v8.9 libraries vs Haddad experimental results

6.2 The induced current, time sampling

The induced current current by a charge q moving between electrodes will be

i =
1

U
qEvd (15)

according to the Shockley-Ramo theorem, where U , E and vd are the voltage,
the electric field, and the electron drift velocity between the electrodes.

The induced current will be a time dependent function. Therefore a time-
resolved sampling of the induced current is necessary. The user can set the
sampling time dt. Then the code first computes the maximum collection time
Tcoll,max in the chamber (the time it takes for an electron to reach the anode
from the cathode; see more details later) and then creates a time array with
elements Tj = j · dt where j = 0, 1, ...M (and M = bTcoll,max/dte+ 1).

6.3 Constant electron mobility

In the analytic solution the electric field is constant and is calculated with a
planar approximation:

13

E =
U

Rc −Ra
(16)

The BOLSIG code is called only once during the simulation. The bolsig.py
module creates the input, runs the code and reads the output. It receives
the filling gas parameters and the constant reduced electric field, and it pro-
vides the electron mobility. Thereafter the induced current is calculated in a
cylindrical geometry [10]. The collection time T−(rk) of electrons from a lo-
cation rk ∈ [Ra, Rc] (here the anode is considered as the inner electrode, and
rk =

√
x2k + y2k) is given as

T−(rk) =
log(Rc/Ra)

2µ−U
(r2k −R2

a) (17)

which formula is used also to determine the maximum collection time (Tmax,coll =
T−(Rc)). Then, by introducing a temporary variable

τ− =
r2k log(Rc/Ra)

2µ−U
, (18)

the induced current by a charge qk at location rk is given as

i−(t) =
qk

2 log(Rc −Ra)τ−

(
1− t

τ−

)−1
(19)

hence with the time sampling

Ij = i−(Tj) =
qk

2 log(Rc −Ra)τ−

(
1− Tj

τ−

)−1
j = 0, 1, ...,M (20)

The induced current by each charge along the heavy ion trajectory is com-
puted and summed to determine the pulse created by a single heavy ion path.

It is shown in Sec. 7 that the analytic solution does not always give a
correct solution, but it is sensitive to small electrode radius changes, therefore
it is useful when performing uncertainty analysis. (Note: “correct solution”
means here that, as it will be seen, the numerical solution of the maximum
collection time is inherently closer to the real value since the mobility is not
assumed to be constant).

6.4 Numerical solution

The homogeneous approximation of the electric field is not valid in every fission
chamber (especially not in large chambers as it is shown in Sec. 7). Therefore
a numerical solution was also implemented.

pyFC can generate a radial grid as illustrated in Fig. 11. The user defines
the number N of grid parcels. The distance between the neighbouring parcel
borders is

dr =
RE −RI

N
(21)

14

.....R0=RI

R1

R2

RN−2

RN−1
RN=RE

vd,1vd,2
vd,N−2

vd,N−1
vd,N

Figure 11: Grid scheme

with R0 = RI , RN = RE .
The electric field is calculated with cylindrical approximation in each parcel:

Ei =
U

Ri log(Rc/Ra)
i = 1, 2...N (22)

BOLSIG computes the electron mobility µe,i in each parcel. The electron
drift velocity in the parcel is

vd,i = µe,iEi i = 1, 2...N (23)

The collection time between the boundaries of the given parcel is

Tc,i =
dr

vd,i
i = 1, 2...N (24)

The maximum collection time in the chamber is approximated as the sum
of the collection times in the parcels (

∑
i

Tc,i).

According to the Shockley-Ramo theorem, the induced current by a charge
qk is then given as

Ij = i−(Tj) =
1

U
qkE(Tj)vd(Tj) =

1

U
qkE(Ri(Tj))vd(Ri(Tj)). (25)

pyFC first identifies in which parcel the given charge qk is located. Then
it calculates the collection time between the initial location rk and the closest

15

Table 1: Parameters of the simulated fission chambers
Name CFUZ CFUR CF4 CF8

Ra (mm) 0.35 1 1.25 0.5
Rc (mm) 0.65 1.25 1.75 3.15
lsens (mm) 12 14 8 33.5
lfc (mm) 47 14 12 33.5

Bias voltage (V) 150 250 300 300
Gas Argon+4% N2 Argon+4% N2 Argon Argon

Pressure (bars) 5 5 12 9

parcel boundary towards the anode. Afterwards pyFC tracks the charge trav-
elling towards the anode through the parcels and evaluates the induced current
(hence it determines the position of the given charge Ri(Tj) at a given moment
Tj).

The induced current by each charge along the heavy ion trajectory is com-
puted and summed to determine the pulse created by a single heavy ion path.

It has to be remarked that in case the spatial grid is very fine, while the
time sampling is rather scarce, it may take shorter time to the electrons to cross
a parcel than the related collection time in the sampling unit in that parcel.
This would cause a numerical error. Therefore the user has to be prudent while
setting the number of parcels and the sampling time.

(Note: it is seen that, as shown in Eq. (22), the electric field is logarithmic,
therefore a logarithmic grid may be rather suitable. Nevertheless, the determi-
nation of the parcel which hosts the position rk is faster for a linear grid.)

7 Verification, comparison with Chester

The comparison between pyFC and Chester results was performed with four
fission chambers, published in [1]. The characteristics of the investigated fission
chambers are summarized in Table 1. The fissile deposit is located on the anode
for all the fission chambers except the CF8.

As it was mentioned earlier, although certain issues related to the heavy ion
paths were identified, the results of Chester were verified previously, therefore
the comparison gives adequate insights about the implementations in pyFC, in
particular regarding the treatment of the electron transport.

In the Chester calculations, the trajectories with a cluster number higher
than 20 were kept to discriminate the trajectories turning back towards the
source [1]. pyFC calculations were performed with both the analytic and the
numerical solution, and in both cases a finite heavy ion speed was considered (i.e.
the charge creation was not instantaneous). The mean pulses are summarized
in Fig. 12 and the charge distributions are shown in Fig. 13. The charge distri-
bution in pyFC is independent from the electron transport solution, therefore
the same distribution is valid for both the analytic and the numerical case.

16

Figure 12: Mean pulses generated by Chester and pyFC

It can be concluded that the pyFC results are in good agreement with the
Chester results. The analytic solution tends to fail in geometries where the
electric field changes significantly inside the chamber (such as the CF8 in which
the anode radius is relatively small compared to the cathode radius). The pyFC
current amplitudes and the time integrals of the pulses are a bit lower than
the results by Chester. The reason is that Chester overestimates the created
charge due to the artificially jagged trajectories as illustrated in Fig. 1. This
can be seen on the charge distribution Fig. 13 as well: the charge distribution
computed by pyFC is narrower and its median is shifted towards lower charges.

One can notice that the peak of the pulses computed by pyFC arrives earlier
than the peak of the Chester pulses. The reason is again the meandering heavy
ion path: in Garfield it takes a longer time for the heavy ion to reach the opposite
electrode than in reality, hence it overestimates the length of the rising part of
the pulse. (Note: it was also shown that for chambers with coated anode the
short rising part is a consequence of the heavy ion speed. If the charge creation
is considered to be instantaneous, then the rising part disappears.)

17

Figure 13: Charge distribution by Chester and pyFC

The heavy ion path length and the travelled distance was determined to
verify that the Garfield artifact causes the above mentioned differences. The
path length L is considered as the length of the heavy ion trajectory, while the
travelled distance D is the distance between the beginning and the end of a
trajectory. An illustration is given in Fig. 14 where the length of the red and
blue lines L1 and L2 is the path length, while the length of the green line D is
the travelled distance. The travelled distance is the same for both L1 and L2,
but the jagged trajectory results in a much longer path length.

The results are summarized in Fig. 15. The pyFC calculated path length
distribution is slightly wider than the travelled distance distribution due to
the lateral straggling (illustrated in Fig. 14 by L1 compared to D). One can
also see that the travelled distance calculated by Chester and pyFC are in good
agreement, but the path length is 2-3 times longer in Chester. As a consequence,
it takes longer time to the heavy ion to travel through the chamber (therefore
the peak of the pulses computed by Chester in Fig. 12 appears at a later time
than that of the pulses determined by pyFC); and also, more charges are created

18

I

E

D

L1

L2

Figure 14: Path length and travelled distance

Figure 15: Path length and travelled distance distribution by Chester and pyFC

along the trajectory of the heavy ion in Chester.

19

8 Input form, tutorial

The current version 1.0 of the pyFC code can be run with main.py. The user
has to define the fission chamber characteristics, and add some additional infor-
mation about the calculation in the file input.py. An example is given below.

#g e n e r a l path in format ion
srimPath=”C:\\ srim ”
pyFCpath=”C:\\ chalmersphd \\pyFC\\pyFC ver1”
f y F i l e=’ the rma l u235 y i e ld . dat ’ #here some c o n d i t i o n s

can be added to f i n d out the f i l e from U235

#f i s s i o n chamber d e s c r i p t i o n
#c f h t esp2
Ra=21.5 #mm
Rc=23. #mm
source=” cathod ic ”
l s e n s =231./2 #mm
l f c =231./2 #mm
U=2000 #V
GasTemperature=300 #K
GasPressure =4.0 #bar
ArRatW=1.000 #w%
NRatW=0.000 #w%
#c a l c u l a t i o n d e s c r i p t i o n (number o f pu l se s , time

r e s o l u t i o n , name , path f o r the r e s u l t s , r e q u i r e d
r e s u l t s)

Nsim=1000
NGrid=15
TimeStep=0.1 #ns
tagResu=’ CFHT esp2 cat ’
resuPath= ’ CFHT esp2 cat test ’
needCharge=False
needPos i t i on=False
needPulse=True
needPulseHI=True

First, the user can set up the path for the SRIM code (srimPath), for the
pyFC (pyFCpath), and the used fission yield library (fyFile).

Thereafter, the description of the fission chamber is given (the geometrical
sizes in mm: anode radius Ra, cathode radius Rc, sensitive length lsens, fission
chamber length lfc; polarization voltage in volts U, gas temperature GasTemper-
ature in K, gas pressure GasPressure in bars, and finally the argon and nitrogen
weight fractions ArRatW,NRatW.

Finally some additional parameters have to be defined: the number of pulses
Nsim defines the length of the calculation, the number of parcels NGrid defines
how fine the radial grid is (if this parameter is set to 0 the code uses the ana-

20

lytic approximation), the time resolution TimeStep gives the resolution of the
created pulses, and the variables tagResu and resuPath describe the name of
the output files and the folder where they will be placed. The variables need-
Charge, needPosition, needPulse and needPulseHI indicate to the program what
information should be printed: the charges created along the heavy ion path,
the position of the heavy ion reactions or the created pulses. The needPulseHI
case takes into account the heavy ion speed, therefore the charge creation is not
instantaneous.

To run the code the user has to install the SRIM-TRIM code according to
the instructions on the SRIM hompage srim.org. After the installation is done,
the TRIMAUTO file has to be updated: the first number in the file has to be
changed to 1 (note that running TRIM as a normal program will change back
this number to 0).

Thereafter the user has to download and install Python3 from www.python.

org/. (The code pyFC is implemented in Python 3 and was tested with the 3.4
version. Since Python2 contains differences in the syntax it is not possible to
run pyFC with that version.)

Finally, the content of the file pyFC.zip has to be extracted (the file can
be obtained on request from the author of the present document). This file
contains the BOLSIG software and all the necessary files of pyFC (the source
files of the modules, the reference inputs for TRIM and BOLSIG, the fission yield
for 235U, and the electron cross section file. Different electron cross sections may
be downloaded from http://fr.lxcat.net/home/; in this case the user has to
edit the BOLSIG input, an example input and the main.py file). The user can
edit the input.py file, and run the main.py source from the command prompt.

The outputs are created in the requested path in ASCII file format.

9 Conclusions

pyFC overcomes the issue related to the artificially jagged trajectories produced
by Chester. As a consequence, it reduces significantly the computational time
of the mean pulse shape, since no events have to be discriminated against.

The code shows good agreement with the Chester results. The discrepan-
cies between the two codes are explained with the artificially jagged heavy ion
trajectories generated by Garfield.

pyFC is very robust, stable and simple to handle, hence it is suitable to be
used as a tool for an extensive uncertainty and sensitivity analysis in the future.

References

[1] P. Filliatre, C. Jammes, B. Geslot, R. Veenhof, A Monte Carlo simulation
of the fission chambers neutron-induced pulse shape using the GARFIELD
suite, Nuclear Instruments and Methods in Physics Research Section A:

21

srim.org
www.python.org/
www.python.org/
http://fr.lxcat.net/home/

Accelerators, Spectrometers, Detectors and Associated Equipment 678 (0)
(2012) 139–147.

[2] R. Veenhof, Garfield, recent developments, Nuclear Instruments and Meth-
ods in Physics Research Section A, 419 (1998), p. 726-730 (GARFIELD, A
Drift Chamber Simulation Program, CERN, 1994, CERN Program Library,
Entry W5050 http://cern.ch/garfield)

[3] J. F. Ziegler, J. P. Biersack, M. D. Ziegler, The Stopping and Range of Ions
in Matter, SRIM.org, (2008)

[4] P. Filliatre, C. Jammes, B. Geslot, Stopping power of fission fragments
of 252Cf in argon: A comparison between experiments and simulation with
the SRIM code, Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associated Equipment
618 (1) (2010) 294–297.

[5] G. J. M. Hagelaar, L. C. Pitchford, Solving the Boltzmann equation to
obtain electron transport coefficients and rate coefficients for fluid models,
Plasma Sources Sci. Technol. 14, 722-733 (2005)

[6] International Commission on Radiation Units and Measurements, Average
Energy Required to Produce an Ion Pair, ICRU Report 31, (1979)

[7] W. Shockley, Currents to Conductors Induced by a Moving Point Charge,
Journal of Applied Physics 9, 635–636 (1938)

[8] S.F. Biagi, Nuclear Instruments and Methods A 421(1999) 234

[9] G. N. Haddad, Drift Velocity of Electrons in Nitrogen-Argon Mixtures,
Aust. J. Phys., 36, 297–303 (1983)

[10] C. Jammes, P. Filliatre, Technical Report published by CEA, SPEX/LD-
CI/08/013

22

	Introduction, motivation
	Physical processes in fission chambers
	Code suite
	Geometrical considerations, TRIM results
	The TRIM geometry and its limitations
	The target depth in the x-y plane
	Inner electrode coated
	Outer electrode coated

	The target depth in the x-z plane
	The final target depth estimation
	Rotation, angle sampling, translation
	The final trajectory

	Spatial charge distribution
	Electron transport, induced current
	BOLSIG version and electron cross sections
	The induced current, time sampling
	Constant electron mobility
	Numerical solution

	Verification, comparison with Chester
	Input form, tutorial
	Conclusions

