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Towards a mechanism for surface hydrophobization of paper 
Effect of combinations of polyelectrolytes and polymer particles 

FRIDA ISELAU 
Department of Chemistry and Chemical Engineering 

Chalmers University of Technology 
ABSTRACT 

Paper materials are cost effective and light weighted, they can easily be recycled and 
their use as an alternative to plastics is advantageous from an environmental and 
sustainability perspective. However, competing with plastics for packaging 
applications is a challenge for cellulosic products. The material needs to be strong 
and stiff also when exposed to liquids or moisture during transportation and storage. 
To achieve this for paper materials, which are intrinsically hydrophilic due to the 
nature of the cellulose, they need to be hydrophobized.  
Packaging paper materials are often made from recycled fibers. The constitution of 
the paper matrix can therefore vary a lot and the addition of hydrophobic compounds 
to the pulp in the paper production process is difficult to optimize. Therefore the 
recent development in paper hydrophobization has been towards surface 
modification, so-called surface sizing. There is a plethora of surface sizing products 
and these products are very efficient in making the paper surface more water resistant, 
but there is a lack of fundamental knowledge on how they work. The aim of this 
licentiate project, which can be regarded as the first part of a doctoral thesis work, is 
to explore and identify which physicochemical properties of the formulation used for 
surface sizing are governing the efficiency.  
In surface sizing the particle suspension is first mixed with starch in solution. Starch 
is widely used to increase the surface strength of paper. The combination of the 
particles and starch is the subject of one study described in this thesis. In this study 
the interactions between starch and three types of particles, differing in the type of 
stabilizer used, are explored. The different stabilizers rendered the particles cationic, 
anionic or amphoteric. It was found that the cationic particles formed aggregates with 
the starch and that it is mainly the high molecular weight, highly branched 
amylopectin fraction of the starch that participates in the aggregation. The aggregate 
formation, as well as the relaxation kinetics, are also investigated and it was 
concluded that the amylopectin chains give rise to steric stabilization even at the most 
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destabilized state, i.e. at maximum aggregation. The relaxation kinetics is found to 
be molecular weight dependent while the equilibrated state is not, leading to a 
proposed aggregation mechanism based on patchwise flocculation. 
Finally the efficiency in reducing the water uptake of test paper sheets is assessed. 
The cationic particles are the most efficient in decreasing the water uptake and the 
efficiency is enhanced by aggregation. 
 
 
 
 
 
Keywords: Surface sizing, paper hydrophobization, aggregation, nanoparticles, 
starch, interactions, kinetics. 
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1. INTRODUCTION 
For almost thousand years, since the Chinese invented the paper making process, 
paper has been an important part of our daily life. Already the ancient Egyptians, 
Greeks and Romans made paper from papyrus, hence the name “paper”. During the 
industrialization the increased demand for paper lead to the development of the 
Fourdrinier machine, a continuous paper machine, which was patented in 1807. Many 
paper machines used today are based on the principles of the Fourdrinier machine.1 
Figure 1 describes schematically the paper making process. 
 
 
 
 
 
 
Figure 1. Principles of paper making. 
With a world production of 400 million tons a year paper is an abundant and versatile 
material that has great value in everyday life.1 It is used for communication in 
newspapers and magazines, for cleaning purpose as household paper, for writing and 
for printing. The many different applications require a toolbox of modifications of 
the naturally hydrophilic cellulosic fibers that are the main constituent in paper. A 
household paper should be very hydrophilic but yet strong in order to absorb liquid 
without losing its structure. A magazine paper should give excellent printability and 
print quality. Packaging is a growing market for the paper industry as more goods are 
transported across the continents. Paper as a packaging material fits very well the 
purpose as it is light, cost effective, and made from a renewable source. In addition, 
it can be recycled. A packaging material should be water resistant in order to 
withstand various storage conditions such as moist and liquid exposure without losing 
its strength or shape. Due to the intrinsic hydrophilic character of the cellulosic fibers 
these paper grades are hydrophobized to reduce penetration and wetting of water. 
However, water resistance is not needed only for packaging applications. To achieve 
good printability the paper surface needs to be hydrophobized in order to avoid ink 

Paper 

Pulp Head box Formation 
Drying Pressing 

Surface sizing 

Drying 



2  

feathering.2 In the paper manufacturing industry this treatment is frequently referred 
to as sizing. This word, used from historical times, is odd as its meaning is not 
straightforward. According to the literature the word “sizing” has three plausible 
origins.3 

 Size could come from a word for glue because the first sizing method was 
done with glue. In Swedish and in French the word for sizing is still the word 
for “glue”, i.e. in Swedish it is called “limning”. 

 Sizing might come from a test where a stack of paper was put in water and 
afterwards the increase in size due to water uptake was measured. 

 The word “size” could stem from the old Latin verb “assidere”. Early Italian 
papermakers called the procedure “assisa” which can have been modified to 
“sisa” and then to “size”. It means “set in place.” 

Historically, the first sizing method was surface sizing. It was achieved by wetting 
the handmade paper sheet through a pond containing the surface sizing ingredients. 
With this method, there was no tension affecting the paper’s durability. Later, when 
the paper machines were introduced, the tension on the paper web going through the 
machine was significantly increased and therefore the paper web often broke due to 
too high water uptake in the size pond. To solve this problem internal sizing was 
developed. 
Internal sizing is typically done by adding hydrophobic, reactive compounds like 
alkyl ketene dimer (AKD) and alkenyl succinic anhydride (ASA) to the pulp. These 
compounds react with the cellulosic chains, forming covalent bonds and rendering 
fiber surfaces more hydrophobic.4-7 This is done before the pulp is formed into a paper 
giving the entire bulk of the paper a hydrophobic character. The efficiency of the 
internal sizing process is depending on different factors and the procedure suffers 
from various shortcomings. For instance, it is important to have good retention of the 
internal sizing agent, i.e. the compound must be retained in the pulp and not drained 
off with the recirculating water flow. This is essential since both AKD and ASA are 
susceptible to hydrolysis and will degrade if the residence time is too long. Therefore 
the use of an efficient retention aid is crucial and the pH needs to be on the 
neutral/basic side in order to avoid hydrolysis. A high filler and/or fines content, as 
for example in fine paper and recycled paper grades, is detrimental for internal sizing 
since the hydrophobizing agent is then adsorbed on the small particles/fibers and not 
on the long, strong fibers. With a high fines content a higher dosage of internal sizing 
agent is therefore needed.  
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For technological, economic and environmental reasons, there is currently a shift 
engaged from internal sizing to surface sizing.8 In surface sizing, the hydrophobizing 
agents are applied in the dry-end of the paper machine onto the formed paper sheet 
(see Figure 1). They are therefore mainly present at the paper surface, where they are 
primarily needed, allowing a significant reduction of the amount of chemicals used 
in the hydrophobization process. Surface sizing has the additional advantage of 
having efficient retention9-12 which is beneficial both from an economic and a process 
runnability point of view.11 Technical reasons also favor surface sizing over internal 
sizing. For instance, for recycled paper, where the composition may vary a lot, 
efficient internal sizing is often difficult to achieve.9  
In surface sizing the paper material is typically treated with a suspension of 
hydrophobic polymer particles in a starch solution.10, 11, 13, 14 The starch enhances the 
paper stiffness by forming a film on the paper surface that creates strong hydrogen 
bonds with the cellulose fibers12 and can also reduce the water penetration rate by 
filling the surface voids in the paper sheet.11 In surface sizing the starch is dissolved 
and held at elevated temperature in order to decrease the risk of retrogradation. The 
hydrophobic polymer particles, typically a styrene-acrylate based copolymer, 
stabilized by amphiphiles of different nature,14-17  render the paper surface 
hydrophobic.11, 13, 15, 18, 19 The particle suspension is first mixed with the starch 
solution and the mixture is subsequently applied on the paper surface at the dry-end 
of the paper machine.20 A pressure is applied and the paper is usually heated above 
the glass transition temperature of the polymer in order to promote coalescence of the 
colloidal layer.16 There are different techniques to industrially apply the particles on 
the surface of the paper, the most important being puddle press and film press.11 For 
both techniques, the paper is first exposed to the particle/starch suspension to allow 
liquid absorption and adsorption to take place, and then, exposed to an external 
pressure, the press step. This is followed by the drying step. Figure 2 shows a 
schematic description of surface sizing at laboratory scale.  
 

 

 

 

 

 

Figure 2. A schematic representation of the surface sizing procedure. 
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Surface sizing polymer suspensions are widely used in the paper making industry 
today and there is a variety of grades differing in particle size, colloidal charge and 
chemical composition, in order to fine-tune the hydrophobization process. The 
various grades are known to be very efficient. Only a small addition of these 
hydrophobic polymer particles will render the paper surface hydrophobic. However, 
most of the knowledge is empirical and it is generally accepted in the paper industry 
that there is a lack of fundamental knowledge of how these products work. It is also 
not known which properties of the paper sizing formulation are governing the 
performance.  
 
In this study the importance of the colloidal behavior of the hydrophobic particles in 
combination with anionic starch was explored and correlated to surface sizing 
performance. Three different particle types were synthesized with the same 
hydrophobic polymer core but with different stabilizers (dispersants). Depending on 
the stabilizer the particles are either cationic, anionic or amphoteric and are here 
labelled SP+, SP- and SPA, respectively. The particle concentration was typically 
0.1 wt% and the starch concentration was 8 wt%, i.e. a high starch to particle ratio 
was used, which is in line with industrial conditions. Even in the strong excess of 
anionic starch a difference in performance could be seen when comparing the three 
formulations, showing that in spite of having the same hydrophobic core the nature 
of the stabilizer played a significant role for the hydrophobization. The interactions 
introduced in Paper I and further explored in Paper II and Paper III could be correlated 
to an improved efficiency in surface hydrophobization when optimal conditions were 
applied. The conclusions from this study, that the starch to particle ratio, the 
temperature, and the molecular weight of the starch are decisive for the aggregation 
and consequently for the surface sizing efficiency give a new insight and deeper 
understanding of the mechanism of surface sizing.  
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2. OBJECTIVES 
The aim of this PhD project is to gain deeper understanding of the fundamental 
principles of surface sizing. One may say that there are as many applications and 
variations on surface sizing as there are paper mills in the world; however, the basic 
principles of surface sizing are generic. The scheme of the surface sizing procedure 
shown in Figure 2 can be divided into four steps: 
 

1. Mixing of components 
2. Storage of mixture 
3. Application 
4. Drying 

 
Together, these steps will lead to a hydrophobized paper surface and it is therefore 
important to evaluate the whole process in order to identify the crucial parameters for 
achieving the optimal sizing effect. The effect of mixing the components and of 
storage of the mixture are investigated in this licentiate thesis. Further studies, which 
are beyond this thesis, will provide insights of the application and the film forming 
process during drying. 
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3. ANALYTICAL TECHNIQUES 
The complexity of the systems studied in this work is reflected by the diversity and 
the broad range of analytical techniques employed. For the bulk study of the 
formulations, scattering techniques that range from turbidity to SAXS gives 
information about the overall behavior of the colloidal system as well as the internal 
structure of the aggregates formed. The paper surface characterization includes both 
physical and chemical analytical techniques since the paper surface is structured and 
has a heterogeneous nature. 

3.1. SCATTERING TECHNIQUES 
When a radiation beam is illuminating a sample, the beam is scattered. The scattering 
pattern is the result of the inhomogeneity of the sample. The scattered beam is 
monitored by detectors and the intensity of the scattered beam as a function of the 
angle of detection is measured. Examples of radiation sources are light (laser) or X-
rays.21 Depending on the wavelength source, different size ranges can be measured 
where the X-ray provides analysis of samples in the lower nano size range while light 
scattering can be used for size determination ranging from 10 nm to 1 µm.  
 
Scattering techniques provide a non-invasive measurement of macromolecules and 
particles in solutions or dispersions. From scattering measurements information 
about size, molar mass, radius of hydration, radius of gyration and form factor can be 
extracted. The theory of Rayleigh states that the scattering intensity is proportional 
to the power of six of the particle size means that the larger the particle the higher is 
the scattering intensity.22 

3.1.1. Turbidity 
When light passes through a particle suspension the incoming beam is scattered due 
to interactions with the matter. When the particle size is smaller than the incoming 
wavelength of the light the turbidity increases with particle size.21 Turbidity can be 
used for monitoring size growth due to aggregation, however not quantitatively. A 
UV/Vis spectrophotometer can be used for turbidity measurements where incoming 
light in the UV and visible spectra, from 200-800 nm is illuminating the sample. The 
intensity of the transmitted light is monitored and its decrease is the results of the 
presence of aggregates and of their size.  
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3.1.2. Static light scattering, SLS 
Static light scattering, SLS, is a scattering technique that can be used to determine the 
molecular weight, Mw, and the form factor, P(θ), from which the radius of gyration, 
RG, can be obtained. In SLS a polarized laser light with known intensity is 
illuminating the sample and the intensity of the scattered light is measured over a 
period of time, typically 10-30 seconds. The accumulation of the scattering intensity 
over a period of time gives the time-averaged intensity where the fluctuations are 
removed and this is why the technique is called static light scattering. The form factor 
describes the dependence of the intensity on the scattering wave vector (q) and 
depends on the structure and the size of the solute. Often multiple detectors placed at 
different angles around the sample holder are used for the detection, this technique is 
then called Multiple Angle Light Scattering, MALS. The use of multiple detectors 
improves the accuracy in the measurements.  

3.1.3. Dynamic light scattering, DLS 
In a dispersion, the solvent will have an impact on the particles causing them to move, 
the so-called Brownian motion. Dynamic light scattering, DLS, is a scattering 
technique where the time-dependent fluctuation in the scattering from moving 
particles due to Brownian motion is monitored. The fluctuation is correlated to the 
diffusion rate of the particle in the solvent and the diffusion rate is in turn correlated 
to the hydrodynamic radius of the particle. The hydrodynamic radius (RH) can be 
calculated from the average diffusion coefficient using the Stokes-Einstein equation 
(Eq. 1):  

D = ୩୘
଺஠஗ୖౄ   (Eq. 1) 

Where η is the viscosity, k is the Boltzmann’s constant and T is the absolute 
temperature. The radius of hydration, RH, that is obtained from DLS is for a sphere 
always larger than the radius of gyration, RG, obtained from SLS. 

3.1.4. Small angle X-ray scattering, SAXS 
In small angle X-ray scattering, SAXS, an X-ray beam is employed for irradiation of 
a sample. The X-ray is interacting with the electron shell of the atom and the 
fluctuations in the electron density gives elastic scattering. The intensity of the 
scattering is in turn detected. The sample can be in solid state or as a dispersion. The 
term small angle is due to the small deflection of the scattering radiation, which is 
often between 0.1-10 °. SAXS is used for size and shape determination and it also 
gives information about the inner structure of disordered systems. SAXS can be seen 
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as an extension of SLS, where the smaller wavelength of the incoming X-ray beam 
can be used for size determination in the Å regime.  
With SAXS the scattered intensity and the scattering angle is monitored. The 
scattering angle is used for calculation of the scattering vector, q, by the relation 
(Eq. 2): 
ݍ = ቀସగ

ఒ ቁ  (Eq. 2)  ߠ݊݅ݏ
The log-log plot of the scattered intensity as a function of the scattering vector gives 
the fractal dimensions of the measured system. A non-aggregated systems constitutes 
of one structural level and the size can be determined from the Guinier 
approximation,23 (Eq. 3): 
(ݍ)ܫ = ݌ݔ଴݁ܫ ቀିோಸమ ௤మ

ଷ ቁ   (Eq. 3) 
A structural level in scattering is described by Guinier’s law and a structurally limited 
power law, which on a log-log plot is reflected by a kink and a linear region. For 
complex systems a unified equation can be used to model the scattered intensity.24 
This is an approximated term that describes a complex morphology over a wide range 
of q in term of structural levels. Intensity is modelled using the formula (Eq. 4):  

I(q) = ∑ G୧ exp ቀି୯మୖృ౟మ
ଷ ቁ୬୧ୀଵ + B୧exp ቀି୯మୖృ(౟శభ)

ଷ ቁ × ൥ቀୣ୰୤൫୯ୖృ౟/√଺൯ቁయ

୯ ൩
୔౟

 (Eq. 4) 

where n is the number of structural levels, i=1 refers to the largest size structure, and 
(i+1) to the structure of the sub-particle. G is the Guinier prefactor and B is a prefactor 
specific to this type of power-law scattering. B is defined according to the regime in 
which the exponent P falls. Generally, for surface fractals 4 > P > 3, for mass fractals 
P < 3 and for diffuse interfaces P > 4. 

3.2. ELECTROPHORETIC MOBILITY AND  POTENTIAL 
A charged particle suspension has a distribution of counter-ions surrounding the 
particle surface. Close to the surface the counter-ions are strongly bound and this is 
defined as the Stern layer. Outside the Stern layer there is still a higher ion 
concentration compared to the bulk but the ions are less firmly bound to the particles. 
This layer is called the diffuse layer. When a voltage is applied to a particle 
suspension an electric field is created and the particles are attracted to the electrode 
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of opposite polarity. The particle velocity in this electric field can be measured and 
from this the electrophoretic mobility can be calculated from the relation µe=v/E, 
where v is the velocity and E is the applied electric field.25 The velocity is measured 
by electroacoustic or laser Doppler electrophoresis techniques. The detection for the 
instrument used in this study was laser Doppler electrophoresis which utilized the 
Doppler effect, i.e. that a moving object will induce a phase shift in frequency.26 By 
comparing the frequency of the scattered light with the incoming light frequency the 
velocity can be calculated. The electrophoretic mobility depends only on the amount 
of charge carried by the particle and not on the particle shape or size.27  
When the external voltage is applied to the particle suspension the ions bound to the 
particle surface will move along with the particle. At a specific distance from the 
particle surface, inside the diffuse layer, there is a limit where the ions no longer 
follow the particle’s movement. This is called the slipping plane. The potential at this 
border is defined as the  potential and can be calculated by the Smoluchowski 
formula where the  potential is obtained from the viscosity of the solution, the 
dielectric constant and the electrophoretic mobility.25 The  potential therefore 
reflects the effective particle charge and is the potential in the electrical double layer 
that exists between the particle surface and the surrounding medium, often water. The 
 potential is dependent on solution conditions such as pH and ionic strength, and the 
 potential measurements should preferable be performed with a constant background 
electrolyte concentration. 

3.3. COBB TEST 
The Cobb test is a water absorptiveness measurement on sized paper and a TAPPI 
standard method.28 In this test the water absorptiveness, i.e. the Cobb value, is defined 
as the mass of water absorbed in a specific time by 1 m2 paper under 1 cm of water 
and given in the unit g/m2. The exposure time is often 60 seconds but for specific 
requirements also longer times can be employed, for example Cobb1800 which 
corresponds to an exposure time of 1800 seconds. The lower the Cobb value the better 
is the water resistance of the tested surface. A Cobb value below 30 g/m2 is usually 
regarded as a sufficient sized paper surface. 
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4. MATERIALS AND METHODS 
4.1. MATERIALS 
The particles used in this study, e.g. the SP+, SPA and SP- were synthesised as 
described in paper I. Also used in this study was amidine latex particles (AL110) 
from Invitrogen (Basel, Switzerland).  
 
For the study of colloidal behavior two starch types were used, one oxidized potato 
starch and one oxidized waxy potato starch. The starches were supplied as dry 
powders from Avebe, Holland.  
 
The test papers used in the sizing efficiency assessment were a fine paper grade and 
a recycled liner grade. The fine paper was produced on a pilot paper machine at the 
Technical University of Munich. The composition of the fine paper grade was 
chemical pulp with a filler content of ground calcium carbonate (GCC) corresponding 
to an ash content of 16-18 %. Alkyl ketene dimer, AKD, was used as internal sizing 
agent and a cationic starch, Vector IC, from Roquette with a DS of 0.03 was used for 
mechanical strength enhancement. The liner grade was from Mintec and consists of 
100 % recycled fibers and was not internally sized. 
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4.2. ANALYTICAL METHODS 
4.2.1. Characterization methods 
 
4.2.1.1. Particle size determination 
A Malvern Nano instrument was used for measuring the particle size by dynamic 
light scattering for SP+, SPA and SP-. The samples were prepared by diluting the 
particles in Milli-Q water to a concentration of 0.05 wt%. Samples were filtrated with 
0.2 µm hydrophilic syringe filter (Sartorius) before measurements.  
4.2.1.2.  potential 
The  potential was measured using a Malvern Nano instrument and disposable 
measuring cells and was calculated using the in-build software that employs similar 
models as for phase analysis light scattering.30 
The  potential for the SP+, SPA and SP- particle suspensions was measured and the 
samples were prepared by diluting the particle suspension to a concentration of 
0.05 wt% with a 1 mM NaCl solution. The samples were filtered with 0.2 µm 
hydrophilic syringe filter (Sartorius) before measurement. 
For the  potential measurements of the cationic particle suspension in combination 
with the anionic starch the SP+ concentration was 0.1 wt% and a 3 wt% starch 
solution was added in different amounts to the particle suspension. Both the SP+ and 
the starch were filtered with 0.2 µm hydrophilic syringe filter (Sartorius) before 
mixing. The samples were analyzed 5 min after the starch addition and no 
background electrolyte was used. pH remained constant throughout the titration 
around 4.0.  
4.2.1.3. Particle charge density titration 
Particle charge density titration was performed with oppositely charged polymers 
using a Particle Charge Detector (PCD), CAS Charge Analyzing System (AFG, 
Analytic GMBH). This is an electrokinetic technique where the charge distribution 
is determined by measuring the streaming potential.31, 32 The amount of surface 
charge is determined by the titration of the suspension with a titrant carrying the 
opposite charge and the amount of titrant required for charge neutralization at a 
macroscopic level is used for calculating the charge density. For the anionic SP- 
particles the titration was performed using polyDADMAC and for the amphoteric, 
SPA, and cationic, SP+, particles the titration was performed with PES-Na. The 
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anionic starches, the regular and waxy starch, were titrated with polyDADMAC. The 
samples were filtered with 0.2 µm hydrophilic syringe filter (Sartorius) before 
measurement. Charge titrations of the SP+ particles with the anionic regular or waxy 
starch as the titrants were also performed in order to investigate the starch to particle 
ratio at charge neutralization.  
4.2.1.4. Freeze fracture with transmission electron microscope (TEM) 
The samples were prepared by the freeze fracture mica method and then high 
resolution TEM pictures could be taken. In this method a small amount of a diluted 
sample is placed in between two mica plates and rapidly frozen in liquid nitrogen. 
The mica sandwich is split up and the surface now covered by a frozen particle 
suspension is placed in a holder, still in liquid nitrogen and placed in the vacuum 
chamber. In the chamber the temperature was -170 C to allow water sublimation. 
The surface is then covered by a platinum layer, 0.8 nm thick, and a 2 nm carbon 
layer. The carbon layer worked as a support for the thin platinum layer. The 
reproduction of the sample structure was then studied by TEM. The three particle 
types SPA, SP- and SP+ at concentrations of 0.05-0.07 wt % were included in the 
study.  
4.2.2. Methods to study colloidal stability  
In the surface sizing process the hydrophobic polymer particle suspension is mixed 
with a starch solution prior application on the paper web surface. A study was 
performed in order to investigate the colloidal behavior for the three different particle 
types in the presence of starch, in this case an oxidized starch that has anionic 
character. The colloidal behavior was primarily studied by turbidity and further 
investigated by light scattering,  potential and SAXS. The molecular weight of the 
starch in solution after mixing with the particles was analyzed by SEC. 
 
4.2.2.1. Turbidity 
The turbidity measurements were performed on an Agilent Cary 60 UV/Vis 
instrument and HP8453 UV/Vis instrument using a quartz cuvette or disposable 
acrylic cuvettes. The baseline was recorded in Milli-Q water. The value of the 
absorbance at 400 nm was used as a measure of the turbidity. The particle suspension, 
0.1 wt%, was filtered with 0.2 µm hydrophilic syringe filter (Sartorius) before 2 mL 
sample was transferred to the cuvette. The starch solution was also filtered with 
0.2 µm hydrophilic syringe filter (Sartorius) before addition to the particle 
suspension. For the relaxation kinetics study eight samples, with different amount 
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starch added to the particle suspension, were measured simultaneously for a period 
of time. The turbidity measurements at elevated temperature were done using the 
HP8453 UV/Vis instrument that was equipped with a temperature controlled sample 
holder. To avoid cooling the sample by the addition of starch, the starch solution was 
preheated in a water bath. 
4.2.2.2. Aggregate size determination by light scattering  
For the size determination of the formed aggregates a multi angle light scattering 
instrument, ALV/CGS-8F, was used. The instrument was equipped with a laser 
source of 150 mW with a wavelength of λ= 532 nm. The temperature was controlled 
by a thermostat bath to within ± 0.2 °C. Measurements were made at angles of 
observation (Θ) between 12 and 155 degrees. From these measurements both RH and 
RG were determined. The particle concentration was 0.05 wt% and different amount 
of a 3 wt% starch solution was added to the particle suspension. Both the particle 
suspension and the starch were filtered with 0.2 µm hydrophilic syringe filter 
(Sartorius) before mixing. After 5 min the samples were analyzed. Details of the data 
processing are further explained in paper II and III. 
 
Starch has a much lower scattering intensity compared to the particles. Therefore the 
scattering intensity detected in the measurements of the mixture of particles and 
starch is regarded to originate from the aggregates. The slightly increase in sample 
viscosity due to starch addition was minor and was therefore assumed not to affect 
the results. 
4.2.2.3. Aggregate formation 
Early stages of aggregation of AL110 particles as a function of starch concentration 
were studied using ALV/CGS-8F goniometer. The samples were prepared by mixing 
appropriate amounts of stock suspension of 0.02 wt% of AL110 particles with 
0.005 wt% of starch solution. Background electrolyte concentration was adjusted by 
adding aqueous NaCl solution. Final concentration of particles in the mixture was 
kept at 0.00072 wt%. Immediately after mixing, the hydrodynamic radius vs time was 
monitored with the DLS, where RH was calculated from the second order cumulant 
fit. The stability ratio W was calculated by comparing actual apparent aggregation 
rate coefficient, kapp, with the one measured in 930 mM NaCl without added starch, 
kfast, where W = kfast/kapp. 
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4.2.2.4. SAXS  
Small angle X-ray scattering, SAXS, experiments were carried out at the I911-4 
beamline of the MAX-Lab laboratory synchrotron using a wavelength of 0.91 Å. The 
samples were analyzed for 120 s in capillaries maintained at 20 °C. Depending on the 
analysis of interest the samples were prepared right before the measurements (kinetic 
study) or 24 h prior analysis. The samples were prepared by adding different amounts 
of the 3 wt% starch solution to samples of 2 mL of a 0.1 wt% SP+ suspension. The 
particle suspension and the starch solution were filtered with 0.2 µm hydrophilic 
syringe filter (Sartorius) before addition.  
4.2.3. Paper characterization methods 
Two types of model papers were used, one recycled liner grade and one fine paper 
grade. The test papers were characterized with respect of porosity and water uptake 
both for untreated paper sheet as well as on surface sized paper sheets. For the 
untreated paper sheets the charge and chemical composition of the material have been 
determined.  
4.2.3.1. Chemical composition of the paper surface  
X-ray photoelectron spectroscopy, XPS, was used to determine the chemical 
composition of the paper surface. A Quantum 2000 scanning XPS microprobe from 
Physical Electronics with an Al Kα (1486.6 eV) X-ray source was used with a beam 
size of 100 µm. The analyzed area was 500 x 500 µm and the take-off angle was 45 ° 
with respect to the sample surface. The information depth is approximately 4-5 nm. 
4.2.3.2. Air permeability and roughness 
The air permeability and roughness were measured using a Bendtsen equipment 
where pressurized air is flowed through the paper sheet for determination of air 
permeability and along the paper surface for determination of surface roughness. The 
air permeability is dependent on the paper thickness as well as the porosity of the 
paper sheet. Both the air permeability and roughness are given in the unit 
mL(air)/min. Typically, a low flow indicates that the paper surface is smooth while a 
high flow is a sign of roughness.  
 
4.2.3.3. Colloidal charge of fiber slurry 
To measure the colloidal charge of the fiber slurry approximately 30 g of paper sheets 
were grated into small pieces and added to 2000 mL deionized water and let to swell 
for two hours. The swelled paper fragments were then defibrillated using a blender. 
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Afterwards the dry content was measured and the slurry was diluted to a final 
concentration of 4 g/l. The fibre charge was measured with PCD. The pH of the slurry 
was measured before and after titration. As titrand polyDADMAC 0.001 N was used.   
4.2.3.4. Cobb 60 
The surface sizing performance was evaluated with the Cobb 60 method according 
to TAPPI Method T-441. In short it is a weight water pick-up test where 100 mL of 
deionized water is applied onto a 100 cm2 area of the paper surface during 60 seconds 
using a retaining ring that is clamped on top of the paper. After 60 seconds the excess 
of water is removed and the water uptake is measured as a weight increase of the 
paper sheet.16  
4.2.3.5. Scanning electron microscope, SEM 
The paper surfaces were analyzed with Scanning Electron Microscopy, SEM, using 
a Leo Ultra 55 FEG SEM (Leo Electron Microscopy Ltd, Cambridge, UK) 
microscope. The paper samples were sputtered with gold with an Edwards S150B 
Gold Sputter Coater.  
 
4.2.3.6. Surface sizing test method 
The oxidized starch solution used for the surface sizing tests was prepared in a jet 
batch cooker where high temperature, high pressure and high shear forces from the 
steam gives a fully hydrated starch in solution.34 The final starch solution was held at 
approximately 70 °C during storage to prevent retrogradation11 and around 60 °C 
when used in the test. The hot starch solution was added to a specific amount of 
hydrophobic particle suspension and the mixture was diluted to a final concentration 
of 8 wt% starch and 0.02-0.2 wt% particles. The mixture was then applied in a size 
press laboratory equipment from Mathis AG. During application the liquid 
temperature was held above 60 °C. The test papers were put in between the size press 
rolls and transported through the pond and the surface sizing mixture was pressed 
into the test paper. The surface sized paper sheets were dried in a contact dryer held 
at 80 °C. The surface sized paper sheets were then placed in a climate room with a 
temperature of 23 °C and relative humidity of 50 % overnight. The hydrophobic 
resistance was evaluated after 24 h by the Cobb 60 test method.  
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5. CHARACTERIZATION OF THE PARTICLES, THE STARCHES 
AND THE TEST PAPERS 

5.1. THE HYDROPHOBIC PARTICLES 
5.1.1. Particle composition 
In this research work three particle types have been synthesized where the 
composition of the particles is the same, 60 wt% hydrophobic polymer in the core 
and 40 wt% stabilizer. All three particle types have the same hydrophobic co-polymer 
core; a copolymer of styrene and butyl acrylates, but they differ by the type of 
stabilizer. The particle type called SP+ has a cationic, synthetic polymer as stabilizer. 
The SPA type has a cationized, oxidized starch as stabilizer and the SP- type is 
stabilized by an oxidized starch. A schematic view of the particles is shown in 
Figure 3.  

  
Figure 3. Colloidal stability is achieved by a cationic, amphoteric or anionic stabilizer, as 
illustrated in this figure.  
 
5.1.2. Particles synthesis 
The cationic stabilizer used in this study is a copolymer of styrene and quaternary 
ammonium monomers. The anionic and amphoteric stabilizers are starch-based 
materials (oxidized or cationizied respectively) where the starch first was oxidatively 
degraded by the redox system hydrogen peroxide/iron-(II)-sulphate. 
 
The radical polymerization was carried out as an emulsion polymerization in the 
presence of the stabilizer (degraded starch or synthetic copolymer). The 
polymerization was initiated by hydrogen peroxide in presence of iron-(II)-sulphate 
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that acts as a catalyst for formation of radicals. To control the molecular weight, 
dodecanethiol was used as a chain transfer agent.  
5.1.3. Particle characterization 
The particles were characterized using several analytical tools as well as imaging 
techniques. The particle size, the  potential, the colloidal charge and the glass 
transition temperature are listed in the Table 1 below.  
Table 1.  
Hydrodynamic diameter,  potential, surface charge and glass transition temperature of the 
three polymer particle types.  
 

 
Particle diameter 

(nm) 
 potential 

(mV) 
PCD titration 

(µeq/g) 
Tg (°C) 

SPA 75 -2 8 73 
SP- 76 -29 -60 74 
SP+ 41 45 560 70 

 
The particles prepared in the presence of the starch based stabilizers have similar 
sizes, close to 75 nm. The SP+ particles prepared with the cationic synthetic 
emulsifier are smaller, around 40 nm as a result of the higher effectiveness of the 
emulsifier. 
The effective charge of the particles is reflected by their  potential and further 
information about the particle charge is provided by colloidal charge titration using a 
particle charge detector equipment (PCD). The charge of SP-, where an oxidized 
starch is used as stabilizer, is strongly anionic as can be seen in Table 1 where both 
the  potential and the colloidal charge are negative. This is due to the formation of 
carboxylic groups in the oxidation reaction of starch carried out prior to the 
polymerization as well as during the synthesis. 
The amphoteric particles, SPA, are stabilized by a starch that carries both cationic 
charges from quaternary ammonium groups as well as anionic charges from the 
oxidation of the starch during the degradation step and further oxidation also occurs 
during the particle synthesis. As can be seen in Table 1 the SPA particle is therefore 
almost neutral. A slight difference can be noted between the  potential measurement 
and the PCD, which can be attributed to the measurements conditions since the  
potential is measured in a 1 mM NaCl solution while the PCD titration is performed 
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in deionized water. As expected, the SP+ particles prepared with the cationic 
synthetic stabilizer have a pronounced positive  potential and colloidal charge.  
The particle synthesis was repeated for all three particle types to assess variations in 
the synthesis routine. The reproduced particle batches were found to have similar 
properties and the overall behavior was the same. 
The glass transition temperature for the three particle types is also listed in Table 1. 
Regardless of the synthesis route, the values obtained are around 70 °C. This is 
important since the glass transition temperature of the hydrophobic polymers in the 
particle core will govern the flexibility of the polymers upon heating which in turn 
can affect the sizing efficiency and the film forming process. 
Freeze fracture TEM was employed for imaging of the surface sizing particles, SP+, 
SPA and SP- and the TEM pictures of the particles (Figure 4) confirmed the particle 
sizes determined by DLS. The pictures also revealed different behavior on the slightly 
anionic charged mica surface. The sample preparation for SP- was more difficult as 
there was repulsion between the anionic particles and the mica surface and therefore 
the imaging of SP- was unsuccessful. The cationic particles, SP+, were evenly 
distributed on the mica surface due to attraction to the surface and repulsion between 
the individual particles. The amphoteric particles that have almost no net charge 
showed a more random distribution on the surface.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. TEM pictures of a) SP+ particles and b) SPA particles. 
The SAXS analysis of the SP+ particles gave a radius of gyration for the SP+ particles 
of 14 nm. The value of P = 3.8 showed that the particle presents a rough fractal 

a) b) 
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surface. This can be explained by the core-shell structure of the SP+ particles where 
the polymeric stabilizer acts like polymer brushes on the surface.35 

5.2. STARCH 
The starch contributes to the paper stiffness12 by increasing the surface strength of 
the paper and it decreases the rate of water uptake by providing a smoother surface. 
However, due to its intrinsic hydrophilicity the starch makes the paper surface more 
prone to adsorb water. For some paper grades it is sufficient to surface size with only 
starch but in most cases starch in combination with polymer particles are used. The 
surface sizing starch and the paper fiber are usually negatively charged36 but also 
cationic starch or enzymatically degraded starch that is almost uncharged are used in 
some paper mills. Different starches are used for different grades. For printing and 
writing grades oxidized potato or maize starch are used. For packaging grades 
cheaper, native wheat and corn starches, enzymatically degraded on site, are the most 
common starches employed. 

5.2.1. Starch for surface sizing application 
Starch is a biopolymer with glucose as the repeating unit connected through α (14) 
glycosidic bonds. The polyanhydroglucose chain can form two types of polymers: 
amylose and amylopectin. The amylose chains are linear and relatively short while 
the amylopectin is highly branched and of high molecular weight. Different types of 
native starch have different proportions of amylopectin and amylose in the granules. 
The composition of regular potato starch is typically 20 wt% amylose and 80 wt% 
amylopectin.37 In contrast, waxy starch contains only amylopectin. Native starch has 
a very high average molecular weight and gives rise to high viscosity when dissolved 
in water. Therefore the starch used for surface sizing is degraded prior use in order to 
decrease the molecular weight, which leads to reduced solution viscosity. The 
degradation is done by either oxidative, enzymatic or thermomechanical treatment 
and depending on degradation method the starch will have somewhat different 
molecular weight distribution and charge. 
In this research work oxidized starch was employed where for which the oxidation is 
typically done with sodium hypochlorite (NaClO). The process leads to a 
depolymerization of the starch and at the same time oxidation of hydroxyl groups on 
the anhydroglucose rings generating carboxylic groups.38 Thus, oxidized starch will 
have lower molecular weight and carry an anionic charge, which will be pH 
dependent. The charge density depends on the amount of NaClO added, and typical 
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values of degree of substitution (carboxyl groups) are 0.03-0.05 for oxidized potato 
starch. The structure of oxidized starch is schematically shown in Figure 5. 

 
Figure 5. Structure of oxidized starch.  
The starch mainly used in this research work is an oxidized regular potato starch. For 
some of the studies the influence of amylopectin and amylose was investigated and 
then a second starch type, an oxidized waxy potato starch was also included in the 
studies.  
 

5.2.2. Size and charge 
 
The SEC method is a chromatographic technique that separates the starch sample 
with respect of chain lengths, where the longer polymer chains are eluted first. The 
combination of Refractive Index, RI, and Multiple Angle Light Scattering detectors 
gives the absolute molecular weight and the molecular weight distribution of the 
analyzed sample. The results from the SEC analysis are listed in Table 2. The waxy 
starch is less degraded compared to the regular starch, giving the waxy starch a higher 
molecular weight and also a somewhat lower anionicity. The polydispersity index, 
Mw/Mn, for regular starch is higher compared to the waxy starch. This is due to the 
amylose part of the regular starch since amylose chains have low molecular weight 
compared to amylopectin. The polydispersity for the waxy starch is due to the natural 
origin of the polymer and also due to the oxidation process. The RI response for the 
oxidized starch is in accordance with previous studies where SEC was used for 
determining the molecular weight distributions of oxidized starch.39 
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Table 2. 
Starch properties. 

Sample Mn 
(g/mol) 

Mw 
(g/mol) 

Mw/Mn Colloidal charge 
(µeq/g) 

RG 
(nm)* 

Regular starch 202,000 870,000 4.3 -176 7 
Waxy starch 1,380,000 3,090,000 2.3 -127 7 

*RG from SAXS. 
 
From SAXS measurements the radius of gyration was determined to 7 nm for both 
the regular and the waxy starch. Since both starch types were found to have the same 
radius of gyration it was concluded that only the amylopectin was detected by SAXS. 
The colloidal charge for the two starches in solution was determined by colloidal 
charge titration where the anionic starches were titrated with a cationic polymer with 
a known charge density. The colloidal charge was determined to -176 µeq/g 
and -127 µeq/g for the regular and the waxy starch respectively. The difference in 
charge is due to difference in degree of oxidation as discussed above for the molecular 
weights. Since the starch has very low scattering intensity the  potential could not 
be determined. 
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5.3. CHARACTERIZATION OF THE TEST PAPER TYPES 
Two types of model papers were used, one recycled liner grade and one fine paper 
grade. Recycled liner is an unbleached paper board type that consists of 100 % 
recycled fibers. This results in a very diverse paper composition that can vary from 
time to time. The liner is not internally sized but have some hydrophobic character 
due to residues of lignin and extractives in the paper. The fine paper grade was from 
a pilot machine and the composition is therefore well-defined. The fine paper was 
internally sized. This is necessary in order for the thin, hydrophilic paper sheet not to 
disintegrate during the surface sizing procedure.  

5.3.1. Colloidal charge of fiber slurries 
The colloidal charge was determined by colloidal charge titration using a particle 
charge detector, PCD, on a slurry of disintegrated paper. The anionic charge of the 
liner grade was determined by PCD to be -10 µeq/g. This is lower than has been 
reported in the literature for pulp slurries36 but reasonable considering the fact that 
the liner is constituted of recycled fibers and that the fibers loose some charge during 
repulping. The anionic charge of the fine paper grade was determined to be -5 µeq/g 
which is also lower than expected. However, the cationic starch and the filler, GCC, 
might contribute to this low colloidal charge. The anionic charge in the fine paper is 
due to oxidation of the hydroxyl groups on the cellulose ring during pulping. For the 
recycled liner grade the anionic charge might originate from residues of lignin 
(oxidized), extractables (fatty acids, resin acids) as well as from processing 
conditions rendering carboxylic groups on the cellulose.  

5.3.2. X-ray photoelectron spectroscopy, XPS 
The chemical composition of the paper sheet surface as determined by XPS is 
summarized below (Table 3). As comparison the composition of filter paper made of 
pure cellulose is included in the table. The fine paper has similar elementary 
composition as the pure cellulose filter paper except from the calcium content that 
comes from the calcium carbonate used as filler. The chemical composition of the 
test liner is somewhat different and that is due to the residual content of lignin, fatty 
acid, resins and other compounds. 
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Table 3. 
Chemical composition of the two test paper grades. Also included in the table is the chemical 
composition for a filter paper. 

Paper type Carbon Oxygen Calcium Other 
Filter paper 54.7 45.3   
Fine paper 55.7 41.0 3.3  

Liner 66.1 32.3 0.3 1.3 
 
The anionic charge of the fibers determined by the PCD titrations originates only 
from carboxylic groups since the XPS analyses did not show any sulphur content 
which rules out the possibility of anionic sulfonate groups contributing to the anionic 
charge.  

5.3.3. Permeability of the paper 
In Table 4 the roughness and porosity properties of the liner and the fine paper grade 
are listed. The fine paper is determined to have larger porosity compared to the liner 
grade which might seem contradictory since the density of the fine paper is higher. 
However, what is not captured in this type of porosity measurement using air flow is 
the impact of the paper thickness. The liner grade has more than twice the thickness 
compared to the fine paper and if the porosity is normalized by the thickness the 
porosity for the fine paper grade would be around three times lower than the liner 
grade. The roughness measurements show that the liner is around five times more 
rough than the fine paper grade. 
 
Table 4. 
Properties of the test papers used in this study. 

5.3.4. Scanning electron microscopy, SEM  
The SEM images reveal a very open fiber structure with a pore size above 1 µm for 
both the fine paper and the liner as seen in Figure 6 a, b. The fibers in the fine paper 
show a defined shape and the more flexible fibers in virgin pulp give a more oriented 
fiber surface. The recycled fibers in the liner are more damaged and less flexible. It 
can also been seen that the liner contains more undefined material between the fibers. 

Paper type 
Porosity 
(ml/min) 

Roughness 
(ml/min) 

Grammage 
(g/m2) 

Thickness 
(µm) 

Density 
(g/cm3) 

Fine paper 390 370 80 103 775 
Liner 350 2300 140 214 644 
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The higher magnification SEM image of the fine paper surface, Figure 6 c), clearly 
show the filler particles (GCC) that can be seen as small irregular bright particles. 
The high magnification pictures also reveal a much more structured fiber surface for 
the fine paper that is not seen for the liner, see Figure 6 c) and d). 
 
  
 
 
 
 
 
  
 
 
 
 
Figure 6. SEM images of a) fine paper, b) liner, c) fine paper, larger magnification 
showing the GCC particles and a structured fiber surface, and d) liner, larger 
magnification showing a smooth fiber surface. 
  

10 µm 

a) 

2 µm 

c) 
20 µm 
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6. RESULTS AND DISCUSSION  
 6.1. Colloidal behavior of sizing nanoparticles prior to the 
application 
The first step in the surface sizing process is the mixing of the particle suspension 
with the starch solution. By mixing charged nanoparticles with a polyelectrolyte 
interactions occur depending on the nature of the particles and the polyelectrolyte. As 
described earlier, the colloidal behavior is expected to influence the performance of 
the surface sizing process. Therefore a study of the three particles types SP+, SPA 
and SP- in presence of an oxidized starch in solution was performed. 
6.1.1. Colloidal behavior of SP+, SPA and SP- 
The colloidal behavior of the combination of the particles and starch was studied by 
monitoring the change in turbidity of the particle suspension when starch was added. 
The particle concentration was 0.1 wt%, which is a typical particle concentration in 
surface sizing. The starch was added in small aliquots of 20 µl to a 2 ml particle 
suspension and after vigorous shaking the turbidity was measured. For the slightly 
anionic SPA and the highly anionic SP- the addition of starch did only marginally 
affect the turbidity. A small decrease in turbidity was seen, which can be attributed 
to the minor dilution of the particles upon addition of the starch solution. The cationic 
particles, SP+, on the other hand showed an interesting and very different behavior 
(Figure 7). Already the very first aliquot of starch gave rise to an increase in turbidity 
due to formation of aggregates in the system. The fact that the aggregation took place 
even at very low starch to particle ratio shows that the stability of the cationic particle 
suspension was strongly affected by the oppositely charged polyelectrolyte. The 
turbidity increased further with increasing addition of starch. This is in accordance 
with previous studies of similar systems.40-44 The turbidity increased to a maximum 
at a specific starch concentration, corresponding to 1:1 in charge ratio for the cationic 
particles and the starch. Further addition of starch partially restored the stability of 
the dispersion, as seen by a decrease in turbidity above this charge ratio. However, 
the turbidity did not return to the initial value for the primary cationic particles, 
indicating that even in the presence of an excess of starch, there are still aggregates 
in the suspension. At a starch concentration of 8 wt%, corresponding to the 
application conditions, the turbidity of the combination of cationic particles and 
starch is still higher than the initial value, 0.18 vs. 0.06 in turbidity, giving further 
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support for the presence of aggregates even when starch is in large excess. Long term 
studies have shown that these aggregates are stable for several weeks of storage.  
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Figure 7. Turbidity as a function of starch concentration for SP+, SP- and SPA. Note the 
break in the x-scale. 
In previous studies the addition order45-47 as well as the mixing rate48, 49 have been 
found to have a critical impact on the aggregate formation. Both different addition 
orders and different stirring rates were therefore tested. In the present system it was 
found that neither the addition order nor the stirring rate were decisive for the 
outcome. For the combination of SP+ particles and starch it was found that the same 
aggregation behavior was achieved irrespective of how the SP+ particles and starch 
were mixed. Also for the SPA and SP- particles there was no impact on turbidity with 
the addition order or stirring rate. No turbidity change was induced by the addition of 
starch.  
The amphoteric SPA particles carry cationic charges but are net anionic due to 
oxidation. From this turbidity study it can be concluded that it is the net charge that 
will determine if there is an interaction between the particles and the starch within 
the conditions used in this experimental setup. 
The nature of the formed aggregates of SP+ and starch was subject to further studies 
exploring the size, charge and internal structure of the aggregates. The aggregation 
mechanism and the impact of the starch properties, as well as the kinetics of the 
aggregation, were investigated. 
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6.1.2. SP+ and starch aggregate characterization 
The maximum in turbidity was found to be at a starch to particle ratio corresponding 
to 1:1 in charge ratio determined by PCD titration of the SP+ particles with the starch 
as titrant. For different starch to particle ratios also the particle size and the  potential 
were measured. Both the radius of hydration and the radius of gyration of the 
aggregates were determined. When the turbidity, the particle size and the  potential 
are plotted versus starch to particle charge ratio, as was made in Figure 8, an 
interesting feature is revealed; the maximum in turbidity, as well as the maximum in 
particle size, coincides with the ratio where the  potential reaches zero. This 
demonstrates that when starch is added to the SP+ particles it adsorbs on the SP+ 
particle surface due to electrostatic interactions and at the same time it decreases the 
cationic charge of the complex, which destabilizes the system and causes 
aggregation. The magnitude of aggregation increases with increasing starch 
concentration up to charge neutralization. Above the 1:1 in charge ratio the particle 
size, as well as the turbidity, decreases with further starch addition, which can be seen 
as a restabilization of the system. At this point the  potential is negative, which 
demonstrates that starch is still adsorbed beyond the neutralization point, probably 
due to other attraction forces like van der Waals interactions. The overall anionic 
charge of the complex contributes to the restabilization of the system.  
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Figure 8. Plot of turbidity, particle size, and  potential vs. starch to particle charge ratio.  
 



28  

The examination of the ratio of RH to RG showed that during the restabilization phase, 
i.e. at higher starch to particle charge ratios, the RG/RH ratio decreases. This could be 
due to the change of the structure of the aggregates from a hard sphere-like system 
towards a gel-like structure50 and this could also be the reason why RH levels out 
before the turbidity does. 
Several authors have reported that on addition of a polyelectrolyte to a suspension of 
oppositely charged colloidal particles there is a minimum in stability at a certain 
amount of added polyelectrolyte.40, 41, 44, 51, 52 This is in accordance with the results 
from this study, with the maximum in turbidity corresponding to the most 
destabilized state.  
 
The effect of particle concentration was investigated using different SP+ 
concentrations for the starch titrations and it was concluded that the particle 
concentration did not affect the aggregate size at maximum aggregation. 
The starch type here labeled regular starch, consists of the linear, shorter amylose 
molecules and the branched, longer amylopectin molecules at a mass ratio of 20:80. 
Size exclusion chromatography, SEC, was employed in order to investigate the 
possibility of preferential adsorption of one of these components during the 
aggregation process. For the starch-particle combinations where charged 
neutralization was not yet obtained, i.e. at low starch to particle ratio, the analysis 
showed that the fraction corresponding to higher molecular weights, i.e. the 
amylopectin, had disappeared while a significant part of the lower molecular weight 
fraction of the starch, i.e. the amylose, remained in solution even though the starch 
was in deficit. Thus, it seems that only the amylopectin fraction of the regular starch 
took part in the aggregation with the oppositely charged particles. To confirm this 
hypothesis a second starch type was introduced in the studies, the waxy starch that 
contains only amylopectin. The waxy starch showed the same turbidity behavior as 
the regular starch and the depletion of the high molecular weight part of the waxy 
starch obtained from the SEC analysis confirmed that it is mainly the amylopectin 
fraction in regular starch that participates in the aggregation, as seen in Figure 9. 
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 Figure 9. RI chromatograms for regular and waxy starch (solid lines) and for the 
starch remaining in solution after aggregation with SP+ particles, using a starch to 
particle charge ratio of 1:1 (dashed lines). 
 
The observation that the amylopectin fraction of the starch is responsible for the 
aggregation is interesting and can help explaining why the formed aggregates are 
stable despite their low charge density. The highly branched and negatively charged 
amylopectin molecules that cover the positively charged particles are likely to give 
good steric stabilization. This is a proper example of so-called electrosteric 
repulsion.27  
 
The inner structure of the aggregates formed from combinations of starch and 
SP+ particles was characterized by SAXS within the charge ratio interval 0.19:1 to 
3.8:1. The SAXS data were plotted in a log-log diagram of I(q) vs. q and were fitted 
with the unified equation (4). A structural level is reflected as a kink and a linear 
region in the plot, and in Figure 10 two structural levels can be seen. At the lowest q 
values a plateau of is found and the RG1 parameter, i.e. the size, can be determined. 
The slope of the decay that follows the plateau with increasing q gives the P1, which 
describes the fractal dimension of the aggregates. At higher q another plateau is found 
and here RG2 is determined and followed by a decay where the slope gives P2. RG1, 
P1, RG2 and P2 were evaluated for the various starch to particle charge ratios studied. 
RG1 was found to increase with increasing starch to particle charge ratio up to charge 
neutralization, demonstrating that the starch chains are adsorbing onto the surface of 
the primary particles and not only on the outer surface of the aggregates. For the 
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primary particles P1 was 3.8, i.e. the particles have a rough fractal surface. This 
fractality was preserved for the aggregates up to charge neutralization. With the starch 
in excess P1 was lower and this could be due to denser packing of the starch chains 
on the surface, which is also seen by a minor decrease in RG1 at this point. The SEC 
analysis showed that it is mainly the amylopectin fraction of the starch that 
participates in the aggregation, which is in accordance with the SAXS data. The 
values of RG2 and P2 for the second structural level are in good agreement with the 
corresponding values for the starch, also showing that the conformation of the 
amylopectin chains is preserved in the aggregates. 
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q (Å-1)  Figure 10. Log-log plot of SAXS data for a combination of starch and SP+ particles 
at different charge ratios (R). Lines are unified fits to the data. 
 
Above the 1:1 in charge ratio a further addition of starch did not significantly affect 
the internal structure of the aggregates, i.e. the starch covered SP+ particles remain 
intact even though the overall aggregate carried a net anionic charge. As can be seen 
from the turbidity measurements and the changes in RG/RH ratio, the overall aggregate 
size and structure are affected when an excess of starch, in terms of charge ratio, is 
added to the SP+ particles. This is probably due to additional adsorption of starch on 
the more accessible, outer surface of the aggregates, giving rise to the anionic charge 
that induces repulsion between the aggregates, which give a gel-like structure and a 
decrease in size.  
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6.2. FORMATION AND RELAXATION KINETICS OF STARCH-PARTICLE COMPLEXES 
The understanding of the formation path and the stability of the formed aggregates 
are of interest if the aggregates are important for the surface sizing efficiency since 
this can create an opportunity to tailor the aggregates for enhancing surface sizing 
performance. 
6.2.1. Aggregate formation 
The aggregate formation when the anionic starch is added to cationic particles was 
studied with DLS. The SP+ particles were found to have too high diffusion rate and 
thereby too fast collision rate to be monitored with DLS. Cationic amidine particles 
with a radius of 110 nm were therefore used as a model system since larger particles 
have slower diffusion, making monitoring of the aggregate formation possible. To 
ensure that the model system was similar to the SP+ particles a charge titration of the 
amidine particles with starch was performed and it was found that the charge 
neutralization and the shift in  potential from positive to negative was comparable. 
It was therefore concluded that this model system could be used. From this DLS study 
the stability ratio, W, was determined, shown in Figure 11. The stability ratio is 
defined as W=kfast/k, where kfast is the aggregate rate coefficient at maximum rate of 
aggregation and k is the aggregate coefficient in the studied conditions. The inverse 
stability ratio represents the likelihood of obtaining a dimer upon collision between 
two particles. For a totally destabilized system the stability ratio is around 1. In the 
system studied here it was found that the minimum in W did not reach 1 meaning that 
there is a stabilizing mechanism also when the system is charge neutral. This confirms 
that there is steric stabilization from the adsorbed branched, high molecular weight 
amylopectin chains also at the charge neutralization point. 
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 Figure 11. Stability ratio as a function of starch to particle charge ratio. 10 mM NaCl 
background was used (black full squares). Two point with 900 mM NaCl background are also 
presented (red full circles). 
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6.2.2. Aggregate relaxation 
The change in turbidity with time was monitored at different starch to particle charge 
ratios, whereby the relaxation rates could be extracted. This was done at different 
particle concentrations and different temperatures as well as with both regular and 
waxy starch. 
 
When starch was added to the cationic particles the initial turbidity measured right 
after mixing was found to be higher than the equilibrated value. The magnitude of 
the difference in turbidity with time was found to be most pronounced around the 
maximum in turbidity and it was also found that the waxy starch gave rise to a larger 
difference between the initial and the equilibrated turbidity compared to the turbidity 
increase for with the regular starch. A concentration dependence was also found by 
comparing the turbidity curves for two particle concentrations; 0.1 wt% and 
0.05 wt% in Figure 12 from which two main differences can be distinguished. First, 
the magnitude of the turbidity increase is more pronounced for the higher particle 
concentration. This could be expected as more particles are present in the suspension, 
which means that more aggregation can take place for the same starch to particle 
ratio. The second effect is that the initial kinetic contribution to the turbidity increase 
is higher for the particle concentration of 0.1 wt% compared to that of 0.05 wt%, as 
the difference between the initial and final turbidity values are more pronounced at 
the higher particle concentration. At a higher particle concentration the collision rate, 
rc, is higher and this could lead to non-equilibrium flocculation that can take place to 
a larger extent.53, 54 Initially the starch chains have the possibility to interact with more 
than one particle surface, forming bridges between the particles. Then rearrangement 
of the starch chains occurs giving a starch patch adsorbed on the particle surface 
which leads to a denser structure and a decrease in turbidity with time. These results 
also explains why relaxation cannot be seen by dynamic light scattering, where the 
aggregate formation was captured. The very dilute particle and starch system mainly 
allowed doublets to form and therefore bridging flocculation was unlikely to occur. 
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 Figure 12. Turbidity curves for two different SP+ particle concentrations, 0.05 wt% and 
0.1 wt%. The highest SP+ particle concentration gives the highest turbidity increase. The 
initial turbidity increase is more pronounced for the highest particle concentration. 
 
The turbidity experiments were performed at room temperature, but in reality surface 
sizing is usually carried out at elevated temperature in order to avoid retrogradation 
of the starch. Experiments performed also at 40 °C and 60 °C showed that the particle 
suspension and the starch solution were found not to be affected by the elevated 
temperatures but when they were combined the turbidity had a temperature 
dependence when it comes to relaxation. The overall colloidal behavior of the SP+ 
and starch was preserved at elevated temperature, i.e. the turbidity curves were 
similar and the maximum was at the same starch to particle charge ratio, but the 
magnitude of the turbidity differed. There was a decrease in the turbidity maximum 
with increasing temperature. When comparing the initial turbidity curve performed 
at 60 °C and the curve for the equilibrated values at room temperature a good 
agreement of the points was found. This is reasonable since the system is more 
dynamic at higher temperatures which leads to a faster reorganization of the starch 
chains from bridging to patches on the particle surfaces. 
 
These findings show that the relaxation rate after aggregate formation can be 
accelerated by increased temperature, but in the end the remaining, stable, aggregates 
will be the same. This result can also be used to tune the state of aggregation by using 
time or temperature as a controlling factor. 
By monitoring the variation of turbidity with time the kinetic pattern could be 
extracted; the turbidity value decreased with time until a plateau was achieved, i.e. 
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when equilibrium was reached. Moreover, the decrease was more pronounced at 
higher initial turbidity. Both the regular and the waxy starch were monitored in 
combination with the SP+ particles and it was found that the relaxation behavior was 
the same but the time interval for reaching the plateau was longer for the waxy starch. 
The relaxation behavior of the turbidity with time was evaluated by fitting the 
normalized experimental data with the Kohlrausch-Williams-Watts (KWW) 
relaxation function. This function is used to describe various types of relaxation data 
and it is often used as an universal model for studying various physical and chemical 
processes.55  

The KWW equation is expressed as (ݐ)ݕ = ݁ቀି೟
ഓቁഁ

   (1) 
where y(t) is the relaxation function expressing the kinetics for the transformation of 
non-equilibrium to equilibrium state,56 τ is the mean relaxation time, and β the 
relaxation distribution parameter, which describes how the relaxation deviates from 
exponential behavior.56, 57 The parameter τ can be seen as a description of the range 
of relaxation times where most of the relaxation processes take place.58 The β value 
can vary between 0 and 1 and when β=1 the KWW relaxation function becomes an 
exponential expression. The β parameter can also be seen as a measure of the 
heterogeneity of the relaxation process. If β is close to 1, the relaxation process is 
regarded as homogeneous.59  
By examining the parameters obtained from the KWW equation it was found that the 
relaxation time, τ, for the aggregates was the same irrespective of the position along 
the turbidity curve vs. starch concentration. In other words, irrespective of the particle 
to starch ratio and of the net charge of the complex (as determined with  potential), 
the time for going from an initial aggregation state to the relaxed equilibrated state, 
where the starch chains have had sufficient time to rearrange on the particle surface, 
was the same. Interestingly, a difference between the starch types could be seen. This 
is shown Figure 13 where one turbidity curve for SP+ and regular starch and one 
turbidity curve for SP+ and waxy starch are plotted versus time together with the 
KWW fittings. On average, the relaxation time for the regular starch was around 
1400 s and for the waxy starch around 4800 s. The waxy starch that has a higher 
molecular weight thus takes much longer time for rearrangement of the starch chains 
on the particle surface. The higher anionic charge for the regular starch gives a 
stronger surface attraction.60 This might also contribute to the difference in relaxation 
time between the regular and the waxy starch along with the difference in molecular 
weight.  
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Figure 13. Normalized turbidity data. For simplicity one curve (dashed lines) for each starch 
type is shown in the figure together with the fitting of the KWW function (solid lines). Note 
the break in the curve. 
A SAXS study was performed in order to investigate whether the inner structure of 
the formed aggregates was affected by the relaxation process evidenced by the 
turbidity measurements. The cationic particles were titrated with the regular starch. 
The time for sample preparation and the measuring time did not allow to capture the 
aggregation as early as in the turbidity measurements. The first time point is 
approximately three minutes after mixing. The scattering intensity for each sample 
was monitored for one hour. No change in intensity over time could be seen for the 
different starch to particles ratios.  
6.2.3. Aggregate formation and relaxation with waxy starch 
In the aggregate relaxation study it was shown that the waxy starch has slower 
relaxation and the hypothesis was that also the formation of aggregates might be 
slower with the waxy starch. To test this hypothesis an experiment was performed 
using a MALS instrument to follow the aggregate formation, as well as the 
subsequent relaxation, for SP+ particles in combination with the waxy starch. The 
aggregate formation and the relaxation kinetics were monitored for the starch to 
particle charge ratio corresponding to maximum turbidity, i.e. close to neutrality. 
Figure 14 shows the results from these measurements with the size of the aggregates 
plotted against time. The aggregate formation gave rise to a rapid increase in size up 



36  

to a plateau around 80 nm. With time, the size of the formed aggregates started to 
decrease due to relaxation of the starch chains. The aggregate size levels out after 
approximately 500 minutes. This is in agreement with the turbidity measurements, 
where it was found that the turbidity reached a plateau after similar equilibration time. 
The increased size of the aggregates after long time compared to the primary particles 
showed that also after relaxation there were still aggregates in the system.  
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Time (min)  Figure 14. Aggregate formation and subsequent relaxation of SP+ particles in combination 
with waxy starch. The line is a guide for the eye. 
 
 
 
  



37  

6.3. Mechanism of aggregation 
Possible mechanisms for polyelectrolyte-induced aggregation of colloidal particles 
of opposite charge are extensively discussed in the literature and two different 
mechanisms are in focus; bridging and patchwise flocculation. Bridging flocculation 
can occur when one part of the polymer chain is adsorbed on two or more particle 
surfaces at the same time, forming a bridge between the particles.61 This aggregation 
mechanism requires concentrated suspensions and high molecular weight polymers.51 
The other important aggregation mechanism that is discussed in the literature is 
patchwise flocculation41, 42, 62-67 where it is stipulated that the charged polymer chain 
adsorbs onto the particle surface due to electrostatic attraction. This leads to a local 
charge reversal on the part of the particle surface that has been covered; thus, the 
particle surface now contains patches of opposite charge. This may lead to 
electrostatic attraction between covered patches on one particle and uncovered 
patches on another particle. In the SP+ and starch aggregated system we are 
suggesting that both are occurring, but at different time scales.  
 
From turbidity measurements it was shown that aggregation started already at a low 
ratio between the anionic starch and the positively charged particles. As demonstrated 
by the SEC and SAXS experiments it is mainly the amylopectin molecules that are 
adsorbed on the positively charged particle surfaces causing the aggregation.  
By using relatively high particle and PE concentration, comparable to the industrial 
application, the time for particle collision is, according to Smoluchowski theory,68 
only around 3 ms. This means that the adsorbed polymer chain will not have 
sufficient time for rearranging on the particle surface before the particle collides with 
another particle and the particles will thereby collide with the polymer chains 
attached on the surface in a non-equilibrated conformation. At this state it is possible 
for the starch chains to interact with more than one particle through bridge 
flocculation. This is in the literature referred to as non-equilibrium flocculation. In 
the relaxation study this was seen for the SP+ particles and starch system as a decrease 
in turbidity with time. There was also a molecular weight dependence on the 
relaxation time. The waxy starch, which has three times higher Mw than the regular 
starch, also has three times longer relaxation time. This observation supports the 
hypothesis that there is an initial aggregation state where bridging flocculation occurs 
since this aggregation mechanism is strongly governed by the molecular weight of 
the polymer.  
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With time, rearrangement of the starch chain occurs resulting in starch patches 
adsorbed on the particle surface and the aggregation mechanism is then moving 
towards patchwise aggregation,69, 70 which leads to a decrease in turbidity. 
 
For rapid formation of the aggregates a lower molecular weight PE is beneficial, but 
for the preservation of the maximum in aggregation a higher molecular weight PE is 
desirable. The molecular weight of the starch can thus be a key to control the 
aggregation.  
After the equilibration time, which is when the adsorbed starch chains have reached 
their equilibrated conformation, the turbidity for the cationic particles in combination 
with the regular starch was comparable to the turbidity for the cationic particles in 
combination with the waxy starch. Thus, at equilibrium the turbidity is similar for 
both starch types despite the fact that the waxy starch has three times higher 
molecular weight than the regular starch. This supports the hypothesis of patchwise 
aggregation of the SP+ particles in combination with the starch. A schematic 
illustration of the aggregation mechanism after equilibration is shown in Figure 15. 

 Figure 15. Tentative mechanism for aggregation of regular starch, which is negatively 
charged and consists of a mixture of amylose and amylopectin, and positively charged 
particles.  

6.4. Evaluation of the surface sizing performance 
The three particle types used in this study are all representatives of what is used in 
the paper industry today. The surface sizing efficiency was evaluated by applying the 
hydrophobic particles in combination with starch on different test papers. The 
application was done with a size press laboratory equipment. 
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In the size press method the final step is the drying step. The drying temperature is 
important for two reasons; to remove the water and to elevate the temperature to allow 
the film formation. The particle size for SP+ is smaller than for the other particles 
and this smaller size gives an increased surface area compared to SPA and SP-. The 
surface area is important for the drying process. Larger particles with smaller surface 
area have poorer energy transfer capacity, which may influence the flexibility of the 
polymeric core. However, in this case the drying temperature was high enough to 
ensure that the energy transfer was sufficient for all three types of particles.  
SEM pictures were taken on both untreated and surface sized paper to examine the 
impact of the surface sizing on the structure of the paper surface. In the pictures 
shown in Figure 16 a-d it can be seen that addition of starch leads to a somewhat 
denser surface structure. For the paper sheets that were surface sized with SP+, SPA 
and SP- no further densification could be seen and no other signs of the presence of 
the surface sizing particles could be established with this method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. SEM images of a) unsized fine paper, b) fine paper sized with starch, c) unsized 
liner, and d) liner sized with starch. 
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The efficiency of the surface sizing was evaluated by measuring the decrease in water 
uptake due to the hydrophobization of the surface using the Cobb 60 method. The 
lower the water uptake the more efficient are the particles in making the surface water 
resistant.  
Furthermore, the porosity and the surface roughness were examined for both 
untreated and surface sized paper sheets. It is known that these characteristics 
contribute to the rate of water uptake. 
6.4.1. Permeability and roughness of the paper 
When starch was applied on the paper surfaces the air permeability for both the liner 
grade and the fine paper grade decreased as a consequence of the starch on the paper 
surface filling the surface voids in the paper sheet.11 No additional decrease in air 
permeability could be seen for neither the fine paper grade nor the liner grade when 
the mixture of starch and particles was applied. This is in line with the findings in 
previous studies of surface topography on similar systems, where it was concluded 
that surface sizing particles do not affect the surface structure.71 The roughness of the 
fine paper grade was not affected by the starch application since untreated fine paper 
sheets already have a smooth surface due to the high filler content.2 On the other 
hand, the roughness of the test liner was significantly decreased by the starch 
application, which is according to expectations since unsized liner has a high surface 
roughness compared to fine paper. However, no further increase in smoothness could 
be seen upon addition of the particles. 
 
6.4.2. Water retention 
The untreated fine paper grade had a water uptake of 81 g.m-2. After exposition to 
starch at a concentration of 8 wt%, the water uptake increased to 107 g.m-2, which is 
an indication of a more hydrophilic paper surface, as also observed in previous 
studies.20, 71 The same effect was seen on the liner, where the untreated paper had a 
water uptake of 137 g.m-2 which with starch increased to 154 g.m-2. 
Figure 17 shows the results from the Cobb 60 test for the three types of particles on 
the two paper grades using an increasing concentration of sizing particles while the 
starch concentration was kept constant at 8 wt%. 
From this figure an interesting pattern emerges. The SP- and SPA particles had low 
sizing efficiency even at relatively high particle dosage. The SP+ particles behaved 
differently, however. The water uptake decreased rapidly when the particle dosage 
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was increased. The difference between the SP+ and the other two particle types is 
significant for both the fine paper and for the liner; however, the difference is much 
more pronounced for the former. 
The results from this study show that even if the three particle types have the same 
hydrophobic core and thereby could be expected to contribute to the same extent to 
the hydrophobization when applied on the paper surface, there is a significant 
difference between them in terms of sizing performance. The main difference 
between the particle types is the colloidal charge of the stabilizer. It might seem 
obvious that particles with a cationic charge would have a better performance since 
the retention of the cationic particles on the negatively charged fibers in the paper can 
be expected to be superior to that of SPA and SP-. However, the particle suspensions 
are mixed with anionic starch, and the amount of particles used in the sizing 
formulation is very small compared to the amount of starch. Nevertheless, the results 
from the application study reveal interesting differences between the particle types 
regarding their efficiency in reducing water uptake.  
 

0.02 0.04 0.06 0.08 0.10
30

40

50

60

70

80

90

100

Co
bb6

0 (
g/m

2 )

Particle dosage (%)

 SP+
 SP-
 SPA

a)

 
0.02 0.03 0.04 0.05 0.06

40

60

80

100

120

140  SP+
 SP-
 SPA

Co
bb6

0 (
g/m

2 )

Particle dosage (%)

b)

 Figure 17. Water retention as determined by the Cobb 60 test as a function of concentration 
of surface sizing particles together with a constant concentration of starch (8 wt%) for a) fine 
paper,  b) liner. 
 

6.5. CORRELATING THE COLLOIDAL BEHAVIOR RESULTS WITH THE SURFACE SIZING 
PERFORMANCE 

In the study of the colloidal behavior of the SP+, SPA and SP- particles in 
combination with the anionic starch it was found that the cationic particles formed 
aggregates with the starch and a maximum in aggregation was found around 1:1 in 
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charge ratio between the starch and the particles. At starch concentrations above the 
1:1 charge ratio the aggregates were decreasing in size and an overall restabilization 
of the system was observed as a decrease in turbidity. However, only partial 
restabilization seemed to occur and also at higher starch concentrations, 
corresponding to 8 wt% as used in surface sizing, stable aggregates were still present. 
It is conceivable that the aggregation of the SP+ particles with starch can explain the 
better performance of the SP+ particles compared to the SPA and SP- particles.  
In the surface sizing method the starch concentration is held constant and different 
amounts of the particles are added to the starch solution giving different starch to 
particle ratios. Usually the starch to particle ratios are high compared to the 1:1 in 
charge ratio for starch and SP+ that was shown to give rise to a maximum in 
aggregation. To address this a size press trial was performed using different starch 
concentrations in combination with the particles to include both a low starch to 
particle ratio, i.e. 0.3 wt%, corresponding to maximum aggregation, and a high starch 
to particle ratio, i.e. 8 wt%. The hydrophobization efficiency for SP+ and SP- using 
either an 8 wt% or 0.3 wt% starch solution is shown in Figure 18. For the SP- 
particles, with which no aggregation was observed, the hydrophobization efficiency 
using a high or a low starch to particle ratio was similar. The SP+ particles showed 
superior hydrophobization efficiency when the starch to particle ratio corresponded 
to the maximum in turbidity showing that the colloidal behavior can have a significant 
influence on the surface sizing performance.  
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 Figure 18. Cobb 60 results at 0.3 and 8 wt% starch for SP- and SP+ particles. a) No impact 
of starch concentration on the SP- performance. b) A pronounced effect on SP+ was found at 
the starch concentration corresponding to a high aggregated state for the SP+ and starch.  
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7. CONCLUSIONS 
The three particle types that were used in this thesis work had the same 
hydrophobic polymer core but differed in the nature of the stabilizer. The SP+ 
particles were shown to interact with the anionic starch while the SPA and SP- 
particles behaviour was not influenced by the starch. The interactions between 
SP+ and the starch gave rise to aggregation that was found to be partially 
reversible and had a maximum around 1:1 in charge ratio between the starch 
and the SP+ particles. Even at high starch concentration the aggregates were 
stable in solution, as a result of the starch adsorbing on the particle surfaces. 
The SEC study showed that it was mainly the branched amylopectin 
component of the starch that gave rise to the aggregation with the cationic 
particles. The low molecular weight amylose remained in solution. This 
indicates a change of stabilization mechanism from electrostatic (for the 
primary particles) to electrosteric. The SAXS measurements showed that the 
amylopectin conformation was partly preserved. This confirms a patchwise 
aggregation mechanism where the starch chains locally change the surface 
charge from cationic to anionic and thereby facilitated aggregation between the 
locally negatively charged sites and the positively charged sites of bare surface 
of other particles.  
 
The aggregation was found to have a time dependency. The initial turbidity 
was higher compared to that seen after equilibration. The difference in initial 
and final turbidity was largest around the maximum in turbidity and was also 
larger for the waxy starch compared to the regular starch. Fitting of 
experimental data using the KWW function revealed that the relaxation time 
was independent on the starch to particle ratio but a difference could be seen 
between the two starch types. The higher molecular weight waxy starch had a 
longer relaxation time. This implies that there is an initial aggregation state 
where polymer bridging occurs but with time, when the starch chains have had 
sufficient time to relax on the particle surface, this bridging effect is decreased 
and the aggregation mechanism is changed towards patchwise aggregation. 
The surface sizing efficiency of the three particle types SP+, SPA and SP- was 
evaluated by the Cobb 60 method. It was found that the SP+ particles had the 
best performance for the two test paper grades, fine paper and liner, correlating 
with aggregate formation in presence of starch.  
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The SP+ particles are more aggregated at lower starch concentration compared 
to the 8 wt% usually employed in surface sizing. Therefore a study at 0.3 wt% 
starch was performed and the results showed that the performance of the SP+ 
particles was greatly improved by the lower starch to particle ratio while the 
performance of the SP- particles was not affected by the ratio between the two 
components.  
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8. FUTURE WORK 
The study concerning the bulk behavior of the particle/starch systems will be 
continued with emphasis on the effect of salt both on aggregation and on 
surface sizing.  
The particles and the formed aggregates will be investigated with AFM. 
By using fluorescent labelled particles in the surface sizing trials the 
distribution and penetration will be studied using microscope methods. 
ToF-SIMS analyses are on-going in order to get chemical information about 
the surface sized paper sheets. These results will be correlated to sizing 
performance and to the results from the planned fluorescent studies.  
Film formation and film properties of the particles as a function of starch 
addition and temperature will be investigated with AFM, ToF-SIMS and by 
contact angle measurements. 
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