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Dispersion Compensation FIR Filter with Improved
Robustness to Coefficient Quantization Errors

Alireza Sheikh, Student Member, IEEE, Christoffer Fougstedt, Student Member, IEEE,
Alexandre Graell i Amat, Senior Member, IEEE, Pontus Johannisson, Member, OSA,

Per Larsson-Edefors, Senior Member, IEEE, Magnus Karlsson, Senior Member, IEEE, Fellow, OSA

Abstract—In this paper, we propose a new finite impulse
response (FIR) filter for chromatic dispersion compensation
which is given in closed form. We identify a relation between
the out-of-band gain and the in-band error when the filter
is implemented with finite-precision arithmetic. In particular,
a large out-of-band gain makes the filter more sensitive to
coefficient quantization errors due to finite precision digital signal
processing. To improve robustness to coefficient quantization
errors, our proposed filter is designed based on confining the
out-of-band gain. By means of simulations, we show that our
filter outperforms other existing FIR filters. The performance
gain improves with increasing modulation order and decreasing
number of bits used to represent the filter taps.

I. INTRODUCTION

CHROMATIC dispersion (CD), which causes pulse broad-
ening and limits transmission data rate and reach, is

one of the major impairments in coherent optical transmission
systems [1], [2]. CD can be compensated in both the optical
domain, e.g., by using a dispersion compensating fiber [3],
and the digital domain, by means of digital signal processing.
Finite impulse response (FIR) filters are particularly interest-
ing, because they can be implemented efficiently in both the
frequency and time domain. A first experimental demonstra-
tion in [4] showed that an FIR filter, designed by truncating
the inverse Fourier transform of the ideal CD compensation
filter, can compensate for accumulated CD over 89 km of
a single-mode fiber by off-line processing. In [5], Savory
proposed an FIR CD compensation filter, given in closed form,
by performing direct sampling and truncation of the ideal
CD compensation impulse response. The filter design in [5]
did not consider the effect of pulse shaping but compensated
CD over the entire bandwidth, including the band with no
signal. Hence, it required a large number of filter taps [6].
Furthermore, such a filter has poor performance for higher-
order modulations [6] and, as illustrated in Section IV, its
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performance also degrades in the low-accumulated-dispersion
regime, e.g., for transmission in short links.

CD compensation is one of the most power-hungry blocks
in coherent systems [7], [8]. From an implementation point of
view, it is preferable to design the filter with a small number
of filter taps, since reducing the number of taps decreases
the number of arithmetic operations, thus reducing the power
consumption1. In [6], an FIR filter was proposed in the least-
squares sense exploiting the fact that pulse shaping limits
the effective bandwidth of the signal. The filter can then be
designed to compensate the accumulated CD only in the signal
band specified by the pulse shaping filter. It was shown in
[6] that band-limited CD compensation allows to significantly
reduce the nominal number of filter taps while still improving
performance as compared to the filter in [5].

CD compensation is typically performed using a static
CD compensation filter, which is usually accompanied by
an adaptive filter to compensate for the residual CD, the
polarization mode dispersion, and other unknown effects. CD
can also be compensated for using only an adaptive filter.
However, this is practical only for very short links which
require a small number of taps (e.g., 20 km with 9 taps
[9]). Here, we consider longer links. For (longer) links with
relatively large accumulated CD, the number of taps required
for the adaptive equalizer is large (e.g., 600 km requires 242
taps [9]), which leads to slow convergence speed in updating
the taps and much higher complexity than the static filter [9].
Furthermore, in this scenario an adaptive filter consumes high
power [10]. Therefore, our focus is on static CD compensation.

Previous works on CD compensation implicitly assume that
filter taps are implemented using floating-point precision. In
practice, however, filter taps must be implemented using finite-
precision arithmetic2. Coefficient quantization alters the values
of the coefficients, thus introducing quantization errors which,
in turn, change the frequency response of the filter. As a result,
a good filter design for floating-point precision may not be
adequate if the filter is implemented using finite precision.

In this paper, we consider the design of FIR filters by taking
into consideration the fact that filter taps are implemented with

1Note that a shorter filter decreases also the induced latency. However,
in current coherent optical systems the latency induced by the FIR CD
compensation filter is typically less than the latency due to transmission over
the fiber and soft-decision forward error correction. Therefore, it does not
have a dominant effect in the overall system latency.

2We remark that floating-point precision is also finite, e.g., MATLAB uses
64 bits for double-precision floating point. In this paper “finite precision”
means a small number of bits (3–5 bits) used for filter coefficient quantization.



finite-precision arithmetic. The paper is an extension of our
previous work [11]. We show that there is a relation between
the FIR filter out-of-band gain and coefficient quantization
errors, in the sense that a larger out-of-band gain leads to
higher coefficient quantization errors. To reduce the impact
of coefficient quantization errors, we propose an FIR filter
design that confines the out-of-band gain. The filter is designed
based on solving a constrained least-squares optimization
problem, and the filter taps are derived in closed form. By
means of simulations, we will show that our proposed filter
achieves better performance in terms of bit error rate (BER)
as compared to other FIR filters when finite-precision is
used. The performance gain becomes more substantial as the
modulation order increases. We also analyze the effect of the
filter length in the performance and show that reducing the
number of filter taps leads to a higher out-of-band gain, thus to
higher coefficient quantization errors. Therefore, a significant
reduction in the number of filter taps as advocated in [6] yields
a severe penalty in terms of BER when finite precision is used.
Nevertheless, we show that a reduction factor up to 40 percent
can be achieved with little penalty on the performance.

Our proposed FIR filter is suitable for both time-domain
and frequency-domain implementations. For short links, time-
domain CD compensation can be more power efficient [12].
For instance, the time-domain implementation of our proposed
filter has lower power consumption than the frequency-domain
equalization (FDE) for fiber lengths up to 150 km [12]. On
the other hand, for long links, where the accumulated CD is
large, it is more power efficient to use FDE methods [13].
We show that for long links the proposed filter can be used
as the component of the FDE configuration using overlap-save
method [14] with better performance than previously proposed
filters. In this paper we do not discuss implementation issues
of the filter. However, the interested reader is referred to [12].

II. PRELIMINARIES

CD is modeled as an all-pass filter with frequency response
[6, Eq. (4)]

HCD(e
jωT ) = e−jM(ωT )2 , M =

Dλ2L

4πcT 2
, (1)

where D is the dispersion parameter, T is the sampling
interval, L is the fiber length, λ is the operating wavelength,
c denotes the speed of light, and ωT ∈ [−π, π] is the digital
frequency. The CD can be ideally compensated by an all-pass
static filter with frequency response

H−1
CD (ejωT ) = ejM(ωT )2 . (2)

By taking the inverse Fourier transform of (2), the ideal CD
compensation impulse response can be derived as [5, Eq. (6)].
In [5], by direct sampling and truncation of the continuous
CD compensation filter impulse response, the nth filter tap is
derived as

hDS
n =

√
j

4Mπ
e−j n2

4M (3a)

− Nmax − 1

2
≤ n ≤ Nmax − 1

2
, (3b)

Table I
SIMULATION PARAMETERS

L B N D M λ ρ G
(km) (Gbaud) (0.6Nmax) (ps/nm/km) (nm)

250 28 61 16 8.00 1550 0.25 2

where Nmax is the maximum number of filter taps so that
aliasing does not occur, in the sense that a filter with more taps
would suffer from aliasing. Aliasing occurs when the angular
frequency of the ideal CD compensation impulse response
exceeds the Nyquist frequency determined by the sampling
rate. Nmax is given by [5, Eq. (9)]

Nmax = 2 �2π|M |�+ 1, (4)

where �x� gives the greatest integer smaller than or equal to x
and | · | indicates absolute value. In the following we will refer
to this filter in [5] (eqs. (3a) and (3b)) as the direct sampling
(DS) filter.

Pulse shaping at the transmitter is used to reduce the
inter-symbol interference and makes the signal band limited.
Square-root raised-cosine (SRRC) pulses are popular for pulse
shaping and matched filtering due to their anti-aliasing char-
acteristics [15]. The frequency response of an SRRC pulse is√
f(ωT ), where f(ωT ) is given in (5) at the top of the next

page, where G denotes the number of samples per symbol and
ρ is the roll-off factor [15].

In [6], a least-squares optimization problem was proposed
to compensate for the CD in the signal band. The considered
objective function was the energy of the complex error be-
tween the frequency response of the ideal CD compensation
filter and the proposed FIR filter in the signal band. We refer to
this filter as the least-squares band-limited (LS-BL) filter. The
filter taps can be found in [6, Eqs. (9)–(13)]. The LS-BL filter
requires an adjustment parameter, ε, to prevent ill-conditioned
matrices in the procedure of filter tap calculations. If the
operations are done in double-precision floating point, the
objective function is monotonically decreasing by decreasing
the adjustment parameter until ε = 10−15, where numerical
problems arise. To avoid numerical problems, ε = 10−14 was
suggested in [6].

A. Motivation for a New Filter Design

Fig. 1(a) depicts the amplitude response of the LS-BL filter
with SRRC pulse shaping and parameters given in Table I
for Nmax taps (blue curve) and 0.6Nmax taps (red curve). The
filter taps are implemented using floating-point precision. We
refer to the in-band frequencies as [−0.625π, 0.625π] (see (5)).
It can be observed that a decrease in the number of filter
taps leads to an increase of the out-of-band gain. In particular,
for 0.6Nmax taps, it reaches 70 dB. However, for both Nmax

and 0.6Nmax taps the LS-BL filter can compensate for the
accumulated CD [6].

In Fig. 1(b), we plot the amplitude response of the same
filter using 4 bits to implement the filter taps. The procedure of
quantizing the filter taps is explained in detail in Section III-B.
As can be observed, for Nmax taps, finite-precision arithmetic
adds some wiggling on the in-band response of the filter, but



f(ωT ) =

{
1 |ωT | ≤ 1−ρ

G π
1
2

[
1 + cos

[
1
2ρ (G|ωT | − (1− ρ)π)

]]
1−ρ
G π ≤ |ωT | ≤ 1+ρ

G π
. (5)
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Figure 1. Amplitude response of LS-BL filter with Nmax (blue curve) and
0.6Nmax taps (red curve) a) in double precision floating point b) in fixed point
using 4-bit word length.

does not destroy the filter response. On the other hand, if
0.6Nmax taps are used the in-band response of the filter is sig-
nificantly distorted. In this case, the filter cannot compensate
for the accumulated CD. A high quantization error translates
into a lot of distortion in the frequency domain.

Let ξq be the overall quantization error between the filter
implemented in floating-point precision, h, and the filter
implemented using finite-precision arithmetic, hq, normalized
by the number of filter taps, N ,

ξq =
||h− hq||2

N
, (6)

where ||h||2 � hHh, and [·]H denotes hermitian conjugation.
Then, ξq = 197 for the filters with 0.6Nmax filter taps (red
curves) and ξq = 0.00004 for the filters with Nmax filter
taps (blue curves). In Section III-B we show that for finite-
precision, a higher out-of-band gain translates into a higher
quantization error. Therefore, in the next section, we propose a
filter design, in a constrained least-squares sense, that confines
the out-of-band gain.

III. PROPOSED FIR CD COMPENSATION FILTER DESIGN

We denote the nth filter tap by hn. The discrete Fourier
transform (DFT) of the filter can be written as

H
(
ejωT

)
=

N−1
2∑

n=−N−1
2

hne
−jnωT , (7)

where N is assumed to be an odd number. The aim is
designing a filter to have a frequency response as similar as

possible to the ideal CD compensation filter within the signal
band. We define the normalized average filter response error
within the signal band as

ξs =

∫
Ωs

|H(ejωT )−H−1
CD (ejωT )|2d(ωT )∫

Ωs
d(ωT )

=
1

Ω2 − Ω1

∫ Ω2

Ω1

|H(ejωT )−H−1
CD (ejωT )|2d(ωT ), (8)

where Ω1 and Ω2 denote the boundary frequencies of the
signal band Ωs. Assuming SRRC pulse shaping, Ω2 = −Ω1 =
(1 + ρ)π/G. The normalized average out-of-band gain of the
filter is

ξo =

∫
Ωo

|H(ejωT )|2d(ωT )∫
Ωo

d(ωT )
=

1

2π +Ω1 − Ω2
·[∫ Ω1

−π

|H(ejωT )|2d(ωT ) +
∫ π

Ω2

|H(ejωT )|2d(ωT )
]
, (9)

where Ωo denotes the spectral bands with no signal con-
tent. We propose an optimization problem to minimize ξs
while confining the out-of-band gain ξo. Considering h =
[h−(N−1)/2, . . . , h0, . . . , h(N−1)/2]

T, where [·]T denotes the
transpose, the optimization problem can be formulated as

h̃ = argmin
h

ξs (10)

subject to ξo ≤ ξo,max, (11)

where ξo,max is a selected threshold on the out-of-band gain.
The optimization variables are the filter tap coefficients and
ξo,max. We are interested in solving (10) with the constraint in
(11) when quantization errors are introduced due to the imple-
mentation of the filter taps using finite-precision arithmetic. 3

To reduce the sensitivity to coefficient quantization errors, we
present a heuristic two-step algorithm as follows. We will refer
to this filter as the least-squares constraint optimization (LS-
CO) filter.

• Step A (Filter taps calculation). Exclude ξo,max from the
optimization variables. Then, calculate the filter taps as a
function of ξo,max.

• Step B (Threshold selection). Find the threshold ξo,max

that minimizes the in-band error in the presence of
coefficient quantization errors.

In the following, we describe each step in detail.

A. Filter tap calculations

By considering ξo,max as a parameter and not as an opti-
mization variable, the optimization problem is convex and can

3Note that (10) without the constraint in (11) corresponds to the optimiza-
tion problem for the LS-BL filter.



be classified as a constrained least-squares problem, which can
be solved using the Lagrangian method [16].

Theorem 1: For a given ξo,max, the optimal filter tap coef-
ficients h̃ = [h̃−(N−1)/2, . . . , h̃0, . . . , h̃(N−1)/2]

T obtained by
solving the optimization problem (10) are

h̃ = Q−1v, (12)

where Q is an N × N matrix and v is an N × 1 vector
v = [v−(N−1)/2, . . . , v0, . . . , v(N−1)/2]

T with elements given
in (13) and (14), respectively, at the top of the next page. The
Lagrangian parameter λ in (13) can be calculated by solving

2πh̃Hh̃+Ω1 − Ω2

2π +Ω1 − Ω2
= ξo,max. (15)

Proof: The proof is given in Appendix A.
The function erfz in (14) is the error function of complex
arguments defined as [17, Eq. (7.1.5)]

erfz(x) =
2x√
π

(
1 +

∞∑
n=1

(−1)
n
x2n

n! (2n+ 1)

)
. (16)

An efficient numerical method for computing (16) can be
found in [17].

B. Threshold selection

The in-band error defined in (8) only includes the spectral
bands defined by the pulse shaping. To optimize ξo,max, we
include the effect of pulse shaping. Let GTX(ωT ) be the fre-
quency response of the transmit pulse, and assume a matched
filter at the receiver. Then, ξo,max is selected such that

ξ̄s =
1

Ω2 − Ω1

∫ Ω2

Ω1

|H(ejωT )−H−1
CD (ejωT )|2|GTX(ωT )|2d(ωT ),

(17)

is minimized (cf. (8)). In Fig. 2, we plot ξ̄s as a function
of ξo,max for SRRC pulse shaping. The filter taps are derived
according to (12)–(15) and floating-point precision is assumed.
As can be seen, ξ̄s decreases with ξo,max. Therefore, for
floating-point precision, a larger ξo,max leads to a better filter.

Consider now a more realistic system where the filter taps
are implemented using finite-precision arithmetic. In partic-
ular, we are interested in the filter tap coefficients whose
quantized version minimize the in-band error which, in turn,
leads to a better filter in terms of CD compensation. The filter
taps are quantized in the following way. The filter tap vector is
scaled down by a normalization factor, which is defined as the
maximum value of the real and imaginary components of the
filter tap coefficients. Then, the scaled filter taps are quantized
linearly according to the number of bits used for quantization.
Finally, the vector is scaled up.

In Fig. 3, we show ξ̃q =
||h̃−h̃q||2

N as a function of ξo,max

for the parameters in Table I and different number of bits used
for quantization. Regardless of the word length, a large out-
of-band threshold makes the filter more sensitive to coefficient
quantization errors, hence ξ̃q increases. This can be seen by
taking a look at the Lagrangian function of (10) in (18). A
larger out-of-band threshold leads to a smaller Lagrangian
parameter. On the other hand, with respect to (12) and (13),

Table II
LIST OF ACRONYMS

DS: direct sampling LS-BL: least-squares band-limited

LS-FB: least-squares full band LS-CO: least-squares constrained optimization

which depend on the Lagrangian parameter, one can expect
that, on average, the values of the filter tap coefficients increase
with decreasing Lagrangian parameter. Therefore, for a given
word length, the induced quantization errors will also increase
on average. Based on Fig. 2 and Fig. 3, we can infer that
the threshold for the out-of-band gain is a tuning parameter
which establishes a tradeoff between coefficient quantization
errors (out-of-band gain) and in-band error. Assuming a certain
word length for filter taps, if we sweep the threshold and
then depict the corresponding modified in-band error, we can
select the best threshold to minimize the modified in-band
error. In Fig. 4, ξ̄s is depicted as a function of ξo,max for the
same parameters and different word lengths. As can be seen,
the optimum threshold varies for different word length. The
best threshold is −0.54 dB, −0.13 dB, and −40 dB for 5,
4, and 3 bit word length, respectively. We remark that if high
precision is possible, the coefficient quantization errors can be
neglected. In this case, the optimal solution to (10) is achieved
for ξo,max → ∞, i.e., the constraint on the out-of-band gain
in (11) is lifted. As a consequence, the optimization problem
is identical to that of the LS-BL filter. In other words, for
floating-point precision the LS-CO filter boils down to the
LS-BL filter.

IV. SIMULATION RESULTS

The simulation chain is shown in Fig. 5, where gTX(t)
is the transmit pulse (pulse shaping), gRX(t) the matched
filter, and z(n) is additive white Gaussian noise. In our
simulations, we consider a single channel, SRRC pulse shap-
ing, and rectangular constellations with Gray mapping. The
fiber parameters are summarized in Table I. We consider a
short link scenario, where FIR filters are of practical interest
(c.f. Section I). For short links, the system is in the linear
regime and is limited by amplified spontaneous emission
noise. Therefore, the nonlinearity can be reasonably neglected.
(In long-haul links, the nonlinearity is not negligible and
CD can be compensated in the frequency domain.) Since
the goal of this work is to investigate the effect of finite
precision on the performance of the FIR CD compensation
filter, we neglect the other non-idealities. In particular, we
do not include laser phase noise and assume floating-point
precision of the analog-to-digital converter, i.e., no additional
quantization errors to the input signal of the CD compensation
filter are added. Furthermore, the number of samples in the
digital pulse shaping is large enough so that no errors arise
from pulse shaping and matched filtering. The acronyms stand
for different filters is summarized in Table II.

As discussed in Section II, the LS-BL filter has an ad-
justment parameter, ε, which was optimized in [6] assuming
floating-point arithmetic. For the sake of fairness in our
comparisons, we performed an exhaustive search to find the
best ε for a given finite precision. Our simulations show



Qm,n =

{
2π(λ+1)+(λ+1)Ω1−(λ+1)Ω2

2π+Ω1−Ω2
if m = n

λ
j(m−n)(2π+Ω1−Ω2)

[
ej(m−n)Ω1 − ej(m−n)Ω2

]
+ 1

j(m−n)(Ω1−Ω2)

[
ej(m−n)Ω1 − ej(m−n)Ω2

]
if m 	= n

(13)

vm =
e
−j

(
m2

4M + 3π
4

)

2(Ω2 − Ω1)

√
π

M

{
erfz

[
e−j π

4 (2MΩ1 +m)

2
√
M

]
− erfz

[
e−j π

4 (2MΩ2 +m)

2
√
M

]}
, (14)
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Figure 2. ξ̄s versus threshold for a system with parameters listed in Table I
and filter coefficients with floating-point precision.
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Figure 3. ξ̃q versus threshold for a system with parameters listed in Table I
with 3-, 4-, and 5-bit filter coefficient word length.

that, for finite precision, the LS-BL filter is highly sensitive
to the adjustment parameter and a small deviation from the
optimized value significantly degrades the performance. Also
it takes fairly long simulation time to find the best adjustment
parameter for a given system parameters. On the other hand, if
CD is compensated in the full band, the adjustment parameter
is not required [6]. We refer to the filter in [6] that compensates
CD in the full band as the least-squares full band (LS-FB)
filter.

In Fig. 6, we compare the BER performance of our proposed
filter (referred to as the least-squares constrained optimization
(LS-CO) filter in this and the following figures) with the LS-
BL and LS-FB filters in [6] and the DS filter in [5] for QPSK,
and 8-QAM modulations. Fig. 7 gives BER results for 16-
QAM and 64-QAM. The filter taps are quantized using 4 bits.
The proposed filter yields better performance compared to the
other filters, i.e., it is more robust to coefficient quantization
errors. Furthermore, the performance gain increases for higher
modulation order. As an example, for BER= 10−3, the perfor-
mance gain of the LS-CO filter over the LS-BL filter is 0.07
dB, 0.21 dB, and 0.44 dB for QPSK, 8-QAM, and 16-QAM,

ξo,max(dB)
-40 -30 -20 -10 0 10

ξ̄ s

10-3

10-2

10-1 3bit
4bit
5bit

2× 10−1

Figure 4. ξ̄s versus threshold for a system with parameters listed in Table I
with 3-, 4-, and 5-bit filter coefficient word length.

respectively. The higher gain for higher order modulations is
expected: Since constellation points are closer for higher-order
modulations, the received signal is more sensitive to residual
uncompensated CD after FIR CD compensation. The LS-CO
filter has lower residual CD as compared to the other filters,
thus it yields a higher performance improvement for higher
modulation orders.

To evaluate the effect of the finite precision on the BER
performance, in Fig. 8 we plot BER results for 16-QAM using
3-, 4-, and 5-bit precision. The DS and LS-FB filters perform
very poorly for all considered finite precisions. Also, the LS-
BL and our proposed filter show very poor performance for 3-
bit precision. A significant improvement is observed increasing
to 4-bit precision, and performance close to that of the floating-
point implementation is observed using 5-bit precision. In
all cases, our proposed filter gives the best performance.
However, we point out that the performance gain decreases
with increasing the number of bits used for precision, since
the coefficient quantization error decreases. For a BER= 10−3,
the penalty due to the fixed-point implementation compared to
floating-point implementation for 4- and 5-bit precision is 0.74
dB and 0.19 dB for our proposed filter and 1.17 dB and 0.34
dB for LS-BL filter, respectively. Ultimately (for floating-point
precision) our proposed filter and the LS-BL filter become
identical (see Section III).

In Figs. 9, 10 and 11 we investigate the effect of reducing
the number of filter taps on the performance. In Fig. 9 we plot
the required SNR at the input of the CD compensation filter,
SNRin, to achieve BER = 10−3 using 4 bits for precision as a



↑ G gTX(nT ) HCD(e
jωT ) + H(ejωT ) gRX(nT ) ↓ G

x(n) xT (n) xR(n)

z(n)

x̂(n)

Figure 5. Simulation chain consists of up-sampling to G samples per symbol, pulse shaping gTX(nT ), CD channel, FIR CD compensation filter, matched
filter gRX(nT ), and down-sampling.
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Figure 6. BER performance of different filters for QPSK, and 8-QAM
modulations with 4-bit filter coefficient word length.
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Figure 7. BER performance of different filters for 16-QAM, and 64-QAM
modulations with 4-bit filter coefficient word length.

function of the symbol rate (from the low-dispersion regime,
7 Gbaud, to the high-dispersion regime, 56 Gbaud). The
modulation format is 16-QAM and the remaining parameters
are taken from Table I, except the symbol rate, which is
varying here. The number of filter taps is set to 0.6Nmax,
corresponding to 5, 15, 61, 137, and 241 taps for 7 Gbaud,
14 Gbaud, 28 Gbaud, 42 Gbaud, and 56 Gbaud, respectively.
It can be seen that our proposed filter requires lower SNR in

for all symbol rates as compared to the other filters. Note
that by increasing the symbol rate, SNRin decreases since the
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Figure 8. BER performance of different filters for 16-QAM modulations with
3-, 4-, and 5-bit filter coefficient word length.
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Figure 9. CD compensation required input SNR (SNRin) versus symbol
rate using 16-QAM modulation and 4-bit filter coefficient word length. The
number of filter taps is set to 0.6Nmax, corresponding to 5, 15, 61, 137,
and 241 taps for 7 Gbaud, 14 Gbaud, 28 Gbaud, 42 Gbaud, and 56 Gbaud,
respectively.

number of filter taps increases, which leads to an increase in
the number of variables in solving (10) and better performance
should be expected. The same behavior is observed for all
other filters. Note also that the performance improvement
saturates in the high-dispersion regime, since in this case the
number of filter taps is enough to compensate the CD and
the performance is limited by coefficient quantization errors.
The DS and LS-FB filters show poor performance in the low-
dispersion regime. More precisely, for symbol rates from 7 to
14 Gbaud, both have an error floor higher than 10−3 which
makes the SNRin infeasible.

In Figs. 10 and 11 we plot the required SNRin to achieve
BER = 10−3 as a function of the number of filter taps (normal-
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Figure 10. CD compensation required input SNR (SNRin) versus tap numbers
using 16-QAM modulation with 4-bit filter coefficient word length.
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Figure 11. CD compensation required input SNR (SNRin) versus tap numbers
using 16-QAM modulation with 5-bit filter coefficient word length.

ized by Nmax) for 4-bit and 5-bit precision, respectively. Again,
16-QAM is considered and the system parameters except the
number of taps, which is varying here, are taken from Table I.
For a given number of filter taps, our proposed filter requires
lower SNRin as compared to the other filters. As a reference,
we also plot the required SNRin for a system with AWGN only.
As expected, the gap compared to the AWGN performance
reduces for increasing precision and number of filter taps.
For all values of N/Nmax, our proposed filter and the LS-BL
filter require significantly lower SNRin as compared to the DS
and LS-FB filters, with the proposed filter achieving the best
performance. We remark that increasing the number of filter
taps above Nmax degrades the performance of the DS filter due
to aliasing (see Section II) but can improve the performance of
the other filters, especially in the low accumulated CD regime,
at the expense of a higher latency and power consumption. We
also remark that the interesting region in Figs. 10 and 11 is the
left portion of the horizontal axis, since a lower number of taps
reduces power consumption of the filter implementation. We
also observe that for a number of taps smaller than 0.6Nmax

the performance degrades significantly. This is in contrast to
the observation (for floating-point precision) in [6], where it
was claimed that a reduction factor of up to 52 percent over
the maximum number of filter taps incurs little performance
degradation. According to the results in Figs. 10 and 11,
however, when finite precision is considered, the reduction
factor should be pushed backward to 40 percent.

In Fig. 12 we compare the performance of the FDE con-
figuration using the LS-CO and DS filters as the component
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Figure 12. BER performance of the FDE with LS-CO and DS filter as the
component of overlap-save method for 1000 km fiber length and QPSK, 16-
QAM, and 64-QAM modulations with 4-bit filter coefficient word length.

of the overlap-save method. The fiber length is 1000 km. We
show results for the LS-CO filter with 0.6Nmax (241 taps), and
the DS filter with 0.6Nmax (241 taps) and Nmax (403 taps).
The shortest possible fast Fourier transform (FFT) size for
overlap-save method is selected and the rest of parameters
are taken from Table I. We assume perfect FFT/IFFT oper-
ations in the overlap-save method and the same quantization
method explained in Section III-B is applied for quantizing
the frequency response of the filter after FFT operation using
4-bit word length. As can be seen, the FDE with LS-CO
component with an FFT size of 512 has better performance
than the FDE with DS component with an FFT size of 512
and 1024. Furthermore, the performance gain improves with
the modulation order.

V. CONCLUSION

We have presented a novel finite impulse response filter for
chromatic dispersion compensation which is robust to filter
tap quantization errors due to finite-precision arithmetic. We
observed that, for finite precision, a higher out-of-band gain
leads to a higher quantization error. Therefore, the proposed
filter, presented in closed form, is designed based on confining
the out-of-band gain (in the constrained least-squares sense).
Simulation results show that our proposed filter has less
sensitivity to finite precision leading to better performance
compared with other filters proposed in the literature. The
performance gain increases for higher modulation order and
lower number of bits used to represent the filter taps. We also
show that the nominal number of filter taps (Nmax) can be
reduced up to 40% with little loss in performance. However,
a further reduction significantly degrades the performance.

The proposed filter can also be used as the component of
the overlap-save method for the FDE in scenarios where the
accumulated CD is large, such as for long links.



APPENDIX A
PROOF OF THEOREM 1

The Lagrangian function of (10) can be expressed as

L(λ) = ξs − λ(ξo − ξo,max). (18)

According to (2) and (7)–(9), by taking the derivative of the
Lagrangian function with respect to the complex conjugate of
the filter tap coefficients, a system of N equations with N
variables is found where the nth equation is

∂

∂hH
n

L(λ) =
1

Ω2 − Ω1

∫ Ω2

Ω1

(
hn +

N−1
2∑

m=−N−1
2

m �=n

hmej(n−m)ωT

− ejM(ωT )2+jnωT

)
d (ωT )− λ

2π +Ω1 − Ω2
.

(∫ Ω1

−π

(
hn +

N−1
2∑

m=−N−1
2

m �=n

hmej(n−m)ωT

)
d (ωT )+

∫ π

Ω2

(
hn +

N−1
2∑

m=−N−1
2

m �=n

hmej(n−m)ωT

)
d (ωT )

)
= 0.

(19)

By ordering the variables and computing the integrals, the
system of equations can be rewritten in matrix form as

Qh̃ = v, (20)

where Q and v are given in (13)–(14). The filter tap co-
efficients calculated based on (13) are dependent on the
Lagrangian parameter, which can be computed by holding the
complementary slackness condition [16]

ξo = ξo,max. (21)

Since the FIR filter is an all-pass filter for pass-band frequen-
cies, we can assume that |H̃ (ejωT

) |2 = 1 for the Ωs band.
Hence, ξo can be simplified as

1

2π +Ω1 − Ω2

[∫ π

−π

|H̃(ejωT )|2d(ωT )− (Ω2 − Ω1)

]
.

(22)

Now, using Parseval’s theorem for the DFT [14],

∞∑
n=−∞

|h̃n|2 =
1

2π

∫ π

−π

|H̃ (ejωT
) |2d (ωT ) , (23)

in (22) and plugging the result into (21), yields the following
equation,

2πh̃Hh̃+Ω1 − Ω2

2π +Ω1 − Ω2
= ξo,max. (24)

By solving (24), the Lagrangian parameter λ is found. This
concludes the proof. �
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