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Abstract In this paper, we describe a novel parallelizable
method for the fast computation of inverse kinematics (IK)
animation. The existing IK techniques are based on sequen-
tial algorithms as they compute a skeletal pose relying only
on the previous one; However, for a given trajectory, both
the previous posture and the following posture are desired
to compute a natural posture of the current frame. Moreover,
they do not take into account that the skeletal joint limits vary
with temporal spatial skeleton configurations. In this paper,
we describe a novel extension of IK model using dynamic
joint parameters to overcome the major drawbacks of tra-
ditional approaches of IK. Our constraint model relies on
motion capture data of human motion. The dynamic joint
motion parameters are learned automatically, embedding
dynamic joint limit values and feasible poses. The joint infor-
mation is stored in an octree which clusters and provides fast
access to the data. Where the trajectory of the end-effector
is provided in the input or the target positions data are sent
by data stream, all the computed poses are assembled into a
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smooth animation sequence using parallel filtering and retar-
geting passes. The main benefits of our approach are dual:
first, the joint constraints are dynamic (as in a real human
body), and automatically learnt from real data; second, the
processing time is reduced significantly due to the parallel
algorithm. After describing our model, we demonstrate its
efficiency and robustness, and show that it can generate high
visual quality motion and natural looking postures with a
significant performance improvement.

Keywords Animation · Inverse kinematics · Octree ·
Parallel processing

1 Introduction

Inverse kinematics (IK) uses kinematics equations to deter-
mine joints’ configuration that satisfies a desired position
of an end-effector. The joints can be constrained or non-
constrained. IK is widely used in robotics and computer
graphics, such as motion planning and character animation.
Compared to approaches reproducing animation by motion
capture (mocap) data, IK offers several advantages, includ-
ing free of recording sessions, less memory space, etc. For
real-time interaction and motion planning, IK is much more
flexible than mocap methods (Fig. 1).

Different IK methods [4,10,22,29,34,37] have been pro-
posed over the last 30 years. Speed performance, precision
and stability of algorithms have been largely improved by
various solutions [3,16,25,28,30,36].

In the past years, several algorithms have been developed
to solve more specific problems as described below. Some
approaches were proposed to define IK constraints and solve
them with different priority levels [6,8,20,26,33,35,35];
other works are geared towards efficient modeling of natural
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Fig. 1 Golf swing sequence. Top From the position of the end-effector placed on the right hand (red sphere), we compute the character’s pose in
four parallel steps. Bottom Comparison between the resulting poses (wood texture) and reference mocap data (transparent red)

human poses [8,33]. To the best of our knowledge, there is no
existingwork that quantify the constraints acting on joints for
anymotion types. In 3Dmodeling tools (e.g., Blender [2] and
Maya [1]), the IK constraints are defined by specifying the
joint angular limits along the x , y and z axes. To create ani-
mations, artists need to define these values before applying
IK. In a real human body, however, these constraints change
according to the particular pose.Hence, artists need tomodify
the angular values for specific poses [5,24,31]. This can be a
long and tedious process considering that the human skele-
ton is a complex system and the joint limits have hierarchical
dependencies. Furthermore, for a same end-effector position,
several solutions for the skeleton are possible (Fig. 2), even
though, not all of them are acceptable. To achieve a desired
posture, one solution is to fix joint limits, although this may
impair some solutions for other target positions [24].

Eventhough IK solutions are very efficient for sim-
ple tasks, more complex structured tasks may significantly
impact the computational cost. Performance boosts can be
achieved by parallelizing algorithms on multi-core CPUs or
GPUs. Such a process is not trivial because IK is inherently
a sequential process, i.e., each pose depends upon the previ-
ous one (Fig. 3). However, if a complete trajectory of target
positions is known, a trivial parallel IK solver would com-
pute the skeletal pose for each target position independently.
The resulting generated sequence would likely be discon-
tinuous and would possibly not satisfy the predefined joint
constraints.
Contributions This paper proposes a novel constrained IK
animation technique. Our method automatically captures
joint motion parameters from input mocap data. The para-
meters are stored in an octree and represent a model for the

Fig. 2 Different poses are obtained from the same end-effector posi-
tion

dynamic nature of human joint behavior. During the anima-
tion, parameters are fetched from the octree, and are used
to solve the IK problem as well as align the end-effector to
the target position. We implemented our method in a parallel
pipeline to speed up the performance when the full trajec-
tory of an end-effector is provided, or the target positions
are in the format of streaming data, such as real-time video
games, 3D modeling software and SAIBA-like Embodied
Conversational Agent platform [19]. All computed poses are
assembled into a smooth animation sequence using paral-
lel filtering and retargeting processes. Combining these two
approaches, we show that our solution is capable of generat-
ing high visual qualitymotionwith a significant performance
improvement.
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IK solver

p(t0)
p(t1)

Fig. 3 Each pose is computed considering just the position of the end-
effector (red sphere). Traditional IK is inherently a sequential process:
each pose depends on the previous one

2 Background and motivation

A model of a character skeleton is usually a complex and
articulated system composed by kinematic chains of con-
strained rigid bodies. These rigid bodies are connected to
each other with geometric joints, which can be expressed as
holonomic constraints, each with independent parameters,
the so-called degrees of freedom (DOFs). In this work, we
consider each joint having a maximum of three rotational
DOFs: a connected Z-Y-X order Euler angles model. In this
case, we model each local joint DOF in its individual axis.
Through Inverse Kinematics, the animator controls the char-
acter skeleton by just positioning an end-effector at the end
of the kinematic chain; then, the IK system solves for the
joint rotations which place the end-effector at the desired
location. Due to the flexibility and performance, IK methods
are used to generate animation sequences for reaching and
gesturemotions and are implemented in a sequential pipeline
as shown in Fig. 3.

Given a complete joint configuration of a kinematic chain,
its end-effector positions ei and end-effector targets positions
ti , we need to find the scalars θ1, . . . , θn , which represent
rotation angles of the joints, satisfying ti = ei . In forward
kinematics (FK), the end-effector position can be parameter-
ized by these scalars. This can be expressed as:

Δe = f (Δθ) (1)

The goal of IK is to find the Δθ such that Δe can make ei
equal to ti :

Δθ = f −1(Δe) (2)

where f is a nonlinear operator for which f −1 may not exist.
The most common approach involves a numerical itera-

tive solver using the Jacobian matrix [18]. The Jacobian J
is a partial derivatives matrix that is relative to the current
configuration of IK chain; it is defined as:

J (θ)i j =
(

∂ei
∂θ j

)
i j

(3)

where i is the end-effector dimension index, and j is the
joints dimension index. The Jacobian inverse solution is:

Δθ = J (θ)−1Δe (4)

The joint angle is updated by θ = θ + Δθ .
The IK equation is solvable when the Jacobian matrix is

invertible but usually the matrix is not squared and it is not
invertible. Several alternatives have also been proposed. One
solution [7] uses Pseudo-inverse which works in null space.
The Pseudo-inverse is also known as the Moore–Penrose
inverse:

Δθ = J+Δe + (I − J+ J )ϕ (5)

where J+ = J T (J J T )−1, ϕ is any of the vector for the
same Δe which can minimize JΔθ − Δe in the null space
J (I − J+ J )ϕ = 0. However, the Pseudo-inverse method is
often unstable near singularities.

The damped least squares (DLS) solution introduced a
regularization term [9,29] to overcome the singularities.
Instead of solving JΔθ−Δe, thismethodminimizes‖JΔθ−
Δe‖2 + λ2‖Δθ‖2, where λ is non-zero damping value. The
equation can be solved as follows:

(J T J + λ2 I )Δθ = J TΔe

Δθ = (J T J + λ2 I )−1 J TΔe = J T (J J T + λ2 I )−1Δe

Using the λ term, the difference between consequent frames
needs to be as small as possible. This keeps the generated
frames as a continuous sequence for non-constrained cases,
and singularities can be avoided with a suitable λ value.

The computation of the Jacobian inverse is usually very
high, however it can be avoided by using proper approxi-
mation techniques. In the Cyclic Coordinate Descent (CCD)
method [30], one joint is aligned after another to bring the
end-effector closer to the target. This method is efficient
because it does not require any matrix computation, but it
may suffer from unnatural looking results for simulation of
the human body. FABRIK [3] is another iterative method in
which one end of the joint is translated to reduce the distance
between the end-effector and the target. This method is effi-
cient and addresses the positional constraints problem, but
it is unsuitable for synthesizing the natural motion of virtual
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characters. IKAN [26] is an analytic inverse kinematics sys-
tem for anthropomorphic limbs; the system solves generic
reaching tasks with a higher performance than conventional
Jacobian systems, even though it is limited to processing a
single kinematic chain. Unfortunately, when applied to com-
plete characters the results are rigid and less natural.

2.1 Related work

As early as the 1970, Liegeois et al. [21] used kinematics
equations to solve the poses of a constrained robotic arm
sequentially. We use a similar idea: our algorithm learns all
the parameters from input mocap data, and defines the joint
limits for each degree of freedom.

For simulating virtual characters, the result generated
using IK solvers can be quite far from being satisfactory.

Marcelo has proposed a whole-body analytical inverse
kinematics (IK) method [17] which integrates collision
avoidance and customizable body control for reaching tasks.
The computation is based on the interpolation of pre-
designed key body postures combining with analytical IK
solution.

Mocap-based solutions have increasingly gained popular-
ity because the high visual quality. Feng et al. [11] select a
number of mocap data samples that are close to the desired
constraints, and interpolate them to obtain a new anima-
tion sequence. The range of movements achievable in their
method is limited by the number of samples given as input.

Grochow et al. [13] use a Scaled Gaussian Process Latent
Variable Model to train low dimensional IK search space
with high-dimensional data. Their method provides an opti-
mized interpolation kernel for natural poses constrained by
positional trajectories. It builds internally an interpolation
plane in its motion space (or mapping space) using its vari-
ance kernel, however their spatial constraints are not always
guaranteed to be reached. The synthesized motion varies
according to the choice of samples, and the performance
depends on the number of sample candidates. We use a lin-
ear model for small segments; the parameters are learnt by
clustering similar small motion segments and this removes
the redundancy from the data.

Harish et al. [14] propose aparallel IKarchitecture for high
degree of freedom models. They also use the Damped Least
Squares Inverse Kinematics method. The parallel computa-
tion is used through forward integration andposture reference
factor evaluation for differentDOFs. Their parallel solution is
well defined for high DOFs models. Their solution is applied
for each time stamp and their scalability depends on the num-
ber of DOFs, while we propose our parallel process for a total
sequence through time and our scalability depends on how
long the input trajectory is.

Our solution is not a mapping technique, but an extension
of a basic IK solver. It is able to generate natural anima-

tions by using the learnt parameters. Our solution captures
the motion properties of the joints from input mocap data,
and stores them in an octree. This octree is accessed during
the animation to fetch the motion properties which are more
suitable for the IK solver to align the end-effector to a given
target point. This allows us to produce natural looking poses
similar to themocap data sequence. Furthermore, we provide
a pipeline to compute all the poses in parallel, improving sig-
nificantly the overall performance of the process.

3 Automatic learning of joint motion parameters

In our system, we employ a variation of Selective Damped
Least Squares (SDLS) IK [9,29], and we choose it as our
general IK solver because of its stability near singularities.
Differently from the original formulation of SDLS, we use
a vector Λ = {λ1, . . . , λn}, where n is the total number of
DOFs and λi is a damping factor for the angular velocity
of the i th DOF. We modify the objective function for our
damping vector:

arg min
θ∈(θmin,θmax)

‖JΔθ − Δe‖2 + ‖diag[Λ]Δθ‖2

where θmin, θmax are the boundaries ofDOFswhich are learnt
and stored in an octree as explained in Sect. 3.1.

The corresponding normal equation is:

(
J

diag[Λ]
)T (

J
diag[Λ]

)
Δθ =

(
J

diag[Λ]
)T (

Δe
0

)

where diag[Λ] = ΛT I is a diagonal matrix. Hence:

Δθ =
(
J T J + diag

[
ΛT IΛ

])−1
J TΔe (6)

It is important to find a suitable assignment of values to
the minimal and maximal allowed angles for each degree of
freedom, and Λ that model joint rotation velocities.

Some complex joints, such as the human shoulder, are
difficult to model manually because joint limits vary due
to muscle contraction and joint dependency [5,24,31]. This
phenomenon inspired us to model constraints in a flexible
dynamic way. Our work on constraints modeling has similar
goals, but takes a different approach. We extract such values
from mocap data, store them in an octree data structure and
use them during the animation.

Feng et al. [11] collect mocap data examples in a k-D tree,
using K-nearest points queries to select the best candidate
sequences, and blending them into the final animation. Our
work on constraints modeling has similar goals, but takes
a different approach. We use an octree data structure as a
container and to cluster similar motions in the same cell.
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Each cell in the octree collects similar postures data in spatial
nearby region. The data in the same cell are analyzed to define
the adaptive joint constraints in this region.

3.1 Octree description

A general octree is used to cluster, compute and save our
parameter values. An octree is defined by several initial rep-
resentations:
The insert points Each tree point in our case represents one
pose frame. All frames are sorted by the spatial 3D coordi-
nates of the wrist relative to the root joint computed by their
frame poses which are the arm reaching targets (arm end-
effectors) in the local space of root joint pe. A 3D position
of the wrist is actually the 3D value of an insert point.
The spatial volume of octree The volume is defined by min-
imum and maximum values of x , y, and z axes. Given a
dataset from an animation sequence, the minimum and max-
imum values are decided by iterating among all insert points.
The depth of octree In our tests, we use a maximum of 6
levels for the octree. Mostly, the traversal level is between
level 3 and level 5. The result shows the defined depth is
deep enough to get high quality motions.
The tree cell (octant) An octree cell has its space subdivided
in eight sub-cells. It is also a cluster of points inside of its
volume. We keep all points (frames) in one vector. Each cell
contains the point indices corresponding to the vector. A
tree cell contains parameter values computed from clustered
points.
The insertion When a cell contains more than 20 points, we
split the cell and put these points into the underlying level.We
do it recursively till the maximum level. However, we do not
remove the point indices in the original level. All levels have

a copy of the containing points. This is used to compute the
IK parameter values for all levels and all clusters as described
in the following.

The octree is filled with mocap data in the initialization
phase.We insert animation data (bvh file) by sequence. More
specifically, each frame represents a chain pose related to the
wrist position. It is also an entry point in the octree. This
entry vi is defined as

vi =
{
pe; r i1, . . . , r im; i − 1

}

wherem is the number of joints degrees of freedom, pe is the
end-effector position which is also the traversal index in the
tree, r ij is the j th degree of freedom of the i th pose stored
in the octree cell, i is the frame number and i − 1 is the
corresponding previous frame index (we can easily access
the neighbor frame’s information in the octree). If the frame
is the first frame of one sequence, we put−1 into i−1 which
indicates that the frame doesn’t have a previous frame.

Each cell of the octree stores all the indices {i1, . . . , in} of
the entries contained in it. The motion properties of each cell
are computed by using these indices to access the DOFs of
the corresponding entries, and we can compute the minimal,
maximal and weighted average values of each DOF for the
cell (Fig. 4). We suppose that all the motion happening in the
cell region won’t violate these DOF boundaries learnt from
data. Taking one cell, we compute the vectors of the mini-
mal and maximal values for each DOF, respectively rmin =
{rmin
1 , rmin

2 , . . . , rmin
m }, rmax = {rmax

1 , rmax
2 , . . . , rmax

m }, and
the weighted average value r̄ = {r̄1, r̄2, . . . , r̄m}. The angu-
lar limits for the j th DOF in one cell are computed as the
following (see Fig. 5):

Fig. 4 aOne vertex is built by the right hand end-effector position and
its skeleton posture frame; b each tree cell is filled by the data indices
which are used to compute its joint constraints set; c when doing ani-

mation generation, IK solver needs to traverse the octree to fetch the IK
constraints in the corresponding cell
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Computation of rmin, rmax (red boundaries) by adding entries
in the octree cell. The shadow part is the covered range

rmin
j = min

(
r i1j , . . . , r inj

)
− ε (7)

rmax
j = max

(
r i1j , . . . , r inj

)
+ ε (8)

r̄ j =
∑in

i1
wi

j r
i
j∑in

i1
wi

j

(9)

wi
j = 2π −

∣∣∣(E[r j ] − r ij

)∣∣∣ (10)

where ε is a manually set-up small arbitrary positive quantity
which is used to control the relaxation of DOF limits which
means that when the original learnt joint motion range is
too small for reaching certain position, ε is used to trade
off the reaching target constraint and joint range constraint.
By default, we use 0 or 0.001 these small values to keep the
motion ranges close to the original data. rmin and rmax define
the range of possible values that the DOF will have when the
target position will traverse the cell. E[r j ] is the expectation
value of r j which equals to the average of r i1j , . . . , r inj . The
r̄ represents the most likely configuration in the cell among
the observed ones.

For each entry vi in the cell, we compute also the Λi

vector. Rearranging Eq. 6:

diag
[
ΛT

i IΛi

]
Δθ = J T (Δe − JΔθ) (11)

where Δe = pe(t) − pe(t − 1), pe(t − 1) is the position of
the end-effector at the previous time step in the trajectory of
the mocap data by fetching the i − 1 indexed frame entry,
andΔθ = r(t)−r(t−1). We define that each couple frames
i − 1 and i during Δθ is a micro-motion segment. We define
the vector g:

g = J T (Δe − JΔθ)

and compute λ2j :

λ2i j =
∣∣∣∣ g j

Δθ j

∣∣∣∣

Intuitively, λ2i j represents the damping factor for the rotation
of the j th DOF when the target point is in the cell. We sup-
pose that eachmicro-motion segment (both start pose and the
target pose) is in the same cell. Then, we compute the vec-
tor Λ̄ taking the average of all the Λi in the cell. Basically,
we use a linear operator to find the damping factor which
is adaptable in our situation when the motion segments are
small.

Finally, each cell in the octree contains one vector of prop-
erties rmin, rmax, r̄,Λ. This vector represents how fast the
movementwill be like and hownarrow the jointmotion range
is in this cell region. Mostly, deeper level cells will have a
smaller range for jointmotion andmore specificmotion char-
acter. For the highest level, we use a set of manual set-up
values (such as, for the elbowx axis rotation limits, rmax = 0,
rmin = −3.14). Given a target point (arm wrist position), a
pop-up traversal process is used to find the corresponding
joint parameters in the octree. The parameters are in the cell
containing the target point position. If an empty cell is found,
wewill do a pop-up, taking a higher level cell instead, includ-
ing up to the highest level. If the point is not in the tree, we
use the highest level parameters. In this case, our solution
becomes a general SDL IK solution.

Over all, the Eq. 6 is used to solve for each frame inde-
pendently. Combined with filtering kernels, we can achieve
a natural and smooth motion sequence. The whole process
can be computed in parallel. We explain the algorithm using
multi-threads more clearly in the following parallel process
section.

4 Parallel computation of inverse kinematics
animation

Given a set of target points defining a trajectory and the
constraints octree, we compute the final animation in four
parallel passes. The whole parallel pipeline is depicted in
Fig. 6.

Intuitively, each target point is initially assigned to a differ-
ent thread, which computes the corresponding skeletal pose
using the constraint motion parameters stored in the octree.
This provides a first crude approximation of the animation
which is then refined in a smooth natural sequence in the
following steps, as explained in the next sections (see Fig. 7
and the accompanying video for reference).

4.1 Crude IK parallel pass

In this first pass, we aim to obtain natural looking poses
without being necessarily temporally coherent. Smoothly
changing poses in time will be obtained in the following
refinement steps.
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Fig. 6 Parallel pipeline of our IK framework

For each target position, the corresponding thread fetches
the joint motion parameters from the octree and feed the IK
solver. By using the joint parameters stored in the octree,
the resulting poses look natural and not synthetic, because
such parameters have been captured from the motion of a
real human being.

For each target point, the following operations are per-
formed in the corresponding thread:

1. The octree is traversed with a pop-up, finding the cell c
corresponding to the target point ti ;

2. The initial configuration of the kinematic chain is
instanced, considering θ = r̄, Λ = Λ̄, θmin = rmin,
θmax = rmax (Fig. 7a).

3. The SDLS IK solver Eq. 6 is instanced to compute the
skeletal configuration of the joints. A hard clamp kernel
is used to cut the resulting θ into the boundary:

θ =

⎧⎪⎨
⎪⎩

θmin if θ < θmin

θmax if θ > θmax

θ

(12)

Even though all the constraints are satisfied and the obtained
poses are natural looking, the obtained animation may result
as a discontinuous sequence in time, as shown in Fig. 7b and
in the accompanying video.

The reason for the discontinuity is that for each small
segment, the learnt parameters are from a small cell region.
The θmin, θmax aremuch smaller than the physical joint limits
that other referencedmethods used. The resulting angle in the
small range may not fit for both the previous frame and the
following frame when each frame is computed individually
and independently in Fig. 8. The skipped frame may happen
when two close-frames have too much difference and their
solutions are not sequential dependent.

Fig. 7 a Initial configuration of a kinematic chain. t0, t1 and t2 are the
target positions along the trajectory. b Crude IK solver pass. The result-
ing poses are not temporally coherent. c Temporal Alignment Filtering.
The solution is now smooth but some end-effectors may be not aligned

anymore to the target position. dRetargeting and final correction. Using
the previous solutions as the starting configuration, the IK solver finds a
smooth solution with end-effectors aligned correctly to the target posi-
tions. The white part is the free space for the joint’s rotation
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4.2 Temporal alignment filtering pass

In the second step, all the computed poses are aligned in
time in a smooth, continuous sequence. We use a simple box
filter [15,23,27], with a large half window sizew to convolve
the crude skeletal poses:

rfiltered = 1

2w

∑
i∈Ω

ri (13)

where r is the joint angles configuration, Ω is the set of r
in the time window, the index i is included in −w to w, and
w is the size of the half window (for all our test cases, we
used w = 10). At the end of this pass, the angular difference
between corresponding joints in sequential frames is highly
reduced. As a result, the animation is temporally coherent
but the end-effectors are not guaranteed to reach the targets
(Fig. 7c). In this step, we only use large window box filter to
get smooth sequence which is different from the fourth step.

4.3 IK retargeting and correction passes

The remaining two parallel steps are used to further refine
the animation sequence.
IK retargeting pass In this pass, we basically repeat the first
step: we instance a thread for each target position and run

Fig. 8 The possible IK results in our experience: red vertical lines are
DOF ranges for each time instance learnt from the data; dot line is the
sequence that each frame is generated independently; green line is the
sequence with temporal alignment

the Ik solver separately for each target position. The main
difference with the first step is that the solver is fed with the
results of the previous step, in particular r andΛ. As a result,
the end-effector reaches the target positions and, differently
from the first step, the skeletal poses are temporally coherent
(Fig. 7d).
Final correction pass Even though the end-effector posi-
tion and the temporal coherency are satisfied, there may be
cases in which the joint angular acceleration produces abrupt
changes in the motion (e.g., see Figs. 9, 10).

To prevent the effect and obtain a smoother sequence, we
add another filtering pass to correct this issue. The skipped-
frame problem due to the independent frame computation
is solved with such a filtering process. We use a bilateral
filter [15,23,27] with a small half window size w (in this
case w = 2 or w = 3): the weights are parameterized by
both a) the Euclidean distance between end-effector and its
target, and b) the angular difference between frames.

rfiltered = 1

W

∑
i∈Ω

ri f (‖ti − ei‖)g(‖i‖), (14)

where g is a temporal distance kernel, f is a spatial distance
kernel, ti , ei are the target position and end-effector position,
W is the sum of all the weights in one window. In this step,
we choose to use an edge preserving filter. By using such
filter, we can keep the sequence temporally smooth in joint
space while reducing the error in target space. We are able to
deal with two signals.

For both of the f and g functions, we use aWendland [32]
kernel which has derived piecewise polynomial functions
with positive definite and compact support.

wl(d) =
{(

1 − d
ε

)4 ( 4d
ε

+ 1
)

if 0 ≤ d ≤ ε

0 if d > ε
(15)

whered is the current distance, ε is themaximumor threshold
distance. We setup the ε = w for g and ε = 0.05 for f .

Fig. 9 An example of trajectory errors in meter introduced by our method with four parallel steps. Only the second pass—aligning filter pass
makes the targets unreachable (with large errors)
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Fig. 10 Top One example of skipped frames in the retargeting pass, and this can be minimized by filtering frames in correction pass; bottom the
joints accelerations, red-line is elbow, blue-line is shoulder, the shoulder’s velocity varies too quickly

Table 1 Time performance comparison in milliseconds of different
solutions when giving different trajectory frames (fs) from motion
capture data: sq (our sequential solution), pl (our parallelized imple-

mentation), dls1 (dls solution taking original pose as initial state), dls2
(dls solution taking previous frame pose as initial state)

Motion pass sq/pl CIP 1st TAFP 2nd IKRP 3rd CFP 4th Sum

Angry sq 578.8 3.1 454.7 0.6 1037.3

1500fs pl 78.8 1.2 62.6 0.3 143.0

dls1 753.2

dls2 461.3

Throw sq 16.9 0.3 23.2 0.1 40.4

150fs pl 2.8 0.2 3.6 0.1 6.7

dls1 42.3

dls2 15.5

Move sq 110.3 1.0 50.1 0.3 161.8

600fs pl 19.9 0.6 6.1 0.3 27.0

dls1 191.3

dls2 109.4

Golf sq 265.1 3.7 200.2 0.7 469.7

2500fs pl 36.6 1.7 38.5 0.3 77.1

dls1 847.1

dls2 304.5

Tennis sq 171.0 3.7 153.1 0.6 328.4

2000fs pl 24.1 1.4 23.4 0.4 49.3

dls1 673.3

dls2 211.7

5 Results

We implemented and tested the performance of our method
on an Intel Xeon CPU @2.93GHz, 2 processors with 4
cores each. The implementation uses Intel Threading Build-
ing Blocks (TBB) library to parallelize the code. We tested
several examples and report the performance in Table 1,
where we compare the computational time with the sequen-
tial implementation of our code. Note that the first step of the
sequential implementation is equivalent to the performance
of the SDLS IK method (similar to dls2 in Table 1). The
computation time is not linear with the number of frames but
depends on the number of iterations needed to reach a target
position, similarly to SDLS IK and any iterative IK method.

Table 2 The error metric of comparing different solutions with original
mocap in both joint space and target distance

Methods Joint mse Distance mse

Ours (sq/pl) 0.0015 0.00783

dls1 0.261 0.00861

dls2 0.326 0.00761

We also compute the average errors using both error metric
in joint space and target distance space to evaluate different
methods in Table 2. Our solution can generate good postures
that are closer to the referenced mocap data compared with
original dls solutions.
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Fig. 11 Comparisonof normalizedmean squared errors (rotations over
all joints) considering our animation at different levels compared to the
original mocap data in the example of tennis. The errors summed up for

the whole sequence are: 97.42 (level 0), 67.13 (level 1), 46.73 (level 2),
34.33 (level 3), 22.22 (level 4), 12.70 (level 5)

Table 3 Time to compute an animation using octrees with different
maximal depth

Level 0 1 2 3 4 5

Golf 227.6 92.0 75.9 78.6 77.7 76.2

Tennis 115.7 72.5 65.6 51.1 58.1 51.4

Throw 12.1 8.2 7.6 6.8 7.8 8.3

As input, we use the mocap animation sequences in the
Emilya data set [12]. It turns out that the parallel version is
∼7 times faster than the sequential version, and ∼ 4 times
faster than non-constrained SDLS when a whole animation
sequence is generated. It is worthmentioning that ourmethod
is scalable,meaning that better performances can be achieved
if more cores are available. In all the test cases, we use the
right hand-wrist joint as the end-effector. To validate the
synthesized animations, we used the trajectory of the hand
in the original data from mocap sequences. Then, we com-
pared the original ground truth (the mocap data), with our
resulting animation. This comparison is visually represented
in the accompanying video. In Fig. 11, we show the nor-
malized errors considering octrees with different depths. We
also measured the performance of our method using octrees
with different maximal depths. Table 3 shows that the per-
formance does not change significantly when the maximal
depth number is bigger than 2.

The effect of the smoothing process is represented in
Fig. 13: the smoothness of the motion is already largely
improved after temporal alignment and retargeting. The final
filtering step generates a continuous sequence. In extreme
case, the target positions of trajectory are not in the space of
learned motion, our solution can still generate smooth ani-
mation (Fig. 12) with given learned joint limits (Fig. 14).

5.1 Limitations

Our solution can generate smooth motion. However, there
exists several drawbacks. First, the input of our generation
is a trajectory. Without the temporal information, it is hard

Fig. 12 Given a golf swing trajectory and tennis joint constraints, we
generate tennis-like golf swing: top original golf, bottom tennis-like
golf

Fig. 13 Elbow joint rotation in sequential frames

to apply our filtering process. For our solution, it is required
to stream in whole trajectories one by one to generate con-
tinuous sequence. The smoothness is only guaranteed when
using our edge preserving filters. Further, during the anima-
tion the joint motion parameters are computed according to
the position of the target point: if this is not included in the
octree, the resulting animation will likely appear incoher-
ent and unnatural as illustrated in the accompanying video.
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Fig. 14 We use the octree to synthesize novel motion not present in the input mocap data

For these extreme cases, certain frames may not satisfy both
target constraint and DOFs limits, the trade-off parameteri-
zation between constraints is needed. Moreover the filtering
steps could cut away quick joint rotation though this is a prob-
lem shared by many different IK approaches. Our method
does not include the dimension reduction process, thus it is
not adaptable for high dimensional targets; our solution is
useful for chain IK that can generate natural postures.

6 Conclusions and future work

We propose a novel parallelizable constrained IK technique
which allows us tomodel and use dynamic joint motion para-
meters. These values do not need to be set manually but are
automatically learned from inputmocap data. They are stored
in an octree and accessed and used during the animation
according to the current target position.

We implemented our method in a computational pipeline
which can process in parallel all the target positions of the
input trajectory, generating smooth joint rotations and elim-
inating potential discontinuities. We used SDLS IK as the
building block in our pipeline. However, it is noted that any
constrained IK method can be used in our approach. Our
technique also allows us to parallelize the Inverse Kinemat-
ics solver for temporally dependent targets in one trajectory.
The parallel passes strategy can well solve the incoherent
skipped-frames problem while doing multi-processing. The
obtained results show how our approach largely improves the
performance of procedural IK animation generation. Note
that this parallel strategy can be applied for different proce-
dural IK methods.

As a future work, we would like to investigate the
GPU-based implementation of our pipeline to speed up the
performances. We also aim to explore the idea of using a
forest of octrees to characterize different types of stylistic

motion. We would also like to improve character IKs for
high-dimensional mapping with full body performance.
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