
The development of increasingly complex
organization in human evolution is unpar-
alleled in natural history and signifies the

emergence of an entirely new domain of existence:
the rise of human culture out of the domain of
animal social behavior. What drove, channeled,
and constrained this development has long been
a subject of considerable debate, with proposed
drivers and constraints including: fidelity (Ander-
sson 2011, 2013; Claidière and Sperber 2010; En-
quist et al. 2010; Tennie et al. 2009; Tomasello

1991), pedagogy (Csibra and Gergely 2009, 2011;
Sterelny 2011; Tostevin 2007, 2012), time stress
and environmental risk (Buchanan et al. 2015;
Read 2008a; Torrence 1983, 1989), generative
logic (Leaf and Read 2012; Read 2002, 2003),
intensity and broadness of resource utilization
(Flannery 1976; Keeley 1988), and social effects
of population size (Henrich 2004; Shennan 2001). 
Over the past decade, a class of cultural evo-

lutionary models belonging to the last category
has become increasingly influential (see Anders-
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Human culture signifies the emergence of an entirely new domain of existence: an event in natural history that is paralleled
only by the Cambrian Explosion in terms of creativity and scope. The question of how human culture—as opposed to its
animal counterparts—came to become open-endedly creative and cumulative is therefore one of wide and general scientific
importance. Several causal factors have been proposed to date to explain this unique quality, including population size,
transmission fidelity, pedagogy, and creativity. Inquiries, however, tend to focus exclusively on one factor at a time, leaving
us blind to important issues regarding their relative roles and combined action. We here combine two models, one focusing
on population size and the other on imitation fidelity, as constraints and enablers of evolutionary cumulativity. We explore
how these factors interact to promote and inhibit evolutionary cumulativity and how the synthetic model compares to the
original models individually and to empirical and experimental data. We report several findings that do not emerge in the
models that we combine individually. For example, group size is found to be important for small but not for larger groups,
an observation that moreover substantially improves agreement with data. 

La cultura humana significa la aparición de un dominio de la existencia completamente nuevo: un acontecimiento en la historia
natural sólo equivalente a la explosión cámbrica en términos de creatividad y alcance. La cuestión de cómo la cultura humana
– a diferencia de sus equivalencias entre los animales – se convirtió en creativa y acumulativa se convierte por lo tanto en un
tema de importancia científica amplia y general. Hasta la fecha se han propuesto varios factores causales para explicar esta
cualidad única, incluyendo el tamaño de la población, la fidelidad de la transmisión, la pedagogía y la creatividad. Las inves-
tigaciones, sin embargo, tienden a centrarse exclusivamente en uno de estos factores a la vez, lo que nos deja ciegos a
cuestiones importantes con respecto a sus roles relativos y a su interacción. En esta investigación combinamos dos de estos
modelos, uno que se centra en el tamaño de la población y el otro en la fidelidad de imitación como restricciones y facilitadores
de la acumulación evolutiva. Exploramos también cómo estos factores interactúan para promover e inhibir dicha acumulación
evolutiva, cómo el modelo sintético se compara con los modelos originales de forma individual y con datos empíricos y expe-
rimentales. Presentamos varios hallazgos que no surgen en los modelos que combinamos de forma individual. Por ejemplo,
se encuentra que el tamaño del grupo es importante para grupos pequeños pero no para los grupos más grandes; observación
que, además, mejora sustancialmente la concordancia con los datos.
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son and Read 2016). The most seminal among
these models, put forward by Henrich (2004), is
based on the argument that since the imitation of
cultural skills is imperfect, a constant loss of in-
formation through imitation errors must be com-
pensated for by the creativity of individuals in or-
der to maintain the long-term persistence of
cultural systems. Kline and Boyd (2010:2559) de-
scribe this process as a “treadmill of cultural loss.” 
The central prediction of this “Treadmill

Model” is that large populations are needed to
maintain complex cultural systems. The larger the
population, Henrich (2004) argues, the more likely
the presence of highly creative individuals capable
of augmenting and elaborating learned skills even
beyond what is needed to compensate for infor-
mation loss. A larger population can, therefore,
“run faster” to counteract cultural losses and ac-
cumulate skillfulness in more complex cultural
traits. 
Since 2004, additional theoretical (Baldini

2013; Kobayashi and Aoki 2012; Mesoudi 2011;
Nakahashi 2014; Powell et al. 2009, 2010), em-
pirical (Kline and Boyd 2010) and experimental
(Derex et al. 2013; Kempe and Mesoudi 2014;
Muthukrishna et al. 2014) work leads many to
accept the Treadmill Model as established fact.
For example, Richerson (2013:351) states with
confidence that “group size determines cultural
complexity” (see also Bell 2014, 2015; Chaisson
2014; Moffett 2013; Richerson et al. 2015). 
But the Treadmill Model remains, at the same

time, strongly contested, both theoretically and
empirically, with regard to both its premises and
its predictions (Collard et al. 2005; Collard,
Buchanan, and O’Brien 2013; Collard, Buchanan,
O’Brien, and Scholnik 2013; O’Brien and Bentley
2011; Querbes et al. 2014; Read 2006, 2008b,
2009, 2012a; Vaesen, 2012; see Andersson and
Read [2016] for a review). For example, the Inuit
(Read 2012b) maintained some of the most com-
plex hunter-gatherer implements known at very
low population counts—far lower than what Hen-
rich (2004) argued caused the Tasmanians to lose
the capacity to maintain much simpler bone tech-
nology and clothing. 
Seen as the main driver and constraint of cul-

tural complexity, the situation looks bleak for the
Treadmill Effect. But what if we view it as one
among several interacting factors? 

To move in such a direction, we here build a
Synthetic Model that combines key features of
the Treadmill Model (Henrich 2004), which fo-
cuses on population size, with key features of the
Glass Ceiling Model, which focuses on fidelity
in the imitation of cultural knowledge across gen-
erations as a constraint on the accumulation of
cultural complexity (Andersson 2011, 2013). 
These models constitute two different perspec-

tives on the same set of problems, and they share
critical elements that allow their central features
to be combined into a synthetic model. Both mod-
els investigate the conditions necessary for cultural
evolution to be cumulative and for the emergence
of complex cultural systems. Both give central
importance to imitation fidelity. Both rely on pop-
ulation-based models that focus on endogenous
social-level constraints on adaptive cultural evo-
lution. And, finally, we could characterize both
models as “treadmill models” since both investi-
gate the interplay between, on the one hand, pos-
itive forces for the accumulation of novelty into
complex cultural organization and, on the other
hand, the negative force of losses in cultural trans-
mission that undermine such organization. The
result is a new, agent-based Synthetic Model that
has three interacting variables: imitation fidelity
(q), population size (N), and strength of selection
for high-quality role models to imitate (s). 
We investigate the effect and interactions

among these parameters in relation to data and
empirically based arguments, and in relation to
the combined models individually. We conclude
that imitation fidelity, population size, and selec-
tion strength interact strongly and that many of
their evolutionary effects become understandable
only as they are studied in conjunction. We argue
that the Synthetic Model provides a fuller under-
standing of treadmill effects more generally in
cultural evolution. 

Synthesis
Beginning with the Treadmill Model, we will out-
line the motivations, workings, and main results
of each model, focusing on the central logic of
each. We then move on to explain how these cen-
tral logics are combined in a Synthetic Model.
Formal elaborations are presented in Supplemental
Materials, Appendices A-D. 

s10_AQ81(3)Andersson.qxp_Layout 1  7/8/16  4:00 PM  Page 577



The Treadmill Model 
The core of the Treadmill Model (Henrich 2004)
is a formal mathematical model that depicts a
population of “interacting social learners” under-
going what can be described as an imitation event:
a new generation of naïve individuals imitate and
apply their own creative capabilities to a skill pos-
sessed by a role model that represents the most
highly skilled individual among already encultured
members of the group. 
The basic logic is that imitation combines two

opposing forces that metaphorically represent (a)
the backward motion of the treadmill and (b) the
running that potentially keeps us from backsliding.
On the one hand, high complexity of an imitated
skill increases losses of skillfulness through im-
perfect imitation; this is because high skill com-
plexity implies more things to learn and therefore
a greater potential for mistakes and errors. On the
other hand, creativity, for example hominin capa-
bilities for invention and problem-solving, is a
source of skillfulness that counteracts the source
of losses related to skill complexity. 

To understand what happens, let us begin from
the perspective of a single naïve imitator learning
from a role model. Formally we may express this
as 

z’ = z – a + e ( 1 ) 

where z’ denotes the skillfulness of the imitator
after the imitation, z the skillfulness of the role
model, a the complexity of the imitated skill,1
and e is a stochastic term that represents a varying
level of creativity in individuals across the popu-
lation of naïve learners.2 
Since creativity is taken to affect imitation per-

formance, heterogeneity in creativity introduces
heterogeneity in skillfulness across the population,
and this is what drives the Treadmill Model. The
imitation event of the Treadmill Model is illus-
trated in Figure 1. 
The question posed to the Treadmill Model is:

“does an imitation event leave the population more
or less skillful?” The model ultimately answers
this question in the form of the rate of change per
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Figure 1. The probability of drawing new skillfulness values z’ (vertical axis) for a naïve learner imitating a skill with
complexity a = 2 from a role model with skillfulness z = 20 (horizontal axis); see Equation 1. Stochastic variability in cre-
ativity e yields a distribution of probabilities for drawing different values of z’ = z – a + e; average creativity (z = 20) is
the maximum-likelihood outcome. We here use the Probability Density Function of a Gumbel distribution, used by
Henrich (2004) and in much of the downstream literature. The shaded area indicates the probability mass for the learner
outperforming the role model (i.e., drawing z’ > z). 
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generation (for example, an imitation event) in av-
erage skillfulness in the population, Dz̄ (Supple-
mental Materials, Appendix A). A positive rate of
change (Dz̄ > 0) corresponds to cumulative adap-
tive evolution, while a negative rate (Dz̄ < 0) cor-
responds to maladaptive loss (see Henrich 2004).
Essentially, in the maladaptive loss regime, the
imitated skill is assumed to be dropped from the
repertoire at the point where it becomes useless. 
What decides whether a skill of complexity a

in a population of size N is viable or not becomes:
will any learner, on average, at least be able to
match the skillfulness of the most highly skilled
role model (i.e., fall into the shaded area in Figure
1)? Figure 1 and Equation 1 tell us that the likeli-
hood that this will be the case can be increased in
two ways: (1) a lower skill complexity a reduces
the load of imitation errors and moves the location
of the imitation outcome distribution to the right,
increasing the probability mass represented by the
shaded area, or (2) a larger population N increases
the number of draws of new skillfulness values z’
per imitation event. This increases the likelihood
of producing at least one sufficiently highly skilled
new role model. 
The main conclusion of the Treadmill Model

is that the higher the complexity of the propagated
skill, the larger the population needs to be to stably
maintain the skill over time. From this standpoint,
we may pose the questions: how large must N be
to support a skill of complexity a, or, alternatively,
how complex can a skills be in a population of
size N?3
Notably, the Treadmill Model applies regardless

of how adaptive the skill is: if there is no suffi-
ciently skillful role model to imitate in the popu-
lation, no selection pressure in the world can com-
pensate.4 Losses from a skill repertoire that happen
in this way happen despite their adaptivity, and
they are therefore described by Henrich (2004) as
maladaptive losses. Henrich’s (2004) main interest
is whether population loss can lead to the loss of
adaptive culturally transmitted skills, and he argues
that the Holocene prehistory of the Tasmanian abo-
rigines provides empirical support for such an
event (see Read 2006, 2008a; Taylor 2010 for
counter arguments), and the debate has continued,
involving new empirical cases, model variants,
and interpretations (Andersson and Read 2016). 

The Glass Ceiling Model 
The Glass Ceiling Model (Andersson 2011, 2013)
is an adaptation of the Quasispecies Model
(Domingo et al. 2012; Eigen 1971; Eigen and
Schuster 1977; Nilsson and Snoad 2000) to cul-
tural evolution. Originally developed to help un-
derstand the origins of life itself, the Quasispecies
Model establishes a fundamental connection be-
tween genetic replication fidelity and the amount
of information that can be supported (the band-
width, if you will) by an evolutionary population.
According to the Quasispecies Model, high repli-
cation fidelity is a precondition for the emergence
of long genetic sequences and thereby complex
phenotypic organization. High replication fidelity
in higher life forms (e.g., Drake et al. 1998) is en-
sured by sophisticated mechanisms of error cor-
rection, and before the establishment of such
mechanisms, trait complexity was therefore
strongly constrained. 
The Glass Ceiling Model readapts the Quasi-

species Model from questions about the origin
of life to questions about the origins of culture.
Has the evolution of advanced cognitive and cul-
tural mechanisms for improving cultural trans-
mission fidelity been as important in cultural evo-
lution as it was in early biological and
pre-biological evolution? 
Although more tricky to define and measure,

one can nevertheless identify innovations (cultural
and biological) that would positively affect fidelity
in the sense of increasing the likelihood of knowl-
edge making it intact across generations. Exam-
ples include the capability and propensity for im-
itation (Gergely and Csibra 2006; Horner and
Whiten 2005; Shea 2009; Whiten et al. 2009),
pedagogy (Csibra and Gergely 2009, 2011;
Gergely and Csibra 2006; Tehrani and Riede 2008)
and cultural institutions (Andersson 2011; Henrich
2010; Sterelny 2011). But the range of cultural
features that could affect cultural transmission fi-
delity is quite wide and includes, for instance, im-
plicit or explicit external information storage in
increasingly culturally modified environments (see
Andersson 2011). 
Andersson (2011) argues that since culture also

relies on transmission, and since the cultural and
cognitive mechanisms that counteract transmission
errors and mistakes must have emerged over time
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(just as biological mechanisms maintaining high
genetic transmission fidelity had to emerge as
adaptations), fidelity must be expected to have
played a key role also for cultural evolution. The
suggestion is that human culture successively un-
locked itself by increasing its bandwidth through
biological and cultural innovations that increase
transmission fidelity. Eventually this would lead
to open-ended cultural accumulation through a
bootstrapping dynamic when additional cultural
complexity came to be used for innovations that
further increased fidelity. 
Andersson (2011) argues that seeing fidelity as

an evolutionary constraint helps us explain why
cultural complexity was apparently bounded across
the Paleolithic, despite evidence of innovation dur-
ing these periods, and despite localized evidence
of precocious and more complex expressions of
culture, which reveal the capacity for inventing
them (Hovers and Kuhn 2006; McBrearty and
Brooks 2000; McBrearty 2007). From the per-
spective of the Glass Ceiling Model, cognitive ca-
pabilities enabling the invention of complex inno-
vations would be neither sufficient nor necessary
to explain how cumulative cultural systems can
come into being. Compare this with biological
evolution where the cumulative evolution of
tremendously complex organization clearly is pos-
sible, even in the complete absence of cognition.5 
The central logic of the Glass Ceiling Model

is that the likelihood of faithfully transmitting a
skill depends strongly on how complex that skill
is. Skills often constitute systems of component
skills, where a high complexity a corresponds to
skills with more components and, thereby, more
internal interdependencies (Andersson 2013;
Querbes et al. 2014). The idea is that component
skills are learned individually but must make it
across generations of learners together (due to
systemic interrelations between them) in order to
realize a functional high-level skill: disturbing
one part potentially ruins the whole (Wimsatt
1986, 2001; Wimsatt and Griesemer 2007). 
More formally, we may express the fidelity of a

skill with complexity a as an exponential function

Q = qa, ( 2 )

where Q is the imitation fidelity of the skill as a
whole, q is the imitation fidelity of skill compo-

nents individually (i.e., units of complexity), and
a is the complexity of the skill as a whole. 
In the evolutionary dynamics of the Glass Ceil-

ing Model, encultured individuals i in the popula-
tion will possess skill copies with different com-
plexity ai. It is complexity that is selected for (see
Andersson [2013] for a discussion about what se-
lection for complexity implies), so if the average
skill complexity in the population starts out on a
low level, it will initially increase. But as skill
complexity increases, so does the load of imitation
errors, and it does so at a rate that is determined
by the imitation fidelity parameter q (Equation 2). 
At a certain level of average skill complexity,

determined by imitation fidelity q, there will be
an equilibrium between the adaptive force of se-
lection pushing for higher skill complexity and
the maladaptive force of imitation errors (Sup-
plemental Materials, Appendix B). This equilib-
rium is the “Glass Ceiling” above, according to
which too complex skills will eventually disappear
even if higher complexity is both adaptive and
possible to invent. 
The Synthetic Model 
We have introduced two models of two proposed
endogenous evolutionary constraints on cultural
complexity: the Treadmill Model, which is con-
trolled by population size N, and the Glass Ceiling
Model, which is controlled by imitation fidelity
q. The lessons that these models convey can be
summarized as formal constraints on the evolu-
tionary dynamics (see Supplemental Materials,
Appendix A, Equation 8, and Appendix B, Equa-
tion 10). Can these models be combined into a
single model that retains important lessons from
both but generates new insights? 
Using the Treadmill Model as an envelope, we

replace the sub-model l (Figure 1) of the dis-
placement between role model quality and the
maximum likelihood of imitation outcomes

l = a ( 3 ) 
with 

l = q-a – 1 ( 4 )

(Supplemental Materials, Appendix C). The Syn-
thetic Model imitation event can be visualized as
Figure 2. Note that, as in the Glass Ceiling Model,
but unlike in the Treadmill Model, we consider
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the evolution of skill complexity a directly (l
changes units from z to a between Equation 3
and Equation 4). In other words, we assume se-
lection for increasing skill complexity (see An-
dersson 2013:90–91).
Variability in the Treadmill Model entered

through the logic that imitators have a variable
capability for counteracting imitation errors with
their own creativity. Here the logic is similar, but,
following the Glass Ceiling Model, it is expressed
as variability in imitation fidelity q instead:6 we
use a stochastic fidelity qi that is distributed over
the population. Lacking suitable empirical data,
we derive a sub-model for how qi could be dis-
tributed by starting from the distribution of general
intelligence in the population (which is typically
taken to have a normal distribution), and a model
parameter q that is referred to as the “fidelity
norm” (Supplemental Materials, Appendix C).
This sub-model initiates (upon “birth”) all naïve
learners in the population to have their own imi-
tation fidelity value qi.
As in both models that go into the synthesis,

selection of role models is skill biased—meaning
that naïve learners favor role models based on

their performance. But in contrast to Henrich
(2004), who assumes that the strictly best indi-
vidual acts as a role model for the whole new
generation of learners, we here select role models
in accordance with the Glass Ceiling Model ran-
domly, and employing a parameter s by which
we may set the strength of the bias for selecting
high-quality role models (i.e., the skill bias). The
skill bias parameter ranges in the unit interval, s
∈ [0,1) where s = 0 corresponds to no selection
(pure drift) and s → 1 corresponds to the case of
the best role model, is always being selected as in
the Treadmill Model (Supplemental Materials,
Appendix C).
Updates are performed by letting a new gen-

eration of naïve learners select role models to im-
itate among already encultured individuals. Imi-
tation generates a complexity ai in the imitator
from a normal distribution with mean

µ = ar – l ( 5 )

and standard deviation s = 1, where ar is the skill
complexity of the selected role model, and where 
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Figure 2. We illustrate the draw of a new complexity value a’ for a naïve learner i, with imitation fidelity qi, imitating a
role model with skill complexity a. The Probability Density Function of a Normal distribution, with mean µ = a – (q-a –
1) and standard deviation s = 1 denotes the probability that a’ takes on different values. The shaded area indicates the
size of the probability mass for the learner outperforming the role model (i.e., drawing a’ > a). 
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l = qi-ar –1 ( 6 )

is the average imitation error (Figure 2). 
This Synthetic Model allows us to investigate

the interaction between three important hypothet-
ical factors affecting the cultural accumulation of
skills: population size (N), skill bias strength (s),
and imitation fidelity (q). 
Figure 3 illustrates the basic ways in which

changes in these three parameters affect the evo-
lutionary dynamics of skill complexity a are in
the population (see also Supplemental Materials,
Movies 1–4). If we increase population size N
(Figure 3b), individual skill complexity values ai
will scatter more widely since we make more
“draws.” If we selectively choose highly skilled
role models, this will, in turn, lead to a higher av-
erage skill complexity a of selected role models.
However, higher values decrease rapidly in fre-
quency in the tail of a normal distribution, so in
order to keep increasing, average a among role
models N needs to increase more and more. 
As we increase skill bias s (Figure 3c), we be-

come more strict in selecting role models from
the right side of the distribution. This has the
effect of increasing average skill complexity
among the selected role models, and thereby in
the new generation. However, increasing s will
work only as long as there actually is any variation
upon which stricter selection standards can oper-
ate: if we already select the best, stricter selection
will not take us any farther. 
If we increase the fidelity norm q (Figure 3d)

we reduce the average error l (Equations 5, 6 and
Figure 2), which increases exponentially with skill
complexity a, and so we also increase average
skill complexity in the new generation in a third
way. This strategy allows us to increase skill com-
plexity indefinitely, since at q = 1 the error will
be zero. However, it must realistically be assumed
that reducing error becomes increasingly hard, so
approaching q = 1 may demand considerable adap-
tations and costs.

Results
We will now use simulation to investigate the in-
terplay between population size N, the imitation
fidelity norm q, and the strictness of skill bias in
role model selection s. The simulated populations

are initiated with parameter values that remain
fixed while a sufficient number of updates are
performed to bring the average skill complexity
a in the population to equilibrium. 
Both the sensitivity of equilibrium average a

to skill bias strength s, and the impact of s on
how a responds to changes in N, clearly emerge
in Figure 4. Only when those rare geniuses really
have an edge will increasing population size N
have anything like a sustained effect. The quali-
tative similarity between the simulated behavior
of the Synthetic Model and the predictions of the
original Treadmill Model also increases with skill
bias strength s, which is unsurprising given that
the Treadmill Model assumes perfect skill bias s
= 1. But the synthetic model, notably, does not
collapse into the Treadmill Model as s → 1. Even
at s = .99, the response to increasing N abates
rapidly, and the increase of the logarithmic Tread-
mill curve is more sustained than the simulation
results of the Synthetic Model. 
The response of the Synthetic Model to

changes in population size N (Figure 4) can be
understood as an interaction between the Treadmill
Model, which predicts a logarithmic dependency
between a and population size N (Supplemental
Materials, Appendix A, Equation 8); the Glass
Ceiling Model, which strictly bounds a subject
to transmission fidelity (Supplemental Materials,
Appendix B, Equation 10) independently of N,
and the skill bias strength s, which affects the av-
erage skill complexity of the role models that are
imitated. What we see, at first, is that increasing
N causes average a to increase, as predicted by
the Treadmill Model. But already at a comparably
low value of N, equilibrium average a becomes
bounded by the Glass Ceiling effect instead, caus-
ing it to deviate from the logarithmic Treadmill
relationship and level off. We will revisit the effect
of skill bias strength s shortly. 
Next, the response to varying imitation fidelity

q is strong and qualitatively very similar to the
response seen in the original Glass Ceiling Model
(Figure 5; Andersson 2011, 2013). It is not sur-
prising that imitation fidelity q has a commanding
effect: in the limit case of q = 1 the average error
is zero regardless of a, and the logic of both mod-
els that we combine would clearly predict unlim-
ited cultural accumulation under that (unrealistic)
condition.
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Figure 3. Individuals (ai) are distributed across the skill complexity a axis, with skill biased selection favoring role models
with large values of ai. In the base case (a), average a after imitation is the same as average a before imitation. In (b–c)
we upset this equilibrium, driving the population to higher average skill complexity by altering, in turn, population size
N, skill bias strength s and imitation fidelity q. See also Movies in the Supplemental Materials. 
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A strong skill bias generally increases equilib-
rium average skill complexity a (Figures 4, 5).
Figure 6 shows that skill bias has a sustained im-
pact at higher values of imitation fidelity q, but
that for lower imitation fidelity, the response grows
notably weaker. Using a population size of N = 5
rather than N = 25, we further see that this pattern
also depends on population size N: the smaller
the population, the weaker the response (Figure
6b). This is readily understandable in terms of
evolutionary dynamics: the smaller the population,
the less likely is the appearance of highly gifted
individuals, and skill bias s can push equilibrium
skill complexity a upward only to the extent that
a chain of such skilled individuals connects the
generations through time. Highly skilled individ-
uals who appear only sporadically will frequently
need to imitate less skilled role models, and so
their impact will not be lasting. 
Turning now to the parameter space where

equilibrium average a does respond strongly to

N, (Figure 7; compare Figure 5) we see that in-
creasing group size beyond N = 25, which would
be the relevant range for hunter-gatherer residen-
tial groups, does not produce a strong effect. How-
ever, lowering population size to below N = 10
does bring a substantial dip in equilibrium average
a. So, even if the Treadmill effect is suppressed
by the Glass Ceiling Effect for large populations,
it could represent an important constraint on the
size of residential units, and represent one reason
why increasing sizes of residential units may have
been favored by selection.7 
We have also superimposed scaled data from

Derex et al. (2013:Figure 3), describing the per-
formance of experimental groups of different
sizes. It is notable that the qualitative behavior of
the experimental and simulated curves are similar:
performance increases for small groups, then lev-
els off sharply around a group size of N ~ 10.
Their data appear to be consistent with the Syn-
thetic Model for a low degree of skill bias, while
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Figure 4. Average equilibrium skill complexity a plotted as a function of interacting learning population size N, and for
different values of skill bias strength s. For comparison, we also see predictions by the original Treadmill Model (see
Equation 8 in Appendix A in Supplemental Materials), using its b parameter (which we otherwise suppress) to examine
different scales of a (its units are arbitrary, i.e., do not correspond to empirical measures). Parameters used: q = .95, sim-
ulations run over 10,000 updates, averages made over batches of 50 such runs, error bars correspond to one standard
deviation. Population sizes used were N = 2, 4, 8, 16, 32, 64, 128, 256, 512. 
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the fact that experimental performance actually
deteriorates between N = 8 and N = 16 clearly
points away from the sustained logarithmic in-
crease predicted by the Treadmill Model. 
One of the main issues in the literature so far

has been the historical impact of changes in pop-
ulation size, that is, changes that happen as cultural
evolution unfolds over time. An exploration of
how simulated histories respond to parameter
change events is provided in Supplemental Mate-
rials, Appendix D. 

The Empirical and Experimental Picture
To discuss the Synthetic Model’s contributions,
let us first reflect on what theoretical account the
empirical and experimental picture can support
at present. We focus on complexity and population
size, since this is the correlation that has so far
been extensively investigated in the literature (An-
dersson and Read 2016). 
It appears well established experimentally that

group skill performance does tend to increase with
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Figure 5. Skill complexity a plotted as a function of fidelity norm q, and for different values of skill bias strength s. For
comparison, we also see the prediction of the original Glass Ceiling Model (Equation 10 in Appendix B in Supplemental
Materials). Parameters used: N = 25 simulations run over 10,000 updates, averages made over batches of 50 such runs,
error bars correspond to one standard deviation. 

Figure 6. Skill complexity a plotted as a function of skill bias strength s, for different values of imitation fidelity norm q,
and for two population size scenarios: (a) N = 25 and (b) N = 5. Simulations run over 10,000 updates, averages made over
batches of 50 such runs, error bars correspond to one standard deviation. 
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group size for small groups, on the order of one
to ten individuals (see Derex et al. 2013; Kempe
and Mesoudi 2014; Muthukrishna et al. 2014).
Although it remains somewhat inconclusive
whether it is the specific mechanisms proposed
by the Treadmill Model that are responsible for
the observed behavior, data on small groups is at
least consistent with predictions of the Treadmill
Model (e.g., Andersson and Read 2014). 
However, for meta-populations the Treadmill

Model runs into trouble (Buchanan et al. 2015;
Collard, Buchanan, and O’Brien 2013; Collard,
Buchanan, O’Brien, and Scholnik 2013; Read
2008a). Several recent studies fail to demonstrate
any significant correlation between population
size estimations and measures of cultural com-
plexity (based on Oswalt’s [1976] techno-units).
Read (2008b) shows that over 95 percent of the
variability in hunter-gatherer food-getting imple-
ments relates to mobility and risk. There is also
no correlation between either the census popula-
tion size or the population density and complexity
of tool kits for hunter-gatherer societies across

major environmental and ecological zones (see
Collard et al. 2005; Collard, Buchanan, O’Brien,
and Scholnik 2013; Read 2006). 
Demonstrating these troubles even more

clearly, there exist notable empirical counterex-
amples. For example, the Angmaksalik of eastern
Greenland, a group of about 400 Inuit (Read
2012a), made a 36-part harpoon, which counts
among the most complex implement manufac-
tured by any hunter-gatherer group. Even if we
unrealistically assume that the total population of
about 6,000 Inuit in all of Greenland constituted
the “population of interacting social learners”
(Henrich 2004:202), they still numbered consid-
erably lower than what Henrich (2004) posits was
needed for the Tasmanians to even make one-part
bone point implements.
The experiment performed by Derex et al.

(2013), which is the experiment that most closely
corresponds to the Treadmill Model, and the only
experiment so far to consider sufficiently large
group sizes, also falls into this pattern. Perfor-
mance here leveled off, and even deteriorated, be-
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Figure 7. Zoomed-in portion of Figure 4, showing changes in equilibrium average a for smaller group sizes. Scaled data
is shown from Derex et al. (2013), describing performance of experimental groups of different sizes. Parameters used: q
= .95, simulations run over 10,000 updates, averages made over batches of 50 such runs, error bars correspond to one
standard deviation. Population sizes used were N = 2, 4, 8, 16, 32. 
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tween populations sizes of N = 8 and N = 16 (see
Figure 7; also see Derex et al. 2013:Figures 1–3;
Derex et al. 2014:Figure 1). 
The empirical and experimental picture points

to population size correlating with skill complexity
only for very small groups. This is also what the
Synthetic Model predicts (see Figures 4 and 7),
and explains by mixing models of transmission
fidelity, less-than-perfect skill bias and population
size.
Empirically, there are indications that residen-

tial group sizes may have increased from very
small numbers during the course of hominin evo-
lution, and this may indicate that the Treadmill
Model could be more important for understanding
early hominin evolution than it is for understand-
ing variation in cultural complexity among recent
hunter-gatherers. Vallverdú et al. (2010:143) and
Lalueza-Fox et al. (2011:250), for example, indi-
cate that Neanderthals may have traveled in groups
of around 10 individuals (although estimations of
residential group size in the deep past are far from
secure, and these findings are controversial; see
Vigilant and Langergraber 2011). Although further
research is needed, evolution does document a
trend from small and transient to larger and more
stable groups in hominin evolution. 

Conclusions
The Synthetic Model can be understood in outline
as an agent-based rendition of the Treadmill Model
where transmission error rate increases exponen-
tially rather than linearly (see Equations 3 and 4)
with increasing skill complexity, and where the
strictness of skill bias in role model selection is
controlled by a parameter rather than being as-
sumed to be perfect.
We find that the accumulation of cultural com-

plexity is constrained in different and interacting
ways by population size N, imitation fidelity q,
and the strictness of skill bias in role model se-
lection s. We recognize the behavior of both the
Treadmill Model (Henrich 2004) and the Glass
Ceiling Model (Andersson 2011, 2013), but many
of the results could not have arisen in models that
focus on single factors. This underscores the need,
in general, to explore interactions between pro-
posed explanatory factors. Doing so here we found
that (a) keeping population size N stable and in-

creasing imitation fidelity q will increase skill
complexity awithout limits for any non-zero val-
ues of N and s; see Figure 5, (b) keeping imitation
fidelity q stable and increasing population size N
increases skill complexity a for small population
sizes (up to a few tens of individuals) but not for
larger populations, and (c) increasing skill bias
strength swill increase skill complexity a for any
population size N and imitation fidelity q, but
only up to a point; see Figure 6. The basic mech-
anisms by which the model responds to changes
in these parameters were explained above, in “The
Synthetic Model,” and in Figure 3; see also Sup-
plemental Material, Movies. 
Our synthetic model shows that population size

is likely a strong constraint on cultural accumula-
tion for small groups (up to 10–20 members), but
the effect abates rapidly for larger groups (see
Figures 4 and 7), which was the context of the
original claims by Henrich (2004). This abatement
becomes highly pronounced when we look at skill
bias strictness levels that are less than perfect, as
they must be assumed to have been in realistic
contexts. This is also in agreement with the current
empirical and experimental data.
The Synthetic Model also shows that the strict-

ness of skill bias in role model selection deter-
mines how well a population can “make use of”
large numbers. If skill bias (see Supplemental Ma-
terials, Appendix C, Equation 13) is strong, then
increasing population size will have a more sus-
tained effect on cultural accumulation (see Figure
5 and Supplemental Material, Appendix D, Figure
12). However, maintaining a strong skill bias
would appear to become progressively harder the
larger and more dispersed a population gets: How
do you find the best role models? How do you
ensure that imitators get to spend sufficient time
in close interaction with them (Tostevin 2007) to
learn complex skills? 
Imitation fidelity can be likened to a lever that

controls the speed of the Treadmill (at perfect im-
itation, the Treadmill would be at rest): it deter-
mines the rate at which loss-rates in imitation
grow as skill complexity increases. Cultural and
biological innovation with the effect of improving
fidelity can be identified. Finally, imitation fidelity
has a commanding effect on cultural accumula-
tion. Cultural evolutionary open-endedness could
occur once fidelity-induced additional capacity

587                                                                 AMERICAN ANTIQUITY                                        [Vol. 81, No. 3, 2016]

s10_AQ81(3)Andersson.qxp_Layout 1  7/8/16  4:00 PM  Page 587



for cultural complexity came to be sufficiently
reinvested in innovations that further increased
transmission fidelity.8
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Notes
1. Strictly speaking a is used by Henrich (2004:201) as

the average error rate (how hard a skill is to learn; see Figure
1), while another parameter b determines the variability of
learning outcomes. The fraction a/b is then taken to indicate
the “complexity” of the skill. Like Powell et al. (2009), we
suppress the b parameter (implicitly assuming it to be constant),
and noting that the unit of a is arbitrary, we refer, for simplicity,
to a as “complexity.”

2. Learning outcomes scatter depends on varying levels
of creativity in the population, while the magnitude of the ex-
tent to which they scatter is seen as intrinsic to the skills, and
is modeled by Henrich (2004) by the parameter b (which is
here suppressed and assumed to be constant.)

3. The Treadmill Model, notably, does not directly depict
the evolution of skill complexity: it depicts the evolution of
skillfulness, which is, in turn, argued logically to lead to evo-
lutionary effects on skill complexity. Andersson and Read
(2016) argue that the distinction between skillfulness and com-
plexity, i.e., between a and z, has not been clear in the literature,
with substantial confusion as a result.

4. In fact, the selection pressure for high levels of skillful-
ness z in role models (skill bias) is maximally strong in the
Treadmill Model: it is built into the ontology of the model by
the choice of a Gumbel distribution (see Vaesen 2012 for an
analysis of this choice).

5. What the Quasispecies Model has done in biology is
indeed precisely to establish that the reason why this is possible
is that transmission fidelity has become sufficiently high.

6. Fidelity in our interpretation encompasses the net effect
of errors and the processes that serve to correct errors. This
includes what Henrich (2004) means by “creativity” in the
role of counteracting errors.

7. Or responsible for producing more complex culture
once larger residential units were in place (regardless of what
actually drove residential population size).

8. Parallels to the concept of a “technological singularity”
are, however, tempting; see Vernor (1993) 
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