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SUMMARY

Mutations are the basis of the clonal evolution of
most cancers. Nevertheless, a systematic analysis
of whether mutations are selected in cancer because
they lead to the deregulation of specific biological
processes independent of the type of cancer is still
lacking. In this study, we correlated the genome
and transcriptome of 1,082 tumors. We found that
nine commonly mutated genes correlated with sub-
stantial changes in gene expression, which primarily
converged on metabolism. Further network analyses
circumscribed the convergence to a network of reac-
tions, termed AraX, that involves the glutathione- and
oxygen-mediated metabolism of arachidonic acid
and xenobiotics. In an independent cohort of 4,462
samples, all nine mutated genes were consistently
correlated with the deregulation of AraX. Among all
of the metabolic pathways, AraX deregulation repre-
sented the strongest predictor of patient survival.
These findings suggest that oncogenic mutations
drive a selection process that converges on the
deregulation of the AraX network.

INTRODUCTION

The sequencing of an increasing number of cancer genomes has

revealed the extent of the genomic heterogeneity of the disease,

whichstems fromacomplex interplayofmutationsandnatural se-

lection of clones (Yates and Campbell, 2012). The complexity of

the cancer genome is a daunting challenge for the rational treat-

mentof the disease.While progress has beenmade in the attempt

to tailor treatments to the definedmolecular features of individual

tumors, the need for more precise patient stratification provides a

rational limit to these strategies (Chin et al., 2011). Moreover, the

concept of convergent evolution in cancer could explain the

acquisition of the cancer phenotype throughmultiple routes (Ger-

lingeret al., 2014;HanahanandWeinberg, 2011;Weinberg, 2014).

Mutations are central in the evolution of most cancers, and,

once acquired, they are liabilities that cancers carry throughout
878 Cell Reports 16, 878–895, July 19, 2016 ª 2016 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://
their progression. In addition to the direct effects on cellular

signaling networks and the reprogramming of gene expression,

cancer mutations also initiate a process of natural selection,

which results in the emergence of cell lineages that exhibit the

transformed characteristics of cancer (Vogelstein et al., 2013).

It is therefore likely that the aggregate of the molecular features

of a given tumor, including the presence of a given mutation,

is represented in its gene-expression profile. Thus, it is conceiv-

able to factorize the expression level of each gene as the

contribution of different tumor features and extract the contribu-

tion due to the occurrence of a cancermutation. In turn, common

transcriptional changes attributable to different mutations, such

as convergence toward a common set of deregulated genes,

should correspond to the deregulation of biological processes

crucial for cancer evolution. These key processes are then

selected via mutagenesis and natural selection and define the

phenotype of the cancer.

Manystudies havecharacterized thegene-expressionchanges

that occur due to prominent cancer-associated mutations in cell

lines and animal models (DeNicola et al., 2011; Fodde et al.,

1994; Johnson et al., 2001; Podsypanina et al., 1999; Sasaki

et al., 2012). However, these mechanistic studies are technologi-

cally limitedby focusingononeora fewcancermutations inoneor

a few cancer types, questioning whether the observed effects of

mutations are model or context dependent. On the contrary, a

systematic analysis can identify meaningful correlations, but it re-

quires simultaneous knowledgeof thepresenceof a cancermuta-

tion and the levels of all of the transcripts in the same sample in

a sufficiently large number of samples that span distinct cancer

types. Examples of such pan-cancer studies have so far

concentrated on the identification of biological processes puta-

tively affected by cancer mutations and/or epigenetic alterations,

without taking into account the underlying changes in gene

expression (Ciriello et al., 2013; Hofree et al., 2013; Kandoth

et al., 2013).

Here, we used genomic and transcriptomic data from 1,082

human tumor samples across 13 cancer types to derive

genome-wide correlations between cancer mutations and tran-

script levels in human primary tumors. In the first part of this

study, we describe the technical details behind the identification

of a statistical model to derive meaningful correlations. In the

second part of this study, these correlations were used to
creativecommons.org/licenses/by-nc-nd/4.0/).
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investigate whether different mutations converge in the tran-

scriptional regulation of defined biological processes. These

processes are likely to represent cellular functions that are crit-

ical for positive selection during cancer evolution.

RESULTS

Identification of Relevant Factors that Correlate with
Changes in Gene Expression in Cancer Using
Generalized Linear Models
We first sought to test the existence of a statistical association

between changes in gene expression and the presence of a mu-

tation in a cancer-associated gene in the tumor, i.e., if the occur-

rence of a mutated gene correlates with an increase or decrease

in the expression of other genes. RNA sequencing (RNA-seq)

profiles for 1,082 primary tumor samples were retrieved from

the Cancer Genome Atlas for 13 distinct cancer types (range

of 21–199 samples per type; Figure S1) for which a validated

mutation spectrum was available (Cerami et al., 2012) (Fig-

ure 1A). In this cohort, we focused on the 158 genes mutated

at a moderate frequency (>2% samples), of which 12 are

mutated at a high frequency (>10% samples; Figure S2). We hy-

pothesized that the level of gene expression could be factorized

as the contribution of four sample features: the histopatholog-

ical cancer type; the expression level of transcription factors;

the presence or absence of a mutated gene; and the synergy

induced by the occurrence of a mutated gene in a particular

cancer type. We therefore employed the established statistical

framework of generalized linear models (GLMs) to perform a

linear regression of gene expression on the following factors:

the 13 cancer types (CTs); the activation status of 119 well-char-

acterized transcription factors (TFs) (Zambelli et al., 2012); the

presence or absence of a mutation in one of the 158 genes

mutated at a moderate frequency (Muts); and the interaction be-

tween the presence of a mutated gene and the cancer type

where it occurred (Ints) (Figure 1B). This generated an initial

GLM (All), which comprised 316 non-collinear factors, with at

least 20 samples per factor.

Many of these factors do not contribute significantly to ex-

plaining the expression level of a gene. Therefore, we employed

different methods for model selection, including backward

selection and regularized regression via the Lasso algorithm

(Tibshirani, 1996). These methods identify a minimal number of

relevant factors while maintaining an acceptable prediction of
Figure 1. Workflow Used to Derive Statistical Associations between M

(A) Input data for the study were collected from 1,082 patients for which clinical, m

also Figures S1 and S2. LUSC, lung squamous cell carcinoma.

(B) The observed level of gene expression was correlated to clinical and mutation

factorized the contribution of predefined factors to the expression level of a given g

fitting the observed gene-expression level in the 1,082 samples. Each GLM predi

factor values for that sample (e.g., if the sample was LUSC, the GLM added a co

(C) Model selection was performed to decide which GLM returned the best pred

(D) The predicted expression was the net sum of positive and negative factors a

affected by a cancer type factor (LUSC, green bar) and a mutation in NFE2L2 (re

(E) The significance of each factor could be tested using a threshold for the mo

representing mutated genes could hereby be associated with gene-expression

a significant statistical association with expression changes in ABCC1 (green

deregulated biological processes that were independently associated with muta
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the observed gene-expression levels. Each method returned a

set of relevant factors that constitute an alternative GLM to the

initial All model (Figure 1B). In total, we generated the following

11 GLMs: a backward selection (BS) model (yielding 38 factors);

a Lasso model (Lasso, 29 factors); and nine models solely based

on a subset of the sample features (i.e., only CT, only TFs, only

Muts, or any other combination of these). The best GLM was

selected based on the goodness of fit between the observed

and predicted expression levels for each gene and the number

of factors on which the GLM leverages. A quality measure of

this trade-off is the Bayesian information criterion (BIC), which

tends to penalize models with too many factors (i.e., higher

BIC values), thereby reducing over-fitting. Using each GLM, we

calculated the BIC values for each gene (Figure 2A). The Lasso,

BS, and onlyCT models performed equally well compared to the

other GLMs (Figure 2A). To choose among these three GLMs, we

resorted to calculating the Akaike information criterion (AIC),

which tends to penalize models with poorer goodness of fit.

The conditional probability that a particular GLM performs better

in the prediction of the expression level of a given gene can be

derived by directly comparing the AIC values of the three

GLMs in the form of AIC weights (Wagenmakers and Farrell,

2004). This analysis revealed that, for 15,040 of the genes

(79%), the BS model had the highest probability of predicting

the expression more accurately than the Lasso model or the

GLM in which only cancer type factors were used (onlyCT) (Fig-

ure 2B). We noticed that the cancer type still represents the

strongest factor in the prediction of gene-expression changes,

as exemplified by a principal component analysis on the 1,082

gene-expression profiles (Figure S3) and the reasonable good-

ness of fit achieved by the onlyCT model (Figure 2A). The major

role of the cancer type in defining the tumor phenotype at the

transcript level is consistent with a previous pan-cancer study

(Hoadley et al., 2014). Nevertheless, a comparison of the gene-

wise BIC value using either the onlyCT model or the BS model

revealed a shift toward lower BIC values when employing the

BS model, which suggested that the additional factors in the

BS model contribute to the expression level of many genes (Fig-

ure 2C). Overall, the goodness of fit between observed versus

predicted gene-expression levels across all 1,082 samples using

the BS model generated a Pearson correlation coefficient of

R = 0.963 (Figure 2D). Considering these results, we adopted

the BS model to test for associations between gene expression

and mutated genes.
utated Cancer Genes and Changes in Gene Expression

utation, and gene-expression level data were simultaneously generated. See

data by constructing alternative generalized linear models (GLMs). Each GLM

ene (e.g.,ABCC1) as a linear regression, where coefficients were estimated by

cted an expected value for the expression level of a gene in a sample given the

ntribution equal to its estimated coefficient, b1).

ictions while using a minimal number of factors.

s determined by the model. As example, expression of ABCC1 was positively

d bar).

derated t-statistics and for the minimum expression fold change. The factors

changes; see also Figure S4. For example, a mutation in NFE2L2 showed

line). Associations identified in this manner were used to derive networks of

ted genes; see also Figure S5.
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Figure 2. Model Selection According to the MinimumBayesian or Akaike Information Criterion Revealed that the Backward Selection Model

Was Better at Fitting Gene Expression across Samples Than the Alternative GLMs

(A) Boxplot of Bayesian information criterion (BIC) values (one for each gene) using alternative GLMs. Key: Lasso, Lasso non-null factors in >0.5% of all genes

(29 factors); BS, backward selectionmodel (38 factors); CT, cancer type factors (13 factors); TFs, transcription factor expression level factors (119 factors); Muts,

presence of a mutation in cancer genes (158 factors); Ints, interaction term between presence of a mutated gene and cancer type (126 factors); All, all factors

(316 factors).

(B) Number of genes whose expression was best explained by one of the alternative GLMs based on Akaike information criterion (AIC) weights.

(C) Comparison of the BIC value for the regression of expression of each individual gene using either the onlyCT or the BSmodel. Bluer contours define areas with

increasing density of points.

(D) Correlation between observed and predicted gene-expression levels using the BS model. Bluer contours define areas with increasing density of points.
Mapping Gene-Expression Changes to Mutated Genes
in Cancer
Because themodel selection revealed that factors other than the

cancer type could contribute to the observed gene-expression

levels, we investigated whether mutations in cancer-associated

genes represent relevant factors (Figure 1D). Interestingly, muta-
tions in nine genes (out of the initial 158 genes mutated at mod-

erate frequency) were featured as factors in the BSmodel. These

mutated genes are CTNNB1 (also known as b-catenin), IDH1,

KEAP1, NFE2L2 (Nrf2), NSD1, PTEN, RB1, STK11 (LKB1), and

TP53. The second best performing GLM, the Lasso model,

also featured six mutated genes as factors, all of which were
Cell Reports 16, 878–895, July 19, 2016 881



among the nine mutated genes identified by the BS model. The

contribution of eachmutated gene to gene expression was inde-

pendent of the cancer type and the activation of a given tran-

scription factor, as these contributions were already accounted

for by their respective factors. Thus, we sought to determine

which genes changed their expression in association with the

occurrence of each of thesemutated genes by applying differen-

tial gene-expression analysis, performed using the voom algo-

rithm (Law et al., 2014) (Figure 1E). We found that on average,

the occurrence of a mutated gene was correlated with expres-

sion changes in 495 genes (range of 302–764 genes per mutated

gene, false discovery rate (FDR) <1%andminimum absolute fold

change (FC) >50%; Figure S4). In total, 2,750 genes were asso-

ciated with at least one mutated gene (1,075 genes [39%] were

associated with at least two mutated genes).

We next sought to validate whether the genes found to

be associated with one of the nine mutated genes changed

their expression in the data derived from independent experi-

ments. To this end, we used 189 experimentally derived gene

sets, each representing genes whose expression is altered in

response to a perturbation in a key cancer-associated gene

(Subramanian et al., 2005). We then performed a gene-set anal-

ysis to evaluate whether the genes found to be associated with a

given mutated gene are also enriched in any of these 189 gene

sets. We observed an overall high consistency between the di-

rection of the regulation of the genes found to be associated

with a givenmutated gene and the corresponding experimentally

derived gene sets (Figure S5). For example, genes found to be

upregulated when RB1 was mutated also significantly enriched

the RB_P107_DN.V1_UP gene set, which features genes upre-

gulated in primary keratinocytes from RB1 and RBL1 skin-spe-

cific knockout mice (Lara et al., 2008). As a second example,

genes associated with NFE2L2 mutations were also exquisitely

overrepresented in the NFE2L2.V2 gene set, which contains

genes upregulated in embryonic fibroblasts with a knockout of

NFE2L2 (Malhotra et al., 2010). As a final example, genes found

to be upregulated with CTNNB1 mutations specifically enriched

the BCAT_GDS748_UP gene set, which includes genes upregu-

lated in kidney fibroblasts expressing the constitutively active

form of CTNNB1 (Chamorro et al., 2005).

Taken together, these results suggest that differential gene-

expression analysis based on the BS model uncovered associa-

tions between gene expression and the nine mutated genes

that recapitulate the experimentally observed findings. These

expression changes are likely to be context independent and

not attributable to a specific cancer type. This results from the

fact that the BS model accounted for the cancer type as a

distinct factor and precluded collinearity among cancer types

and mutated genes.

Convergence of Mutation-Associated Gene-Expression
Changes in the Regulation of Metabolism
Next, we aimed to elucidate whether the genes whose expres-

sion is associated with each mutated gene are involved in spe-

cific biological processes. Particularly, we expected that the

nine mutated genes were independently associated with pro-

cesses linked to important cancer-relevant phenotypes, known

as the hallmarks of cancer (Hanahan and Weinberg, 2011).
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Convergence on any of these processes would provide strong

evidence that cancer mutations drive the selection of clones

that feature properties that reflect these hallmarks. Therefore,

we checkedwhether the genes associated with the ninemutated

genes were enriched in any particular biological process, each

represented by a distinct Gene Ontology (GO) term. We

employed consensus gene-set analysis using Piano (Väremo

et al., 2013), which revealed a diverse number of GO biological

processes that were significantly associated with each of the

examined mutated genes (FDR < 0.01). However, contrary to

the premise, only a small number of GO biological processes

were simultaneously associated with more than one mutated

gene (Figure 3). We therefore further classified those processes

that displayed a significant convergence compared to 10,000

random permutations (p < 0.01) according to the 24 ancestor

categories they are assigned to within the GO hierarchy.

We thus observed an overrepresentation of the GO ancestor

category of metabolic processes (Figure S6). Intriguingly, meta-

bolism was the GO ancestor category with the most stable over-

representation when more stringent criteria for convergence

are enforced (Figure S6). Collectively, these results suggest

that the presence of each of these nine mutated genes entails

a diverse spectrum of gene-expression changes in terms of

affected biological processes, but that the reprogramming

induced by these mutations primarily converges on the regula-

tion of metabolism.

Mutation-Associated Gene-Expression Changes
Converge on a Sub-network of Metabolic Reactions
Metabolism appeared to be the biological process that dis-

played the largest extent of regulation associated with the nine

mutated genes. Indeed, mutations in cancer genes have been

recognized to regulate metabolism to meet the metabolic re-

quirements of rapid proliferation and allow cancer cells to adapt

to the microenvironment (Cairns et al., 2011; Schulze and Harris,

2013). We and others previously found that distinct cancer types

featured few common gene-expression changes in metabolism

from their respective non-cancerous tissues, which were primar-

ily ascribed to altered nucleotide biosynthesis (Gatto et al., 2014;

Hu et al., 2013; Nilsson et al., 2014). However, these studies

could not distinguish whether the observed changes in gene

expression are attributable to a common adaptation process

during cancer progression or are rather the consequence of a

specific mutation event (Gatto and Nielsen, 2016). To determine

this, we selected among the genes found to be associated with

nine mutated genes those that overlap with the 3,765 genes that

participate in the human metabolic network (Mardinoglu et al.,

2014). This set corresponds to 499 metabolic genes, each asso-

ciated with the presence of at least one of the nine mutated

genes, for a total of 852 associations.

The network of associations between a mutated gene and

regulated metabolic genes revealed a number of genes on which

multiple mutated genes converged (Figures 4A and S7). How-

ever, no metabolic gene showed a convergent association with

all mutated genes, nor was there a canonical metabolic process

(as defined by GO) to which all mutated genes were associated

(refer to Figure 3). We therefore tested the hypothesis that muta-

tions collectively associate with metabolic genes encoding a



Figure 3. Mutated Genes Converged on the Regulation of GO Biological Processes Primarily Related to Metabolism

Each row indicates a GO term enriched with up- (red) or down- (blue) regulated genes associated with each mutated gene (column) in the consensus gene-set

analysis. GO terms were classified according to the ancestor GO category and sorted by the significance of the convergence (bar plot on the right, see also

Figure S6).
common yet non-canonical sub-network of reactions. We first

mapped the number of mutated genes that converged on each

reaction in the humanmetabolic reaction network (where two re-

actions are linked if they share a common metabolite) through

the association with the underlying reaction-coding gene(s) (Fig-

ure 4B). This highlighted distinct clusters of reactions within the

humanmetabolic network. To extract the largest functional clus-

ter, we searched for a connected sub-network of reactions in

which the number of converging mutated genes was maximized

by using the jActiveNetworks algorithm (Ideker et al., 2002).

This approach returned a single high-convergence reaction

sub-network (Figure 4C). We characterized this sub-network

by determining whether its nodes significantly enrich any

pathway and/or metabolite compared to the background hu-

manmetabolic network. We found that the sub-network featured

an overrepresentation of the metabolism of xenobiotics, estro-

gen, and arachidonic acid (Figure 4D). In addition, individual

metabolites such as hydrochloride (a byproduct of xenobi-

otic metabolism), glutathione, arachidonic acid, and oxygen

were also overrepresented within the sub-network (Figure 4D).

Collectively, these findings suggest that the regulation of a

sub-network of reactions that connects arachidonic acid and xe-

nobiotics via glutathione and oxygen correlates independently

with nine frequently mutated genes in cancer.
Curation of the High-Convergence Sub-network of
Metabolic Reactions: AraX
Starting from the high-convergence reaction sub-network, we

manually curated a representation of the candidate pathway

that best represents these reactions according to the literature.

We termed this pathway AraX (Figure 5), for arachidonic acid

and xenobiotic metabolism. The AraX pathway contains 20%

of all mutation-metabolic gene associations found in our study

(166 of the 852 links in Figure 4A). One branch of the AraX

pathway comprises reactions that control the availability of

arachidonic acid and catalyze its conversion to eicosanoids.

The second branch facilitates the detoxification of xenobiotics.

Importantly, nine enzymes encoded by the genes associ-

ated with this pathway are involved in both branches (e.g.,

CYP4F11). In addition, transporters that can secrete the end

products of the pathway are also included (Figure 5). The main

co-substrates for arachidonic acid and xenobiotic metabolism

are oxygen and glutathione, whose levels are controlled by the

remaining genes in the pathway. The overrepresentation of

xenobiotic metabolism with genes mutated in cancer was unex-

pected, considering that the samples used for this study were

derived from untreated tumors. The importance of AraX in

cancer may reside in its individual components, some of which

have established roles in cancer initiation and progression.
Cell Reports 16, 878–895, July 19, 2016 883



Aberrant arachidonic acid metabolism regulates processes

critical for cancer progression, mainly by establishing a tumor-

supporting microenvironment where immune cells and endothe-

lial cells are recruited to produce mitogens, pro-inflammatory

cytokines, and angiogenic factors (Wang and Dubois, 2010). En-

zymes within xenobiotic metabolism form reactive intermediates

from exogenous and endogenous substrates that can cause

cancer initiation, potentially by promoting genotoxicity (Nebert

and Dalton, 2006). Both pathways are a primary source of cyto-

solic reactive oxygen species, which exhibit a characteristically

abnormal concentration in many types of cancer cells (Trachoo-

tham et al., 2009). Finally, a number of xenobiotic-metabolizing

enzymes and transporters in AraX confer cancer cells with

mechanisms of detoxification and drug resistance (Fletcher

et al., 2010). Taken together, this suggests that AraX is impli-

cated in a number of host-cancer interactions that result in

pro-tumorigenic functions.

We next confirmed that, compared to all 186 KEGG pathways,

AraX is, on average, the pathway most significantly overrepre-

sented by the genes associated with any of the nine mutated

genes (odds ratio, 17.07; 95% 10,000 bootstraps confidence

interval [CI], 4.62–26.70); Figure 5B), followed by xenobiotic

metabolism by cytochrome P450 (odds ratio, 5.91; 95% CI,

1.73–9.44). AraX is also the most overrepresented pathway

when compared to the 674 Reactome pathways, followed by

the termination of O-glycan biosynthesis (Figure 5C). Notably,

the KEGG and Reactome pathways also include non-meta-

bolic genes, particularly signaling pathways, which are more

commonly dysregulated in cancer. In contrast, AraX was con-

structed based on metabolic genes alone. Overall, this finding

suggests that the regulation of a network of metabolic reactions

connected to arachidonic acid and xenobiotic metabolism and

mediated by glutathione and oxygen is advantageous in cancer,

as nine frequently mutated genes independently entail transcrip-

tional changes that converge on this pathway.

Convergence on AraX Regulation Is Validated in an
Independent Cohort
We also sought to validate whether the expression changes

correlated here with mutations in a cancer-associated gene

could be confirmed in an independent cohort and, in particular,

whether these correlations indeed converged primarily in the

regulation of AraX. We therefore retrieved genomic and tran-

scriptomic data from 4,462 additional primary tumor samples

spanning the same 13 cancer types (ranging between 94 and

978 samples per type; Figure S8). First, we checked the validity

of the BS model or whether it was over-fitted to the samples in

the discovery cohort. To this end, we compared the BIC values

in the regression of the expression of each gene using either

the BS model or the onlyCT model. The BS model outperformed

the onlyCT model in the prediction of expression of most genes,

as proven by a substantial shift toward lower BIC values (Fig-

ure 6A). This suggests not only that additional factors other

than the cancer type are important to explain the expression

level of many genes, but also that those factors previously

included in the BS model provide a noticeable contribution. In

particular, we checked whether gene-expression changes that

we associated with the presence of a mutated gene in the dis-
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covery cohort were consistent with the changes associated

with the same mutated gene in the validation cohort (FDR <1%

and minimum absolute fold change >50%). In the validation

cohort, the occurrence of a mutated gene correlated on average

with expression changes in 796 genes (range 169–2,235 per

mutation; Figure S9), for a total of 4,810 genes (note that 1,455

genes [30%] were associated with more than one mutated

gene). For each of the nine mutated genes, we found highly

significant linear correlations between the fold changes in the

expression of associated genes estimated using either the

discovery or the validation cohort, with Pearson correlation coef-

ficients ranging from 0.26 for CTNNB1 to 0.66 for NFE2L2

(p = 5 3 10�34 to 7 3 10�297; Figure 6B).

Next, we verified whether expression changes correlated

to each of the mutated genes in the validation cohort also

converged preferably on AraX compared to other metabolic

processes. Compared to the KEGG and Reactome pathways,

AraX is the second most significantly overrepresented pathway

(average odds ratio across mutated genes, 6.98; 95% bootstrap

CI, 2.95–13.24; Figures 6C and 6D), and the only pathway for

which we observed a consistent overrepresentation of all nine

mutated genes. The most overrepresented pathway was alda-

rate and ascorbate metabolism in KEGG and glucuronidation

in the Reactome, both functionally related to AraX. Furthermore,

three of the 12 genes that were associated with at least six

mutated genes in the validation cohort belonged to AraX:

HGD, a dioxygenase in tyrosine and phenylalanine catabolism;

ADH7, a dehydrogenase that metabolizes hydroxysteroids

and lipid peroxidation products; and ALDH3A1, which oxidizes

aldehyde substrates. Consistently, multiple mutated genes

converged in the association with these three genes already in

the discovery cohort, particularly for HGD and ADH7, as indi-

cated by their expression profiles in mutated and non-mutated

samples (Figures S10A and S10B). The increased statistical po-

wer in the validation cohort allowed us to discover nine additional

mutation-associated genes that encode reactions in or con-

nected to AraX. These include PTGS2 (also known as COX-2),

an enzyme in the prostaglandin synthesis pathway, and the

monooxygenase FMO1. With these additional genes, the AraX

pathway could be expanded to a total of 84 genes (Figure 5).

Taken together, these findings indicate that our analysis yielded

reproducible correlations between gene expression and the

occurrence of mutations in a cancer-associated gene. Impor-

tantly, these correlations primarily converge on the regulation

of AraX over any othermetabolic process, highlighting the poten-

tial importance of this pathway during cancer evolution.

Deregulation of AraX in Cancer Is the Strongest
Predictor of Survival among Metabolic Pathways
We sought to investigate the implications of the convergence on

AraX in cancer. We observed no obvious pattern in the direction

of the regulation of AraX by the different mutated genes, even

though we noticed similar effects on AraX in cases of mutated

KEAP1, NFE2L2, STK11, and PTEN, which tended to be

the opposite in cases of mutated CTNNB1, IDH1, NSD1, RB1,

and TP53 (Figure S11). Nevertheless, there was an evident mu-

tation-specific modulation in the expression of AraX genes,

with varying degrees of overlap. This poses a challenge when
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Figure 4. The Network of Associations between Mutated Cancer Genes and Metabolic Genes Highlighted a Region of High Convergence in

which Genes Encoded for a Metabolic Sub-network Revolving around Arachidonic Acid and Xenobiotics

(A) Circos plot in whichmutated genes were connected tometabolic genes if a statistical association was found (see also Figure S7). Metabolic geneswere sorted

counter-clockwise according to the number of links (i.e., the number of mutation-metabolic gene associations). Bars indicate the number of mutated genes

converging to a particular gene (see also Figure S10). Black entries in the outer circle indicate genes belonging to AraX (introduced in Figure 5).

(legend continued on next page)
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Figure 5. A Literature Curated Sub-network of Reactions that revolved around Arachidonic Acid and Xenobiotic Metabolism, Termed AraX,
Showed Convergence by Multiple Mutated Genes in Cancer

(A) The boxes next to each gene indicate which mutated genes were associated with it (see also Figure S11).

(B and C) Overrepresentation of AraX compared to KEGG (B) or Reactome (C) metabolic pathways by genes associated with a mutated gene. Each bar indicates

the odds ratio for the corresponding mutation. The top five ranked pathways were sorted according to mean overrepresentation (gray bar), where the error bars

span the 95% bootstrap confidence interval.
devising an intervention strategy to normalize the expression

or activity of the AraX pathway aimed at halting cancer progres-

sion. However, this also suggests that a generic deviance (i.e.,

deregulation) in the expression of AraX is likely to confer a

context-independent selective advantage in cancer. Therefore,

we speculated that the extent of AraX deregulation in the tumor

should be predictive of an independent measure of selective

advantage, such as the patient’s survival. Thus, we first esti-

mated a deregulation score for the AraX pathway in each tumor

sample using Pathifier (Drier et al., 2013). This score captures the

extent to which the expression of a pathway in a tumor sample
(B) The human metabolic reaction network where each node is a reaction and t

association with any reaction-encoding gene.

(C) Extraction of the sub-network in which the number of converging mutation-d

(D) Characterization of the sub-network in terms of overrepresented pathways (t

network.
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deviates from its expression in the normal tissue of origin.

Then, we performed survival analysis for a subset of the discov-

ery cohort consisting of 718 samples, selected because they

encompass six cancer types for which the reference normal

samples were available. We regressed overall survival on the

AraX deregulation score using a Cox proportional hazardsmodel

and we observed a significant increase in hazard with higher

AraX deregulation (p = 6 3 10�8). We tested whether a similar

trend could be observed concomitantly with a high deregulation

of any other metabolic pathway or metabolism in general. How-

ever, compared to the 70 KEGGmetabolic pathways and a gene
he blue gradient indicates the number of mutated genes converging to it via

riven transcriptional changes was maximized.

op) and metabolites (bottom) compared to the background human metabolic
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Figure 6. Validation of the Associations between Mutated Genes and Gene Expressions and Their Convergence on AraX Deregulation in an
Independent Cohort of 4,462 Samples

(A) Comparison of the BIC value for the regression of expression of each individual gene using either the onlyCT or the BSmodel. Bluer contours define areas with

increasing density of points.

(B) Correlation of expression fold changes for mutation-associated genes as estimated using either the discovery or the validation cohort (each color defines

genes associated with a given mutated gene).

(C and D) Overrepresentation of AraX compared to KEGG (C) or Reactome (D) metabolic pathways by genes associated with a mutated gene in the validation

cohort. Each bar indicates the odds ratio for the corresponding mutation. The top five ranked pathways were sorted according to mean overrepresentation (gray

bar), where the error bars span the 95% bootstrap confidence interval.
set comprising 3,714 metabolic genes, the deregulation of AraX

ranked as the best and most robust predictor for survival as esti-

mated by a Lasso penalized Cox proportional hazardmodel (Fig-

ure 7A). At the cross-validated penalty value (log-l = �2.5), only

two other KEGGmetabolic pathways were predictive of survival,

oxidative phosphorylation, and the pentose phosphate pathway.

Nevertheless, the AraX deregulation score resulted in the highest

hazard. To further corroborate this, we could not achieve a

comparably significant increase in hazard when we performed

a univariate Cox regression of survival on the deregulation score

of pathways larger than AraX, such as purine metabolism (159

genes) or the cell cycle (128 genes), despite their established

role in malignant transformation (Figures 7B and 7C). These re-

sults suggest that AraX deregulation is predictive of survival likely

because it confers an evolutionary advantage, and not due to the

generic deregulation attributable to heterogeneity in advanced

stage tumor samples.

We investigated whether poor prognosis could be attributed

to the fact that advanced tumors select for clones with high

rather than low AraX deregulation. To this end, we gathered

a subset of samples from both cohorts consisting of 1,908

samples, selected to represent the same six cancer types as

described above (range of 184–778 per type) and randomly

split them into two sub-cohorts (954 sample each). We first

verified whether there was an optimal threshold score for

AraX deregulation that maximized the difference in prognosis

between patients in the discovery sub-cohort using maximally

selected rank statistics (Hothorn and Lausen, 2003). This re-

turned a statistically significant threshold score for AraX dereg-

ulation equal to 0.764 (p = 7 3 10�3, 1,000 bootstraps 95% CI:

0.731–0.802), above which patients had indeed substantially

worse clinical outcome (log-rank test p = 8 3 10�6; Figure 7D).
This correlation was independently confirmed when we applied

the threshold to classify samples in the validation sub-cohort as

having either low or high Arax deregulation (p = 1 3 10�5; Fig-

ure 7E). When leveraging on all samples, there was an evident

correlation between sample classification into low versus high

AraX deregulation and survival (Wald test p = 6 3 10�10). The

increased hazard was robust to sub-sampling (hazard ratio =

2.26, 10,000 bootstraps 95% CI: 1.72–2.93) and was not

attributable to a bias in the score distribution, as verified by

randomly shuffling the sample labels 10,000 times (permutation

test p < 10�5).

Finally, we sought to characterize the prognostic relevance of

AraX deregulation. Across cancer types, we did not detect any

dependency between low or high AraX deregulation and other

relevant clinical features, in that we found no correlation with

age (Wilcoxon rank-sum test p = 0.745), with metastatic status

(Fisher’s exact test p = 0.199) nor with cancer-type-specific

tumor stages (likelihood ratio test p = 0.488–0.782, excluding

endometrial cancer due to missing information). This confirms

that the association between AraX deregulation and survival is

independent of other clinical features represented in the dataset,

most notably tumor stage and metastatic status. Within individ-

ual cancer types, we recovered a positive trend between AraX

deregulation and low survival for invasive breast carcinoma

(age-adjusted hazard ratio = 3.468, 95% CI: 1.03–11.7, p =

0.044), but it was not significant in any of the other cancer types.

The lack of this correlation might be attributable to the fact that

we observed an association between a cancer type and its

expected AraX deregulation score (ranging from 0.28 in endome-

trial cancer to 0.67 in head and neck squamous cell carcinoma,

likelihood ratio test p < 10�16; Figure S12A). This displayed an

inverse albeit low correlation with the corresponding 5-year
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Figure 7. Survival Analysis of Patients Stratified upon Metabolic Pathway Deregulation Revealed that AraX Was the Strongest Predictor of

Survival

(A) Log-hazard ratio per unit of deregulation score for AraX, 186 KEGG metabolic pathways, and a gene set including 3,714 metabolic genes at different Lasso

penalties (log-l) in themultivariate prediction of overall survival for 718 tumors. Each path represents a different pathway. Only the paths relative to pathways that

were predictive of survival at the optimal lasso penalty, log-l =�2.5 (vertical line) were colored. The graph shows that AraX was the strongest predictor of survival

at the optimal lasso penalty, followed by oxidative phosphorylation and the pentose phosphate pathway and that its predictive strength is robust to different

choices of lasso penalties.

(B) Wald test statistic in the univariate Cox regression of survival using deregulation of the pathways in (A) that contained at least 100 genes.

(C) Log-hazard ratio per unit of deregulation score for the pathways in (B).

(D and E) Kaplan-Meier survival plots for 1,908 tumor samples equally split in a discovery (D) and validation (E) cohort and stratified upon low (blue) versus high

(red) AraX deregulation score according to a threshold derived in the discovery cohort (see also Figures S12 and S13).
survival for cancers of the same tissue (likelihood ratio test p <

4 3 10�12; Figure S12B), which suggests that more aggressive

cancer types tend to feature higher AraX deregulation. An anal-

ysis of statistical power indicated that larger sample sizes are

needed to further discern a correlation between cancer-type-

specific overall survival and the corresponding AraX deregula-

tion scores (Figure S13). This was the case with breast invasive

carcinoma, for which the highest number of samples was avail-

able (n = 778).

In conclusion, the strong association of AraX deregulation with

poor prognosis as opposed to other metabolic pathways under-

scores the biological significance of this pathway in cancer,

which indicates that advanced tumors select for AraX deregula-

tion. This conclusion corroborates that our study has correctly

identified a relevant cancer process as a node of convergent

evolution and suggests that the aberrant expression of AraX
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confers a selective advantage for cancer progression, potentially

more than any other metabolic process.

DISCUSSION

Cancer cells exhibit heterogeneous combinations of genetic

alterations that are the result of a process of natural selection.

Through this process, cancer cells deregulate critical biological

functions to establish the hallmarks of the transformed pheno-

type (Vogelstein et al., 2013). The concept of convergent evolu-

tion in cancer implies that different genetic alterations can result

in functionally similar outputs, which are likely to reflect an evolu-

tionary advantage for the cancer cells with respect to their micro-

environment (Gerlinger et al., 2014).

Probing convergent evolution in molecular studies is techni-

cally challenging in that typically few mutations can be induced



in defined tumor models, raising the possibility that the observed

effects are context dependent. Here, we resorted to a system-

atic analysis that extracted the regulation of gene expression

concomitant with mutations in major cancer genes. Unexpect-

edly, we found that mutations in only nine of 158 cancer genes

were associated with substantial and recurrent changes in

gene expression, and these were largely heterogeneous. Within

this complexity, we could uncover a single node of convergence,

a metabolic pathway that we termed AraX. Consistently, a paral-

lel and complementary systematic analysis to ours suggested

that also copy-number alterations seem to provide an evolu-

tionary advantage in cancer if they deregulate cell metabolism

(Sharma et al., 2016). AraX is a network of metabolic reactions

that revolve around the metabolism of arachidonic acid and

xenobiotics mediated by oxygen and glutathione, which is

consistent with the importance of regulating these cofactors in

different tumor models. In concordance with this finding, previ-

ous network analyses of cancer metabolism revealed elements

of AraX as the only sub-networks recurrently deregulated across

several different tumor types compared to matched normal tis-

sues (Agren et al., 2012; Wang et al., 2012). Our results showed

that nine frequently mutated genes in cancer converge in a

significant association with the transcriptional deregulation of

AraX, more than with any other metabolic or biological pathway.

This convergence is striking in that it seemingly occurs regard-

less of the cancer type and independent of the expression of a

number of transcription factors, at least to the extent that our

generalized linear model could adjust for the effect of these con-

founding factors. A limitation is that this approach cannot disen-

tangle severe collinearities for some genes typically mutated in

specific cancer types (e.g., VHL in renal cell carcinoma), so these

were excluded from further analysis.

Survival analysis further corroborated that the deregulation of

AraX likely confers a context-independent selective advantage

in cancer evolution. However, AraX deregulation was prominent

in tumors belonging to known aggressive cancer types, e.g.,

head and neck squamous cell carcinoma. This suggests that tu-

moraggressiveness correlateswithAraXderegulationbut cannot

validate the extent towhich AraX deregulation is responsible for a

poorer prognosis in an individual cancer type. The limited sample

sizes in our cohort allowed us to test and confirm this cancer-

type-specific correlation only in the case of breast cancer.

Furthermore, our analyses also unveiled other aspects

regarding the convergence between mutations in different can-

cer genes. First, only two genes showed expression changes

that were independently associated with at least six mutated

genes both in the discovery and the validation cohort. These

genes are HGD and ADH7. Remarkably, both genes code for

proteins with metabolic functions and are linked to AraX. To

our knowledge, HGD has never been implicated in cancer, but

polymorphisms in ADH7 have been associated with susceptibil-

ity to upper aero-digestive tract cancers (Hashibe et al., 2008;

McKay et al., 2011) and head and neck squamous cell carcinoma

(Wang et al., 2014; Wei et al., 2010). Second, other metabolic

processes showed patterns of convergence, although not as

pronounced as for AraX. Prominently, many mutation-associ-

ated genes were related to protein glycosylation (e.g., O-glycan

biosynthesis).
Intriguingly, the fact that AraX is a transcriptionally regulated

pathway of oxygen-consuming reactions could reflect a strategy

by which cancer cells adapt to tumor hypoxia by regulating

oxygen-dependent enzymes in an attempt to compensate for

reduced oxygen availability. Mutations in cancer genes select

independently for the deregulation of this pathway, potentially

under the selective pressure of hypoxia. Moreover, the direct

link between glutathione metabolism and the processes within

AraX implicate a central role for oxidative stress in cancer

development.

Collectively, our analysis suggests that, in cancer, convergent

evolution results in the transcriptional deregulation of metabolic

processes, primarily the AraX pathway. We speculate that an

effective strategy to arrest cancer evolution could be repre-

sented by either modulating the activity of components of the

AraX pathway or by impeding the major regulatory axis associ-

ated with it, the Keap1-Nrf3 pathway, using a multi-targeted

approach, a strategy also advocated by network pharmacology

(Hopkins, 2008).

EXPERIMENTAL PROCEDURES

Data and scripts for the computational workflow described in Figure 1 are

deposited under Synapse ID: syn3163200.

Data Retrieval

RNA-seq gene-expression profiles and clinical data for 1,082 primary tumor

samples encompassing 13 cancer types (BLCA, bladder adenocarcinoma;

BRCA, breast carcinoma; COAD, colon adenocarcinoma; GBM, glioblastoma

multiforme; HNSC, head and neck squamous cell carcinoma; KIRC, clear cell

renal cell carcinoma; LGG, low-grade glioma; LUAD, lung adenocarcinoma;

LUSC, lung squamous cell carcinoma; OV, ovarian carcinoma; READ, rectum

adenocarcinoma; PAAD, pancreatic adenocarcinoma; UCEC, uterine corpus

endometrial carcinoma) were downloaded from the Cancer Genome Atlas

(TCGA) in November 2013. A second group of 4,462 primary tumor samples

encompassing the same 13 cancer types were also downloaded from TCGA

in August 2015. Mutation profiles for all samples in this study were obtained

from the cBioPortal (Gao et al., 2013).

Differential Gene-Expression Analysis

RNA-seq-generated readcount tableswere used toestimate geneexpression in

each sample in the pan-cancer cohort. To this end, we adopted voom, an

approach that extends the generalized linear model (GLM) for microarray

gene-expression signals to analyze count-based expression data (Law et al.,

2013). The gene-wise count variance is calculated from the linear regression of

gene-wise observed log counts across all samples in the cohort according to a

number of factors (to be decided), and it is defined as the gene-wise residual

SD of the regression. If a lowess curve is fitted to square-root residual SD as a

function of mean log counts, it is possible to predict the square-root SD of

each observation (i.e., log counts for a given gene in a given sample) from this

mean-variance trend. Differential gene-expression analysis for each factor is

then performed using the standard linear modeling procedure proposed by

limma (Smyth, 2004), with the addition that the log counts per million of each

observation are corrected using the predicted variance as an inverse weight.

Even if voomassumes that each observation is normally distributed, thismethod

proved to outperform count-based approaches in differential expression anal-

ysis comparison studies (Rapaport et al., 2013). The significance of each factor

in the regressionof theexpressionofeachgenewas then testedusingmoderated

t-statistics. So generated p values were corrected for multiple testing by con-

trolling the false discovery rate (FDR) across genes using the Benjamini and

Hochberg correction and by adopting the nestedF correction across contrasts.

A factor was deemed significant in the regression of the expression of a gene if

it was associated to at least 50% fold change (jlog2FCj >1.5) with a FDR <0.01.
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Generalized Linear Model Selection

In order to perform the differential gene-expression analysis above, it is

required to define the factors for the regression. These factors are devoted

to explain the biological variability of gene-wise counts across the samples

in the pan-cancer cohort. They should capture the main contributions and

some smaller contributions interesting to our investigation. Hence we tenta-

tively selected the following factors for an initial design (All):

(1) The cancer types, i.e., the belonging to a histopathologically defined

cancer type among the 13 types in the cohort.

(2) The mutation status of 158 cancer-associated genes. An initial list

of 260 genes was generated by merging the Cancer5000 and

Cancer5000-S lists in Lawrence et al. (2014). We excluded HIST1H3B,

HIST1H4E, and MLL4, which could not be uniquely mapped using

the Ensembl v.73 annotation. Furthermore, 102 genes that were not

mutated at moderate frequency in the cohort (>2%) were also

excluded. For the purpose of this study, any type of mutation in these

genes was sufficient to qualify the gene as mutated in the sample.

(3) The activation status of 119 well-characterized transcription factors

(Zambelli et al., 2012), which was defined by the belonging to a certain

quintile of expression in the pan-cancer cohort.

(4) The interaction terms between a cancer type and a cancer-associated

gene mutated at high frequency. These were defined as the 12 muta-

tions with a frequency >10% across the pan-cancer cohort. There

were 126 such interaction terms, excluding those linearly dependent

on the other factors. These factors took into account cancer-type-

dependent contributions of mutated genes.

We applied the following filters to exclude factors from the initial design that

may confound the regression:

(1) At least 20 samples in the cohort belonged to each factor (e.g., at least

20 samples belonged to a certain cancer type).

(2) Each factor had a maximum variance inflation factor (VIF) equal to 4,

excluding interaction terms. This filter attempted to minimize collin-

earity, which may occur in this cohort due to cancer-type-specific

mutations (e.g., VHL in clear cell renal cell carcinoma). In this case,

the gene-expression signal could not be properly factorized in the

contribution of the collinear factors, and only the main factor was

retained (in our case the cancer type).

Using the same notation (where appropriate) as in voom, the GLM (1) was

E
�
yg;i
�
=mg;i = Ig + xTi bg; (Equation 1)

where yg;i is the log counts per million (log-cpm) value for gene g in sample i,

mg;i is the expected value, xi is the vector of covariate values in sample i, bg
is the (unknown) vector of coefficients representing the contribution of each

covariate on the expected value, and Ig is the explicitly formulated intercept

of the GLM. In our formulation, the All model (2) becomes

mg;i = Ig +

 XnCancerMutations

m=1

bmxm +
XnCancerTypes

t =1

btxt +
XnTranscriptionFactors

f =1

bf xf

+
XnInteractions

I= 1

bIxI

!T

;

(Equation 2)

where xm is a binary value {0,1} indicating the absence or presence of a muta-

tion in genem in the sample i; xt is a binary value {0,1} indicating the belonging

of sample i to the cancer type t; xf is a ternary value {–1,0,1} indicating whether

the expression of transcription factor f in sample i is in the bottom quintile,

second to fourth quintile, or top quintile with respect to the distribution of its

expression values in the pan-cancer cohort; and xI is a binary value {0,1} indi-

cating whether there is the interaction I between the cancer type to which

sample i belongs and a frequently mutated gene.
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We excluded the following observations from this study:

1. All genes that had ambiguous annotation in Ensembl v.73. This set cor-

responded to 565 genes.

2. All genes that were not detected in any sample. A gene was considered

detected if at least ten counts were reported in 10% of the samples.

Although the opposite may have occured due to an actual repression of

the gene, this signal could not be distinguished fromgenes thatweremis-

annotated or, more likely, from genes whose transcripts could not be de-

tecteddue to technical limitation in thesensitivity of the sequencing instru-

ment. These observations did not add any information on the expression

status of the (presumptive) gene, and thus their removal did not alter the

result of downstream analyses. This set corresponded to 1,075 genes.

Overall, 1,575 genes were excluded from the initial set of 20,531 genes

(65 overlapped between the above mentioned filtered sets), yielding a total

of 18,956 genes analyzed.

Many factors in the All model are unlikely to contribute in explaining the

expression of most genes, thereby increasing the risk of over-fitting. We adop-

ted two different model selection methods to derive the most relevant factors

while using a minimal number of factors. First, backward selection (Yan

and Su, 2009) was used to exclude, at each iteration, the factor that was asso-

ciated with the least number of differentially expressed genes. The procedure

was stopped once the number of differentially expressed genes (defined as

FDR<0.01 and jlog2FCj>1.5)wasgreater than0.5%of all genes (i.e., 90 genes).

The resulting GLM contained 38 factors (BS model). Second, we used L1-con-

strained regression shrinkage using the Lasso algorithm (Tibshirani, 1996) to

compute, for each gene, the factors in the All model with a non-null coefficient.

The penalty value used for the Lasso regression was calculated such that the

mean 10-fold cross-validated error was minimum. The Lasso method was im-

plemented using theR-package glmnet (Friedman et al., 2010).We constructed

a GLM based on the factors with a significant coefficient (jb j > log2(1.5)) in at

least 0.5%, of all genes (Lasso model), resulting in 29 factors. Finally, we con-

structed alternative GLMs that feature either only the cancer type (CT) or the

transcription factor levels (TFs) or the mutation statuses (Muts) or any other

meaningful combination of these classes with interactions, if appropriate.

ThebestGLMwasevaluatedby first calculating theBayesian information cri-

terion (BIC) values for thegoodnessof fit of all genesbyeachGLM.This criterion

was chosen for its ability to capture the trade-off between the goodness of fit

and the stringent penalty on the number of factors utilized in the regression of

theexpressionof agene (for eachGLM, there isaBICvaluepergene), thusmini-

mizing over-fitting. Given that the Lasso, BS, and onlyCT performed equally

well, we compared the goodness of fit of thesemodels in terms of Akaike infor-

mation criterion (AIC) values, which, compared to BIC values, penalize a poorer

goodness of fit over the number of factors. To this end, we computed, for each

gene, thedifferencebetween theAICvalue returnedby thecurrentGLMand the

minimumAIC value observed using any of the threeGLMs. From this, we calcu-

lated the AICweight of the alternativeGLMs in the regression of each gene. The

AIC weights were transformed into probabilities that a certain GLM was the

most likely to explain the expression of that gene. Finally, we counted for

each GLM the number of genes whose expression was best explained by

that GLM. If the onlyCT model was considered as a positive control for the

regression of gene expression, the comparison of gene-wise BIC value be-

tween the onlyCT model and an alternative GLM was used to determine

whether the additional factors in the alternative GLM provided a better good-

ness of fit while controlling for over-fitting (a positive comparison means that

the gene-wise BIC values are skewed towardmore negative valueswhen using

the alternative GLM). The model selection was implemented in R 3.1.2.
Gene-Set Analyses

The gene-set analyses were performed using the R-package Piano (Väremo

et al., 2013). Compared to other gene-set analyses methods, this package

both distinguishes the direction of gene-set expression regulation and

leverages on the consensus of different statistical tests. In all analyses, we eval-

uated the significance of a gene set using the genes found here to be associated

with a mutated gene (here on mutation-associated genes). For each mutated

gene, the list ofmutation-associatedgeneswasgeneratedusing thedifferentially



gene-expression analysis based on the BSmodel (see Differential gene-expres-

sionanalysis). In the caseof enrichmentof the 189gene sets representing eacha

genetic perturbation in a key cancer-associated gene (retrieved from theMolec-

ular Signatures Database (MSigDB) [Subramanian et al., 2005]), the significance

of a gene set was tested using the Stouffer’s test, and the p values were

controlled for multiple testing by transformation to FDR using the Benjamini

and Hochberg correction. To check for consistency between the genetic pertur-

bation representedby ageneset and the expectedeffect ongene-expressionby

a mutation, we compared separately the gene sets (if significant, i.e., gene-set

FDR <0.01) mostly associated with upregulated or downregulated genes (in Pi-

ano, so called ‘‘mixed directional’’ classes). For example, genes here found up-

regulated whenCTNNB1 (b-catenin) was mutated were significantly associated

with the BCAT_BILD_ET_AL_UP gene set, in which b-catenin (BCAT) was over-

expressed in primary epithelial breast cancer cell.

In the case of enrichment of GO biological processes, 8,255 gene sets were

retrieved using the R-package biomaRt (Durinck et al., 2009). The significance

of a gene set was tested using the consensus between six tests (Fisher’s test,

Stouffer’s test, Reporter test, Tail strength test, mean, and median), and the

p values were controlled for multiple testing by transformation to FDR using

the Benjamini and Hochberg correction. If gene-set FDRwas <0.01, the under-

lying biological process was deemed significantly associated with themutated

gene. To compute the probability that multiple mutated genes were simulta-

neously associated with a gene set, we designed a permutation test in which

the gene sets significantly associated with a mutated gene were randomly

permuted 10,000 times. Then, we calculated a p value as the frequency at

which a gene set is randomly associated with a number of mutated genes

greater or equal to that observed prior randomization. Next, we computed

using the Fisher’s exact test which ancestor GO category (defined as the

children of the GO term ‘‘biological process’’) was overrepresented by the

GO terms that showed significant convergence. Finally, we estimated

the robustness of the supposed overrepresentation of an ancestor GO cate-

gory repeating this above operation using only those GO terms that showed

convergence by an increasing number of mutated genes (i.e., given n GO

terms associated with at least x mutated genes, we computed which GO

ancestors were overrepresented by the n GO terms).

Extraction of the High-Convergence Reaction Sub-network

The human genome-scale metabolic model HMR2 was downloaded from

http://www.metabolicatlas.com/. We generated a reaction network from the

model where reactions were nodes, and an edge linked two nodes if there

was at least one metabolite shared by the two reactions. We excluded 18 me-

tabolites with exceptionally high degree (>200) to prevent a combinatorial

explosion of reaction-reaction edges. Then, we used the jActiveNetwork algo-

rithm (Ideker et al., 2002) to extract from this reaction network a connected

sub-network that maximizes the number of mutations converging to it. To

this end, we counted for each reaction the number of times that any mutation

was found associated with a gene encoding that reaction. Each reaction of the

network was then scored using this count. We subtracted a penalty equal to 5

to the score to ensure that the extracted sub-network was reasonably small

yet comprised as many reactions with at least four mutated genes converging

to them. This prevented that biologically related mutated genes (like KEAP1

and NFE2L2) could significantly bias the emerging sub-network. Artificial

reactions introduced in HMR2 for modeling purposes (defined by the HMR2

sub-systems ‘‘Isolated,’’ ‘‘Artificial reactions,’’ ‘‘Exchange reactions,’’ ‘‘Pool

reactions’’) were further penalizedwith a score of�100. The search was imple-

mented using the R-package BioNet (Beisser et al., 2010). The returned high-

convergence reaction sub-network contained 90 reactions (nodes) out of the

8,184 reactions that were present in the reaction network.

Analysis of the High-Convergence Reaction Sub-network

We characterized the high-convergence reaction sub-network by comparing

the frequency of metabolites and pathways represented by the reactions in

the sub-network to the background frequency in HMR2. The overrepresenta-

tion of metabolites and pathways was calculated using the Fisher’s exact test.

To further aid the interpretation of the reactions part of the high-convergence

reaction sub-network, this was broken down in reaction clusters, defined as

sets of reactions that share the same gene-reaction association. These were
returned by applying unsupervised hierarchical clustering to the gene-reaction

association matrix in HMR2 limited to include the reactions in the high-conver-

gence reaction sub-network and the genes associated with at least one

mutated gene. This operation reduced the complexity of the high-convergence

reaction sub-network to 14 reaction clusters.

Curation of the High-Convergence Reaction Sub-network

Starting from the above analysis, we consulted the literature to frame the

high-convergence reaction sub-network in the context of well-defined meta-

bolic functions and reconstruct a comprehensive pathway. Also, we manually

reviewed every metabolic gene associated with at least one mutated gene

(Figure 4A) and verified whether there exists a relation with the emerging

pathway. We discarded a candidate gene if its pan-cancer expression level

was not appreciable in a reasonable number of samples (minimum library

size-adjusted log-cpm in the top 20% equal to 1).

We initially focused on arachidonic acid and its metabolism given its prom-

inent enrichment in the high-convergence reaction sub-network compared to

HMR2. The reaction clusters 3 and 4 indicate inclusion of reactions belonging

to the cytochrome P450 pathways of arachidonic acid. These include reac-

tions in the hydroxylase pathway, catalyzed by CYP4F11 (Arnold et al.,

2010; Chuang et al., 2004; Kroetz and Zeldin, 2002). Other mutation-associ-

ated genes belong to the epoxygenase pathway, specifically CYP2S1 (Bui

et al., 2011). CYP4X1 is also a likely member of this pathway, but evidence

for specificity to arachidonic acid is still inconclusive (Kumar, 2015; Stark

et al., 2008). The reaction clusters 5 and 7 implicate another major route of

arachidonic acid, the cyclooxygenase (COX) pathway to produce prostaglan-

dins. In total, eight mutation-associated genes participated in the metabolism

of prostaglandin H2, the first product of arachidonic acid conversion in the

COX pathway. Among these isPTGS1 (also known asCOX-1), which catalyzes

the first common step in the COX pathway from arachidonic acid to prosta-

glandin H2 (Schneider and Pozzi, 2011). PTGES, GSTM2, and GSTM3 can

convert prostaglandin H2 to prostaglandin E2 (Hayes et al., 2005; Schneider

and Pozzi, 2011), which, in turn, can be converted to prostaglandin F2a by

CBR1 (2015; Malátková et al., 2010). HPGDS is responsible for the conversion

of prostaglandin H2 to prostaglandin D2.AKR1C3 can reduce prostaglandin H2

and D2 to prostaglandin F2a and 11b-prostaglandin F2a, respectively (Penning,

2014). Finally,HPGD inactivates prostaglandin D2, E2, and F2a by conversion to

their respective dehydrogenated forms (Schneider and Pozzi, 2011). The third

pathway of arachidonic acid metabolism is the lipoxygenase (LOX) pathway.

Manual review of mutation-associated genes revealed that four genes encode

for reactions downstream of arachidonic acid. On one hand, three genes are

involved in the metabolism of two compounds derived from leukotriene A4,

which is itself derived from arachidonic acid, namely leukotriene B4 and C4.

CYP4F3 and PTGR1 catalyze the inactivation of leukotriene B4 either by

u-oxidation or via the 12HDH/15oPGR pathway respectively (Murphy and

Gijón, 2007). GGT6 is involved in the conversion of leukotriene C4 to leuko-

triene D4 (Murphy andGijón, 2007). On the other hand, one gene,ALOX15, cat-

alyzes the direct synthesis from arachidonic acid of yet another class of LOX

products, lipoxilins (Schneider and Pozzi, 2011). The reaction cluster 10 impli-

cates reactions upstream of arachidonic acid. Manual review revealed a signif-

icant number of enzymes responsible for the cleavage of arachidonic acid from

cellular lipids among the mutation-associated genes. PLA2G2A, PLA2G4A,

PLA2G4E, and PLA2G10 all belong to the class of phospholipases A2 and

function to release free fatty acids from the sn-2 position of phospholipids

(Astudillo et al., 2012). Noteworthy, PLA2G2A shows an exquisite preference

toward phospholipids containing arachidonic acid at the sn-2 position (Murphy

and Gijón, 2007). FAAH2 also affects arachidonic acid availability. Specifically,

FAAH2 degrades endogenous cannabinoid anandamide to release arachi-

donic acid (Wei et al., 2006). Finally, ELOVL2 elongates selectively activated

arachidonic acid (Ohno et al., 2010) and MBOAT2 is involved in the Land’s

cycle to reincorporate activated arachidonic acid in the membrane lipids

(Astudillo et al., 2012).

Next, we focused on xenobiotics metabolism, among the most enriched

pathways in the high-convergence reaction sub-network. We first noticed

that four genes overlap with the metabolism of arachidonic acid. AKR1C3

(Penning, 2014), CBR1 (Malátková et al., 2010), and GSTM2 and GSTM3

(Hayes et al., 2005) have also reported activity in the detoxification of
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electrophilic xenobiotics. Reaction clusters 2, 9, and 14 implicate phase I of

xenobiotics metabolism (also called functionalization). After manual review,

we gathered a total of 22 genes involved in the functionalization phase. The

great majority (20) are oxidoreductases in the family of cytochrome P450

(CYP3A5), alcohol dehydrogenases (ADH1C, ADH6, ADH7, ADHFE1), flavin-

containing monoxygenases (FMO3, FMO4, FMO5), aldo-keto reductases

(AKR1B10, AKR1B15, AKR1C1, AKR1C2), quinone reductases (NQO1,

NQO2), carbonyl reductases (CBR3), aldehyde dehydrogenases (ALDH3A1,

ALDH3A2, ALDH3B1), and amine oxidases (AOC1, MAOB) (Bro�zi�c et al.,

2011; Quinn et al., 2008; Wermuth, 2003). The two remaining genes, CES1

and EPHX1, belong instead to the class of hydrolases (Wermuth, 2003). Reac-

tion cluster 1 implicates phase II of xenobiotics metabolism, also known as

conjugation. Collectively, we found ten genes that can catalyze conjugation

reactions among the mutation-associated genes. UGT1A1 and UGT1A6 are

UDPGA transferases that carry glucuronidation reactions on xenobiotics (Wer-

muth, 2003).GSTA2,GSTM1,GSTM4, andMGST1 catalyze the conjugation of

glutathione (Hayes et al., 2005). SULT1A1, SULT1A2, and SULT1A4 belong to

the family of sulfotransferases and are responsible for sulfonation reactions

on xenobiotics using 30-phospho-50-adenylyl sulfate (PAPS) as cofactor (Wer-

muth, 2003). ACSL5 is a acyl-CoA synthetase that conjugates xenobiotic

carboxylic acid by forming acyl-CoA thioesters (Wermuth, 2003).

Finally, we also observed five transporters for both arachidonic-acid-

derived products and solubilized xenobiotics in the list of mutation-associated

genes. The organic anion transporters SLCO2A1 and SLCO1B3 show affinity

for prostaglandin D2 and leukotriene C4, respectively (Thiriet, 2012). The ABC

transporters ABCC1, ABCC2, and ABCC3 are renowned for their ability to

move a variety of xenobiotics, but other substrates include prostaglandin A1,

A2, D2, E2, 15d J2, and leukotriene C4 (Fletcher et al., 2010).

The enrichment for the occurrence of oxygen- and glutathione-consuming

reactions in the high-convergence reaction sub-network persuaded us to

investigate which other genes support their metabolism. Reaction clusters 6

and 13 feature two genes in glutathione metabolism, GPX2 and GPX3. In

addition, there are four more enzymes among the mutation-associated

genes that are involved in glutathione biosynthesis, GCLC, GCLM, GSR, and

OPLAH (Pompella et al., 2002). These expanded the list of glutathione-utilizing

enzymes in the candidate pathway to a total of 15 members. In addition,

several mutation-associated genes encode for reactions that use oxygen,

most notably seven members of the cytochrome P450 (CYP2W1, CYP4B1,

CYP4X1, CYP24A1, CYP27A1, CYP27B1, CYP39A1) and four others associ-

ated with at least two mutations: HGD participates in the metabolism of tyro-

sine;CDO1 catabolizes cysteine and controls its cellular concentration;CP is a

glycoprotein involved in iron ion homeostasis; and MOXD1 is a monooxyge-

nase of unknown substrate. These expanded the list of oxygen-utilizing reac-

tions in the candidate pathway to a total of 21 members.

We neglected the result on the enrichment for the estrogen metabolism

pathway because the associated genes were best explained by xenobiotics

metabolism.

During the validation of our findings (see below), the increased statistical po-

wer allowed us to discover nine new mutation-associated genes that encode

for reaction in or related to AraX. Six of these genes belong to arachidonic acid

metabolism: ALOX5 and LTC4S belong to the LOX pathway (Murphy and Gi-

jón, 2007); CYP2E1 belongs to the epoxygenase branch of the cytochrome

P450 pathway Kroetz and Zeldin, 2002;PLA2G6 and PLA2G12A are phospho-

lipases A2 involved in the release of arachidonic acid from the plasma

membrane (Astudillo et al., 2012); and PTGS2 encodes for the first step in

the conversion of arachidonic acid to prostaglandins together with PTGS1

(Schneider and Pozzi, 2011). The remaining three belong to xenobiotics meta-

bolism: FMO1 is a flavin-containing monoxygenase in the functionalization

phase thioesters (Wermuth, 2003), while GSTO1 and GSTO2 belong to the

conjugation phase (Wermuth, 2003).

The so-reconstructed candidate pathway features 27 genes attributable to

arachidonic acid metabolism, 35 genes attributable to xenobiotics meta-

bolism, 17 genes that mediate glutathione and oxygen metabolism, and five

genes in the transport system. We reviewed each protein in this pathway in

UniProt and/or Reactome to validate the gene annotation provided by litera-

ture (UniProt, 2015; Croft et al., 2014). In total, 84 metabolic genes are repre-

sented in this pathway. We termed this pathway AraX.
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We calculated the overrepresentation of AraX by each group of mutation-

associated genes compared to any other KEGG pathway (186) or Reactome

pathway (674), as retrieved in MSigDB, using the Fisher’s exact test. The

mean enrichment of a pathway across all mutations was subject to bootstrap-

ping (10,000 replicates) in order to calculate the 95% confidence interval for

the mean enrichment. This operation allowed evaluation of the robustness of

a pathway mean enrichment to outliers (i.e., mutated genes strongly associ-

ated with a pathway).

Validation of theGeneralized LinearModel andMutation-Associated

Genes

Weperformed differential gene-expression analysis, as described above, using

theBSmodel on thevalidationcohort, consistingof 4,462samples.Thesamples

encompassed the same 13 cancer types as in the discovery cohort (range:

94–978 samples). We verified that the factors in the BS model featured at least

20 samples also in the validation cohort. As described above, the comparison of

gene-wise BIC value between the onlyCTmodel and the BSmodel was used to

determine whether the additional factors in the BS model provided a better

goodness of fit also in the validation cohort. We sought to validate the list of

genes associated with a mutated gene in the discovery cohort and their corre-

sponding foldchangesby linearlycorrelating themto the foldchangesestimated

using theBSmodel on the validationcohort. Finally, to prove that the expression

changes associatedwithmultiplemutated genes in the validation cohort indeed

converge in the deregulation of AraX, we computed the overrepresentation of

this pathway compared to any other KEGG or Reactome pathway as described

earlier (see Enrichment of pathways by mutation-associated genes).

Survival Analysis

The deregulation at the level of gene expression for a metabolic pathway in a

sample was estimated using Pathifier (Drier et al., 2013). This algorithm returns

a score between 0 and 1 that represents the extent to which the expression of a

pathway in a sample is deviating from the centroid pathway expression in

normal samples. Hence, we calculated the score for all tumor samples in

this study belonging to six cancer types for which matched normal samples

were available in TCGA. These cancer types were breast invasive carcinoma,

colon adenocarcinoma, head and neck squamous cell carcinoma, lung adeno-

carcinoma, lung squamous cell carcinoma, and uterine corpus endometrial

carcinoma. The normal samples were used to provide the reference expres-

sion level of the pathway in a tissue.

We regressed the survival time until censoring or death to the AraX deregu-

lation score for each sample in the discovery cohort (718 samples) to estimate

whether AraX deregulation conferred a selective advantage to cancer evolu-

tion. We adopted as controls the same regression to the deregulation scores

for other KEGG metabolic pathways (70) or for a gene set including 3,714

metabolic genes (ALLM). Then, we used a multivariate lasso penalized Cox

regression model to calculate which metabolic pathway deregulation had

the foremost effect in the prediction of survival, using as variables the dereg-

ulation score of the 70 KEGGmetabolic pathways, AraX, andALLM. The selec-

tion of variables relevant to predict survival was performed using increasing

values for the lasso penalty (log-l) used in the regression. The optimal penalty

value was calculated such that the mean 10-fold cross-validated error was

minimum. Out of 72 initial variables, only three variables were predictive of

survival at the optimal penalty. To further rule out that a simple pathway dereg-

ulation is sufficient to predict poor prognosis, we performed univariate Cox

regression of survival on the deregulation scores of any KEGG pathway (also

non metabolic ones) with more than 100 genes and compared the Wald test

statistic and log-hazard ratio per unit of deregulation score to the regression

on AraX deregulation scores.

We determined whether poor prognosis could be predicted by the level of

deregulation of AraX by equally splitting all samples in this study belonging

to the six cancer types used above and with complete survival information

(1,908 samples) into a discovery and validation sub-cohorts and stratifying

the samples into low or high deregulation. The threshold score upon which a

sample is classified as highly deregulated was computed in the discovery

sub-cohort by using maximally selected rank statistics, which identifies a

threshold score that maximizes the difference in survival between the two



groups and tests its statistical significance (Hothorn and Lausen, 2003). A

robust threshold score was finally selected by repeating this computation us-

ing 1,000 bootstraps. Kaplan-Meier curves were generated for the two groups,

and the significance of survival difference was estimated using the Wald test.

The validity of the threshold score and the difference in survival between the

two groupswere verified in the validation sub-cohort. The difference in survival

according to the low versus high stratification was finally computed using the

Wald test leveraging on all samples, and the corresponding statistic was

tested against sub-sampling using 10,000 bootstraps and random sample la-

bel permutation using 10,000 permutations.

Due to missing clinical information in a non-negligible number of samples,

we verified the independency of AraX deregulation from other prognostic clin-

ical features individually, by performing a statistical test of dependency in the

subset of sampleswhere the informationwas reported.We tested a correlation

between low versus high AraX deregulation and age using the Wilcoxon rank-

sum test in 1,343 samples and with metastatic status using the Fisher’s exact

test in 351 samples. We tested an association between the AraX deregulation

scores and the tumor stages within each cancer type using the likelihood ratio

test, in a number of samples ranging 48 to 132 depending on the cancer type

(endometrial cancer was excluded because no samples were annotated with

tumor stage information). We tested whether the distribution of AraX deregu-

lation scores are cancer type dependent using a likelihood ratio test. The cor-

relation between the cancer-type-specific distribution of AraX deregulation

scores and the 5-year survival for cancers of the corresponding tissue (as

retrieved from https://nccd.cdc.gov/uscs/Survival/Relative_Survival_Tables.

pdf) was tested using a likelihood ratio test. The significance of the univariate

regression of survival in a given cancer type and low versus high AraX dereg-

ulation (according to the threshold score identified earlier in the pan-cancer

cohort) was tested using the Wald test. A power analysis for this test at a con-

fidence level a = 0.01 was conducted by sub-sampling the pan-cancer cohort

into sizes ranging from 100 to 1,900 samples 1,000 times, and by counting the

percent of times that a significant association between survival and AraX

deregulation was found.
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Väremo, L., Nielsen, J., and Nookaew, I. (2013). Enriching the gene set analysis

of genome-wide data by incorporating directionality of gene expression

and combining statistical hypotheses and methods. Nucleic Acids Res. 41,

4378–4391.

Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., Jr.,

and Kinzler, K.W. (2013). Cancer genome landscapes. Science 339, 1546–

1558.

Wagenmakers, E.-J., and Farrell, S. (2004). AIC model selection using Akaike

weights. Psychon. Bull. Rev. 11, 192–196.

Wang, D., and Dubois, R.N. (2010). Eicosanoids and cancer. Nat. Rev. Cancer

10, 181–193.

Wang, Y., Eddy, J.A., and Price, N.D. (2012). Reconstruction of genome-scale

metabolic models for 126 human tissues using mCADRE. BMC Syst. Biol. 6,

153.
Wang, J., Wei, J., Xu, X., Pan, W., Ge, Y., Zhou, C., Liu, C., Gao, J., Yang, M.,

andMao,W. (2014). Replication study of ESCC susceptibility genetic polymor-

phisms locating in the ADH1B-ADH1C-ADH7 cluster identified by GWAS.

PLoS ONE 9, e94096.

Wei, B.Q., Mikkelsen, T.S., McKinney, M.K., Lander, E.S., and Cravatt, B.F.

(2006). A second fatty acid amide hydrolase with variable distribution among

placental mammals. J. Biol. Chem. 281, 36569–36578.

Wei, S., Liu, Z., Zhao, H., Niu, J., Wang, L.E., El-Naggar, A.K., Sturgis, E.M.,

and Wei, Q. (2010). A single nucleotide polymorphism in the alcohol dehydro-

genase 7 gene (alanine to glycine substitution at amino acid 92) is associated

with the risk of squamous cell carcinoma of the head and neck. Cancer 116,

2984–2992.

Weinberg, R.A. (2014). Coming full circle-from endless complexity to simplicity

and back again. Cell 157, 267–271.

Wermuth, C.G. (2003). The Practice of Medicinal Chemistry (Academic).

Yan, X., and Su, X. (2009). Linear Regression Analysis: Theory and Computing

(World Scientific).

Yates, L.R., and Campbell, P.J. (2012). Evolution of the cancer genome. Nat.

Rev. Genet. 13, 795–806.

Zambelli, F., Prazzoli, G.M., Pesole, G., and Pavesi, G. (2012). Cscan: finding

common regulators of a set of genes by using a collection of genome-wide

ChIP-seq datasets. Nucleic Acids Res. 40, W510–W515.
Cell Reports 16, 878–895, July 19, 2016 895

http://refhub.elsevier.com/S2211-1247(16)30792-6/sref62
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref62
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref63
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref63
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref63
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref64
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref64
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref65
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref65
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref65
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref65
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref66
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref66
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref66
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref67
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref67
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref68
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref68
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref69
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref69
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref69
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref70
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref70
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref70
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref70
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref71
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref71
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref71
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref72
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref72
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref72
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref72
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref72
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref73
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref73
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref74
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref75
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref75
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref76
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref76
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref77
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref77
http://refhub.elsevier.com/S2211-1247(16)30792-6/sref77

	Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics
	Introduction
	Results
	Identification of Relevant Factors that Correlate with Changes in Gene Expression in Cancer Using Generalized Linear Models
	Mapping Gene-Expression Changes to Mutated Genes in Cancer
	Convergence of Mutation-Associated Gene-Expression Changes in the Regulation of Metabolism
	Mutation-Associated Gene-Expression Changes Converge on a Sub-network of Metabolic Reactions
	Curation of the High-Convergence Sub-network of Metabolic Reactions: AraX
	Convergence on AraX Regulation Is Validated in an Independent Cohort
	Deregulation of AraX in Cancer Is the Strongest Predictor of Survival among Metabolic Pathways

	Discussion
	Experimental Procedures
	Data Retrieval
	Differential Gene-Expression Analysis
	Generalized Linear Model Selection
	Gene-Set Analyses
	Extraction of the High-Convergence Reaction Sub-network
	Analysis of the High-Convergence Reaction Sub-network
	Curation of the High-Convergence Reaction Sub-network
	Enrichment of Pathways by Mutation-Associated Genes
	Validation of the Generalized Linear Model and Mutation-Associated Genes
	Survival Analysis

	Supplemental Information
	Author Contributions
	Acknowledgments
	References


