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Sweden
Telephone: +46 (0)31-772 1000

Cover:
Waterfall plot of acceleration in computational model after icing condition.

Chalmers Reproservice
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Abstract

Guided waves are an efficient non-destructive tool in inspection and fault detection of
elongated structures. Due to the special characteristics of composite materials, study of
guided wave propagation in them has been an interest. In the current work, application of
guided waves is investigated in ice detection on composite materials which is a well-known
problem in wind turbine industry.

The possibility of detecting a layer of ice on a composite plate is first investigated by
a 2D isotropic-anisotropic multilayer model. The wave equation is solved and dispersion
curves are obtained. Results show that adding a second isotropic layer on top of an
anisotropic material causes reduction in phase and group velocity of the first symmetric
mode.

Effects of low temperature on the received signal is investigated using an experimental
test setup. Measurements show that lowering the temperature causes drop in amplitude
and temporal phase shift in the received signal. These effects were handled by a modifica-
tion of the Baseline Signal Stretch method. The modification is based on decomposing the
signal into symmetric and asymmetric modes and applying two different stretch factors
on each of them.

Computational modelling of the problem is performed by first developing a 2D model
which shows that accretion of ice causes reduction in phase and group velocities of the
incident wave and creates reflections. The model is developed further to a 3D shell model,
in which ice is placed on the plate by changing the properties of specific elements in the
icing region. The Baseline Signal Stretch with the mode decomposition method is applied
to the model for temperature variations. Effects of ice accretion on a composite plate
is studied in time, frequency and wavenumber domains. In each case post-processing
approaches are introduced for this specific application. Moreover, icing index is introduced
which is sensitive to accumulated ice on the plate.

The experimental study is performed in a cold climate lab in three different steps.
The first part to get general understanding about the effects of ice accretion on waves
propagating in a composite plate. Next, to understand the effects of temperature on the
received signal and calibrate the temperature model and finally a more accurate study by
installing 24 accelerometers and manufacturing a layer of ice on the plate to validate the
results obtained by the computational model.

Using the model and introduced criteria both thickness and location of ice on the plate
are identified. All the results show that application of guided waves is a promising and
accurate tool in ice detection on composite plates.
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1 Introduction

Guided waves are an efficient tool in fields of inspection, detection and non-destructive
evaluation when it comes to elongated structures. Even though they are used recently
in many fields, the background of studying them goes back than a century. The main
application of guided waves is in structural health monitoring (SHM) and non-destructive
testing (NDT). In this project it is tried to study the possibility of using guided waves for
ice detection which is one of the well-known problems in wind turbine industry. In this
chapter first a brief review of guided waves is given, then icing problem in wind turbines
and methods of detections are explained. Finally the aims and objectives of the project
are given.

1.1 A brief review of guided waves

The history of elastic waves in solids is linked with the research that has been done in
nineteenth century. One of the original works which is the reference of many current
studies was presented by Lord Rayleigh [1]. In his work, propagation of elastic waves
was studied along the surface of a semi-inifinite solid, now known as Rayleigh waves. By
adding one more surface to the semi-infinite solid and solving for the simplest possible
solution, Love [2] was able to identify one more wave in the horizontal direction. These
waves are known as Love or Shear Horizontal (SH) waves. Lamb [3] limited the solid in
the other direction and studied the propagation of waves in layers which are known as
Lamb waves. He managed to find the exact solution for both of the modes which are
generated in the solid and known as symmetric and antisymmetric modes. The main
focus of Lamb was on isotropic materials.

By introducing new types of materials into industry there was a need of studying the
propagation of Lamb waves in anisotropic and layered anisotropic materials. A comparison
between propagation in isotropic and anisotropic media shows that the wave propagation
problem is notoriously complicated when it comes to anisotropic media. This is mainly
because in the isotropic case the wave is dispersed into two modes of longitudinal and
shear waves (shear vertical and shear horizontal). In anisotropic media, however, pure
longitudinal and transverse waves are not produced anymore and the wave is dispersed
into three wave packets of which one is quasi-longitudinal and two are quasi-shear waves.
Considering the complexity of the problem, uncoupling the wave into longitudinal and
shear waves is not possible with simple algebraic methods. In the anisotropic case, there
are three surfaces, one for quasi-longitudinal and two for quasi-shear waves and the
incident and reflected waves can not be thought as purely longitudinal or shear. Here the
waves can be uncoupled by solving a sixth order polynomial equation [4].

Composite materials, however, can not only be treated like anisotropic materials due
to their inhomogeneities. In order to solve the propagation of Lamb waves analytically in
composite materials two methods can be used:

1. Solve the wave equation for the multilayered anisotorpic structure.

2. Homogenize the composite plate and solve for one single layer of anisotropic material.
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Many methods are introduced in order to solve the wave propagation problem in multila-
yared media. One of the early works was proposed by Thomson [5] who introduced the
transfer matrix method. In this method the formal solution is obtained in one layer and
it is extended to top and bottom surface of the neighbour layers by applying continuity
conditions (equal stress and displacement). Another method was introduced later by
Knopoff [6] known as the global matrix method which consists of all of the equations for
all of the layers.

Homogenizing the composite material into a single anisotropic layer with equivalent
characteristics, however, makes the wave propagation problem easier to solve. Homoge-
nization can be used both in analytical and numerical solutions of the wave propagation
problem. Classical laminate theory is a well-known method of homogenization in composite
materials.

Using any of the mentioned methods, it is possible to obtain the relationship between
frequency, phase and group velocities, mode and thickness which is known as the dispersion
relation. By solving the dispersion relation, dispersion curves are obtained which provide
general information about the medium when waves propagate inside it.

The name of guided wave (GW) is used when it comes to application of Lamb waves in
non-destructive evaluation which basically refers to propagation of Lamb waves in finite
media. Since the GWs are guided by the boundaries of finite media, they are able to
propagate along long distances. This makes them a suitable choice when it comes to NDT
and SHM in elongated structures. Much research has been done for damage detection
and identification. One of the earliest studies in this topic is done by Worlton [7]. In his
work, he studied and compared the dispersion curves of two aluminium and zirconium
plates and introduced it as a potential NDT method. Over the decades, much research
has been done in fault detection using GW and new methods have been introduced. The
procedure of a proper fault detection method is divided into different sub-levels [8]:

• Detection: Give binary information about the existence of damage in the structure.

• Localization: Quantitative information about the location of damage.

• Assessment: Information about the severity of damage.

• Prediction: Data regarding the safety of the structure.

Although many of the methods are introduced for detection of damages in the media but
they are mostly based to detect any changes on them. Therefore, it is possible to use the
GWs not only to detect damages on the structures but also for other applications like
detection of ice accumulating on them.

1.2 Icing problem on wind turbines

Some of the best places to install wind turbines are located in cold regions. Turbines
operating in these regions have higher potential of wind power due to higher density
of air and wind speed [9]. At the same time, wind turbines operating there face icing
conditions. Due to cold temperature ice start to accumulate on wind turbine blades which
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(a) (b)

Figure 1.1: (a)Warning board for ice throwing (b)Wind turbine facing icing condition.

creates various problems like reshaping the air-foil of blades, increasing drag, mechanical
failure due to higher loads on the blades, undesired vibrations, etc [9–11]. Beside all the
direct problems, ice throwing is a problem that prevents turbines to be installed close
to residential areas or roads [12]. All of these problems cause the performance of wind
turbines to drop up to 30% [13]. Many of wind turbines are facilitated with a de-icing
system, however, in order to optimize it, an accurate ice detection method is needed.

The current methods of detection are reviewed by Parent et al. [9] and Homola et
al. [11]. Methods of detection are either based on condition monitoring, like measuring
temperature and dew point, comparison between the expected and current power genera-
tion, frequency of generated noise, change on blade resonant frequency or direct methods
like using ultrasonic waves, thermal infrared technique, electromagnetic waves, optical
methods and guided waves [9, 11, 14–25].

Use of guided waves for detection of ice is proposed as one of the potential and accurate
methods due to all its special characteristics. The application was investigated before by
several authors which were mostly based on detection of ice on an isotropic material for
aircraft applications [14, 22, 26].

Detection of ice on wind turbines, however, makes a different problem than in metals
due to the blade’s anisotropicity and high attenuation ratio. A patch of ice which is
interesting to detect can be larger than is looked for in the aircraft industry. Moreover,
due to the large size of wind turbine blades which in some cases can be up to 80 m long
and high damping characteristics, the frequency of excitation should be lower than in
classical NDE methods. The method which is investigated should be able to give as much
information as possible about the accumulated ice. This can be thickness, location, length
and preferably type of ice. Knowing these parameters helps the manufacturers to optimise
their de-icing systems.

A conceptual design of an accurate ice detection system is according to figure 1.2. The
system is a combination of three physical, virtual and decision making units. A database
can be obtained in the virtual unit using a computational model. In this part data about
the characteristics of the turbine blade should be given as input data. Hardware of the
system is located in the physical unit which includes the accelerometers, transducers
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and data acquisition systems. Information from the both virtual and physical units are
collected in the decision making unit (DMU). The unit is able to make automatic decisions
however help of an operator can be used in this part. The decision made in the DMU has
detail information about thickness, length, location and type of ice which is sent to the
de-icing system.

In the current work application of guided wave propagation for ice detection on wind
turbine blades is investigated. A composite plate is used as the structure for simplicity.

Input data Operator

De-icing 
system

Physical
unit

Ice detection system

Virtual
unit Decision

Making
Unit

Figure 1.2: The conceptual sketch of an ice detection system.

1.3 Aims and objectives

The main aim of the project is to study propagation of guided waves in composites by
analytical and computational methods. Using classical computational methods make
the problem expensive to solve and here the aim is to develop simple methods and
implement them into the computational model for simplification. Effects of conditions like
temperature on the propagating wave is significant, therefore, developing simple methods
and applying them into the model is important.

Developing and implementing methods of signal processing for this specific application
is the other goal of the project. Many of the introduced methods are related to fault
detection using GWs and in order to extent the application of GWs new methods should
be introduced.

Finally, many objectives are observed including creation of the test set-up, ability of
specific hardware to work at low temperatures and filtering the noise. Designing the test
set-up and tools for specific reasons like ice manufacturing are done cost efficient and
simple and expensive ways like using wind tunnels are skipped in this project.

2 Methods of study

Methods of studying the application of guided waves for ice detection are given in several
steps. The first step is to get a general idea about the possibility of detecting ice on a
composite layer. This step is done by solving and comparing the dispersion curves. Next
a computational model is developed to simulate the propagation of guided waves in a
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composite plate. The model is computationally efficient and it is developed by applying
simplifications in several steps. Model validation and part of the study are performed
using a physical prototype in a cold climate lab. Finally, the results and measurements
are investigated by introducing several criteria using signal processing methods.

2.1 Dispersion curves

As explained previously solving the dispersion relations leads to dispersion curves which
give general information about propagation of guided waves in media. The dispersion
curves are the relationship between the frequency and phase or group velocity for different
wave modes.

The effects of ice accretion on guided waves propagating on a plate can be gained
by comparing the dispersion curves for two cases of one layer and two layers which the
second layer representing the ice layer. This has been done before by Rose [26] for an
isotropic plate and it is done in this study for an anisotropic plate and a second layer as
ice layer on the top (Paper A).

2.2 Computational model

Some analytical methods of solving wave equations are previously mentioned. The methods
have limitations of not being extendible to more complicated geometries. Therefore, a
computational model is needed in order to be able to solve the wave propagation problem
for different icing scenarios. Some of the early works of numerical modelling of propagation
and scattering of stress waves were done by Bond et al. [27], Blake et al. [28] and Temple
[29] during the 1980s. They used finite difference and finite element methods to numerically
solve the wave propagation problem.

The main challenge of solving a wave propagation problem using finite element method,
is considering the right temporal and spatial resolution in a way that convergence would
be reached. Previous literature proposed the temporal resolution to be 20 points per
cycle of the highest frequency and the spatial resolution to be 10 to 20 nodes per smallest
wavelength [30–32]. This makes the computational model expensive to solve.

In the current work, the complexity of the model is reduced in several steps by
simplifications and assumptions. The composite plate is homogenized and modelled as
a single layer orthotropic plate with equivalent characteristics. This assumption would
make inaccuracy for large frequency-thickness (f · d) values, however, for low frequencies
give reasonable results [33]. Moreover, the plate is modelled using shell elements with 6
degrees of freedom on each node. Shell elements are also limited to low f · d values and
higher order modes are not fully resolved due to the assumptions made regarding the
displacement field in the thickness direction [34]. However, accurate results are reached
in the range of f · d used in this study.

The next challenge in computational modelling is to apply the effects of temperature
into the model. Previous studies have shown that change of temperature is one of the
main sources of fluctuations in the received signal [35–38]. Fluctuations are due to effect of
temperature on the test object, piezoelectric materials, cables and the bonds. Temperature
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Figure 2.1: Flowchart of the computational model.

can be included into the FE model [39] which changes the FE model from a mechanical
model to a coupled thermal-mechanical one. This makes the FE model more complicated
and expensive to solve. Effects of temperature can also be applied directly on the received
signal. Some models have been proposed based on stretching and changing the amplitude
of signal with relation to temperature [40]. The model which is used in this work is a
signal stretch method based on mode decomposition which separates the wave modes in
the received signal and applies two different stretch factors to them taking into account
the changes in temperature (Paper B) [41].

Modelling the ice layer on the work object can also be done with modelling a new
geometry and mesh with shell elements. However, more elements will be needed and
contact boundary conditions between the layers would be added into the FE model. In
this study the ice layer is modelled by homogenizing the characteristics of ice with the
plate in elements in the icing region. Performing this, the complexity of the model reduces
more without loosing significant accuracy. The FE model is calibrated and validated
in several steps using the experimental measurements and a FE solid model (Paper C).
Figure 2.1 shows the flowchart of different steps in the FE model.
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2.3 Experimental work

The experimental study is done in a cold climate lab with the ability to change the
temperature down to −25◦C. The lab contains a freezer and a control room (Fig. 2.2).
The data acquisition (DAQ) system is made by National Instruments (NI) and Labview
is used as the main controlling software. In order to confirm the input and output signals,
two oscilloscopes are connected to the system prior to NI DAQ. An amplifier is connected
to the generated signal for magnification of the voltage.

(a) (b)

Figure 2.2: (a)Test object under icing conditions (b)Control room.

3 × [0◦,−45◦, 90◦,+45◦] 26 × UD 6 × [0◦,−45◦, 90◦,+45◦]

z

x

Figure 2.3: Schematic view of the layups of the composite plate.

The used plate is a rectangular glass-fibre composite plate with 62 plies and Vinylester
resin and it is a type of material which is common to use in the wind turbine industry.
Figure 2.3 shows the schematic view of the layups. The dimensions of the plate are
0.02×0.2×8 m and it is excited by means of a magnetostrictive actuator using Terfenol-D.
Details about the design of the transducer is fully described in previous work [42]. The
excitation signal is a tone-burst signal with the centre frequency ranging from 3 kHz to
7 kHz. Higher excitation frequencies are not supported by the transducer.

To measure the acceleration of the displacements of the propagating wave, piezoelectric
accelerometers of the type IMI608A11 are used with coaxial cables RG58. Accelerometers
are mounted inside aluminum cubes and glued on the surface of the plate. Mounting is
done in such a way that they mostly measure the signal in the longitudinal direction.
The output of the accelerometers is an electric signal that is sent to an NI DAQ for
post-processing.

Three different experiments are done using the test setup:

• Experiment using 2 accelerometers to get an overall view about the effect of tem-
perature and ice accretion on the plate.
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• Experiment using 24 accelerometers equally distributed on the plate to accurately
measure the signal by changing temperature.

• Experiment using 24 accelerometers equally distributed on the plate to measure
effects of ice accretion on received signal accurately.

Amplifier PCDAQ Matlab
Accelerometers

Transducer

2m 4m 2m

Figure 2.4: Schematic view of the test setup.

Since the frequency of noise is close to the excitation frequency, one of the main
challenges in the experimental study is to filter the received signal. In order to reduce
the noise, each experiment is done 9 times and their mean value is used as the final
measurement data. Doing this, it is possible to reduce the noise amplitude by 30%. A
Gaussian filter is then applied on the measured data.

Production of ice is performed by spraying water on the surface under low temperature.
In order to manufacture rime ice, the temperature should be lower than for glaze ice so
the droplets freeze the air. Moreover, the distance from the spraying device to the surface
of the test object is important. Larger distance helps the droplets to have more time to
be frozen before hitting the surface and create rime ice. On the other hand the droplets
remain liquid while hitting the surface for lower distances from the test object and they
freeze on the surface which makes glaze ice. Since in this study ice manufacturing is
performed manually, the manufactured ice is a mixture of glaze and rime ice. A wind
tunnel can be used in future in order to control the process and manufacture two types of
ice separately.

The set-up used in the cold climate lab can be used as a physical prototype of ice
detection system and it can be applied on a wind turbine blade in future for further
studies.

2.4 Signal processing

Data obtained from both experiment and simulation should be transformed and processed
to get different type of information. The transferring and processing can be done using
mathematical, statistical, computational and heuristic formulations and techniques. The
methods can either be based on a baseline signal or baseline-free. In case a baseline signal
is needed, the changes in the structure are detected by comparing the baseline signal
and the current signal. This study is based on comparing signals for a period of time,
therefore, the presented results are based on a baseline signal.
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Figure 2.5: Schematic view of ice manufacturing setup.

Figure 2.6: Manufactured mixed ice on the plate.

The processing methods in GW propagation are usually done in time, frequency or
wavenumber domains. Methods of processing the signal in the time domain are based on
change in amplitude of the received signal, mode conversion due to reflections, Time-of-
Flight (ToF) and phase shift [43, 44]. In the frequency domain Fourier transform of signal
is used to analyse the wave response [45]. In order to make the Fourier transform a function
of time, short-time Fourier transform is defined [46]. The procedure of processing the
signal can also be done in wavenumber domain which gives information about dispersion
of waves and changes of velocities of different wave modes with respect to frequency [31,
47].

Based on any domain, indices are defined which give binary information about any
changes in the structure. The indices can be based on amplitude or ToF [48, 49], signal
energy [50–52], attenuation [53] or statistical methods [54].

Many of the signal processing methods are introduced for damage detection in the
structures. These methods can be used in the current study, however, due to different
physics of the problem they should be modified. Investigating the effect of ice accretion
in different domains help to introduce new indices to detect ice on a laminate.

The results obtained using the computational model and experimental work are
investigated in time, frequency and wavenumber domains and the changes due to icing
conditions are observed. An icing index is defined to get binary information about
existence of ice and should be further studied (Paper C).
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3 Summary of appended papers

3.1 Paper A

Application of guided wave propagation for ice detection is studied by first determining
the dispersion curves and comparing between one layer anisotropic and two layers of
isotropic-anisotropic materials. The drop in phase and group velocity of symmetric
mode is observed. The study is continued using a 2D FE model and reflections and
temporal phase shift after icing conditions is detected due to adding a layer of ice on
top of the first layer. Measurement is done in the cold climate lab and it is shown that
lowering temperature has significant effects on the received signal. Moreover, due to icing
conditions, reflections and change in group velocity of symmetric mode is also observed
which follows the results obtained using the FE model.

3.2 Paper B

Effects of temperature variations on GWs propagating in a composite plate in investigated
further in the cold climate lab. The range of temperature examined in this study is
between 25◦ C to −25◦ C and effects of temperature variations on amplitude and phase
shift of the received signal are investigated. It is observed that Baseline Signal Stretch
(BSS) method is not an appropriate approach to handle the effects of temperature on the
received signal on composite materials due to their orthotropic charactristics. Therefore,
it is modified and apply with two different stretch factors for Symmetric and Asymmetric
wave modes. Experimental results show that an improvement is obtained using the BSS
with the mode decomposition method at temperature variations of more than 50◦ C.

3.3 Paper C

Application of guided waves for ice detection on composite structures is further studied
by introducing a computational model. The model is simplified in several steps to make
it computationally efficient and went successfully through validation using experimental
data. Effects of ice accretion on propagation of guided waves are studied in time, frequency
and wavenumber domains. New approaches are introduced in each domain for better
understanding the changes. Moreover, an icing index is also introduced for ice detection
giving binary output about existence of ice on the composite plate. All the methods are
examined on experimental measurement when ice is manufactured on the plate. Results
show application of guided waves is a promising method for early ice detection and can
be used in wind turbine industry.
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4 Concluding remarks and outlook

GW propagation in composite materials is studied using a computational model. Several
simplifications are applied to the model in order to make it cost efficient. Methods of
signal processing are developed and implemented for application of ice detection on wind
turbine blades.

Icing problem is currently one of the main barrier of wind turbines operating in cold
climate regions. In order to overcome this problem both an accurate ice detection system
and optimized de-icing system are needed. In this project application of GW propagation
is studied for ice detection for wind turbine industry.

The primary work which is an analytical model and solving for dispersion curves show
that the changes in phase (or group) velocity can be reached by adding a second layer on
top of the main composite layer. This proves that GWs have the potential to be used for
ice detection.

It is observed that the effect of temperature variation on the composite and piezoelectric
materials is significant and it should be taken into account in the computational model. An
approach is proposed to handle these effects and it is applied later into the computational
model.

The computational model is developed first as a 2D model to get an overview about
the expected results. The model is then developed to a 3D shell model.

Experimental work is done on a composite plate in a cold climate lab to study the
effect of ice accretion on GWs, effects of low temperature on GWs and validate the
computational model.

Several criteria are used to analyse and understand the received signal both from the
simulation and experiment. The criteria are in time, frequency and wavenumber domains.
An icing index is also introduced to get a binary response about the existence of ice on
the plate using only one sensor on the plate.

Moreover, experimental work is performed in a cold climate lab for calibration and
validation of results obtained in previous steps. The calibration is performed on the
introduced thermal model. The criteria and icing index are applied to the experimental
data after manufacturing ice on the plate and good agreement has been observed compared
to computational results.

All results show GWs are a promising tool for accurate ice detection on composite
structures and should be investigated further.

4.1 Outlook

The current study, the developed model and experimental set-up, can be used and be the
base of other topics in future. In this part it is tried to mention some of the potential
topics for further study.

Developing the model. Although the current computational model is validated and
the obtained results are reasonably accurate, it can be developed further. Previously it is
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shown that attenuation due to characteristics of materials influences the received signal.
Applying damping to the model can lead to more accurate results.

The methods of signal processing can also be studied further using the computational
model.

Ice type. As described previously, different type of ice can be accumulated on the blade.
Therefore, knowing the special characteristics of ice like density and Young’s modulus
can help to optimize the energy needed for de-icing. The current method can be used for
further study to detect the type of accumulated ice.

Wind turbine blade model. For further studies of application of GWs in wind turbine
industry, the computational model can be applied to a blade geometry. Moreover, effects
of location of the sensors on the results can be investigated. Optimizing the location of
the sensors to get the best possible resolution can also be done in future.

Further experimental work. The experimental studies can be applied on a wind
turbine blade. A wind tunnel can be used for accurate ice manufacturing and the detection
system can be applied in situ.

De-icing. Ultrasonic guided waves can be used to de-ice the wind turbine blades. By
choosing an optimum wave mode and frequency, ultrasonic guided waves can induce
delaminating transverse shear stress at the interface between the ice layer and the
substrate structure [55–58]. The current computational model and physical prototype
can be developed more to study de-icing on wind turbine blades using GWs.

SHM and NDE of wind turbine blades. Testing, inspection and monitoring the
wind turbine blades are an important factor for keeping them in continued operation. A
life-span of 20 years is expected in wind turbine industries and high cost of the blades
rises the motivation of accurate inspection of them. GWs are previously proposed and
used in terms of SHM in the wind turbine industry [59]. The developed computational
model in the current work can be expanded further and be used to study and develop
new methods of SHM and NDE for wind turbine blade.
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