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Abstract

This Master Thesis deals with Radar Signal Processing techniques. The scope of the thesis
is to present state-of-the-art digital signal processing techniques for Pulsed-Doppler radar.
This includes target detection and velocity estimation in a battle field. The reader will
be given a short introduction on Radar fundamentals and then a block-based analysis will
follow. Lastly, figures will depict an example scenario.
Part one gives an overall overview of how a Radar is composed in terms of system elements.
We will see that a radar system design strongly depends on what the radar mission is,
i.e. target detection, target ranging, target tracking. From this important choice, system’s
components and signal processing techniques are selected from a wide range of available
techniques.
Part two describes and details radar signal processing flow. Provided numbers and ex-
amples show how powerfull a military radar system is regarding to its difficult mission.
Pulsed-Doppler radars are capable of ranging a target while also estimating its relative ra-
dial speed. Accurate ranging strongly relies on the Pulse Compression technique, whereas
Doppler filtering allows velocity estimation. ACP and CFAR blocks tend to first, combat
environment noises such as sea and ground clutter, and second, to maintain radar perfor-
mances by reducing false alarms.
Part three ends the thesis with figures showing the output of each studied block. The reader
will see how noisy the received echo (backscaterred signal) is and how signal processing tech-
niques can however recover information on the targets. Figures are taken from a Matlab c©
simulator developped in order to easily test new algorithms.

Keywords : Radar, Digital Signal Processing, Antenna, Pulse-Compression, Ambi-
guity function, Doppler, Pulse-Doppler, Matched-Filter, MTI, CFAR, ACP, Noise, Clutter,
RCS
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Introduction

The theme of the thesis is Advanced Signal Processing Techniques for Pulsed-Doppler
Radar. As the title suggests, the paper deals with techniques, from a very low level point of
view, that allow a radar to detect a target, estimate its parameters and track it in a noisy
environment.
Nowadays, any military force has a set of various radars that perform several strategic and
tactical missions. Radar systems are used in both civilian and military domains. Airports
use radar systems to track landing aircrafts. Weather forecasts are mostly based on radar
maps taken from satellites. Police forces use handed-Doppler radars to check car speed.
In the military domain, the missions of a radar range from target detection and target
tracking (air defence) to counter-measures and battlefield surveillance. This thesis will only
focus on target detection in noisy enviroments from a signal processing perspective. The
main difference between the civilian and the military domains is the fact that in war con-
text, targets try to escape from radar coverage whereas in civilian domain, the security of
an aircraft is partly ensured by the radar coverage in case of dense air traffic. Moreover, in
the civilian domain aircrafts do have similar shapes and volume; it strongly eases system
design as all targets have similar caracteristics (mainly speed and shape). However, in the
military domain, each side tries to have furtive vehicles that can get close to the oppo-
nent forces without being detected. This involves very complex architecture and structure
designs. Each target has a so-called radar signature. Targets are classified according to
specific (sometimes secret) criteria. Basically, it defines how a given target will respond
to pre-defined specific electromagnetic signals. Materials used and body shape are of high
importance in designing a furtive vehicle.
Radar Signal Processing involves mathematical function analysis and fundamental theory
in several scientific fields (waves propagation, digital filtering...). A strong background in
these areas is required in order to design such system. However, this paper will only ex-
plore the signal processing aspects of radar designing. It assumes that the reader has basic
knowledge in electromagnetic wave theory, antenna theory and signal processing.

This document is based on the development of a radar signal processing simulator. The
simulator is part of the contract that Thales Air Defence engineering teams in Bagneux
(France) have signed for the delivery of a new military radar for Thales Naval Company.
A simulator for the MRR - Multi-Role Radar - has been developped almost a decade ago
using Matlab c© software. The MRR-3D NG1(3-Dimension New Generation) radar is the
new version of the MRR radar. The new version of the radar utilizes state-of-the-art signal
processing algorithms. A new Matlab c© simulator has been developped through the porting
of the previous simulator from Windows c© station to Linux c© station. The new simulator
provides an easy-to-use GUI, more display capabilities for intermediate signals, NetCDF c©
programming and a multi-scan operation mode. This last feature allows the user to display

1http://www.thales-naval.nl/naval/activities/radar-sys/surveillance/products/mmr.htm
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outputs of some recursive algoritms as they require multiple scans to provide consistant
results.

The MRR-3D NG is a system capable of:

• automatic detection and tracking of air targets whether sea-skimming or diving and
whatever the antenna rotation speed

• transmission of very accurate 3D measurements for the most dangerous targets, to
the management system, in order to reduce the weapon system reaction time, thus
optimising the ship’s response to the most threatening air targets

• detection and automatic tracking of surface targets, using a specific reception channel
in both mode

The MRR radar falls in the middle range, 3D-air and surface surveillance category. It is
designed as a flexible (add-in features in option are available for the customer), modern
and automatic radar. It is mainly designed for ships, frigates. It also owns an IFF2 system
with its secondary antenna that allows supersonic-targets identification. The IFF system is
a must-have component for state-of-the-art military radar.

The thesis is structured in three parts :

• Part I : a short historical overview of radar system origins in the time and a block-
based picture of the MRR radar gives the reader a good understanding of what a
radar is composed of

• Part II : a deep look into signal processing theory gives the understanding of Pulse-
Doppler radar operation

• Part III : an application example is depicted throughout a Matlab-based radar signal
processing simulator that shows outputs from major blocks in the signal flow

2http://www.dean-boys.com/extras/iff/iffqa.html
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Figure 1: MRR in action
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Part I

Background
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Chapter 1

Introduction to radar theory: from

history to today

Unlike what it is often written in the litterature, radar systems did not come out from one
man’s brain (i.e. Sir Watson-Watt, an english scientist), eventhough his work did contribu-
ate to the birth of radar systems. Indeed, today modern radars are mostly the result of a
constant effort in the scientific world. These efforts tended to enhance a previous invention
made by a german scientist. In 1904, Christian Hulfsmeyer presented his telemobiloscope,
an equipment that detects iron-made objetcs using self-generated electromagnetic waves.
During the 20s and the 30s, great progress has been made in battle between european scien-
tists and american scientists. French scientists Pierret and Gutton, and US scientists Taylor
and Young experienced new systems that use metric waves. However, at this time, radars
were using continuous transmission technique leading to difficult range measurements. In
1935, Sir Watson-Watt and his team built up a radar that utilized short pulses to allow
accurate target range measurements. At this time, US scientists teamed up with British
scientists to continue developping the new short pulse technique. At this time in Europe,
French teams, throughout CSF company, had a few centimetric-wave radar systems work-
ing.
The word RADAR, short for RAdio Detection And Ranging) appeared a long time after in
the US. It was a secret project code that US Marines launched at this time. Radar systems
were designed to both detect a target and determine its range as the acronym explicitely
suggests.
More on radar systems history can be found in [Car87].

First, radars were developped for a military use but nowadays radar systems are widely
used in the civilian area. It exists a wide range of various applications for radars. It is ob-
vious that a unique radar system design would not fulfill every needs. Within the military
domain itself, various radar systems exist depending on what mission the radar is expected
to perform. Therefore, when designing a radar system, the first question that should be
answered is What missions do I want my radar to complete ?

• detect a target: i.e. provide a basic boolean indicator stating if there is a target in the
direction pointed by the antenna; a dual-antenna (Tx/Rx) CW (Continuous Wave)
radar system can perform such basic target detection

7



Chapter 1 Introduction to radar theory: from history to today

• localize a target: i.e. determine its coordinates in the 3-dimensional space; in this
case, a pulsed radar appears to perform the best compared to a CW radar system.
In this case, one has also to choose between a mono-pulse radar (MPR) and a train-
pulsed radar system. Such a choice may be based on the maximum range the radar
is expected to reach, the 3D area it has to cover but also on other specific aspects
[Tho82]

• evaluate target’s relative speed: i.e. measuring the radial component of the target
velocity vector relative to the transmitting antenna own speed (if the radar is mobile);
direct measurement can be performed either by evaluating the so-called Dopple-Fizau
1 shift of a pure tone signal or by interpolating relative positions between consecutive
pulses (this is called indirect measurement). As long as target coordinates are not of
importance, a CW radar can perform speed estimation by simply transmitting two
pure tone signals and computing the difference beat

• track a target: chasing a target requires to continuously evaluate the target position
and relative speed

Moreover, there exists some others questions that need to be considered before starting any
system design:

• radar is static or mobile? answer to this question has a direct impact on the power
management and on the mechanical aspects of the radar

• environment is mainly ground or water or mixed? answer to this question has a direct
impact on the embedded signal processing techniques as each type of noise - natural or
not - requires specific processing. In the military domain, opponent counter-mesaure
(jamming) has to be taken into account.

The first question is of main importance if we consider the radar from a overall system
perspective. Indeed, new parameters affect target position and speed estimation whether
the radar is static (ground equipment) or mobile (airborne embedded systems, ship/frigate
embedded systems). All measurements are thus relative to the radar own position in the
3D space and to its own speed. Embedded radars encounter fast changing operation con-
ditions as ship/fregate or aircraft are not strictly stable. The second question also strongly
affects signal processing techniques as ground and water does not have the same impact
and effects on electromagnetic waves. Environment is not a deterministic parameter; thus,
it is necessary to best estimate it using statistical models. Different models apply for each
type of clutter.
Nowadays, military radars generally work tight with weapons systems. Indeed, the radar is
responsible to find out if threatening targets are able to attack and hit. It gives indicators
and signals on detected targets to the weapon systems. Automatic response or human-
guided decisions follow. Military radar can have very wide range coverage, i.e. almost
800-900 km. Civilian aircrafts can be detected by radars and considered as targets. In fact,
each radar uses a secondary antenna to run the IFF protocol. Each civilian aircraft has a
embedded transponder that broadcast a specific code recognized by every military forces to
be a friend ID. More on primary and secondary systems in [Col85].

1Often simply called Doppler shift

8



Chapter 2

System architecure

A general picture of a radar system is depicted in figure 2.1. It is designed as block-based
system. Each block has a specific operation. For instance, the duplexor switches back and
forth from transmitting to receiving operation since a dual Tx/Rx antenna is used, the IF
block shifts the high-frequency received signal to a lower intermediate frequency (IF).

Timer/Synchronizer Transmitter Duplexor

Local
Oscillator

Mixer
(1st detector)

IF
(Filter)

2nd
detector

Video
Amplificator Display Operator

Tx/Rx
 Antenna

Figure 2.1: Radar General Model

The overall operation of the radar may look simple but it involves very fast and complex
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Chapter 2 System architecure

mechanisms. Figure 2.2 details the core system of the MRR radar. It consists of sev-
eral modules that interact one with each other in order to maximize automatic operation.
Nowadays, human role is very limited in radar systems. The person in charge of operating
the radar mainly decides on a limited range of options that sets the radar performance up.
Most of the radar operation is automatic.

GUI STM SP

ET

DM

Figure 2.2: Radar synoptique

• GUI (Graphical User Interface): computer-based user interface including basic key-
board and mouse

• STM (Space-Time Management): system that monitors and controls the radar main
functionalities such as space revolving, antenna pointing, waveform selection

• DM (Data Management): system that generates dynamic commands to the STM
according to the ouputs from the SP block

• SP (Signal Processing): module that executes basic signal processing algorithms

• ET (Extract and Track): modules that extracts usefull information from the SP block
output and performs target tracking

Basically, according to the situation, the radar can work in different modes that the operator
selects via the GUI.

• altitude: scanning different slice of the 3D coverage volume (surface, low altitude,
average altitude, high, altitude or very high altitude)

• filtering: Doppler targets or helicopters1

• tracking: multiple targets tracking enabled/disabled

1For helicopters, Doppler filtering requires specific filters due to the fast moving blades that generate a
known Doppler flash
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Chapter 3

Signal Processing Techniques

3.1 Objectives et Problem definition

State-of-the-art digital circuits allow very fast computation and strong memory capacity
for target ranging and detection. However, there exists a drawback in using digital compu-
tation rather than analogical signal processing. The radar coverage area has to be defined
as a discontinuous area. The 3D area covered by the radar is seperated out in 2D maps.
Each map is cut out in cells. This is mainly due to the fact that it strongly eases com-
putation. Indeed, most of the signal processing is based on signal filtering. Moreover, in
the distance/ranging domain the sampling frequency fs defines the distance quantum1 as
dmin = c/fs where c is the light velocity. This gives the maximal accuracy of the radar on
the range/distance dimension. In the azimuthal plane (horizontal/rotation plane), the 360◦
region is cut out in angle sectors. A value of about a hundred of angle sectors is expected
for accurate coverage. Angle sectors are sometimes set to be equal to the 3dB beamwidth of
the antenna eventhough this is not necessary. In the site plane (approximatively a 90◦-wide
angle), the altitude modes determine how many 2D area maps are to be stored. Basically,
the radar operates in four or five distinct modes according to the altitude pointed by the
antenna (the 3dB beamwidth also applies in the vertical plane). Moreover, the MRR is
equipped with a SMBAA that allows to detect or track different target in the 3D space
at the same time using multiple electronically-generated steered beams. For instance, the
radar is capable of detecting an incoming opponent frigate (surface target) and at the same
time, capable of tracking a helicopter (medium altitude).

3.2 Signal flow

Figure 3.1 shows the block-based structure of the signal processing techniques involved in
the MRR radar. Each block has it own role in the target detection and/or tracking process.
Shortly, we have:

• PC (Pulse Compression): it allows via specific filtering techniques to recover the
transmitted signal from the noisy backscattered echo

1Quantum is the minimum distance unit
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Chapter 3 Signal Processing Techniques

• AT (Amplitude Treatment): it gets rid of spurious values by checking every sample
amplitude

• DF (Doppler Filtering): it evaluates the targets radial velocity through a bank of
narrow-band filters

• ML (Module and Logarithm): it mathematically modifies the received signal in order
to improve radar’s detection capability

• ACP (Anti-Clutter Processor): it evaluates surrounding noise power according to the
situation (sea, ground)

• CFAR (Constant False Alarm Rate): it adjusts detection thresholds and radar pa-
rameters in order to maintain detection performances

• PI (Post Integration): it combines pulses within a transmitted burst to improve target
detection

• SPI (Sliding PI): it performs as PI but uses the output of PI from round to round

• Detection: it provides an indicator stating the presence of a target in each defined cell

The MRR 3D-NG has an optional feature called SLS, short for Side-Lobes-Suppression.
Antenna theory shows that for any antenna design, the main lobe comes with small and
often undesirable sidelobes that may degrade the received signal. The SLS algorithm tends
to mathematically cancel out sidelobes drawbacks. Main lobe signal is composed of the
desired echo signal with added noise such as jamming signals or clutter signals. Sidelobe
signal mainly contains noise components. At the receiver stage, both sidelobes and mainlobe
signals are mixed together. The use of an auxiliary antenna provides a way to theoretically
suppress sidelobes signal. Signals received by the secondary antenna are scaled by an
adaptive factor and substracted to the main antenna signal. The scaling factor is computed
such that only the echo signal remains out of the received signal. Sidelobes effects are in
practice strongly lowered.

14



3.2 Signal flow

From Rx Antenna

PC

AT

DF

ML

Sea ACP Ground ACP CFAR

Selection

PI/SPI

Detection

To Exctractor

Legend

P.C. : Pulse Compression

A.T : Amplitude Traitment

D.F. : Doppler Filtering

M.L. : Module and Logartihm

A.C.P. : Anti-Clutter Processor

C.F.A.R. : Constant False Alarm Rate

P.I./S.P.I. : (Sliding) Post Integration
 

Figure 3.1: Signal Processing Signal Flow
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Chapter 4

Basic Radar signal processing

4.1 Fundamentals

The use of electromagnetic waves in radar systems imposes some constraints on the overall
performances. The basic concept of radars is to detect a target located at a distance denoted
R by sending an electromagnetic wave through an antenna and measuring the time elapsed
between the transmitted pulse and its received echo. According to optic/electromagnetic
fundamental rules, this time denoted t0 is directly proportional to the light velocity c:

t0 =
2R
c

. (4.1)

Equation (4.1) only gives information on the target range. Antenna theory states that the
3 dB beamwidth of an antenna is related to the carrier wavelength λ and the size of the
antenna D in the given plane:

θ3dB
∼= 70

λ

D
. (4.2)

The direction of the target is directly given by the antenna pointing direction. Note that the
accuracy of the direction estimation is increased by augmenting the antenna dimensions.
Obviously, this leads to an unavoidable dilemma as radar system designs must meet prac-
tical constraints. For instance, embedded radar must have very limited dimensions. Thus,
accuracy in the pointed direction is directly inverse proportional to the antenna dimensions
(in a given plane).
With a pulsed radar, the signal to be transmitted is composed with a train of individual
pulses, each pulse is shifted in time by TR seconds. The pulse repetition frequency FR is
defined as:

FR =
1

TR
.

This parameter is involved in the calculation of the radar average transmitted power Pa:

Pa = Pp
τ

TR
, (4.3)

where τ is the pulse duration, Pp is the peak power. The duty cycle, defined as τ
TR

, provides
information on radar average operation, one thousand is a common value.
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Chapter 4 Basic Radar signal processing

t

 TR 

Figure 4.1: Pulses Burst diagram

For a pulsed radar, a new notion that does not exist in continuous-wave radar is defined: the
range-discrimination factor. It is used in situations when two distinct targets are located
in the same direction but at different ranges (R1 �= R2). This means that both targets are
located inside the antenna main-lobe. Thus, if the two targets respond to the transmitted
signal by producing an echo, these echos are shifted in time such that:

Δt =
2R1

c
− 2R2

c
=

2
c
ΔR (4.4)

Each pulse has a duration equal to τ and if Δt < τ , then the two echos overlap in time.
If we only consider signal amplitude, the two signals may cancel each other in some points
in time. One target may be hidden in such situation, that is not acceptable in a military
context. The range-discrimination factor is defined as:

ΔR =
cτ

2
(4.5)

Using the same concept, an angular-discrimation factor is defined. This radar parameter
applies to both vertical (site) and horizontal (azimuthal) directions. It is defined in [Tho82]
and expressed as follow:

Δθ = 1.2
λ

D
. (4.6)
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4.2 Detection and Doppler effect

Recovering usefull information such as target position and relative velocity from the received
signal strongly rely on stochastic processes estimation. The received signal is affected by
two factors: random noise and unknown delay. Recovering information from a noisy signal
can be roughly summarized as a detection probability function of the signal to noise ratio
(SNR).
If we defined ρ = s/N0 as the SNR where s is the minimal signal that the radar can exploit
and N0 is the noise density expressed in [W/Hz], thus the maximal range Rmax in meter
that the radar is able to detect can be derived as follow.
Let us define the power density of an isotropic antenna, denoted Pia at a distance R:

Pia =
Pt

4πR2
. (4.7)

Radars employ directive antenna with gain G in the pointed direction. The power density
for a directive antenna is written as:

Pda = Pia × G =
PtG

4πR2
. (4.8)

Target echo signals reradiate back only a certain amount of the transmitted power, this
amount is denoted σ and is called the radar cross section. It has units of area. The power
density of a received echo signal is expressed as:

Pe =
PtG

4πR2
× σ

4πR2

=
PtGσ

(4π2) R4
. (4.9)

The received power is only a fractional part of the transmitted power. This is due to the
fact that antennas present an efficiency, denoted Ae that is less than unity (common values
for the antenna aperture are in the range 0.7 − 0.85). The maximal radar range Rmax is
the distance beyond which the target cannot be detected. This distance occurs when the
received echo signal equals the minimum detectable signal Smin.

Rmax =
[

PtGAeσ

(4π)2Smin

] 1
4

. (4.10)

Equation (4.10) is called the radar equation. More on the radar equation and its various
form and derivations in [Sko80].

Radar Cross Section (RCS) is a target parameter that allows to define how furtive the
target is. It charaterizes how much of the transmitted signal is backscattered by the target.
It is defined in [m2] and is often referenced as the virtual area of a target.

σRCS = 4πR2 |Er|2
|Ei|2

, (4.11)

where

• R: target range in [m]
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Chapter 4 Basic Radar signal processing

• Er: reflected electrical field in [V/m2]

• Ei: in-coming electrical field in [V/m2]

It appears that the RCS value of the target can be viewed as a random variable. Indeed,
it changes over time and over space. At a given instant, the target presents a certain angle
with respect to the vectors �Ei and �Er. The fact that the target is moving obviously modifies
those angles and thus the leading value of σRCS . Some common average values are listed
in table 4.1:

Target RCS [m2]
furtive target 0.01
UAV (Unmanned Aircraft Vehicle) 0.1
fighter aircraft 1
intercontinental aircraft 100

Table 4.1: Radar Cross Section examples

The minimum detectable signal Smin can be expressed in terms of minimum signal to noise
ratio:

Smin = kT0BnFn

(
S0

N0

)
min

, (4.12)

where

• k: Boltzman constant in [J/K]

• T0: system equivalent temperature in [K]

• Bn: receiver 3dB-bandwidth in [Hz]

• Fn: system noise figure [/]

• N0: noise output from receiver [W ]

• S0: input signal power [W ]

We can rewrite equation (4.10) including spare losses (Li) due to system losses (plumbing
loss due to RF transmission lines and connectors imperfection, beam-shape loss due to
non-constant gain in the main lobe). More on specific radar system losses in [Sko80].

R4
max =

PtGAeσ

(4π)2kT0BnFn

(
S0
N0

)
min

∑+∞
i=0 Li

. (4.13)

The receiver bandwidth must be carefully chosen since it directly impacts on the system
perfomance. A large bandwidth causes noise to be added to the received signal and a too
small value may cause useful signal to be filtered out. Recall that in our case (pulsed radar),
the duration of a pulse is set equal to τ . It is easy to think that if we set the bandwidth Bn
to be chosen as Bn = 1/τ , we should have the optimum value if we consider that the energy
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4.2 Detection and Doppler effect

of the pulse is concentrated in the main lobe. Some experimental studies at the Boston
MIT Radiation Laboratory1 showed that the optimum value has to be chosen such that:

Bn =
1.2
τ

. (4.14)

An empirical formula, named Haeff formula ([Tho82]) gives the degradation coefficient by
which the signal-to-noise ratio is multiplied if the receiver bandwidth is not chosen as
Bn = 1.2

τ .

C =
Bτ

4α

(
1 +

α

Bτ

)2
[dB], (4.15)

where

• B: bandwidth [Mhz]

• τ : pulse duration [μs]

• α: B
B0

if we set2 B0 = 1
τ

If we use a value of Bn different from the optimum, the signal to noise ratio gets degraded
([Tho82, p. 26]). Thus, if we want to maintain a certain operational quality, say the prob-
ability of detection, we must increase the signal-to-noise ratio defined in (4.13). In case of
a CW radar, equation (4.14) obviously does not apply since there is no signal duration τ .
The Pulsed-Doppler radar is capable of evaluating the target relative speed using the prop-
erties of the Doppler effect. The main property of the Doppler effect is that it produces a
frequency shift which value is directly proportional to the target speed. However, frequency
shift is only proportional to the radial component of the relative speed vector. Speed vec-
tor tangential component does not contribuate to the frequency shift. This is of very high
importance because in some situations, the target may have a non-zero speed but does
not produce Doppler effect as it is moving in circles around the radar position. Thus, it
becomes impossible to estimate target speed by Doppler filtering means in such situation.
Hopefully, another method exists to determine a target speed. It is possible as said before to
extrapolate successive detected positions. Hence, it becomes easy to completely determine
target velocity characteristics and path.
Doppler shift, denoted fd, is given by the following expression where vr stands for target
radial relative velocity in [m/s]:

fd =
2vr

λ0
=

2vrf0

c
(4.16)

where

• λ0: carrier wave length [m]

• f0: carrier frequency [Hz]

• c: light velocity [m/s]

1It is possible to approximatively demonstrate Bn = 1/τ , [Car62, chap. 12]
2α is only defined if B0 is considered to be equal to 1

τ
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Chapter 4 Basic Radar signal processing

4.3 Measurements accuracy

The position of the target is given by computing a time instant t0 in the received signal
y(t) such that:

t0 = arg max
t∈R+

y(t)

= arg max
t∈R+

{(x(t) + n(t)) ∗ h(t)}, (4.17)

where x(t) is the transmitted signal and n(t) is an additive white complex noise (not
necesseraly Gaussian) and h(t) is the receiver filter. In case of a noise free environment, i.e.
n(t) = 0, the time instant basically equals to zero. However, in a noisy environment, it has
been shown that t0 is a Gaussian random variable with mean and standard deviation such
that:

μt0 = 0, (4.18)

σt0 =
1

2πβ0

√
S0
N0

, (4.19)

with

β2
0 =

∫ +∞
−∞ f2 |H(f)|2 df∫ +∞
−∞ |H(f)|2 df

, (4.20)

where H(f) is the Fourier transform of h(t). These formulas, known as the Woodard
formulas, lead to an error in range estimation such that

σR =
c

4πβ0

√
S0
N0

. (4.21)

In the same way, it has been shown that the accuracy in Doppler-shift measurement is also
linked to the ratio S0

N0
.

σfd
=

1

2πTf

√
S0
N0

, (4.22)

σvr =
λ

4πTf

√
S0
N0

, (4.23)

T 2
f =

∫ +∞
−∞ t2 |h(t)|2 dt∫ +∞
−∞ |h(t)|2 dt

. (4.24)

Parameters β2
0 and T 2

f are respectively called the second central moment of |H(f)|2 and
|h(t)|2.
These equations can be used as a help to accurately determine the target position and
radial velocity. They demonstrate the importante role of the signal-to-noise ratio in the
overall performance. It shows that signal processing techniques involved tend to maximize
signal-to-noise ratio in order to improve performance.
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Chapter 5

Pulse Compression

5.1 Objective

The pulse compression block is the first stage of the signal processing chain. At the input
of the module, the received signal is very noisy and almost looks like white noise (random
values spread over all frequencies, see figure 10.2). The pulse compression technique tries
to make the transmitted signal visible and dominant over the background noise. Unlike the
pulses depicted in figure 4.1, the transmitted signal does not consist of basic rectangular-like
pulses with constant amplitude and duration τ . The main reason is due to electromagnetic
laws that do not permit low-frequencies signal to be sent over the air. Therefore there is a
need to shift the signal on a carrier signal (a pure tone with high frequency1). Moreover, the
system generates internal noise. The noise power decays in 1/f . Thus, system self-generated
noise is inversely proportional to the frequency. This gives a second good reason to use a
carrier signal to transmit the signal. A basic quadratic demodulator recovers the signal from
the RF modulation. The detected signal is shifted back to the baseband domain. Using a
specific receiving filter, the output produces a triangular-like signal which maximum value
leads to the target range.

5.2 Principle

Pulse Compression is involved in radar systems where both maximum detection range and
range discriminator factor are of importance. Recall that combining equation (4.3) and
(4.13), it is obvious that the maximum detection range Rmax is proportional to the pulse
duration τ . On the other hand, recall that the range discriminator factor d is d = cτ

2
and this parameter must be minimized to ensure multiple targets detection. Obviously,
it appears that it is impossible to have optimum values for both parameters. One first
idea could be to increase the peak power while keeping the pulse duration to a low value,
thus increasing the maximum range detection. However, due to hardware constraints, this
solution is not feasable. The most popular solution consists in the use of particular pulses,
called compressed pulses.

1in the GHz domain
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Chapter 5 Pulse Compression

Compressed pulses are pulses that have the particularity to have a non-zero duration2 T at
transmitting point such that T >> τ . At the receiving point, their duration is set back to
τ after filtering. We define

ρ = T/τ (5.1)

as the compression rate. Basic rectangular pulses on a carrier do not allow such results. It
is necessary to add a modulation or coding scheme on the signal phase. The most popular
coding scheme is the so-called chirp scheme.

T

t

f0 +    f/2

f0

f0 -    f/2

f

f

Figure 5.1: Pulse Compression principle

Figure 5.1 depicts the basic principle of the pulse compression. The frequency of a signal
(a pure tone) is linearly modulated in the frequency range [f0 − Δf/2, f0 + Δf/2] over
the pulse duration T where f0 is the carrier frequency. Thus, the transmitted signal is a
repetition of frequency modulated pulses of duration T .

2Do not confuse T and TR : T represents the duration during which power is transmitted whereas TR

denotes the whole pulse duration (see figure 4.1
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5.3 Generation of signal

5.3 Generation of signal

Several techniques exist when it comes to generate the transmitted signal. Signal generation
can be passive or active. It can also be digital or analog. We do not cover details in this thesis
but the reader can find several references in this interesting topic. Figure 5.2 describes the
passive method of producing a compressed signal. This method is defined as passive because
a specific filter is used to produce the frequency modulation from a basic rectangular pulse.
The MRR radar uses digital computation. The use of digital calculation allows to store
several pulses in a memory bank and to select a given pulse at any given instant according
to the situation. Indeed, compressed pulses have specific characteristics that have a direct
impact on the overall radar performance. For instance, pulse duration T and τ impacts
the covered range or the range discriminator ; the frequency drift Δf has an impact on the
Doppler filtering and can also be selected.

Pulse Generator Filter H(f)

Receiver Filter H*(f)

A

A

Antenna

T

T

Duplexor

Figure 5.2: Pulse Compression signal generation

5.4 Chirp Signal: Mathematical Approach

The chirp signal is a signal where the instantaneous frequency linearly varies within the
duration T of the transmitted pulse. We define the phase variation rate in [rad/s] as
μ = 2πΔf

T and we build the signal x(t) as follow:

x(t) = cos
(

ω0t +
1
2
μt2

)
, − T

2
≤ t ≤ T

2
(5.2)
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where ω0 is the carrier frequency of the transmitted signal. Its spectrum is computed using
the Fourier Transform as:

X(f) = FT {x(t)}

=
∫ T

2

−T
2

cos
(

ω0t +
1
2
μt2

)
exp (−j2πft) dt. (5.3)

After calculations [Tho82], we obtain:

X(f) =
1
2

√
π

μ
exp

(
−j (ω0 − ω)2

2μ

)
[C (x1) + jS (x1) + C (x2) + jS (x2)] , (5.4)

where

x1 =
μT
2 + (ω0 − ω)√

πμ
,

x2 =
μT
2 − (ω0 − ω)√

πμ
,

C(x) =
∫ x

0
cos

(π

2
y2
)

dy, (5.5)

S(x) =
∫ x

0
sin

(π

2
y2
)

dy. (5.6)

Integrals C(x) and S(x) are called Fresnel integrals. Using the fact that the signal is com-
posed of successive pulses transmitted every TR = 1

FR
, the signal spectrum is a discontinuous

spectrum composed of regularly spaced narrow rays (every FR in the frequency domain).
The spectrum envelope module is given by [Tho82]:

|X(f)| =
1
2

√
π

μ

[
(C (x1) + C (x2))

2 + (S (x1) + S (x2))
2
]
. (5.7)

It is possible to show [Tho82, p. 213] that for ρ = T
τ = T × Δf , the envelope module is

approximately constant within the considered bandwidth Δf :

|X(f)|T×Δf>>1
∼=
√

π

μ
, f0 − Δf

2
≤ t ≤ f0 +

Δf

2
. (5.8)

In a realistic scenario, it is necessary to consider a complex signal as the noise is modeled
as complex. It affects both amplitude and phase.

x(t) = exp
(

j

(
ω0t +

1
2
μt2

))
, − T

2
≤ t ≤ T

2
. (5.9)

Hence, the transmitted pulse train signal, composed of Np pulses, is written as:

xTX =
Np∑
i=0

x (t − iT ). (5.10)
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5.5 Reception of signal

5.5.1 Matched filter

As any signal transmitted over the air, the chirp signal encounters noise in its two way trip
from the transmitted antenna to the target and back to the antenna. In order to maximize
the signal-to-noise ratio at the receiving stage, the matched filter is the optimal solution3

Here we give a summarized overview. For a received signal y(t) which is a time-shifted
(delayed) replica of the transmitted signal with additive noise n(t):

y(t) = x(t − t0) + n(t). (5.11)

North [D.O63] showed that the frequency response function of the linear, time-invariant
filter which maximize the output peak-signal-to-mean-noise (power) ratio for a given input
signal-to-noise ratio is given by:

H(f) = GaY
∗(f) exp (−j2πft0), (5.12)

where:

• Y (f) is the Fourier transform of y(t): Y (f) =
∫ +∞
−∞ y(t) exp (−j2πft)dt

• t0: fixed value of time at which the signal is oberved to be maximum (equals the
round trip delay of the transmitted signal)

• Ga: filter gain (generally set to unity)

The noise that accompanies the signal is assumed to be stationary and to have a uniform
spectrum (white noise). It does not need to be Gaussian. If the noise is not white, then
equation (5.12) needs to be rewritten as explained in the next subsection.
In the time domain, using inverse Fourier transform, the matched filter impulse response
can be expressed as follow using the fact that Y ∗(f) = Y (−f):

h(t) =
∫ +∞

−∞
H(f) exp j2πft df

= Ga

∫ +∞

−∞
Y ∗(f) exp [−j2πf (t0 − t)] df

= Ga

∫ +∞

−∞
Y (f) exp [j2πf (t0 − t)] df

= Ga · y(t0 − t) (5.13)

The impulse response of the matched filter is simply the image of the received signal; that
is, it is the same as the received signal but run backward in time starting from instant t0.
However, since the noise n(t) is an unknown signal, the filter is matched to the transmitted
signal x(t):

h(t) = Ga · x(t0 − t) (5.14)

3www.wikipedia.com provides a good introduction to the matched filter technique
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The output of the matched-filter is expressed as the convolution in the time domain of the
received signal with the matched-filter impulse response:

s(t) =
∫ +∞

−∞
y(τ) · h(t − τ) dτ (5.15)

=
∫ +∞

−∞
(x(τ) + n(τ)) · x(t0 − t − τ) dτ

=
∫ +∞

−∞
x(τ) · x(t0 − t − τ) dτ +

∫ +∞

−∞
n(τ) · x(t0 − t − τ) dτ

= z(t) + w(t) (5.16)

where z(t) represents the noise-free output from the matched filter and w(t) represents the
filtered noise. Note that since the transmitted signal spans a wide frequency range, the
matched filter cuts out some signal as well as some background noise since it has a limited
bandwidth (equation (4.14)).
In radar signal theory, the matched filter output is affected by the Doppler effect. The
apriori unknown frequency shift introduced by the Doppler effect can also be seen in the
time domain as an additional def, say tD. Therefore, since both target range and target
Doppler shift are unknown to the system, a bank of matched filters is used to determine
the overall delay. Doppler filtering output, i.e. a frequency shift, helps to best estimate the
target range by substracting the delay tD to the total delay.

5.5.2 Matched filter for non-white noise

Equation (5.12) assumes that the noise has a spectrum that is independant of frequency
(constant). If this assumption is not true, then the filter that maximizes the output SNR is
different. It has been showed in [LR52] that the matched filter frequency response in such
situation could be derived as follow:

H(f) =
GaY

∗(f) exp (−j2πft0)
[Ni(f)]2

=
1

Ni(f)
× Ga

(
Y (f)
Ni(f)

)∗
exp (−j2πft0) (5.17)

where Ni(f) denotes the noise spectrum.
This indicates that the non-white noise matched filter can be considered as the cascade
of two filters. The first filter, with frequency-response function 1/Ni(f), acts to make the
noise spectrum uniform, or white. It is sometimes called the whithening filter. The second
is the matched filter described by equation (5.12) when the input is white noise and a input
signal with spectrum S(f)/Ni(f).

5.5.3 Issues

At the receiving stage, the signal power is very weak compared to the noise power. The
incoming echo signals are first mixed into an Intermediate-Frequency box so that the signal
gets shifted to a lower frequency where digital signal processing techniques are achievable. A
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5.5 Reception of signal

sharp bandpass filter centered on the carrier frequency in use eliminates out of band noise.
In the military domain, a frequency hopping scheme is used in order to avoid frequency
jamming issues.
Figure 5.3 shows the output of the matched filter in a noise free scenario. As noise is
a complex process, it distords both signal amplitude and phase. Thus, the main lobe
amplitude and position that leads to the target position are affected by the noise. The
upper-left figure depicts the real part of a chirp signal (the signal is symetric compared
with t = 0 axis). We can see how the frequency increases along with the time. The
upper-right picture shows the spectrum of the complex chirp signal. The lower figures show
the output of the matched filter first in absolute scale and then in dB. Two important
parameters has to be taken into account in the figures:

• main lobe width: it defines how accurate the range of a target can be determinated

• sidelobes relative amplitude level: it affects other targets of being shadowed by the
matched-filtered output signal

Without any specific signal processing, it appears that the main lobe has an acceptable4

width. The more narrow the main lobe width can be, the better the accuracy of the radar.
Concerning sidelobes, the figures show that they have a relatively high amplitude level (an
exact value would be -13.2 dB relative to the main lobe magnitude). This is obviously a
too high value if we consider that several targets can be detected at the same time. If so,
they might be hidden by the sidelobes if they are located in the same direction.
There exists some mathematical techniques that allow to modify main lobe width and side-
lobes relative amplitude. These functions are filtering techniques and are called weighting
functions5.

5.5.4 Weighting window functions

Let us consider a noise-free scenario. The compressed pulse has a spectrum denoted X(f).
This spectrum is fed to a band-limited filter H(f), see figure 5.2, that produces a pulse xT (t)
of duration T and spectrum XT (f). Since the filter H(f) cuts out some frequencies, the
output from the matched filter differs from the original signal xT (t). It is not a rectangular
chirp signal of duration T . It is a signal of carrier frequency f0 that is modulated by a
sinusoide. We can express the output as follow:

x(t) =
∫ +∞

−∞
XT (f) exp (j2πft)dt

=
√

TΔf
sin πΔft

πΔft
sin (2πf0t + φ) (5.18)

where XT (f) is the filter used to produce the signal of duration T from a pulse of duration
τ as depicted in figure 5.2. We can see from figure 5.3 that the output from an uniform
(non-weighted) matched filter presents some characteristics that might lower the overall
system performance. Indeed, the hight sidelobes level are likely to hide targets. Such a
situation is unaccpetable in a military environment.
Weighting functions are here used to compromise between main lobe width and sidelobes
relative magnitude. Numerous weighting functions exist with different impact on each
parameter. They are mainly used in the frequency domain where bandwidth limitation

4It obviously depends on the definition of the term acceptable
5Sometimes refered as windowing functions
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Figure 5.3: Pulse Compression matched filter output

plays an important role. These functions are used in the same manner in the time domain
to lower sidelobes relative amplitude and main lobe width. It appears that radar designers
have to face a dilemma because a better performance in term of main lobe width can only
be achieved at the expense of higher sidelobes amplitude. Figure 5.4 depicts the output of
a compressed pulse matched filter. Windowing functions are used to modify time domain
characteristics, they are implemented using digital filtering techniques (FIR filters). These
filters are placed right after the matched filter.6

• Uniform: ∀k ∈ [0, N ] , w(k) = 1

• Hamming: ∀k ∈ [0, N ] , w(k) = 0.54 + 0.46 cos
(
2π k

N

)
• Hanning: ∀k ∈ [0, N ] , w(k) = 0.5

(
1 + cos

(
2π k

N

))
• Blackman: ∀k ∈ [0, N ] , w(k) = 0.42 + 0.5 cos

(
2π k

N

)
+ 0.08 cos

(
2π 2k

N

)
6It can be placed at any other point in the receiving chain as in the frequency domain it comes X1(f) ×

X2(f) = X2(f) × X1(f)
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5.6 Ambiguity diagram

We can see from figure 5.4 that it is possible to achieve great performance in minimizing
sidelobes amplitude. Blackman function presents almost -85 dB for its sidelobes relative
level but produces an unacceptable main lobe width. Most of the modern radars implement
Hamming or Hanning window functions because they provide the best trade-off between
main lobe width and sidelobes relative amplitude. Depending on the situation, adaptive
windowing can be performed in order to select the best weighting function.
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Figure 5.4: Windowing functions examples

5.6 Ambiguity diagram

The radar ambiguity diagram represents the response of the match filter to the signal
to which it is matched as well as to doppler-frequency-shifted (mismatched) signals. Since
doppler shift and range are canonical conjugate variables there exists an uncertaintly relation
between them. It provides a practical way of selecting waveforms for various applications.
The output of the matched filter was shown to be equal to the cross-correlation between
the received signal and the transmitted signal (equation 5.15). For the ambiguity diagram,
only the noise-free component is considered. The ambiguity function is a two-parameters
function χ (t0, fd). In [Sko80, p. 411-420], a derivation of the ambiguity function is given.
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Chapter 5 Pulse Compression

Basically, the ambiguity function can be calculated in both time and frequency domain.

χ (t0, fd) =
∫ +∞

−∞
x∗(t)x (t − t0) ej2πfdtdt (5.19)

χ (t0, fd) =
∫ +∞

−∞
X∗(f)X (f − fd) ej2πft0df (5.20)

The ambiguity diagram is obtained by squaring the ambiguity function.

A (t0, fd) = |χ (t0, fd)|2 (5.21)

For a chirp signal with parameters Δf and T , the ambiguity diagram is expressed as follow.

A (t0, fd) = rect

(
t0
2T

)(
T − t0

T

sin (π (αt0 + fd) (T − |t0|))
π (αt0 + fd) (T − |t0|)

)2

, α =
Δf

T
(5.22)

where

rect

(
t0
2T

)
=

⎧⎨
⎩ 1 if t0 ∈ [−T, T ]

0 otherwise
(5.23)

This kind of ambiguity diagram is called the knife-edge diagram as it has the shape of a
knife edge. Figure 5.5 shows the diagam. The slope of the diagram is equal to the slope of
the function depicted in figure 5.1.
The surface delimited by the non-zero part of the diagram defines the two dimensions
ambiguity region where it is impossible to determine the echo response. It is not possible
to accurately determine the delay t0 and the Doppler shift fd. The ideal but unattainable
ambiguity diagram would be a single peak of infinitesimal thickness. This ideal model
provides ambiguity-free decision as it is not affected by Doppler shift and delay.
For the chirp signal, a solution to decrease the ambiguity is to use alternatively positive
and negative slopes. Thus, it reduces the ambiguity region because if we overlap both
ambiguity diagrams (positive and negative slope), there is only a limited common region
centered around the origin that remains. This leads to less ambiguity.

32



5.6 Ambiguity diagram

0

50

100

150

0
20

40
60

80
100

0

50

Time (s)

Ambiguity Function for Linear FM

Frequency (Hz)

A
m

pl
itu

de

20 40 60 80 100 120

10

20

30

40

50

60

70

80

Contour Plot

Time (s)

F
re

qu
en

cy
 (

H
z)

Figure 5.5: Chirp Ambiguity Diagram
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Figure 5.6: Pulse Train Ambiguity Diagram
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Chapter 6

Envelope treatment

6.1 Objectives

At this stage of the signal processing chain, the output of the pulse compression box is a
noisy complex signal with a wide range of amplitude values. It presents a high peak-to-
mean value. This wide range of values may affect the probability of false alarm, and thus
system performance. It can decrease radar target detection capability. Very high or very
low signal values (due to peaky noise or deep fading) downgrade false alarm performance
by generating wrong decisions. Moreover, the antenna gain does not have a constant value
within the beamwidth. Maximum gain is obtained at the center and low values occur at
the edge of the beam. This leads to a sample-by-sample amplitude modulation (envelope
modulation) as the antenna rotates.
In a military scenario it is a priority and a necessity to keep the false alarm rate to the
optimum value. Indeed a false alarm can occur in two type of situations:

• if the received signal is high but mainly due to a high noise positive value, it requires
to allocate force ressources to an unexisting target and a pure waist of attacking forces

• if the received signal is low but mainly due to a low noise negative value, it causes a
target miss, leading to possible severe damages

One signal processing technique that is easy to implement is to select a set of samples,
denoted S. The amplitude mean, denoted μS , for the sample set S is computed1. For
each sample xn in the set S, the magnitude |xn| is also computed. Then, the difference
Δ = |μS − |xn|| is compared to a threshold ε. If Δ > ε, the value of the sample xn is
replaced by a subsitute value x0.

6.2 Algorithms

Given a transmitted signal composed of Np consecutive pulses, each pulse is sampled at a
rate such that Fs = 1/Ts. Recall that within a pulse train, pulses are evenly spaced in time

1It is common to discard the maximum and the minimum amplitude value in the set S before computing
the mean μS
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by TR = 1/FR seconds. Thus, we can consider the received signal at the output of the pulse
compression box as a (Np × TRFs) matrix. Each row represents a pulse in the pulse train
and each column contains samples from all pulses having the same rank within the pulse.
The antenna gain is considered approximatively constant during a pulse duration. Samples
within a pulse are equaly amplified. Each sample magnitude is compared to the mean of
the magnitudes computed over the pulse length. This obviously requires to store data and
to wait until the whole pulse (TRFs samples) is received. The set is composed of all samples
within a pulse.

∀n ∈ [1, TRFs] if |xn| − 1
TRFs

TRFs∑
n=1

|xn| > ε1 , xn = x0 ∈ R. (6.1)

Equation (6.1) basically allows the system to discard high or low signal values that might
distort detection performance.
Using the same idea, an algorithm performs a test on the whole pulse train. Here the set is
composed of samples having the same rank within the pulse. The set has Np samples. In
this situation, the whole transmitted signal (Np pulses) must be stored before computing
the means.

∀n ∈ [1, TRFs] if |xn| − 1
Np

Np∑
n=1

|xn| > ε2 , xn = x0 ∈ R. (6.2)

The substitution value x0 is selected to be a real value in order to not disturb Doppler
filtering. A complex value modifies the phase of the signal and thus, Doppler filtering is
distorted. Thresholds ε1 and ε2 are carrefully chosen as they play an important role in
target detection.
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Doppler filtering

7.1 Principle and Method

In the military domain, it is important to be able to evaluate the opponent speed in order
to prepare for eventual attacks. It gives very usefull information for strategic manoeuvres.
Pulsed-Doppler radar as the name indicates, is capable of evaluating the speed of a target.
In fact, in case of a mobile radar (embedded in an aircraft or a ship), it evaluates the target
relative speed and more precisely, the relative radial component of its speed/velocity vector.
Let us define a target with speed vector �v located at a range R from the radar. The target
lies on a circle with radius R and centered on the radar position O. Thus, the speed vector �v
can be decomposed as �v = �vr + �vt. Element �vr points from the target to the radar. Element
�vt is perpendicular to �vr. Figure 7.1 depicts the situation. According to equation (4.16),
the frequency shift of a signal is directly proportional to the absolute value of the vector �vr.
Now, let us imagine a situation where the target moves in circle around the radar. Here,
the speed vector is expressed as �v = �vr + �vt = �vt. The target does not encounter Doppler
effect although is it moving. However, a solution to this problem exists.
As expressed earlier in this paper, two techniques allow to evaluate the target speed:

• direct: using the Doppler effect and appropriate filters (generally a bank of digital
FIR filters)

• indirect: using successive evaluations of the target range and antenna pointing direc-
tion (interpolation)

In the MRR radar, the direct method is used. It is the most popular as it does not require
any memory to store values and nowadays, state-of-the-art DSP software and hardware
allow very fast computations. The bank of filters is composed of several evenly spaced and
overlapping FIR narrow-band filters with cut-off frequency centered around desired Doppler
shifts. Recall that a Doppler shift in the frequency domain is directly proportional in the
speed domain to the radial velocity of the target (equation (4.16)). The fact that the filter
frequency responses are overlapping avoids gaps in the considered range of Doppler shifts.
Thus a target hit is likely to occur in two filters but at different amplitudes. The most used
technique is the so-called MTI-MTD. A short demonstration is illustrated in [CCHF00].
The MTI is basically a FFT processor which output gives information on the presence (or
not) of target. Thus, the bank of filters operates via FFT. An amplitude threshold is used
to determine whether or not targets are present. If not, the MTD is skipped. If at least one
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Figure 7.1: Speed vector decomposition

target is present in the pointed direction, the MTD process the data to find out about the
target moving direction (away or toward from the radar). It can also evaluate the target
range if the radar does not use pulse compression technique. It may also be used as a help
to improve pulse compression accuracy.

7.2 Module and Logarithm

At the output of the Doppler filtering stage, the signal is in a complex format, i.e. x = ρeiθ.
However, the phase θ of the signal is not of importance anymore for the rest of the signal
processing chain. Thus, we can compute the module ρn for each sample xn such that:

ρn = |xn| =
√

(Re(xn))2 + (Im(xn))2. (7.1)

Then, for each sample, we compute the logarithm of the module we have just calculated.
The main reasons for computing the logarithm are:

• range of values is decreased, this permits to increase accuracy in the number repre-
sentation; this have a direct impact on the overall radar performance,

• statistic properties of the output signal are modified because logarithm is not a linear
operator; this is the main reason why it is used because the output signal has a
variance that is independant of the input signal, i.e. it is constant.

38



7.2 Module and Logarithm
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Figure 7.2: Train Pulses Spectrum

Let a logarithmic detector have the following transfer function y = a log (bx) where param-
eters (a, b) ∈ R. Let x be the input complex signal which module has a circular probability1

function px(x).

px(x) =
2x
σ2

exp
(−x2

σ2

)
. (7.2)

We set the following variable substitution u = x2

σ2 .

du =
2x
σ2

dx,

and
px(u)du = e−udu.

1The Rayleigh probability model is used as the noise is modeled as complex AWGN
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The transfer function can be rewritten as:

y = a log (bx) =
a

2
log

(
b2x2

)
=

a

2
[
log

(
b2σ2

)
+ log u

]
, (7.3)

E {y} =
∫ +∞

−∞

a

2
[
log

(
b2σ2

)
+ log u

]
p(u)du (7.4)

=
a

2

[
log

(
b2σ2

)
+
∫ +∞

0
log(u)p(u)du

]
,

since ∫ +∞

0
p(u)du = 1,

E
{
y2
}

=
∫ +∞

0

a2

4
[
log

(
b2σ2

)
+ log u

]2
p(u)du (7.5)

=
a2

4

[(
log

(
b2σ2

))2 + 2 log
(
b2σ2

) ∫ +∞

0
log(u)p(u)du +

∫ +∞

0
(log(u))2 p(u)du

]
.

If we combine equation (7.4) and equation (7.5) to compute the variance, it comes:

var(y) = E
{
y2
}− [E {y}]2 , (7.6)

var(y) =
a2

4

[∫ +∞

0
(log(u))2 p(u)du −

(∫ +∞

0
log(u)p(u)du

)2
]

=
a2

4

[∫ +∞

0
(log(u))2 e−udu −

(∫ +∞

0
log(u)e−udu

)2
]

. (7.7)

Using some basic calculations, we obtain:

var(y) =
a2

4
π2

6
. (7.8)

In fact, we cannot have such a transfer function because a pure logarithmic function outputs
minus infinity when its input is equal to zero (log xx=0 = −∞). A slightly modified transfer
function - more realistic - is used and the result remain the same as the modified function
can be approximated as a pure logarithmic.

7.3 Static Target elimination

Doppler filtering uses frequency discrimination to distinguish between targets. The received
signal contains echo signals from various targets as well as signals corresponding to different
noise sources. Moving target and static (non-moving) targets are treated in a different
fashion. Although a target is not moving, it backscatters an echo which is recognized by
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7.3 Static Target elimination

the signal processing chain embedded on the radar. Indeed, each type of target is assigned
a specific signature, that is the RCS parameter. It allows to differentiate bewteen static
target echo and environment echos. Echos from the environment, and especially from the
ground or the sea are sufficiently strong to cause close moving targets to be unseen from the
radar if not processed efficiently. These signals have relatively strong magnitude but they
do not generate Doppler effect since they are produced by static scatters. Thus, they can
be easily discriminated by their Doppler effect from scan to scan. Equation (7.9) expresses
the frequency model of static clutter. It appears that the clutter is not exactly Doppler
effect free but the signal energy is mainly focused around the carrier frequency f0.

X(f) = k exp

(
−a

(
f

f0

)2
)

f ∈ [0, FR] , k ∈ R, a ∈ [
1014, 1018

]
. (7.9)

The technique used to eliminate such undesirable echos employs a FIR filter that has the
following characteristics:

• flat amplitude/frequency response in the range [0, FR]

• null amplitude at frequencies such that f = k × FR, k ∈ Z

This technique is also called the MTI. It uses a velocity discrimnation factor. Such ideal
filter does not exist and an approximate solution is adopted through so-called single canceler
or double canceler. These techniques use basic computation in order to cancel out static
echo signal. The canceling technique slightly differs whether we assume a single or a double
cancellation.

• single cancellation: here, the received signal is fed to a direct path and to a delay box
of value TR so that the output y(t)sc can be viewed as :

y(t)sc = x(t) − x(t − TR)

• double cancellation: here, two consecutive delay boxes are used so that the final output
y(t)dc can be viewed as:

y(t)dc = y(t)sc − y(t − TR)sc = x(t) − 2x(t − TR) + x(t − 2TR)

Thus the output can be understood as the difference between a delayed version of the
output from a single canceller and the output from a single canceler.

The following equation expresse the output of a single canceller and the output for a double
canceller.

|y(t)sc| = 2 sin
(

πfd

FR

)
sin

(
t
2πfd

FR
+ φ

)
, (7.10)

|y(t)dc| = 4 sin2

(
πfd

FR

)
cos

(
t
2πfd

FR
+ φ

)
, (7.11)

where φ is a random angle that introduces blind phases phenomena. The outputs from
the cancellers are null if sin (πfd/FR) = 0 but they also become zero if the second term is
null. This term modulates the magnitude of the filter output. It degrades the probability
of detection as it affects the signal amplitude.
A hardware solution to get rid of this blind phases term is depicted in [Tho82, p. 102].
Other filters are also available to produce sharp brickwall-like frequency response. They
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have the advantage to avoid the blind phases phenomena but at the cost of more complex
computation. A convolution is needed rather than a simple delay box. These filters are FIR
low-pass filters with order in the range 2 ≤ n ≤ 5. Figure 7.3 shows the frequency response
for both single and double cancellation. Blind phase effect is not shown. One question
might arise to the reader. These cancellers also remove signal at frequencies multiple of
the repetition frequenccy FR. Thus, any target with a relative radial velocity that would
produce a Doppler shift equal to an integer multiple of the repetition frequency FR is
canceled out. This specific speeds are called blind speeds. There exists techniques to avoid
such a drawback. These techniques modify the repetition frequency on the fly such that a
given target does not remain in the blind speed range.
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Figure 7.3: Single and Double Cancelers

7.4 Staggering - Wobbulation

7.4.1 Ambiguities

The use of a pulse train instead of a continuous wave or a mono pulse adds in complexity
when it comes to target range estimation. Since a given target is likely to reflect echo signals
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from several pulses within a pulse train, it is difficult to determine from which transmitted
pulse, the received echo signals match. Recall from figure 4.1 that between two consecutive
transmitted pulses, there is a duration of TR seconds. Thus, when an echo signal is received
at time instant t0, the detected signal leads to an estimate of the target range d such that:

d =
c

2
t0 mod

( c

2
TR

)
(7.12)

We say that there is an amiguity of cTR/2 on the range estimate.
On the other hand, there is also an ambiguity in velocity due to a frequency pattern peri-
odicity. Recall that the transmitted signal is pulse-repetition based. Figure 7.2 depicts the
frequency representation of the transmitted signal. It composed of rays spaced by FR hertz.
Thus, if the Doppler effect produces a frequency shift fd such that fd ≥ FR/2, it becomes
impossible to find out which ray the Doppler shift belongs to. There is no way to guess if
the Doppler shift is larger than FR/2 or less than FR/2. The target velocity estimate can
be expressed as:

vr =
λ

2
fd mod

(
λ

2
FR

)
(7.13)

7.4.2 Resolving ambiguities

A Pulse-Doppler radar faces the so-called Doppler dilema: a good choice of pulse repetion
frequency to achieve a large unambiguous range is a poor choice to achieve a large unambigu-
ous velocity. In order to get rid of the ambiguity problem introduced by the Pulse-Doppler
radar, an easy-to-implement technique exists. It is based on the modulation of the repeti-
tion frequency FR. In litterature, the technique is called wobbulation. The modulation can
be continuous or discrete. Most modern radars use the discrete method where the repetition
frequency value changes among a set of discrete values.

• For speed ambiguities, as recalled earlier, the signal is a set of evenly spaced rays.
The width of the ray is linked to the duration T = n × TR of the transmitted signal,
where n is the number of pulses within the pulse train. The width of the rays is given
as w = 2/T = 2/ (n × TR) = 2FR/n. It appears that it is directly proportional to the
repetition frequency. Obviously, in order to take into account higher Doppler shifts,
one can increase FR as we have FR ≥ 2fd, i.e. FR ≥ 4vrmax/λ. This expression gives
a way to select the minimum repetition frequency required for a given target speed.

• For range ambiguities, the idea is to increase the maximum ambiguity-free range. It
is defined as damb−free = cTR/2. Here, wobbulation of the repetition frequency solves
both the range ambiguity issue and the blind speeds issue. If we define Tb to be the
main repetition period, it is possible to define, say two frequencies multiple of the
main repetition frequency Fb = 1/Tb such that, F1 = n1 × Fb and F2 = n2 × Fb
where (n1, n2) ∈ N . If we alternatively use those two repetition frequencies, we can
obtain a larger maximum range Rmax that we would have obtained using only the
base repetiton frequency. This maximum ambiguity-free range is given by:

Rmax =
cTb

2
=

c

2Fb
=

cn1

2FR1

=
cn2

2FR2

(7.14)

It is possible to use more than two repetition frequencies. Three multiple frequencies
is a common value. It is usual to take n1, n2 and n3 to be three consecutive integers.
Moreover, recall that all Doppler shifts such that fd = n×FR designate a blind speed.
Thus, wobbulation by the use of different repetition frequencies solves the issue as a
given Doppler shift does not remain blind after a change in FR.
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Figure 7.4 depicts the wobbulation technique. It shows in the range domain how the use
of two repetition frequencies can increase the maximum ambiguity-free range. The final
output is depicted in the bottom of the figure. The two repetition frequencies FR1 and
FR2 produce two transmitted signal. These signals are sent alternatively, not at the same
time. The combination of their respetive echo response allows to extend the maximum
range. This technique obviously requires to store the received echo signals and combine
them afterward.
Figure 7.5 illustrates the technique from a Doppler shift perspective. It shows how two
multiple of the base repetition frequency push away the first blind speed. It also requires
to store received signals and combine them.

1/Fb 

Tx : FR1 

Tx : FR2

Rx : FR1

Rx : FR2

Tx TxRx Rx

Figure 7.4: Wobbulation technique in the range domain
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Chapter 8

CFAR processors

Received radar signals are affected by various sources of noise. In order to maintain overall
detection performance, radar systems have to estimate and evaluate the different noise
power. The received signal are then compared to a threshold which is a function of a set of
estimates. If the signal exceeds the threshold, detection or at least assumption of detection
is performed.
Let us define some basic concepts. Recall that the 3D volume covered by the radar can be
seen as superimposed 2D maps. Each 2D map corresponds to one pointing site direction.
The MRR radar stores five different maps (surface, low altitude, average altitude, high
altitude or very high altitude). Each map is divided in cells according to two criteria:

• step angle Δθ: it defines how many angle sectors the map contains

• sampling frequency Fs: it defines the number of cells the map contains in the range
dimension.

It is obvious that the maps should have a limited size in order to perform fast calculation
and to minimize memory usage. However, the maps need to be accurate enough to represent
as close as possible the radar surrounding environment. Some requirements can be stated:

• Nsec > 360/θ3dB : the number of sectors should be greater that the ratio between a
complete round cycle (360◦) and the 3dB beamwidth angle of the antenna ; this is in
order to improve accuracy in the azimuthal (horizontal) plan

• dmin = c/Fs: the sampling frequency Fs defines the size in [m] of a cell ; it appears
that to improve range accuracy, one could increase the sampling frequency but this is
obviously at the expense of larger amount of data to handle

Radar signal processing tends accurately distinguish the presence of a target among harmful
signal such as thermal noise, clutter and jamming signals. Decision on the presence of a
target is a probabilistic - stochastic phenomena. When a target is really present , the radar
detects it with a certain probability, the probability of detection Pd. When there is no
target, there can be a misleading decision of the presence of a target. This is called the
probability of false alarm, denoted Pfa.
Radars are regulated such that they privilege false alarm. This means that the radar
operation is set such that the probability of false alarm does not exceed a given low value,
for instance 10−6. This might appear confusing but it is considered more risky to announce
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the presence of a target when there is none, than the contrary. If the radar pilots the launch
of inter-continetal missiles, this becomes obvious. If the radar drives the opening of a door,
then the probability of false alarm can be set to a higher value.
The main task of the CFAR processors is to compute estimates of the different noise power.
Most of the time, to describe an environment, its mean level suffices. From this mean level,
the threshold is set. Old CFAR processors used to compute the mean μ and the standard
deviation σ. Then, the threshold K was set such that:

K[dB] = μ[dB] + n[dB] , where n ∝ σ. (8.1)

The environment estimate accuracy is increased as more samples are used in the computa-
tion. A loss due to the finite number of samples used in the calculation is introduced by
CFAR processors. The loss is inversely proportional to the number of independant samples.
The environment can be obtained through calculating the average of either module, squared
modules or by taking the logarithmic value of modules. The last solution is the one em-
bedded in the MRR radar. The processor is called a LOGCA-CFAR(LOGarithmic Cell
Averaging CFAR). Section 7.2 gives one of the reasons why the logarithmic computation is
employed. Another reason is that in order to set the threshold K to a certain level (ndB
greater than the computed environment), using modules or squared modules requires to
perform a multiplication whereas using logarithm only requires a basic addition. Moreover,
if a target is present in the set of cells used to compute the average, the target is averaged in
dB. This produces a weaker deterioration of the estimate. Averaging modules or averaging
squared modules is more sensitive to the presence of target, when a strong signal is present.
Other techniques exist to produce an estimate of the environment. Instead of averaging the
set of cells, other CFAR processors perform the greatest of selection where the maximum
value among the set of cell is selected to be the output of the estimator. They are denoted
GO-CFAR. The set of reference cells can be selected in different ways. It mainly depends
on the spatial properties of the considered clutter. The MRR radar owns three CFAR
processors as it can encounter:

• atmospherical clutter and thermal noise

• sea clutter

• ground clutter

Recall that Doppler filtering box outputs several signals: one per filter in the FIR bank of
filters1. It has been said before that the clutter maps have only two dimensions. In fact, a
third dimension is added: the Doppler filter rank. Estimates are computed for a selecton
of filters according to the Doppler response of the clutter.
Numerous studies have been conducted on CFAR processors as every radar application
requires specific processors according to surrounding environment ([MAK00] emphases on
adaptive CFAR, [Wat98] emphases on CFAR for sea clutter).

8.1 Range CFAR

8.1.1 Objectives

The range CFAR aims to combat both thermal noise and front-edge atmospherical clutter.
It operates in the range direction with a non-recursive procedure. Estimates are computed

1One per central radial speed
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in the current antenna scan and directly applied. Two primary average estimates are com-
puted. One is computed over a set of Nset cells before the considered cell ; it is denoted μ�
where � stands for left. The other one is computed over Nset cells after the considered cell
and is denoted μr (r here stands for right)2.

if k ≥ Nest + Ng, μ�(k) =
1

Nest

k−(Ng+1)∑
j=k−(Nest+Ng)

ρlog(j), (8.2)

if k ≤ Nc − (Nest + Ng) , μr(k) =
1

Nest

k+(Ng+1)∑
j=k+(Nest+Ng)

ρlog(j), (8.3)

where ρlog stands for the logarithmic module of each sample, Nc denotes the maximum
range in number of cells, Ng defines the number of guard cells and Nest is the number of
cells used to compute the average. Then, for each cell two secondary estimates are computed
as follow:

μmax = max (μ�, μr) , (8.4)

μavg =
1
2

(μ� + μr) . (8.5)

The final output of the estimator is set for each cell using a threshold:

μrange =

⎧⎨
⎩ μmax if |μmax − μavg| > ε

μavg if |μmax − μavg| ≤ ε.
(8.6)

Estimates μmax applies when the clutter is not homogeneous (front edge clutter). Estimate
μavg applies when the clutter is diffuse, homogenous. The threshold ε is selected such that
the probability to chose μmax instead of μavg in presence of thermal noise only or in presence
of homogeneous clutter is low, for instance 10−4.

8.2 ACP: Anti-Clutter Processors

ACPs tries to best estimate clutter. The MRR radar is designed to be embedded on any
frigate. Thus, it must combat both ground and sea clutter. Therefore, it owns two Anti-
Clutter Processors. As water and ground do not generate exactly the same echos and do
not have the same spatial properties, minors differences appears between sea and ground
ACP algorithms.
Ground clutter is not stationnary in range, nor it is stationnary in Doppler (it is Doppler
free). Sea clutter is not stationnary in distance and it spans a couple of Doppler filters.
The clutter estimates are obtained through a combination of filters. ACP technique uses
simple MA(1)3 [Hay96] filters to determine the clutter power. It is useless to compute
the clutter estimate for every single cell, i.e every single sample. Thus, the clutter power
maps generated by ACP processors employs a different quantum. Ground clutter and sea

2Equations (8.2) and (8.3) do not apply over the whole range: at the beginning of the range, only μr is
valid and at the end of the range, only μ�

3Moving Average of Order 1
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clutter power are considered to have the same value within a given set of cells, denoted
Nset. This cell set is composed of (Nrange × Nsector) cells. The cell set Nset is later denoted
as a case. For each pointed direction, a current sector is defined. The cell set (or case) is
centered around this current sector and around the considered cell. Therefore, the clutter
2D maps are of size

(
Nsec × Rmax

dmin×Nrange

)
where Rmax

dmin
represents the maximum range to be

considered by the radar in cells unit.
Using this definition, it appears that during an antenna scan, each cell serves as a considered
cell and as a neighbouring cell.
Finally, the maps are expanded to their original size. Each case duplicate its value to all
the cells in the case but only in the range direction (Nrange).

8.2.1 Sea ACP

Sea clutter presents a peaky amplitude distribution. This might produce false alarm to
occur. Therefore, it is necessary to estimate both the mean μ and the variance σ2 of the
sea clutter. MA(1) filters smooth the outputs μn and σ2

n from scan to scan.
Sea clutter produces some Doppler effect. Therefore, estimates are computed over a couple
of Doppler filter, within the range of a few miles per hour.

y = max
i∈Nset

(
ρlogi

)
,

σ2
n = kσ2

n−1 + (1 − k) (μn−1 − y)2 ,

μn = kμn−1 + (1 − k)y,

μsea = μn−1 + f
(
σ2

n−1

)
. (8.7)

Parameter k impacts how fast and how accurately filters converge to their optimal value
(steady state). This parameter is adaptative: it changes during radar operation. The
function f(x) in equation (8.7) is an experimental function that gives a contant value
according to the smoothed sea clutter variance σ2

n−1 computed by the first MA(1) filter
on the previous scan. It is used to adjust the clutter estimate. Obvisously, the map have
pre-defined value at start up, when n = 0 (first scan).

8.2.2 Ground ACP

In the case of ground ACP, the algorithm is slightly different. It also uses a MA(1) filter.
The estimate μground is also updated with the previously calculated mean value, but in
case of ground a constant α is added to the estimate in order to take into account ground
material. Ground can be made with grass, rocks, sand.

y = max
i∈Nset

(
ρlogi

)
,

μn = kμn−1 + (1 − k)y, (8.8)

μground = μn−1 + α. (8.9)

In case of ground clutter, the case (set of cells used to compute the max) is made up with
two to height cells. It is sometimes referred as short ACP.
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8.3 Target Fluctuation: Swerling models

Once the clutter estimates have been performed, the received signal is compared to the
threshold K defined in equation (8.1). The threshold is set according to the probability of
detection Pd required by the system. The probability of detection is a statistical function
which form strongly depends on the target signal response. Recall that targets are classified
according to a parameter called the radar cross section (equation (4.11)). Common mean
values are listed in table 4.1. RCS parameter has to be taken into account as it reflects
how much signal is backscattered by a given target. Statistical models have been designed
during the last decades. There exists mainly five models that describe target radar cross-
section flucuations. These models are the so-called Swerling models, from I to V . Swerling
target models give the RCS of a given object based on the chi-square4 probability density
function, which has the following form:

p (σ) =
m

Γ(m)σav

(
mσ

σav

)m−1

exp
(
−mσ

σav

)
, (8.10)

where σav defines the mean of σ, 2m is the degree of freedom and Γ(m) is the complete
Gamma function. Swerling target models are special cases of the Chi-Square target models
with specific degrees of freedom. This degree of freedom is usually an integer value in statis-
tics. In radar theory, 2m can be any positive real value. It affects how much fluctuations
the target presents ; the larger 2m is, the less fluctuations. Is not easy to determine the
mean value σav of the RCS since the target has to be completely defined. For instance, for
a sea-based radar, the targets are most likely to be seen from the front, the back or the
side but unlikely from the top or the bottom. Therefore, each military force has a bank of
pre-defined RCS profiles that it uses as input when it comes to designing a CFAR box in
the radar overall system. These profiles are very important as they represent a great help
in detecting target. Profiles are also called signatures.
An overview of Swerling models is described in ([Joh97]). A mathematical derivation of
Swerling models is given in [Swe60].

• Swerling I: here, the RCS varies according to a Chi-square probability density function
with two degrees of freedom (m = 1). This applies to a target that is made up of many
independent scatterers of roughly equal areas. As little as half a few (less than ten)
scattering surfaces can produce this distribution. Swerling I describes a target whose
radar cross-section is constant throughout a single scan (signal is assumed constant
from pulse to pulse whithin the scan), but varies independently from scan to scan.

• Swerling II: here, the RCS is similar to a Swerling-I model except that RCS values
vary from pulse to pulse within the scan

• Swerling III: here, the RCS varies according to a Chi-square probability density func-
tion with four degrees of freedom (m = 2). This model approximates an object with
one large scattering surface with several other small scattering surfaces. The RCS
values are constant through a single scan.

• Swerling IV: here, the RCS is similar to a Swerling-III model except that RCS values
vary from pulse to pulse within the scan

• Swerling V: here, the RCS value is assumed to be constant5 in time (m → +∞).

4http://mathworld.wolfram.com/Chi-SquaredDistribution.html
5Also known as Swerling 0 or Marcum model
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In [Swe60], Swerling derives the probability density function for each of the given fluctu-
ations model and shows graphical outputs. Models I and II are the most used in radar
systems as they best approximate targets in the aviation domain. In these cases the pdf is
given as the probability of a signal to exceed a threshold, the so-called false alarm rate.

Pd =
∫ +∞

K
p(σ) dσ.

For a Swerling I models, we have:

Pd ≈
(

1 +
1

nσav

)n−1

exp
( −K

nσav

)
, (8.11)

and for a Swerling II model, it comes:

Pd = 1 − I

(
K

(1 + σav)
√

n
, n − 1

)
, (8.12)

where K is the threshold, n the number of pulses integrated and σav the mean value of the
signal. The function I(a, x) is the upper6 incomplete Gamma function
The threshold K is set using equation (8.1). Using the outputs of the CFAR processors,
the equation can be rewritten as:

K[dB] = max (μrange, μsea, μground) + n[dB] (8.13)

When designing a radar, probablities Pfa and Pd are decided according to strategical re-
quirements. Thus, threshold K becomes a variable of the CFAR processor outputs.
Modern radars do not use such adaptive threshold in order to reduce the computationnal
complexity of their systems. Instead, according to the situation (ground, sea) and accord-
ing to the range (close range, middle range, far range), radar automatically apply constant
thresholds. For each cell, the following test is performed to select the most efficient thresh-
old.

K =

⎧⎪⎪⎨
⎪⎪⎩

K1 if max (μrange, μsea, μground) = μrange

K2 if max (μrange, μsea, μground) = μsea

K2 if max (μrange, μsea, μground) = μground

(8.14)

6There exist two definitions of the incomplete Gamma function: one is named lower and the other is
named upper. The names depends on the variable in the integration boundaries whether it is set as the lower
limit or the upper limit. The upper incomplete Gamma function is defined as: I (a, x) =

∫ +∞
x

ta−1e−tdt
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Chapter 9

Post Integration - Sliding Post

Integration

9.1 Objectives

The objective of the post-integration is to use the advantage of multi-pulse transmission.
Each pulse concentrates a certain amount of energy that it is important to capture. The
process of integration sums up the pulses in order to maximize the signal-to-noise ratio.
The summation can be done in a coherent fashion or not. If we consider that a radar
has a revolution cycle time speed of N round per minute and a pulse repetition frequency
denoted FR, and if we consider that the antenna has a 3dB beamwidth denoted θ3dB, thus
the number of pulses per echo (backscattered signal) is given by:

n =
⌊

θ3dBFR

6N

⌋
. (9.1)

Equation (9.1) is an important parameter that designers have to take into account when it
comes to performance. The post-integration processing tries to take advantage of this mul-
tiple backscattered signals. There exists two ways to integrate the pulses. The distinction
is made whether the pulses are sent from a coherent or a non-coherent transmitting source.

9.2 Principles

For the coherent integration process, a phase estimation is required in order to compensate
for phase shifts between consecutive pulses. Then, the obtained signal-to-noise-ratio for n
pulses is given by:

SNRci = SNRsp + 10 log10 (n) , (9.2)
where SNRsp denotes the signal-to-noise-ratio for a single pulse. For the non coherent
integration process, the SNR is given by:

SNRnci = SNRci − 10 log10 (Lnci)
= SNRsp + 10 log10 (n) − 10 log10 (Lnci) , (9.3)
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where

Lnci =
1 + SNR

′

SNR′ , (9.4)

and
SNR

′
= c +

√
a + b, (9.5)

where

a =
10

SNRsp
10

4n2
,

and

b =
10

SNRsp
10

n
,

and

c =
10

SNRsp
10

2n
.

The following picture (figure 9.1) illustrates the NCI process for two different cases, aircraft
and missile. We can see that the post-integration increases the overall SNR by almost
10dB which is quite interesting in such noisy environments. Coherent integration obviously
provides better figures but at the unavoidable cost of more signal processing.
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Figure 9.1: Post Integration example
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Part III

Application Example
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Chapter 10

Simulator and Models

10.1 Signal modeling

A Matlab c© simulator has been developped at Thales Air Defence - TAD - facility in Bagneux
(France), where I conducted this thesis. It has been decided to implement the simulator
using Matlab c© because radar signal processing techniques strongly consider matrices and
filtering as support for data handling. Moreover, digital computation is faster implemented
using Matlab c© rather than C programming although C runs faster than Matlab c©. The
simulator is a block-based system where any algorithm can be run as a stand alone compo-
nent. Moreover, the user can define a test scenario for the whole signal processing chain.
The number of targets, their range and their velocity can be manually set. The use of a
computer allows to have almost infinite memory storage. Thus, clutter maps are used to
store up-to-date clutter information. A graphical tool allows the user to set the parame-
ters of the scenario and it produces a parametric input file to the radar signal processing
simulator.

10.2 Experiments and Plots

The following pictures illustrate the predefined scenario. Each picture depicts one step in
the radar signal processing chain.

• Figure 10.1 represents the simulation parameters. In this scenario, there are two
targets at different distances expressed in samples (cells) d1 = 200 and d2 = 4001.
Each target has a different velocity expressed in terms of the repetition frequency FR
as v1 = 0.3 × FR and v2 = 0.7 × FR.
The figure shows the received echo is case of an ideal noise free environment. The
transmitted signal is only affected by the natural attenuation due to the two ways
trip2.

1Note that in figure 10.1, targets appear to be at distance d1 = 400 and d2 = 800. This is due to an
oversampling factor set to N = 2. Moreover, since the simulator has been developped in France, in the
x-axis legend, the term ”cases distance” refers to the cell notion defined in this thesis

2Sometimes called attenuation profile
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• Figure 10.2 depicts the received signal at the input of the Pulse Compression stage.
The signal looks like random white noise as explained earlier. In the simulator, com-
plex AWGN with variance set to σ2

noise = 2dB is used. Note that each color defines a
pulse within the pulse train.

• Figure 10.3 depicts the Pulse Compression box output : the output starts to show
some important information. Two peaks emerge from the background noise ; i.e. two
targets are detected3. Recall from equation (5.1) that the higher the compression
rate, the higher the peak. However, it is obvious that hardware constraints prevent
from having higher values for the compression rate.

• Figure 10.4 depicts the amplitude treatment box output : it modifies the received
signal according to the algorithm. Thus, certain samples are replaced by a subsitute
value in order to avoid false alarm increase.

• Figure 10.5 depitcs Doppler filtering operation : it discriminates targets according
to their relative radial velocity. Here, the radar is assumed to have a fixed position.
Note that if we had set one target to have a zero velocity, then it would have been
filtered out since the figure is a snapshot at a given instant and it does not take into
account wobulation advantage. A closer look into the figure show that each the target
responds to two Doppler filters. This is due to the fact that the bank of Doppler
filters is contructed such that it has overlapping frequency region in order to get fine
accuracy in the frequency range considered. The module-logaritm calculation then
reduces the dynamic range value.

• Figure 10.6 depicts the clutter estimate from the range CFAR algorithm. The algorihm
is valid for the whole range. It appears that the first peak seems to be doubled. This
is due to the fact that the algorithm works in a sliding way (c.f. equation (8.2) and
(8.3)). Each cell can is used several times as long as it remains in the computation
window.

• Figure 10.7 depicts the clutter esimate produced by the sea CFAR algorithm. It only
shows the closer target at distance d1 = 200 cells in the 1D clutter map. This is due
to the fact that the algorithm defines a maximum range at which the sea clutter power
cannot be determine efficiently. This cut-off distance is set here to be dcut = 333 cells.
The strange look of the figure is due to the way cell clutter values are generated.
Recall that for each cell set, a unique clutter power value is computed. Thus, in the
range dimension, Nrange cells will have the same clutter value, leading to a stairs-like
figure.

• Figure 10.8 depitcs the clutter estimate produced by the ground CFAR algorithm. It
shows both targets in the clutter 1D map. It looks like the output from the sea ACP
but here the cut-off distance is set to dcut = 666 cells.

Note that for both ACP outputs, targets position looks to have been shifted by a couple of
cells in the radar direction. This is mainly due to Doppler shift that in time domain can
be seen as a time delay ; i.e. a distance offset. Iterative processing using different carrier
frequencies f0, different repetition frequencies FR tend to lower these consequences.
Finally, for each cell, a unique clutter map is designed where each cell have the value of
the maximum of all three estimators. Then, an indicator of the presence of a target is set
to true for each cell if and only if the clutter estimate4 exceeds the selected threshold (c.f.
equation (8.14)).

3At distance d1 = 200 and d2 = 400
4Clutter also contains usefull signal
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10.2 Experiments and Plots
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Figure 10.1: Noise Free targets echo
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Figure 10.2: Received target echo
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Figure 10.3: Pulse Compression output
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Figure 10.4: Amplitude Traitment output
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Figure 10.5: Doppler Filtering output
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Figure 10.6: CFAR output
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Figure 10.7: Sea ACP output
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Figure 10.8: Ground ACP output
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Conclusion

Radar systems have always been quite impressive from a performance point of view. Within
the wide range of applications, radars are capable of detecting and/or tracking mobile tar-
gets, produce a weather map, evaluate vehicle speed. This wide range of applications leads
to a variety of system architecure. However, from a global system overview, radars resemble
each other. They all have signal generator, antenna (dual or not), mixer and filters. If we
focus on signal processing involved in radar, it appears that techniques embedded in radars
strongly differ according to the radar mission.
This thesis aims to present in details the signal processing techniques employed in a military
radar. These techniques are strongly based on mathematics and specially on stochastic pro-
cesses. Detecting a target in a noisy environment is a many folds sequential process. The
signal processing chain only provides to the overall system boolean indicators stating the
presence (or not) of targets inside the coverage area. It is part of the strategical operation
of the radar.
The selection of signal procesing techniques according to the radar performance require-
ments is one of the most important step in military radar design. Signal processing, as we
have seen throughout this paper, provides figures that tactical leaders take into account
when looking for performances and capabilities. Nowadays, digital processing allows fast
and efficient computation. The basic example is the use of FFT and IFFT to perform
time-convolution (filtering).

My work at Thales Air Defence was twofold :

• I have ported old signal processing algorithms to run on Linux c© machines. Then, I
tried to make algorithms work more efficiently by using built-in Matlab c© functions. I
also enhanced the simulator from a user-interface point of view by adding a multi-scan
mode. This mode is used for iterative algorithms such as ACPs. It allows to update
clutter maps,

• I have provided a working document (this thesis) that best describes the MRR radar
operation. The document mostly contents a balance between litterature ressources,
theory knowledge and simulator outputs.

As a future work, one could focus on new antenna techniques that allow multiple beam
to operate simultaneously. These new antennas provides supplementary ressources to track
multiple targets. They are based on flat electronically steered arrays (SMBAA). Litterature
on this topic allows the reader to make links between detecting a target and tracking it using
such antennas and Kalman filtering theory.
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[Tho82] Léo Thourel. Initiation aux techniques modernes des Radars. CEPADUES Edi-
tion, 1982.

[Wat98] S. Watts. Cfar detection in spatially correlated sea clutter. EUREL meeting on
Radar and Sonar Signal Processing, Peebles, July 1998.

[Win03] J. Wintenby. Resource Allocation in Airborne Surveillance Radar. PhD the-
sis, Chalmers University of Technology, Department of Signals and Systems,
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