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Ny serie nr 4131
ISSN 0346-718X

Department of Signals and Systems
Division of Automatic Control, Automation and Mechatronics
Chalmers University of Technology
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Abstract

Highly automated vehicles have the potential to provide a variety of benefits
e.g., decreasing traffic injuries and fatalities while offering people the freedom
to choose how to spend their time in their vehicle without jeopardizing the
safety of themselves or other traffic participants. For automated vehicles to
be successfully commercialized, the safety and reliability of the technology
must be guaranteed. A safe and robust trajectory planning algorithm is
therefore a key enabling technology to realize an intelligent vehicle system
for automated driving that can cope with both normal and high risk driving
situations.

This thesis addresses the problem of real-time trajectory planning for
smooth and safe automated driving maneuvers in traffic situations where
the ego vehicle does not have right-of-way i.e., yielding maneuvers e.g., lane
change, roundabout entry, and intersection crossing. The considered problem
of generating an appropriate, safe, and smooth trajectory consisting of a
sequence of longitudinal and lateral control signals is formulated as convex
optimal control problems in the form of Quadratic Programs (QP) within
the Model Predictive Control (MPC) framework in a manner that allows
for reliable, predictable, and robust, real-time implementation on a standard
passenger vehicle platform.

The ability of the proposed trajectory planning algorithms to generate
appropriate, safe, and smooth trajectories is validated by simulation studies
and experiments in a Volvo V60 performing automated lane change maneu-
vers on a test track. The contribution of this thesis is thereby considered to
be a building block for Advanced Driver Assistance Systems (ADAS) regard-
ing yielding maneuvers e.g., lane change, and eventually highly automated
vehicles.

Keywords: Advanced Driver Assistance Systems, Autonomous Driving,
Automated Driving, Lane Change, Trajectory planning, Model Predictive
Control, Optimization.
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Introductory chapters





Chapter 1
Scope

The U.S. Census Bureau estimates that the average American spends more
than 100 hours every year commuting to work, which is more than the typ-
ical two weeks’ vacation time of 80 hours [1]. In a society where time is
a commodity, it is questionable if people should spend their time perform-
ing repetitive and mundane driving tasks rather than having the freedom to
choose how to spend their time in their vehicle.

Perhaps not surprisingly, many drivers are sometimes engaging in sec-
ondary tasks which are not remotely related to the actual driving task. Ac-
tivities e.g., text-messaging, phone-calls, and internet browsing, cause a large
part of all drivers to ever so often take their eyes and minds of the road, risk-
ing the safety of both themselves and those around them [2]-[3]. Each year
traffic accidents are estimated to cause over 1.2 million deaths and 50 mil-
lion injuries worldwide [4] which to a large extent is correlated to driver
inattention and errors [5].

In order to increase traffic safety and driver convenience, both academia
and industry have become dedicated to the development of intelligent vehicle
systems. Advanced Driver Assistance Systems (ADAS) e.g., Adaptive Cruise
Control (ACC), Lane Keeping Aid (LKA), and collision warning with auto
brake have been shown to improve drivers’ comfort and safety [6]-[8]. It is
therefore expected that further developed automated functionality will con-
tinue to enhance driver comfort and overall traffic safety by offering people
the possibility to freely choose to e.g., work, relax or even have a snooze,
rather than driving the vehicle (as illustrated in Figure 1.1), without jeopar-
dizing the safety of themselves or other traffic participants.

For automated vehicles to be successfully commercialized, the safety and
reliability of the technology must be guaranteed. As such, a reliable and
robust trajectory planning algorithm is among others a key enabling technol-
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Chapter 1. Scope

Figure 1.1: Automated driving has the potential to allow drivers the freedom to choose
how to spend their time in their vehicles without risking the safety of themselves or other
traffic participants [9].

ogy to realize a safe and dependable intelligent vehicle system for automated
driving that can cope with both normal and high risk driving situations

1.1 Problem description

To extend the capability of ADAS and eventually progress to highly au-
tomated vehicles, the intelligent vehicle system must be able to make ap-
propriate self-regulatory decisions regarding the vehicle’s actions i.e., plan
appropriate trajectories which allow the vehicle to adapt its behavior to the
current traffic situation. As an illustrative example, consider the traffic situ-
ation which is schematically represented in Figure 1.2. In the depicted traffic
situation, the ego vehicle i.e., the vehicle which is controlled by an intelligent
vehicle system, is driving in the same lane as the preceding vehicle, S1, and
the trailing vehicle, S2, while two surrounding vehicles, S3 and S4 are driving
in the left adjacent lane. If the ego vehicle should perform a left lane change
maneuver in the described traffic situation, the intelligent vehicle system
must consider whether the maneuver should be performed ahead of S3, in
the inter-vehicle traffic gap between S3 and S4, or behind S4, as well as plan
the corresponding trajectory.

Similarly, when considering other maneuvers where the ego vehicle must
adapt its behavior to the surrounding traffic situation and does not have
right-of-way i.e., yielding maneuvers e.g., entering a roundabout or crossing
an intersection, it becomes evident that these types of maneuvers can also
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1.1 Problem description

Figure 1.2: Vehicles traveling on a one-way two-lane road. The ego vehicle, E, is shown in
blue and the surrounding vehicles, S1, S2, S3, and S4, are displayed in green. The arrows
represent the predicted paths of Si, i = 1, . . . , 4.

be considered as trajectory planning problems with the purpose of position-
ing the ego vehicle in an appropriate gap between some surrounding traffic
participants or objects. The intelligent vehicle system must thus have the
ability to determine which trajectory that is most appropriate with respect
to issues concerning e.g., the required control signals to execute the maneuver
and the overall safety of the maneuver. This is a challenging trajectory plan-
ning problem since it involves both longitudinal and lateral movement in the
presence of surrounding traffic participants which are also in motion. Fur-
thermore, to be applicable to passenger vehicle ADAS or highly automated
vehicles, the algorithm must have the ability to deal with the conflicting
demands of limited computational resources, planning in a dynamic and un-
certain environment, and generating provable safe trajectories, while abiding
traffic rules and regulations, as well as satisfying the ego vehicle’s physical
and design limitations.

To enhance the automated functionality of ADAS and eventually progress
to highly automated vehicles, this thesis thus addresses the following real-
time trajectory planning problem of automated driving maneuvers where
the ego vehicle does not have right-of-way i.e., yielding maneuvers e.g., lane
change, roundabout entry, and intersection crossing:

If the ego vehicle should perform an automated yielding maneuver e.g., lane
change, determine in which gap between some traffic participants or objects,
and at what time instance the maneuver should be performed, and calculate
a feasible maneuver (if such exists) in terms of a longitudinal and a lateral
trajectory, i.e., the control signals, which allow the ego vehicle to position
itself in the selected gap at the desired time instance. Furthermore, the ma-
neuver should be planned such that the ego vehicle maintains safety margins
to all surrounding traffic participants and objects, respects traffic rules and
regulations, as well as satisfies physical and design limitations.

3



Chapter 1. Scope

1.2 Prerequisites

To successfully commercialize ADAS for automated yielding maneuvers e.g.,
lane change, and eventually progress to highly automated vehicles, the tra-
jectory planning algorithm in the intelligent vehicle system must be reliable,
predictable, and safe, without relying on driver-in-the-loop interaction or a
lead vehicle. In addition, the algorithm should be operational in real-time as
well as being economically viable and consequently realizable using as much
as possible of existing sensor and actuation technologies without the assump-
tion of Vehicle-to-Vehicle (V2V) communication or infrastructure modifica-
tions. The trajectory planning algorithms presented in Paper A-D in Part II
of this thesis are thereby developed under the following set of assumptions:

A1 The ego vehicle is equipped with sensor systems which measure its
position on the road as well as e.g., the relative positions and velocities
of surrounding traffic participants and objects.

A2 The ego vehicle is equipped with prediction systems which estimate the
motion trajectories of surrounding traffic participants and objects over
a time horizon.

A3 The ego vehicle is equipped with low-level control systems capable of
following the planned trajectory.

Examples of the assumed low-level control system, the necessary sensor tech-
nology, and the assumed prediction systems are given in [10], [11], and [12]-
[14], respectively. Furthermore, uncertainties resulting from the sensor and
prediction systems can be taken into account by e.g., increasing the safety
margins which the ego vehicle must maintain to the surrounding traffic par-
ticipants and objects over the prediction horizon in relation to the confi-
dence level of the assumed systems. A simplified schematic architecture of

Figure 1.3: Schematic architecture of an intelligent vehicle system for automated driving.
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1.3 Contribution

the proposed intelligent vehicle system for automated driving is illustrated
in Figure 1.3.

1.3 Contribution

The trajectory planning algorithms presented in Paper A-D in Part II of this
thesis all share the following common benefits:

• Optimization of the ego vehicle’s longitudinal and lateral control sig-
nals, i.e., trajectory, without the assumption of an explicit reference
trajectory.

• Optimization of the ego vehicle’s longitudinal and lateral control signals
i.e., trajectory, while accounting for constraints to allow for safe and
smooth maneuvers in various traffic situations.

• Optimization of the ego vehicle’s longitudinal and lateral control sig-
nals i.e., trajectory, formulated as convex optimization problems in
the form of Quadratic Programs (QP) within the Model Predictive
Control (MPC) framework, which provides a structured approach to
express system objectives and constraints to allow for reliable, pre-
dictable, and robust, real-time implementation on a standard passenger
vehicle platform.

The contribution of this thesis i.e., the proposed trajectory planning algo-
rithms presented in Paper A-D, is thereby considered to be a building block
for ADAS regarding automated driving maneuvers in traffic situations where
the ego vehicle does not have right-of-way i.e., yielding maneuvers e.g., lane
change, roundabout entry, and intersection crossing, and eventually highly
automated vehicles. Further details regarding the scientific contribution of
each individual paper are provided in Chapter 5.

1.4 Outline

This thesis consists of two parts, where Part I provides a context and back-
ground for Part II which includes Paper A-D that constitute the core of this
thesis. Part I includes the following six chapters which can be read indepen-
dently of each other:

Chapter 1 Scope
The first chapter introduces the topic and contribution of the thesis
and gives an overview of the thesis outline.
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Chapter 2 Intelligent vehicle systems for passenger vehicles
The second chapter contains a short outline of the development of au-
tomated vehicle technology from the initial idea in the late 1930s until
today, and provides a brief overview of how the advances of intelligent
vehicle systems have been introduced to passenger vehicles in the form
of various ADAS.

Chapter 3 Trajectory planning
The third chapter provides a brief introduction to commonly used
methods for trajectory planning, comments on their applicability to
passenger vehicle ADAS and highly automated vehicles, and motivates
the choice of MPC as the preferred trajectory planning framework in
Paper A-D.

Chapter 4 Theory and tools
The fourth chapter gives a short overview of the methodologies and
concepts i.e., MPC, convex optimization, QP, and reachability analysis
which are utilized in Paper A-D.

Chapter 5 Summary and contribution of Paper A-D
The fifth chapter offers a summary of Paper A, Paper B, Paper C, and
Paper D and clarifies the scientific contribution of each paper as well
as the contribution to each paper by the author of the thesis.

Chapter 6 Concluding remarks and future research directions
The sixth chapter contains concluding remarks and a short discussion
on future challenges and research directions.

Part II includes the following four papers:

Paper A J. Nilsson, P. Falcone, M. Ali, and J. Sjöberg, “Receding Hori-
zon Maneuver Generation for Automated Highway Driving,” Control
Engineering Practice, vol. 41, pp. 124-133, August, 2015.

Paper B J. Nilsson, M. Brännström, J. Fredriksson, and E. Coelingh,
“Longitudinal and Lateral Control for Automated Yielding Maneu-
vers,” IEEE Transactions on Intelligent Transportation Systems, vol. 17,
no. 5, pp. 1404-1414, May, 2016.

Paper C J. Nilsson, M. Brännström, J. Fredriksson, and E. Coelingh,
“Lane Change Maneuvers for Automated Vehicles,” Accepted for pub-
lication in IEEE Transactions on Intelligent Transportation Systems,
2016.
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Paper D J. Nilsson, J. Fredriksson, and E. Coelingh, “Trajectory Plan-
ning with Miscellaneous Safety Critical Zones,” Submitted for possible
conference publication, 2017.
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Chapter 2
Intelligent vehicle systems for
passenger vehicles

Automated vehicles have been a vision for the academic and industrial com-
munity since the idea was first brought to general attention at the Futurama
exhibit in 1939 [15]. The quest to develop vehicles that can control them-
selves and allow people to be safely driven to their desired destination at
their own leisure, has however proved to be a daunting mission. Neverthe-
less, the last decades have witnessed tremendous achievements in automated
technology for passenger vehicles as further outline in sections 2.1-2.2.

Given the intense development of intelligent vehicle systems for auto-
mated functionality in passenger vehicles, it is clear that highly automated
passenger vehicles is a plausible notion in the near future. If successfully
implemented, this technology will give drivers the option of handing over
the control and the responsibility to the vehicle under certain conditions.
Thus allowing people the freedom to safely choose how to spend their time
in their vehicle while having the option of taking back control and enjoy
driving whenever they want.

The US National Highway Traffic Safety Administration (NHTSA) has
defined five levels of automation as explained in Table 2.1 [16] in the end of
this chapter. From the definitions it can be seen that most of the current
commercially available passenger vehicle ADAS reaches Level 1 automation,
but their capability is continuously pushed into the Level 2 boundaries and
partly automated functionality is now a reality. In the research community
Level 3 automation is a fact and the ambition to reach Level 4 automation
is unending. It is however important to remember that although Level 2
automation is legal since it does not change the basic assumption that a
licensed driver is responsible, there is currently no legal framework except
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Chapter 2. Intelligent vehicle systems for passenger vehicles

for testing in certain jurisdictions for unsupervised automated vehicles i.e.,
Level 3 and Level 4 automation. Hence, as the boundary between human
and machine control shifts, it becomes significantly important to address and
clarify the legal and liability concerns regarding the responsibility of vehicle
control.

2.1 Automated vehicles

Since the Futurama exhibit in 1939, a number of research programs in indus-
try and academia all over the world has been conducted in order to realize
the vision of safe and efficient vehicles that can control themselves without
human intervention. Several national and international projects e.g., the de-
velopment of the Navlab vehicle by the Carnegie Mellon University, USA [17],
the European EURÊKA project PROMETHEUS [18], the advanced safety
vehicle program in Japan [19], and the PATH project in the USA [20], were
launched with the purpose of pushing the limit for the capabilities of auto-
mated vehicles.

In August 1997, the results of e.g., the PATH project were showcased in
Demo ’97 organized by the US National Automated Highway System Consor-
tium (NAHSC). Demo ’97 was held on I-15 in San Diego, California and was
to that date one of the most comprehensive highway-based demonstrations.
In various automated highway scenarios, where scenario control and vehicle
management were accomplished by either an entirely timed and scripted pro-
gram, by GPS and location-based triggering, or by situation-based triggering,
the demonstration showcased the key technologies of distance keeping using
radar, lidar, video, and inter-vehicle communications, as well as lane following
via roadway embedded magnets, roadway laid radar-reflective stripes, or vis-
ible lane markers detected with vehicle-mounted cameras [21]-[23]. Demo ’97
has since been followed by a number of demonstrations around the world
showcasing both cooperative and non-cooperative automated vehicles.

2.1.1 Cooperative automated driving

The SAfe Road TRains for the Environment (SARTRE) project demon-
strated in 2012 a platoon consisting of a manually driven lead truck, followed
by one truck and three passenger vehicles as illustrated in Figure 2.1. In a
platoon, the lead vehicle driven by a professional driver takes responsibility
for the platoon consisting of following vehicles in semi-autonomous control
mode that allows them to follow the preceding vehicle and imitate its longitu-
dinal and lateral control signals. As such, vehicles can automatically follow

10



2.1 Automated vehicles

Figure 2.1: The SARTRE road train [9].

one another, which is expected to allow for safer and more environmental
efficient transportation, while giving drivers leisure to e.g., operate a phone,
reading a book, or watching a movie [24].

Vehicle platooning was also the theme of the Grand Cooperative Driving
Challenge (GCDC) in 2011, where the challenge consisted of both urban and
highway platooning scenarios, with a main focus on the ability to perform
longitudinal control of the vehicles [25]-[26]. In May 2016 a new edition of the
GCDC further expanded the scope of the challenge by requiring the vehicles
to be laterally controlled and demonstrate the ability to merge platoons and
to join a road via a T-intersection without driver intervention [27].

VisLab Intercontinental Autonomous Challenge (VIAC) in 2010 demon-
strated the ability of automated lane keeping, waypoint-following or following
of a lead vehicle, in a three month expedition from Italy to China [28]-[29].
During VIAC the automated vehicles were able to drive in unmapped and
unknown scenarios, while managing any kind of obstacles at low speeds. Due
to the lack of digital maps, a leader-follower approach was used to manage
most of the trip, but when the follow vehicle could not view the lead vehicle,
it followed coarse GPS waypoints broadcasted via radio connection by the
lead vehicle, or followed the lane by using information provided by a vision-
based lane markings detection system. In the follow up project Public Road
Urban Driverless-Car Test (PROUD) the VIAC experience was transferred
to performing automated driving on open public roads near Parma, Italy
in July 2013 by utilizing an openly licensed map enriched with information
about the traffic situations to be managed e.g., pedestrian crossings [30].

11



Chapter 2. Intelligent vehicle systems for passenger vehicles

2.1.2 Non-cooperative automated driving

An intense development of automated vehicles was triggered by aspiring
challenges advertised by the Defense Advanced Research Projects Agency
(DARPA) [31]-[32]. The DARPA Grand Challenges (GC) took place in the
off-road environment of the Mojave Desert, USA. In the first GC in 2004, no
entry finished the race, opening up for a second chance in 2005. The second
GC had a somewhat shorter route with more densely defined waypoints but
had otherwise the same conditions as in 2004. As such, the second time
around five teams completed the course whereas the vehicle “Stanley” de-
veloped by the Stanford racing team won the race. The main technological
contributions of the challenge were regarding robust hardware and software
for perception, localization, and path planning with corresponding trajectory
tracking, in unknown terrain [33]-[34].

In the 2007 Urban Challenge (UC) the contestants were required to auto-
matically execute a series of navigation missions through a simplified urban
environment consisting of roads, intersections, and parking lots, while obey-
ing traffic rules, and interacting safely and correctly with surrounding traffic
participants. Of the 89 teams who entered the competition, 11 teams par-
ticipated in the final event, where 6 teams completed the race that was won
by the entry “Boss” developed by the Tartan racing team, consisting of re-
searches and professionals from Carnegie Mellon University, General Motors
Corporation, Caterpillar, and Continental [35]-[37].

The DARPA UC demonstrated that vehicles can indeed be made to drive
themselves in a semi-structured dynamic urban environment. However, it is
important to remember that the challenge was performed in a specially de-
signed test area that allowed for some simplifying assumptions e.g., all vehi-
cles could be expected to follow the rules of the road, cyclist and pedestrians
were non-existent, and the velocity was limited. The participants were also
given clear directions of which scenarios and traffic situations that could be
expected as well as a route definition file of the area to be traversed. Never-
theless, the substantial incentive that the DARPA challenges gave for pushing
the boundary of state-of-the-art automated vehicles, resulted in immense re-
search contributions within all areas of automated driving. An important
aspect is that in both the GC and UC the automated vehicles did not rely
on a lead vehicle and were thereby forced to make their own driving decisions
rather than imitating the behavior of a preceding vehicle.

Subsequent projects by some of the teams who participated in the DARPA
challenges have resulted in numerous prototype automated vehicles e.g., the
Google car [38] and the MadeInGermany vehicle [39] that can be seen driven
in normal traffic conditions in the streets of e.g., San Francisco and Berlin.
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2.1 Automated vehicles

The project Stadtpilot which is a follow up project of Braunschweig Univer-
sity, demonstrated automated driving maneuvers e.g., lane keeping, adapta-
tion of distance and speed to the traffic flow, and traffic light interaction, on
the public city ring road of Braunschweig in the midst of regular traffic in
October 2010 with a maximum velocity of about 60 km/h [40]-[41].

The BMW Group Research and Technology has been testing automated
vehicles on Germany’s highways since spring 2011, with the first automated
trip without driver intervention between Munich and Ingolstadt successfully
performed on June 16th 2011 [42]. Since then, thousands of kilometers have
been driven on the highways around Munich, Germany, by prototype auto-
mated vehicles in real traffic with speeds up to 130 km/h [43].

In August 2013, a Mercedes Benz S-Class S 500 Intelligent Drive drove
the historic Bertha Benz Memorial Route from Mannheim to Pforzheim, Ger-
many, in an automated manner. The automated vehicle was equipped with
close-to-production sensor hardware and relied solely on vision and radar
sensors in combination with accurate digital maps to obtain a comprehen-
sive understanding of complex traffic situations. To complete the route, the
automated vehicle had to handle traffic lights, pedestrian crossings, intersec-
tions, and roundabouts in real traffic. It had to react on a variety of traffic
participants and objects including parked, preceding, and oncoming vehicles,
bicycles, pedestrians, and trams, thus testing the employed vision algorithms
for object recognition and tracking, free space analysis, traffic light recogni-
tion, lane recognition, as well as self-localization in a non-structured and
unpredictable environment [44].

Volvo Car Group has proclaimed a company ambition to achieve “Lead-
ership within autonomous driving by pioneering customer offers” [45]. For
instance, the project “Drive Me - self-driving cars for sustainable mobil-
ity” which will involve 100 automated passenger vehicles is a means to this
end [46]. The project is a joint initiative between Volvo Car Group, the
Swedish Transport Administration, the Swedish Transport Agency, Lindhol-
men Science Park, Autoliv, Chalmers University of Technology, and the City
of Gothenburg while endorsed by The Swedish Government. As such, the
Drive Me project is an unique venture since it involves all the key players of
legislators, transport authorities, a major city, a vehicle manufacturer, and
real customers which will utilize the 100 cars in everyday driving conditions
on approximately 50 kilometers of selected roads in and around Gothenburg.
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Figure 2.2: Advanced Driver Assistance Systems e.g., Adaptive Cruise Control, Lane
Keeping Aid, Road Sign Information, and Blind Spot Information System [9].

2.2 Advanced driver assistance systems

Due to several technical and legal reasons as well as economic aspects, highly
automated vehicles are not yet a reality for commercially available passenger
vehicles. Nonetheless, today’s market offers numerous ADAS e.g., as illus-
trated in Figure 2.2, that have the ability to assist the driver in various ways
in order to relieve the stress of the driver, and provide a safer and more
environmental efficient mode of transport [47].

2.2.1 First generation ADAS

Initially ADAS were based on proprioceptive sensors, e.g., accelerometers,
gyroscopes, and potentiometers, i.e., sensors which measures the internal
state of the vehicle, e.g., wheel velocity, acceleration, and rotational velocity.
These enable the control of vehicle dynamics with the goal of following the
trajectory requested by the driver in the best possible way. One of the first
ADAS based on proprioceptive sensors was the Anti-lock Braking System
(ABS) with serial production from 1978. The ABS limits the wheel slip to
prevent the wheels from locking when the driver brakes [48]-[49]. Years later
in 1995, the introduction of Electronic Stability Control (ESC), marked a
further milestone in the development of ADAS. The ESC system detects if
the vehicle begins to skid and assists the driver in maintaining control of
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the vehicle by applying an individual braking force on one or more of the
wheels which affects the yaw rotation of the vehicle in order to keep it in
a stable operating region [50]-[51]. In 2002, Roll Stability Control (RSC)
was introduced on order to keep the vehicle from rolling over during hard
cornering maneuvers on flat roads by applying an individual braking force
on one or more of the wheels [52].

2.2.2 Second generation ADAS

The second generation of ADAS is based on exteroceptive sensors i.e., sensors
which acquire information from outside the vehicle e.g., ultrasonic, radar, li-
dar, video, and Global Navigation Satellite Systems (GNSS) receivers. These
sensors provide information about e.g., the road ahead, the presence as well
as the status of other traffic participants, and the vehicle’s position in the
world, rendering the possibility to develop ADAS which provides information
and warnings to the driver, and enhance the comfort and safety of driving.

To mention a few examples, in 1995 Mitsubishi introduced ACC which is
a function that uses lidar or radar sensors to measure the distance, velocity,
and azimuth of preceding vehicles to improve the longitudinal control of
traditional Cruise Control (CC) systems. When the roadway is free, ACC
functions as a conventional CC i.e., by maintaining the ego vehicle at a
desired set speed, but when a preceding vehicle is detected, the ACC system
adjusts the velocity of the ego vehicle in order to follow the preceding vehicle
at a safe driving distance. ACC systems are primarily designed as a comfort
enhancing system for driving on highways or in similar driving conditions [53].
In 2002 Honda introduced a LKA system to the Japanese market which
combines ACC with lane keeping support based on lane detection by video
sensor, in order to enhance lateral control and thereby aid the driver to
remain in the intended lane [54]-[55].

Further combining the functionality of ACC and LKA, BMW offers a
“Traffic Jam Assistant” system which maintains a desired distance to the
preceding vehicle as well as incorporates active steering support to keep the
vehicle within the lane at speeds up to 60 km/h [56]. In 2016, Volvo S90
introduced a “Pilot Assist” system that automatically accelerates, brakes,
and steers the ego vehicle in order to keep it within the lane and maintain a
set distance to the preceding vehicle in that lane, at speeds up to 130 km/h.
Even closer to automated driving, since 2015 Tesla Motors Model S offers an
“Autopilot” system which allows the ego vehicle to automatically steer down
the highway, change lane, and adjust speed in response to traffic flow, all the
while under the supervision of the driver [57].

To protect against rear-end collisions on open roads or highways, Mer-
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Figure 2.3: Parking assistance system for automatic reversing into a parking space [9].

cedes Benz has developed the “Collision Prevention Assist” system which
supports the driver to maintain a safe distance to preceding vehicles and ap-
plies braking power if the risk of collision is imminent and the driver does not
brake sufficiently [58]. Since 2008 Volvo Car Group offers the “City safety”
system which is a low speed collision mitigation and avoidance system pri-
marily aimed towards queue type collisions [59]. City Safety is currently
standard on all Volvo models to warn the driver of hazardous situations and
brake the ego vehicle if necessary to avoid or mitigate a collision with other
vehicles, cyclists, pedestrians and, in some cases, even large animals on the
road ahead.

Parking assistance systems as e.g., illustrated in Figure 2.3, entered the
market in the mid 1990s. Initially, these systems had merely a warning
function to help prevent collisions when driving into and out of parking
spaces. Later, these systems were extended by rear view cameras to better
assist the driver with more detailed information, and nowadays video data
of the vehicle’s surroundings have been upgraded from a simple rear view to
one that spans an entire 360◦ [60].

The introduction of electronically controllable steering allowed for devel-
oping parking assistant systems which are capable of laterally controlling
the ego vehicle during parking maneuvers. In 2003 Toyota Motor Company
introduced an intelligent parking assist system which steers the ego vehi-
cle into a designated parking space. Over the years, the capability of this
system expanded from parallel to perpendicular parking. In April 2015, it
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was announced that the new BMW 7 Series will be able to maneuver in
or out of parking spaces or garages without anyone at the wheel. It will
thereby become the world’s first series-produced passenger vehicle with this
feature [61].

It can be expected that further automated functionalities will gradually
enter the market as technology and society progress. As such, the auto-
mated driving task needs to be broken up into basic functional components
that can be technically implemented at a certified level of maturity on the
correct level of autonomy. To ensure the safety of any automated function,
it must comply with ISO-26262 which is the primary functional safety stan-
dard for automotive systems. As such, ISO-26262 covers the management
of functional safety, safety life-cycle, and safety assessment according to the
Automotive Safety Integrity Level (ASIL) which is determined by a Hazard
Analysis and Risk Assessment (HARA) [62]-[63].
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Table 2.1: Levels of automation [16].

Level 0: No-automation (classic driving)
The driver is in complete and sole control of the primary vehicle
controls (brake, steering, throttle, and motive power) at all times,
and is solely responsible for safe operation of the vehicle. The
vehicle may be equipped with certain driver support systems e.g.,
forward collision warning, lane departure warning, and blind spot
monitoring but these systems do not have control authority over
any of the primary vehicle controls.

Level 1: Function-specific automation (assisted driving)
Automation of one or more specific control functions, e.g., ACC,
LKA, and automated parallel parking. The vehicle’s automated
system may assist or augment the driver in operating one of the
primary controls i.e., either steering or braking/throttle controls
but the driver has overall control and is solely responsible for safe
operation.

Level 2: Combined function automation (partly automated, supervised
driving)

Automation of at least two primary control functions designed to
work in unison to relieve the driver of control of those functions,
e.g., a system consisting of ACC in combination with LKA. The
driver is responsible for monitoring the roadway and safe operation
and is expected to be available to take over control at all times and
on short notice.

Level 3: Limited self-driving automation (highly automated driving)
Automation enables the driver to cede full control of all safety-
critical functions under certain traffic or environmental conditions.
The vehicle is designed to ensure safe operation during the auto-
mated driving mode. The driver is expected to be available for oc-
casional control, but with sufficiently comfortable transition time.

Level 4: Full self-driving automation (fully automated driving)
Automation is designed to perform all safety-critical driving func-
tions and monitor roadway conditions for an entire trip. Responsi-
bility for safe operation rests solely on the automated vehicle sys-
tem.
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For automated vehicles to be successfully commercialized, the safety and
reliability of the technology must be guaranteed. As such, a robust trajectory
planning algorithm is among others a key enabling technology to realize a
dependable intelligent vehicle system for automated driving that can cope
with both normal and high risk driving situations.

A vehicle trajectory is defined as a path with time stamps which con-
tains not only the geometric position, but also the velocity and acceleration
information. The challenge of developing a reliable and robust trajectory
planning algorithm is due to the problem of generating smooth and dynam-
ically feasible trajectories which allow the ego vehicle to interact with other
traffic participants, e.g., vehicles, cyclists, and pedestrians in such a way that
ensures the safety of all traffic participants while abiding traffic rules and
regulations as well as accounting for the vehicle’s physical and design limita-
tions, in real-time with the restricted computational resources of a standard
passenger vehicle platform.

In the literature, various approaches to trajectory planning for automated
vehicles are presented e.g., [64]-[72]. The most common techniques include
but are not limited to methods that can be divided into four groups namely
graph search e.g., [73]-[78], randomized sampling e.g., [79]-[84], curve inter-
polation e.g., [85]-[92], and numerical optimization e.g., [93]-[102], which are
further explained in sections 3.1-3.4 respectively.

3.1 Graph search

The basic idea of graph search algorithms is to explore a state space with the
purpose of finding the best trajectory from a start position to a goal position.
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As such, the state space is divided into graph nodes or grid cells which are
assigned values depending on e.g., obstacle and goal proximity. The graph
search algorithm e.g., Dijkstra, A*, or D* can thereby explore the state space
by utilizing a heuristic value function in order to find the most appropriate
trajectory for the traffic situation. A proper value function which effectively
estimates the cost from any node/cell in the graph/grid to the goal node/cell
is thus essential for effective trajectory planning.

Graph search algorithms for trajectory planning have been successfully
implemented and shown to generate collision-free trajectories for automated
vehicles in various traffic situations. However, it may be challenging to formu-
late a heuristic value function that is suitable for various traffic situations and
scenarios. In addition, graph search algorithms are traditionally developed
for planning problems that have one fixed goal position, which is not always
the case for on-road trajectory planning. Furthermore, the planned trajec-
tory may be jerky and thus requires additional smoothing by e.g., Spline or
Bézier curve interpolation. Moreover, graph search algorithms may require
significant computational resources since the number of graph nodes or grid
cells grows exponentially with the dimension of the state space e.g., position,
heading angle, velocity etc. and as such they might require too much com-
putational resources to be executable in real-time on a standard passenger
vehicle platform.

3.2 Randomized sampling

In difference to graph search algorithms, randomized sampling-based algo-
rithms do not rely on an explicit representation of the state space in terms
of a graph or a grid. Instead, sampling-based trajectory planning algorithms
e.g., Rapidly exploring Random Tree (RRT) and the Probabilistic Roadmap
Method (PRM) build a graph representation by randomly sampling the con-
figuration space. As such, a newly sampled configuration point is added to
the graph if there exist a feasible trajectory which connects that point to
an already existing node in the graph. Furthermore, by only adding a new
node to its nearest neighbor, sampling-based algorithms are able to generate
the shortest feasible trajectory which connects the initial position to the goal
position.

Randomized sampling-based algorithms have the capability to generate
trajectories for complex maneuvers that accounts for advanced kinematic and
dynamic motion constraints. However, similar to the graph search algorithms
they might suffer from high demands on computational resources due to the
dimension of the configuration space. In addition, the solution trajectory
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of sampling-based algorithms may be sub-optimal, jerky, and not curvature
continuous.

3.3 Curve interpolation

Interpolation entails constructing a new set of data points within the range
of a discrete set of previously known data points i.e., reference points. Hence,
given a set of reference points which e.g., describes a road map, curve inter-
polation algorithms generate a new set of data points i.e., a trajectory, which
allows the ego vehicle to traverse the road map from a start position to a
goal position.

There are numerous methods for interpolation where some of the most
common approaches for curve interpolation algorithms include but are not
limited to:

Lines and circles
Interpolation between reference points is defined by straight and circu-
lar segments.

Clothoid curves
Interpolation between reference points is defined by Fresnel integrals
rendering it possible to generate trajectories with linear changes in
curvature which allows for smooth transitions between straight and
curved segments.

Polynomial curves
Interpolation between reference points is defined by a polynomial func-
tion rendering it possible to respect constraints on e.g., position, veloc-
ity, and heading angle in the reference points which are interpolated.

Bézier curves
Interpolation between reference points is defined by parametric Bern-
stein polynomials and rely on control points to define the shape of the
segment.

Spline curves
Interpolation between reference points is defined by piecewise paramet-
ric polynomials which allows for smooth transitions between segments.

In order to generate a safe and feasible trajectory, curve interpolation al-
gorithms commonly evaluate a set of possible curves i.e., trajectories, based
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on e.g., the risk of colliding with surrounding traffic participants, vehicle dy-
namics, trajectory smoothness etc. Curve interpolation algorithms thereby
allow for planning a trajectory to traverse a given set of reference points
while accounting for the dynamic traffic environment, vehicle dynamics, and
trajectory continuity. However, all curve interpolation algorithms depend
on a given set of reference points which might be challenging to define ap-
propriately. Furthermore, curve interpolation algorithms do not provide any
formal means to guarantee the optimality of the solution trajectory.

3.4 Numerical optimization

In numerical optimization, a trajectory is generated as the solution of a con-
strained optimal control problem. Hence, numerical optimization methods
for trajectory planning aim to minimize a cost function subject to a set of
constraints. The set of constraints might incorporate conditions related to
vehicle dynamics, collision avoidance, and system limitations to ensure safe
and smooth trajectories. If the constrained optimal control problem is solved
online in receding horizon, i.e., if the problem is formulated over a shifted
time horizon based on e.g., new available sensor measurement information at
every time instance, the numerical optimization scheme is commonly referred
to as Model Predictive Control (MPC) [103]-[104].

The main advantage of resorting to numerical optimization or MPC for
trajectory planning is the easy integration of information and constraints
resulting from e.g., traffic predictions or road geometry, and that collision
avoidance is guaranteed, provided that the optimization problem is feasi-
ble. However, vehicle dynamics and collision avoidance constraints generally
result in nonlinear and/or mixed-integer inequalities, which may lead to pro-
hibitive computational complexity that prevents the real-time execution of
the trajectory planning algorithm. To reduce the computational burden a
particular optimal control trajectory planning algorithm is therefore gener-
ally tailored to a certain application, or assumes a given reference trajectory,
or only allows for a short prediction horizon, or linearize the non-linear sys-
tem in certain operating regions by e.g., assuming constant longitudinal or
lateral vehicle control.

3.5 Why model predictive control?

As described in sections 3.1-3.4 there are various approaches to trajectory
planning for automated vehicles, which all have their benefits and draw-
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backs, but where the main compromise usually entails the trade-off between
required computational resources, solution optimality, and ability to generate
smooth collision-free trajectories which are appropriate for various maneu-
vers in different traffic situations. Furthermore, many of the commonly used
trajectory planning methods lack formal stability analysis and verification
methods and thereby rely heavily on extensive simulation and experimental
testing for validation.

Since a safe trajectory is essential to successfully commercialize auto-
mated vehicles, a trajectory planning method which guarantees collision
avoidance is advantageous. Hence, approaches based on numerical optimiza-
tion are attractive for trajectory planning for automated vehicles since the
methods provide a means to formally guarantee the reliability, predictability,
and robustness of the trajectory planning algorithms. For this reason, in ad-
dition to its ability to orderly handle system constraints in receding horizon,
MPC is an appropriate methodology to apply for control design of ADAS
and intelligent vehicle system for automated driving.

The trajectory planning algorithms in Paper A-D in Part II of this the-
sis are all developed within the MPC framework in a manner that allows
for reliable, predictable, and verifiable, real-time implementation. Further-
more, the proposed trajectory planning algorithms do not assume a reference
trajectory, considers both the longitudinal and lateral control aspects of tra-
jectory planning, and allows for a realistic prediction horizon. Hence, the
proposed algorithms are able to deal with the conflicting demands of limited
computational resources, planning in a dynamic and uncertain environment,
and generation of safe and smooth trajectories in various traffic situations
while abiding traffic rules and regulations as well as satisfy the ego vehicle’s
physical and design limitations.
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The trajectory planning algorithms presented in Paper A-D in Part II of this
thesis utilizes MPC, convex optimization, QP, and reachability analysis to
formulate and solve the trajectory planning problem of automated driving
maneuvers in traffic situations where the ego vehicle does not have right-of-
way i.e., yielding maneuvers, described in Section 1.1. Hence, sections 4.1-4.3
provides a short introduction to each of the methodologies.

4.1 Model predictive control

The trajectory planning problem of automated driving maneuvers can be
formulated as follows

min
trajectory

cost function, (4.1a)

subject to

vehicle dynamics, (4.1b)

physical and design constraints, (4.1c)

collision avoidance constraints, (4.1d)

where the cost function (4.1a) reflects the control objectives e.g., allowing
the ego vehicle to maintain a desired velocity while minimizing the required
acceleration and jerk, the constraints (4.1b) and (4.1c) guarantee that the
generated trajectory accommodates vehicle dynamics and some physical and
design constraints e.g., retaining the ego vehicle within the road boundaries,
while the constraint (4.1d) ensures a safe collision-free trajectory. The solu-
tion of (4.1) thereby corresponds to the most appropriate trajectory expressed
as an optimal control sequence in terms of e.g., the ego vehicle’s longitudinal
and lateral position on the road, velocity, and acceleration.
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In order to account for a dynamic and uncertain traffic environment that
changes over time, the concept of Receding Horizon Control (RHC) is very
useful. In contrast to fixed horizon control, in RHC only the first element of
the optimal control sequence i.e., trajectory, generated as the solution to the
optimal control problem (4.1) is applied to the system i.e., ego vehicle. Then
the optimal control problem (4.1) is resolved based on the current state of the
ego vehicle and its surrounding traffic environment. Thereby, RHC accounts
for unexpected events in the surrounding traffic environment at each time
instance. The main idea of RHC can thus be summarized as follows:

1. Measure the state, x, e.g., the ego vehicle’s longitudinal and lateral po-
sition on the road, velocity, acceleration, and relative distance and ve-
locity to surrounding traffic participants, at the current time instance, t.

2. Solve the optimal control problem (4.1) for the current state, x, to ob-
tain the optimal control sequence, U, e.g., the ego vehicle’s longitudinal
and lateral position on the road, velocity, and acceleration.

3. If there exists no feasible solution to the optimal control problem (4.1),
then proceed to plan a backup trajectory.

4. If a feasible solution to the optimal control problem (4.1) exists, then
apply the first element of U to the system i.e., ego vehicle.

5. Wait for the new sampling time instance t+ 1, then go to step 1.

If the optimal control sequence is computed by solving the optimization
problem online, RHC is usually referred to as MPC. The general formulation
and notation of a MPC problem is

min
Ut

J(xt|t,Ut) = ‖Pxt+N |t‖p +
N−1∑

k=0

‖Qxt+k|t‖p + ‖Rut+k|t‖p, (4.2a)

subject to

xt+k+1|t = f(xt+k|t,ut+k|t), k = 0, . . . , N − 1, (4.2b)

xt+k|t ∈ X ⊆ Rn, ut+k|t ∈ U ⊆ Rm, k = 0, . . . , N − 1, (4.2c)

xt+N |t ∈ Xf , xt|t = x(t), (4.2d)

where xt+k|t is the state vector at time instance t + k, predicted at the cur-
rent time instance t, over the finite discrete time horizon, N ∈ N+, called
the prediction horizon, based on the current state xt|t = x(t). The pre-
dicted state xt+k|t is obtained by applying the optimal control sequence
Ut = [uT

t|t, . . . ,u
T
t+N−1|t]

T to the system dynamics (4.2b). In (4.2a), P ∈

26



4.2 Convex optimization and quadratic program formulation

Rn×n, Q ∈ Rn×n, and R ∈ Rm×m are weighting matrices with appropriate
dimensions to penalize the final state xN , state vector x, and control input
u, respectively. The admissible sets of states and control inputs are respec-
tively denoted by X , Xf , and U , where Xf denotes the final set of admissible
states. If p = 1 or p =∞, ‖ . . . ‖p denotes the p-norm while if p = 2, ‖ . . . ‖2
is generally considered to be the squared 2-norm.

Hence, in the MPC planning framework a trajectory is found as the solu-
tion of a constrained optimal control problem (4.2) over a finite time horizon.
In particular, a cost function is minimized subject to a set of constraints in-
cluding e.g., the vehicle dynamics, system limitations, and conditions intro-
duced to avoid collisions with surrounding traffic participants and objects.
The constrained optimal control problem is solved in receding horizon, i.e.,
at every time instance the problem is reformulated and solved over a shifted
time horizon based on new available sensor measurement information. Fur-
ther details concerning the MPC methodology are provided in [103]-[104].

4.2 Convex optimization and quadratic pro-

gram formulation

For a yielding maneuver e.g., lane change, to be safe, the planned trajectory
should allow the ego vehicle to maintain safety margins to all relevant sur-
rounding traffic participants and objects. As an illustrative example, consider
the traffic situation that is schematically depicted in Figure 4.1, in which the
ego vehicle is driving on a one-way two-lane road with four surrounding ve-
hicles. In the described traffic situation, a safe lane change maneuver entails
that the ego vehicle does not enter safety critical regions defined by e.g., a
time gap and minimal lateral distance which the ego vehicle must maintain
to each surrounding vehicle. However, as indicated in Figure 4.1 the black
region outside the safety critical regions is non-convex i.e., every pair of data
points within the black region cannot be connected by a straight line segment
for which each data point is also within the black region. As such, impos-
ing collision avoidance constraints by e.g., nonlinear and/or mixed-integer
inequalities to ensure that the ego vehicle remains outside the safety criti-
cal regions results in a non-convex trajectory planning problem (4.1) which
generally requires too much computational resources to be appropriate for
real-time implementation on a standard passenger vehicle platform.

There exist some standard non-convex optimization problems which can
be transformed into convex optimization problems through a change of state
variables i.e., x, and manipulations on the cost function (4.1a) and set of
constraints (4.1b)-(4.1d). However, generally it is very difficult to trans-
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Figure 4.1: Top: Vehicles traveling on a one-way two-lane road. The ego vehicle is
displayed in blue and the surrounding vehicles, S1, S2, S3, and S4, are displayed in green.
The white boxes around each surrounding vehicle represents safety critical regions which
the ego vehicle should not enter.
Bottom: The black region outside the safety critical regions is non-convex.

form a non-convex optimization problem into a convex optimization prob-
lem. Nonetheless, if a convex problem formulation can be obtained e.g., as
presented in Paper A-D in Part II of this thesis, it is very valuable since
convex optimization problems can be efficiently solved with low computa-
tional resources [105]. The reason why convex optimization problems can
be efficiently solved is that in convex optimization problems, local optimiz-
ers i.e., solutions, are also global optimizers. Hence, when solving convex
optimization problems, the computational process can be terminated when
any optimal solution is found without the risk of choosing a local optimal
solution. Further details regarding convex optimization are given in [106].

If the sets X , U , and Xf in (4.2c)-(4.2d) are convex, the system described
by (4.2b) is linear, and the cost function (4.2a) is quadratic, then the MPC
problem (4.2) can be equivalently rewritten as a standard QP

min
w

J(w) =
1

2
wTHw + dTw, (4.3a)

subject to

Hinw ≤ kin, (4.3b)

Heqw = keq, (4.3c)

with w ,
[
uT
t|t, . . . ,u

T
t+N−1|t,x

T
t|t, . . . ,x

T
t+N |t

]
. The QP problem (4.3) is a
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special type of mathematical optimization problem which is convex if the
matrix H is symmetric and positive semi-definite.

4.3 A note on reachability analysis

In order to determine whether the ego vehicle can position itself in a certain
gap between some traffic participants or objects, at a certain time instance,
the concept of reachability analysis can be utilized. Reachability refers to
the ability of a system e.g., the ego vehicle, to get from point a to point b. Or
in other words, by utilizing reachability analysis it is possible to determine
whether there exists a trajectory i.e., a control sequence in terms of e.g.,
the ego vehicle’s longitudinal and lateral position on the road, velocity, and
acceleration, which allows the transition between point a e.g., E’s current
position, to point b e.g., a certain inter-vehicle traffic gap.

More formally, the one-step robust reachable set for the initial states
xt|t ∈ X of the system described by (4.2b) subject to (4.2c)-(4.2d), is defined
as

Reachf (X ) ,
{
x ∈ Rn : ∃ xt|t ∈ X , ∃ u ∈ U , | x = f(xt|t,u)

}
. (4.4)

An illustration of the reachable set for the initial states xt|t ∈ X under
the dynamical system (4.2b) subject to (4.2c)-(4.2d) is shown in Figure 4.2.
Further details concerning reachability analysis for constrained systems are
provided in [107].

(a) The set of initial
states at time in-
stance t.

(b) The one-step robust
reachable set at time
instance t + 1.

(c) The N-step robust
reachable set at time
instance t + N .

Figure 4.2: Reachable set.
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Chapter 5
Summary and contribution of
Paper A-D

In addition to the common benefits which the trajectory planning algorithms
presented in Paper A-D in Part II of this thesis share as described in Sec-
tion 1.3, the scientific contribution of each individual paper is summarized
in sections 5.1-5.4 respectively.

5.1 Paper A

J. Nilsson, P. Falcone, M. Ali, and J. Sjöberg, “Receding Horizon Ma-
neuver Generation for Automated Highway Driving,” Control Engi-
neering Practice, vol. 41, pp. 124-133, August, 2015.

Paper A focuses on the problem of decision-making and control in an auto-
mated driving application for highways. By considering the decision-making
and control problem of highway driving as an obstacle avoidance trajec-
tory planning problem, the paper proposes a novel approach to lane change
trajectory planning which exploits the structured environment of one-way
roads. As such, the trajectory planning problem is formulated as a convex
QP optimization problem within a receding horizon control framework, as
the minimization of the deviation from a desired velocity and lane, subject
to a set of constraints introduced to avoid collision with surrounding vehi-
cles, stay within the road boundaries, and abide the physical limitations of
the vehicle dynamics. The ability of the proposed approach to generate ap-
propriate traffic dependent maneuvers which can be tracked by a low-level
controller is demonstrated in simulations concerning traffic scenarios on a
two-lane, one-way road with one and two surrounding vehicles.
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The main scientific contribution in Paper A is the linear formulation of the
collision avoidance constraints which enables the decision-making and con-
trol problem of highway driving to be formulated as a low complexity convex
QP. Furthermore, the proposed problem formulation allows for simultane-
ous optimization of the longitudinal and lateral control signals in order to
determine an appropriate collision-free maneuver without the assumption of
an explicit reference trajectory. As such, the proposed trajectory planning
algorithm is able to determine whether a lane change maneuver should be
executed, as well as plan the corresponding trajectory to either perform the
lane change or remain in the current lane.

Author’s contribution: the author of this thesis is responsible for devel-
oping the main idea in collaboration with M. Ali, developing the problem
formulation under the supervision of P. Falcone, planning and implementing
the simulations with the assistance of A. Carvalho and Y. Gao in activities
related to the low-level controller [10], and authoring the paper.

5.2 Paper B

J. Nilsson, M. Brännström, J. Fredriksson, and E. Coelingh, “Longitu-
dinal and Lateral Control for Automated Yielding Maneuvers,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 5,
pp. 1404-1414, May, 2016.

Paper B presents a trajectory planning algorithm for automated yielding
maneuvers i.e., maneuvers where the ego vehicle does not have right-of-way
e.g., lane change, roundabout entry, and intersection crossing. By consider-
ing yielding maneuvers as primarily a longitudinal motion planning problem,
the proposed algorithm determines whether there exists a longitudinal tra-
jectory which allows the ego vehicle to safely position itself in a gap between
surrounding traffic participants and objects e.g., vehicles, pedestrians, and
road barriers. Furthermore, if such a trajectory exists, the algorithm plans
the corresponding lateral trajectory for the maneuver. The proposed trajec-
tory planning algorithm can thereby be formulated as two loosely coupled
low-complexity convex QPs which can be efficiently solved to obtain longi-
tudinal and lateral motion trajectories for various maneuvers. Simulation
results show the ability of the proposed trajectory planning algorithm to
generate smooth and safe trajectories which are appropriate in various traf-
fic situations i.e., lane change, roundabout entry, and intersection crossing.

The main scientific contribution in Paper B is the formulation of the low-
complexity trajectory planning algorithm for longitudinal and lateral control
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5.3 Paper C

in various maneuvers for which the ego vehicle does not have right-of-way
i.e., yielding maneuvers e.g., lane change, roundabout entry, and intersection
crossing.

Author’s contribution: the author of this thesis is responsible for develop-
ing the main idea and problem formulation in collaboration with M. Brännström,
planning and implementing the simulations, and authoring the paper.

5.3 Paper C

J. Nilsson, M. Brännström, J. Fredriksson, and E. Coelingh, “Lane
Change Maneuvers for Automated Vehicles,” Accepted for publication
in IEEE Transactions on Intelligent Transportation Systems, 2016.

Paper C extends on the results presented in Paper B by integrating the tra-
jectory planning algorithm for lane change maneuvers with a novel approach
inspired by reachability analysis for selecting an appropriate inter-vehicle
traffic gap in the target lane and the time instance to initialize the lateral
movement into the selected gap. Furthermore, Paper C includes experimen-
tal results of a Volvo V60 performing lane change maneuvers on a test track,
which demonstrates the real-time ability of the proposed lane change ma-
neuver algorithm to generate smooth and safe lane change trajectories which
are appropriate in various traffic situations.

The main scientific contribution in Paper C is the formulation of the
approach for selecting an appropriate inter-vehicle traffic gap in the target
lane and the time instance to initialize the lateral movement into the se-
lected gap, which significantly reduces the required computational time of
the lane change trajectory planning algorithm. In addition, the capability
of the proposed trajectory planning algorithm to generate appropriate lane
change maneuvers in real-time on a standard passenger vehicle platform is
demonstrated by experimental tests.

Author’s contribution: the author of this thesis is responsible for develop-
ing the main idea of the approach for selecting an appropriate inter-vehicle
traffic gap in the target lane and the time instance to initialize the lateral
movement into the selected gap, planning and implementing the simulations,
involvement in the vehicle implementation in collaboration with colleagues at
Volvo Car Group, planning and conducting the experiments with the assis-
tance of colleagues at Volvo Car Group and Hällered test track, and authoring
the paper.
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5.4 Paper D

J. Nilsson, J. Fredriksson, and E. Coelingh, “Trajectory Planning with
Miscellaneous Safety Critical Zones,” Submitted for possible conference
publication, 2017.

Paper D extends on the results presented in Paper B and Paper C by allow-
ing the algorithm to plan trajectories which account for motion dependent
safety critical zones of miscellaneous shape. As such, in Paper D the pro-
posed algorithm does not only account for rectangular safety critical zones
which are defined by e.g., a time gap which the ego vehicle must maintain to
surrounding traffic participants, but rather allows for safety critical zones de-
fined by both the planned longitudinal and lateral motion of the ego vehicle.
The ego vehicle is thereby able to efficiently utilize the free road space and
traverse dense traffic situation in a self-assertive manner rather than exhibit
an excessively conservative behavior.

The main scientific contribution in Paper D is the extension of the trajec-
tory planning algorithm proposed in Paper B and Paper C which allows the
algorithm to account for safety critical zones of miscellaneous shape defined
by both the planned longitudinal and lateral motion of the ego vehicle.

Author’s contribution: the author of this thesis is responsible for devel-
oping the main idea and problem formulation, planning and implementing
the simulations, and authoring the paper.
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Chapter 6
Concluding remarks and future
research directions

During the last decades, the capability of automated vehicles has increased
from lane centering and vehicle following to driving on public roads where
a few research platforms have shown remarkable performance. However, the
ability of automated vehicle technology with respect to e.g., sensing with
corresponding motion prediction and intention recognition of surrounding
traffic participants, decision-making, and trajectory planning, has not yet
reached the same level as that of skilled human drivers. Nonetheless, numer-
ous ADAS e.g., ACC, LKA, and collision warning and mitigation systems
are currently successfully offered in standard passenger vehicles. If the au-
tomated functionality in passenger vehicles continues to increase, the long
term consequence is that intelligent vehicle systems will have the capability
to perform more and more of the traditional driving tasks and eventually
become highly automated. It is expected that automated passenger vehicles
will initially be introduced in highways since the structured environment of
highways renders a high level of vehicle autonomy realizable [108]. Further-
more, due to congestion, accidents, and high variation in vehicles’ velocity,
highway driving can be both tedious and stressful and as such it is desirable
to improve the driving experience by allowing drivers to safely engage in
secondary tasks.

For automated vehicles to be successfully commercialized, the safety and
reliability of the technology must be guaranteed. As such, a reliable and ro-
bust trajectory planning algorithm is among others a key enabling technology
to realize a safe and dependable intelligent vehicle system for automated driv-
ing that can cope with both normal and high risk driving situations. This
thesis thus focuses on the problem of real-time trajectory planning for safe
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and smooth automated lane change maneuvers. In addition, the thesis ad-
dresses the trajectory planning problem of other maneuvers where the ego
vehicle does not have right-of-way i.e., yielding maneuvers e.g., roundabout
entry and intersection crossing. The considered problem of generating an
appropriate, safe, and smooth trajectory consisting of a sequence of longi-
tudinal and lateral control signals is formulated as convex optimal control
problems in the form of QPs within the MPC framework in a manner that
allows for reliable, predictable, and robust, real-time implementation on a
standard passenger vehicle platform. The proposed algorithms in Paper A-D
in Part II of this thesis is thereby able to deal with the conflicting demands
of limited computational resources, planning in a dynamic and uncertain
environment, and generating provable safe trajectories, while abiding traf-
fic rules and regulation, as well as satisfying the ego vehicle’s physical and
design limitations. The contribution of the thesis i.e., the trajectory plan-
ning algorithms presented in Paper A-D in Part II, is thus considered to be
a building block for ADAS regarding yielding maneuvers e.g., lane change,
and eventually highly automated vehicles.

In terms of further developing any of the algorithms presented in Part II
of this thesis into industrial applications, the trajectory planning algorithm
presented in Paper B, Paper C, and Paper D is considered to have the best
potential due to its simplicity and flexibility which renders it applicable to
trajectory planning for various yielding maneuvers e.g., lane change, round-
about entry, and intersection crossing. Hence, in order to fully understand
the range of possible industrial applications which could arise from the pro-
posed trajectory planning algorithm, its performance should undergo exten-
sive testing in real world traffic situations for various traffic scenarios.

Since the proposed trajectory planning algorithm presented in Paper B,
Paper C, and Paper D is developed under the assumption that the intelli-
gent vehicle system knows which maneuver to perform e.g., a lane change,
a decision-making algorithm that determines which maneuver to perform,
ought to be developed and incorporated with the proposed trajectory plan-
ning algorithm e.g., as described in [109]. Furthermore, in order to make
an appropriate decision regarding which maneuver to perform and plan a
safe trajectory which accounts for the surrounding traffic participants and
objects, it is crucial that the intelligent vehicle system has a good under-
standing of the surrounding traffic environment. As such, reliable sensor
systems which acquire information regarding the surrounding traffic envi-
ronment and prediction systems e.g., [14] which estimates the motion trajec-
tories of surrounding traffic participants over a time horizon are essential for
the performance of the proposed trajectory planning algorithm.

As previously mentioned in Section 1.2, the trajectory planning algorithm
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has the ability to account for uncertainties resulting from the sensor tech-
nology or motion prediction by e.g., increasing the safety distance which the
ego vehicle must maintain to surrounding traffic participants and objects
over the prediction horizon in relation to the confidence level of the sensor
and motion prediction systems. In addition, the re-planning nature of MPC
allows changes in the perceived environment to be accounted for at each time
instance. Nonetheless, how to cope with limited sensor information and pre-
diction uncertainty is an important topic which should be further evaluated
in order to ensure the performance of the proposed trajectory planning algo-
rithm. A related topic is the issue of determining when and how to generate
backup trajectories to e.g., abort a maneuver in case it becomes unfeasible
e.g., due to unexpected events in the surrounding traffic environment.

In order to introduced new and improved ADAS to the market e.g.,
an automated lane change assistance system, and eventually highly auto-
mated vehicles, each functional component must be technically implemented
to comply with the ASIL requirements of ISO-26262, as aforementioned in
Section 2.2.2. As such, a functional safety concept to ensure the overall
safety of the system in terms of e.g., the safe management of likely operator
errors, hardware failures, and environmental changes, should be developed.
Hence, the development of a method that guarantees that the ego vehicle will
always be able to execute a safe maneuver without excessively conservative
constraints under which the trajectory planning algorithm should operate, is
perhaps the final key to realize automated vehicles which are safe, smooth,
and self-assertive.
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