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Abstract

In the forming section of a paper machine, a fiber suspension is flowing down onto a
forming fabric, and a paper structure is formed. By using computer simulations this
process can be studied, attaining new knowledge helping to improve paper quality and
machine efficiency. In this thesis a suspension flow model is presented together with a
simulation framework which is used to simulate early paper forming. Lay down sim-
ulations are performed, and the resulting sheets are compared with experiments. To
properly resolve the frequent interactions between fibers, a physical interaction model
has been developed.

The suspension flow model consists of four sub-models: a fluid model, an object
model, a fluid-object and object-fluid interaction model, and an object-object interaction
model. The fluid model is based on the incompressible Navier-Stokes equations, and
to capture the large motion and deformations of the fibers, a finite-strain beam model
is used. The object’s effect on the fluid is calculated using a second-order accurate
immersed boundary method, and the fluid’s effect on the fibers are resolved using an
empirical drag force relation for cylinders.

When a paper structure is formed the interactions between fibers are important. To
resolve these interactions an object-object interaction model based on DLVO force has
been developed. The model enables calculation of contact forces varying considerably
over nanoscale distances without requiring the fiber time step to be reduced. In addition
to the DLVO forces, a steric repulsion force has been developed handling the interaction
taking place at the smallest separations including overlap.

This work demonstrates the capacity of the presented framework, enabling computer
simulations of the paper making process. Simulations are performed with thousands of
fibers laying down onto a forming fabric, simultaneously resolving the complex inter-
action between fibers. For the simulated sheets with low density, the resulting air per-
meabilities agree well with experiments. When the density increases, the permeability
of the simulated sheets does not decrease as much as in the experiments. This seems
to be caused by some features missing in the current model. The fibers do not deform
as tightly together as in the experiments, and the holes between fibers are not covered
by fines. These features will be investigated in the future to improve the simulation
framework further.

Keywords: fiber suspension flow model, object-object interaction model, contact forces,
lay down simulations, paper forming, immersed boundary methods
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Preface

In this thesis a model for fiber suspension flow is presented, with my main con-
tribution being the object-object interaction model. A simulation framework,
which applies the fiber suspension flow model to simulations of the forming
section of a paper making machine, is also presented.

The development of the simulation framework was performed at the Fraun-
hofer Chalmers Research Centre (FCC), and initiated in 2010 by Andreas Mark
and Erik Svenning, who implemented a beam model into the in house CFD
solver IBOFlow. The beam model together with IBOFlow’s immersed bound-
ary method enabled simulation of fiber suspensions.

I was involved in the project in 2013 when I was employed as a contracted
student at FCC. As master thesis, Frida Svelander and me, begun the develop-
ment of a object-object interaction model based on physical and chemical con-
tact forces. Since September 2014, the work has continued during my graduate
position at FCC and Chalmers, and eventually led to this licentiate thesis.

v



vi



Acknowledgments

I would like to thank the following people for a lot of help and guidance:

• Andreas Mark,

• Axel Målqvist,

• Frida Svelander,

• Fredrik Edelvik,

• Christoffer Cromvik,

• Anders Ålund.

Gustav Kettil
Göteborg, August 2016

vii



viii



Contents

Abstract i

List of Papers iii

Preface v

Acknowledgments vii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 History of Research Project . . . . . . . . . . . . . . . . . . . . 2
1.3 A Review of Simulation Methods for Suspension Flows . . . . . 3

2 Model 11
2.1 Fluid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Object Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Fluid-Object and Object-Fluid Interaction Model . . . . . . . . 16
2.4 Object-Object Interaction Model . . . . . . . . . . . . . . . . . 17

2.4.1 Equation System for Contact Point Motion . . . . . . . 19
2.4.2 Calculation Procedure . . . . . . . . . . . . . . . . . . 20
2.4.3 Distribution of Contact Points . . . . . . . . . . . . . . 21
2.4.4 Simplification of Equation System . . . . . . . . . . . . 22
2.4.5 DLVO Theory . . . . . . . . . . . . . . . . . . . . . . 22

2.4.5.1 Van der Waals Contribution . . . . . . . . . . 25

ix



x Contents

2.4.5.2 Electrostatic Contribution . . . . . . . . . . . 26
2.4.5.3 Extension of DLVO Forces . . . . . . . . . . 28

2.4.6 Steric Repulsion Force . . . . . . . . . . . . . . . . . . 30
2.5 Summary of the Governing Equations . . . . . . . . . . . . . . 32

3 Simulation Framework 33
3.1 Simulation Domain . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Simulation Procedure . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Forming Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Fiber Generation . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Pressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Results 41
4.1 Testing of Object-Object Interaction Model . . . . . . . . . . . 41

4.1.1 Collision Test . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Adhesion Test . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Lay Down Simulations . . . . . . . . . . . . . . . . . . . . . . 42

5 Discussion and Conclusions 53
5.1 Discussion on the Results . . . . . . . . . . . . . . . . . . . . . 53
5.2 Discussion on the Simulation Framework . . . . . . . . . . . . 57
5.3 Discussion on the Model . . . . . . . . . . . . . . . . . . . . . 59
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Summary of Papers 65
Paper I - Novel Contact Forces for Immersed Boundary Paper Form-

ing Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Paper II - Detailed Simulations of Early Paper Forming . . . . . . . . 65
Paper III - Simulation of Fiber Suspension Flow Using Immersed

Boundary Techniques and a Novel Fiber Interaction Method . . 66

References 67

Paper I 73

Paper II 89



Contents xi

Paper III 95



xii



1. Introduction

1.1 Background

There are numerous practical phenomena for which effectiveness and quality
are of great importance, and to improve and develop these is a profound need
and endeavor of human society. One of the most, if not the most, significant
tool in this process is mathematics. Mathematics is the foundation of sciences
such as physics, chemistry and biology, which are all essential to the task of
understanding the world around us.

Technical devices and processes utilized by humans, such as cell phones,
airplanes, and paper making, heavily depend on mathematical understanding.
The development and improvement of these things involve different phases.
Initially it is necessary to observe and understand which laws govern the phe-
nomenon. Thereafter these observations must be transformed into mathematical
language in form of equations. This transformation usually involves simplifi-
cations and re-application of known physical laws. This procedure is known as
mathematical modeling.

When a mathematical model has been developed, it can be used to further
investigate or predict a process. Numerical methods and computers can then
be utilized to simulate an imitation of the real process. Eventually interesting
results can be attained, leading to extended knowledge and improvements of the
process.

In the paper industry, paper making machines produce immense amounts
of paper each year, that for example can be used for packaging products. The
production of paper is a highly complex process, which today is not fully un-
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2 Chapter 1. Introduction

derstood in detail. At the same time, the paper industry is in great need of
improvements in the years to come. Therefore the utilization of mathematical
modeling and computer simulations may be useful to increase the understand-
ing of paper making.

This thesis presents a mathematical model which is used to simulate parts
of the paper making machine, namely the forming section. In the forming sec-
tion, a fiber suspension is flowing down onto a forming fabric moving at high
speed. The fibers accumulate on the fabric and a sheet of paper starts to materi-
alize. The structure and quality of the end product are dependent on the forming
process, and with simulations the paper making process can be improved.

The suspension flow is an important part of the forming section and the
presented model describes such flows. It is explained how this model can be
applied to simulate the lay down part of the paper making process. Simulations
are performed and the results are compared with experimental data.

1.2 History of Research Project
This work is part of the research and development project ISOP (Innovative
Simulation of Paper) which is carried out at Fraunhofer-Chalmers Research
Centre (FCC) 1 in collaboration with companies from the Swedish paper in-
dustry and Fraunhofer ITWM. The main purpose of the ISOP project is to pre-
dict macroscopic paper properties with industrially relevant accuracy through
microstructure simulations. To accomplish this, mathematical models are be-
ing developed and implemented in IBOFlow, an incompressible finite-volume
based fluid solver developed at FCC.

The ISOP project started in January 2009 and the third three-year phase con-
tinues until December 2017. The project has had three main modeling tracks:
paper network modeling, edge wicking, and paper forming. These three tracks
have been heavily supported by several experimental campaigns. Single ply and
two ply paper sheets were manufactured in a controlled environment at Packag-
ing Greenhouse. In the study the paper pulp, retention, sizing and fillers were
varied. Several experiments were performed to support the modeling tracks.
From the experiments air permeabilities, pressurized edge wick, contact angles,
tensile strength, tensile stiffness, bending resistance, z-strength, and pore size

1http://www.fcc.chalmers.se/
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distribution were extracted.
In PaperGeo 2, a parameterized model of fiber network has been developed

to generate virtual paperboard from statistical parameters describing the paper
material, such as fiber shapes, sizes and orientation distributions. The resulting
paperboard model is used as input for the edge wicking simulations.

In edge wicking the fluid penetration into the open edge of the paperboard
is modeled. To calculate this a multiscale framework has been developed. On
the fiber micro-scale virtual paper models are generated in PaperGeo for small
pieces of the paper. For these models a pore morphology method is used to
calculate capillary pressure curves, and on the active pores one-phase flow sim-
ulations are performed for relative permeabilities. The result is a database of
capillary pressure curves and relative permeabilities as a function of saturation
and porosity. The database is used as input for a two-phase flow simulation on
a 2D virtual macro sheet to calculate the penetration of fluid in the paper. For
details, see the resulting publications from 2012 and 2015 [16, 21, 22].

In the paper forming track, the model presented in this work has been de-
veloped. The aim of the model is to simulate the forming section of a paper
machine. The model was first published by Mark and co-workers in 2011 and
2012 [20, 37]. In these works the fibers were modeled as beams, and the im-
mersed boundary method [23] was used to handle the interaction between fluid
and fibers. In this thesis, the paper forming model has been extended and re-
fined to handle physical fiber contact forces. Further, a more advance fiber
model [34] is included.

The developed models have been integrated on the IPS software platform 3,
and the modules IPS Edge Wicking and IPS Paper Forming have been delivered
to the ISOP partners.

1.3 A Review of Simulation Methods for Suspen-
sion Flows

In this section a review of simulation methods for suspension flows, with em-
phasize on fiber suspension flows, is presented. The summary does not embrace
all methods used during the last thirty years, but instead a number of different

2http://www.geodict.com/Modules/Geos/PaperGeo.php
3http://industrialpathsolutions.se/



4 Chapter 1. Introduction

methods, relevant to the model presented in this thesis, are included.
Before the simulation methods are presented, some brief words about theo-

retical and experimental works are given. In 1922, Jeffery published a work [15]
where he theoretically derived the motion of a single prolate spheroid in shear
flow. The resulting equations show that the orbit of a prolate spheroid is peri-
odic and shows no tendency to set its axes aligned in any particular direction.
Jeffery’s equations are often referred to, and compared with, when investigating
fiber motion in shear flow.

During the fifties and sixties, Mason and co-workers (see for example [9,
10]) performed experiments with important results. They investigated fiber mo-
tion in shear flow and found results in accordance to Jeffery’s equations, but
also extending to flexible particles. The resultant fiber configurations are often
used for comparison when developing simulation methods for fibers.

An early work on simulation of suspension flows was performed by Bossis
and Brady in the mid eighties [3, 4]. Their method, called Stokesian dynamics,
was used to simulate a suspension of spherical particles in a shear flow at low
Reynolds numbers. They considered solid rigid particles in a Newtonian fluid,
whose motion was governed by the equation

M
dU

dt
= FH + FP , (1.1)

where U is a vector containing the translational and angular velocities of the
particles, and M is the matrix of mass and moment. The right hand side in-
cludes the two types of forces and torques assumed to act on the particles, hy-
drodynamic FH and non-hydrodynamic FP ..

By assuming a low Reynolds number, a large Péclet number, and absence
of Brownian motion, the inertia was neglected and the equation (1.1) reduced
to

0 = FH + FP . (1.2)

For the hydrodynamic force, Bossis and Brady used an expression derived by
Brenner and co-workers [5, 6], applying to linear shear flow, stating that

FH = R · U∗ + Φ : E, (1.3)
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where R is a resistance matrix, U∗ the relative bulk fluid velocity, Φ the shear
resistance matrix, and E the rate of strain tensor.

The velocities were found by solving the equation

U∗ = −R−1 · (Φ : E + FP ), (1.4)

and the new particle positions attained by time stepping, using a Runge-Kutta
scheme.

The model was used to simulate a monolayer of spherical particles. The
interaction between particles was calculated from the repulsive force

FP = F0
τe−τh

1− e−τh , (1.5)

where h is the surface separation, and τ and F0 are constants.
In the beginning of the nineties, Yamamota and Matsuoaka developed a

model [41–43] for simulation of fibers. In their approach, a fiber was modeled
as built up of N spheres with radius a. The spheres were bonded pairwise
with three types of connections, responsible for stretching, bending, and torsion,
respectively.

The three kind of connections were governed by the following spring rela-
tions:

F s = −ks(r − r0),

T b = −kb(θb − θb0),

T t = −kt(θt − θt0).

(1.6)

Here the left hand sides contain the stretching force, bending torque, and torsion
torque, in the given order. The right hand sides contain the spring constants
multiplied with the differences between initial and current configuration.

Applying the Newton-Euler equations, the governing equations of motion
for each sphere read

m
d2ri
dt2

=
∑

F si +
∑

fij + Fhi ,

2

5
ma2 d

2θi
dt2

=
∑

T bi +
∑

T ti +
∑

fij × anij + Thi ,

(1.7)
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where m is the mass, ri the position, and θi the angle of a sphere. The trans-
lational friction force and angular friction torque from the fluid are denoted Fhi
and Thi . The tangential friction between spheres is denoted fij , and nij is the
normalized direction vector between the sphere centers.

Assuming a linear shear flow v(r) = κ · r, at low Reynolds number and
neglecting Brownian motion, explicit expressions for the hydrodynamic force
and torque can be attained according to

Fhi = −ζt(vi − v(ri)),

Thi = −ζr(ωi − ω(ri)),
(1.8)

where ζt and ζr are the translational and rotational friction constants, respec-
tively, and the rotational velocity is given by ω(ri) = 1

2 rot v(ri). The governing
equations were solved using a finite differential technique.

Using the described model, a single fiber in shear flow was simulated and
the emerged fiber configurations were compared with the experimental results
of Mason and co-workers. In addition to simulations of a single fiber, multiple
fibers were investigated. In the multi-body study, the following interaction force
was used between spheres:

F pij =
3

2
a2πη

(vj − vi) · nij
|rij | − 2a

nij , (1.9)

where η is the viscosity of the medium. The force was modified for |rij | <
2.001a to ensure numerical stability according to

F pij = −D0e
G0

(
1− |rij |

2a

)
nij , (1.10)

where D0 and G0 are constants.
In 1997, Ross and Klingenberg [29] published a work with an approach

similar to that of Yamamoto and Matsuoaka, but instead of using spheres, they
modeled fibers as consisting of several prolate spheroids connected through ball
and socket joints.

By using prolate spheroids the number of fiber components reduces com-
pared to when using spheres, leading to faster simulations. On the other hand
ball and socket joints remove the possibility of stretching, which introduces the
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necessity of connection constrains, keeping the joints together. Ross and Klin-
genberg argued that extensibility could be neglected since it is typically small
compared to other deformations.

The bending and twisting torques of the ball and socket joints were gov-
erned by string relations as in the model of Yamamota and Matsuoaka. The
hydrodynamic force and torque acting on the spheroids were similar, but the
term H : E was included in the hydrodynamic torque, where H is a resistance
tensor and E the rate of strain tensor. The governing equations of the spheroid
motion were the same equations as Yamamota and Matsuoaka used, except that
the joint constrains were included and the particle inertia was neglected.

Ross and Klingenberg used their model to simulate a single fiber in shear
flow and compared the results to Forgacs and Mason [9, 10]. They also sim-
ulated multiple fibers and investigated rheological properties. When multiple
fibers were used, a repulsive force between spheroids was employed according
to

Fij = −F0e
−κheij , (1.11)

where F0 and κ are constants, h is the minimum surface separation distance,
and eij is the unit vector between the points of minimum separation distance.

In 1998, Stockie and Green [36] presented a new approach for simulation of
fiber suspensions. They incorporated a full two-way coupling between fiber and
fluid by using the immersed boundary method by Peskin [27], and employed
the Navier-Stokes equations to resolve the fluid motion. Their fiber model was
fundamentally different from the previously described methods. A fiber was
modeled as a flexible composition of force-bearing filaments, assumed to be
massless and occupy zero volume.

A force F was introduced in the momentum equation of the Navier-Stokes
equations which was non-zero except on the fiber, according to

F (x, t) =

∫

Γ

f(s, t)δ (x−X(s, t)) ds, (1.12)

where Γ is the fiber curve, f(s, t) is the fiber density, δ(·) is a Dirac delta
function, X(s, t) is the position of the fiber, and s is the parameter of the fiber
arc. The fiber was forced to move at the same velocity as the surrounding fluid
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by the constraint

∂X

∂t
= u

(
X(s, t), t

)
, (1.13)

where u is the fluid velocity. By expressing the fiber density as the gradient of a
potential function, resistance to stretching and bending, was included. Stockie
and Green used Hooke’s law to govern the deformation of the fiber.

The model was used to simulate a fiber in shear flow in two dimensions.
The results showed some disagreement with previous simulations and theory,
which all neglect the effect from the fibers on the fluid. This indicates that this
interaction is of interest.

In 2000 and subsequent years, Schmid, Switzer and Klingenberg [31,38,39]
published works similar to that of Ross and Klingenberg, but now with fibers
that were modeled as composed of cylinders instead of prolate spheroids. Using
this model they simulated several fibers in shear flow and investigated floccula-
tion. In 2002, Stockie [35] extended his earlier model to three dimensions and
investigated an elastic fiber in shear flow. The fiber was described using several
layers and fibrils.

In 2007 and 2008, Lindström and Uesaka, published works [17, 18] where
the fibers were built up of cylindrical elements, as by Schmid and co-workers.
Three new features compared to Schmid and co-workers were that the inertia
of the elements was included, that the fluid flow was governed by the incom-
pressible Navier-Stokes equations, and that two-way coupling was included.
The two-way coupling was incorporated using boundary conditions derived by
Hirasaki and Hellums [12]. Contact forces between fibers were also included.

In 2011 and 2012, Mark and co-workers [20, 37] presented a new approach
by modeling the fibers as beams governed by the Euler-Bernoulli beam equation
in a co-rotational formulation:

k̇ = n+ (UN)′,

π̇ = m+ r′ × (UN) + (UM)′,
(1.14)

where k and π is the linear and angular momentum per unit length, N and M
are the internal force and moment, n and m are the applied force and moment,
U is an orthogonal rotation matrix, and r the positions of the centroids of the
cross sections.
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The fluid flow was governed by the Navier-Stokes equations, and a two-
way coupling was employed using a second-order accurate immersed boundary
method [23]. The contact between fibers was modeled using a penalty method
including elastic and inelastic collisions and friction. The fluid-fiber interaction
was evaluated by simulating a fiber which was attached to a wall and exposed
to a cross flow. Further fiber simulations were performed and compared with
Jeffery’s equations and the experimental results of Mason and co-workers.

In this thesis the work of Mark and co-workers is continued.
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2. Model
To enable microstructure simulation of the forming section of a paper making
machine, the involved fiber suspension flow has to be modeled. In this chapter
a model, which can be used to describe such fiber suspension flow, is presented.

One can think of the objective as being to model a general suspension flow,
that is, any fluid flow, containing any kind of immersed objects. With this in
mind the general model can be assumed to consist of the following four sub-
models:

• Fluid model.

• Object model.

• Fluid-object and object-fluid interaction model.

• Object-object interaction model.

The fluid model predicts the behavior of the fluid, and is in this work governed
by the incompressible Navier-Stokes equations. The object model describes the
immersed objects, and the choice can vary, depending on the type of the in-
cluded objects. Here fibers are considered, and they are modeled as beams. The
interaction between the fluid and object is handled using an immersed boundary
method for the object’s effect on the fluid, and an empirical drag force relation
for the fluid’s effect on the fibers.

Lastly, the model for the interaction between objects is based on the DLVO
forces. The model makes it possible to resolve contact forces varying consider-
ably over nanoscale, without requiring the fiber time step to be reduced.

In the following sections the four different sub-models are described in more
detail.

11



12 Chapter 2. Model

2.1 Fluid Model

When modeling suspension flows, the fluid flow is often restricted. It is for
example common to consider a strict shear flow, in which case the fluid velocity
u is prescribed by

u = κ · r, (2.1)

where κ ∈ R3 is a constant average velocity gradient and r ∈ R3 is the position
at which the velocity is sought. In other studies the fluid are modeled as a Stokes
flow, governed in the incompressible case by the equations

−µ∇2u = −∇p+ f,

∇ · u = 0,
(2.2)

where p is the pressure and f is an externally applied force.
General viscous fluid flow is governed by the Navier-Stokes equations which

are an extension of the Stokes equations (2.2), both originating from the second
law of Newton. In this work the fluid is governed by the Navier-Stokes equa-
tions, consisting of the momentum and the continuity equation

ρ
∂u

∂t
+ ρu · ∇u− µ∇2u = −∇p+ f,

∇ · u = 0.
(2.3)

New variables are the density of the fluid ρ and the time t.
To solve the Navier-Stokes equations (2.3) numerically, the two most com-

mon choices of discretization are the finite-difference method and the finite-
volume method, but also the finite element method can be used. In this work
the finite volume method is employed.

In the finite volume method the domain is discretized into small volume ele-
ments in which the discrete variable values are stored. The governing equations
are integrated over each volume element, and the Gauss divergence theorem is
applied to transform volume integrals into surface integrals. The face fluxes
are calculated, and algebraic equations are attained which can be solved using
matrix algebra. One advantage of the finite volume method is that it is conser-
vative, since the flux leaving one cell is identical to that entering an adjacent
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cell.
The fluid flow are solved using the already existing incompressible finite-

volume based fluid solver IBOFlow (Immersed Boundary Octree Flow Solver).
The SIMPLEC method [8] is utilized to couple the momentum and pressure
equations and the fluid domain is discretized on a Cartesian octree grid. The
octree grid structure permits fast refining and coarsening of the mesh. The
variables are stored in a co-located configuration, and the Rhie-Chow interpo-
lation [28] is adopted to suppress pressure oscillations.

2.2 Object Model

The type of objects included in suspension flow models vary depending on ap-
plication and interest. Usually spheres, spheroids, cylinders, or other regular
geometrical structures are studied. Assuming rigidity of the objects, their mo-
tion is governed by the Newton-Euler equations

F = ma,

τ = Iα+ ω × Iω,
(2.4)

where F and τ are the applied force and moment, m is the object mass, a
the acceleration, α the angular acceleration, ω the angular velocity, and I the
moment of inertia.

In other cases more advanced objects, such as flexible fibers, have been
studied. For those models, the deformation of the objects has to be included. In
several studies the solution has been to model the fibers as composed of sim-
pler objects, such as spheres, spheroids or cylinders, connected through springs,
hinges, or balls and socket joints. Depending on the kind of connection, differ-
ent behaviors are achieved. Using springs the fibers can stretch, bend, and twist,
while in the other cases the possibility of stretching is excluded.

In this work the fibers are modeled as beams using a finite-strain rod model
developed by Simo and Vu-Quoc [32–34]. Their model is a nonlinear rod
model including finite bending, shearing and extension, permitting deforma-
tions which are arbitrarily large in regard to rotation and strain. This in contrast
with the Bernoulli beam equations, only applicable to small deflections, more
suitable for large static beams. In the following paragraphs the work of Simo
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and Vu-Quoc is reviewed.
Consider a beam in R3 × R+. The line of centroids are given by

ϕ0(S, t) : [0, L]× R+ → R3, (2.5)

where S ∈ [0, L] represents the curvilinear coordinate of the initial undeformed
beam and L is the initial length. For each centroid the cross-section Ω ∈ R2 is
defined by an orthonormal basis

{tI(S, t)}I=1,2,3, (2.6)

where t3 is normal to the cross-section. The initial representations of the cross-
sections are denoted by {EI(S)}I=1,2,3 and the current representation is at-
tained using an orthogonal transformation Λ : [0, L]× R+ → SO(3) by

tI(S, t) = Λ(S, t)EI(S). (2.7)

The pair

ϕ(S, t) = (ϕ0(S, t),Λ(S, t)) (2.8)

is assumed to fully define the motion of the beam. From now on a beam will be
entitled fiber.

The motion and deformation of a fiber is governed by the balance equations
for linear and angular momentum. These two equations read:

∂

∂S
n+ n̄ = Aρϕ̈0,

∂

∂S
m+

∂ϕ0

∂S
× n+ m̄ = Iρẇ + w × (Iρw).

(2.9)

The balance equations are accompanied by the strain measures

Γ = ΛT
(
∂ϕ0(S, t)

∂S
− t3

)
,

Ω = ΛTω,

(2.10)
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and the constitutive equations

N =
∂Ψ(S,Γ,Ω)

∂Γ
,

M =
∂Ψ(S,Γ,Ω)

∂Ω
.

(2.11)

Here n and m are the stress resultant and stress couple, respectively. They are
related to N and M in the following way:

n = ΛN,

m = ΛM.
(2.12)

The mass per unit length, Aρ, of a fiber is given by Aρ =
∫
A
ρ0dA, where A

is a cross section, and ρ0 is the mass density. The inertia tensor is denoted Iρ,
w is the axial vector associated to the skew-symmetric tensor W , defined by
W = Λ̇ΛT , and n̄ and m̄ are applied forces and moments.

The material properties of a fiber is given by the stored energy function Ψ

introduced in the constitutive equations (2.11). The following energy function
is used in this work:

Ψ =
1

2

[
Γ

Ω

]T
C

[
Γ

Ω

]
, (2.13)

where C is the elasticity tensor with the diagonal elements GA1, GA2, EA,
EI1, EI2 and GJ . Here GA1 and GA2 are the shear stiffness of the cross
section axes t1 and t2, and EA is the axial stiffness. Further EI1 and EI2 are
the principal bending stiffnesses relative to t1 and t2, and GJ is the torsional
stiffness of the fiber.

To solve the fiber equations, Simo and Vu-Quoc used the finite element
method in space together with Newton-Raphson iteration to handle the nonlin-
earity. In time they employed an implicit time stepping algorithm based on the
Newmark scheme [25]. In this work the time algorithm has been upgraded to
an extension proposed by Ibrahimbegovic and Al Mikdad [13].

For the forthcoming presentation it is worth remembering that each fiber is
discretized into elements with nodes at the element end points. Each fiber is
solved separately every time step and the size of the fiber time step is denoted
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∆t.

2.3 Fluid-Object and Object-Fluid Interaction Model

The interaction between fluid and immersed objects is a key component in sus-
pension flows. Two partly connected approaches are customary when modeling
this interaction: one-way or two-way coupling. In one-way coupling only the
fluid influences the objects, whilst in two-way coupling also the effect of the im-
mersed objects on the fluid is included. There are also approaches in-between
for which the fluid’s effect on the objects is resolved more seldom in time, or
only in selected regions in space.

Many works on suspension models adopt the one-way approach. Usually
the fluid’s influence on the objects is calculated according to known drag force
relations for basic geometrical shapes. For spherical objects there are hydrody-
namical equations governing the effect from the fluid on the objects. Another
approach is to integrate the traction vector onto the object surface which is pos-
sible when the flow is resolved using direct numerical simulations.

For two-way coupling, there are several approaches to calculate the effect
from the objects on the fluid flow. In methods of body fitted meshes the fluid
mesh is adopted to conform to the immersed objects. When solving the fluid
flow with the finite element method, Lagrange multipliers can be utilized to
restrict the velocity at the object boundaries. Another class of methods is the
immersed boundary methods which can be divided into two subclasses: dis-
tributive and non-distributive.

Immersed boundary methods are founded on an Eulerian description of the
fluid and a Lagrangian description of the immersed boundary. In distributive
methods, originally developed by Peskin [26], a force is applied to the fluid
by employing a discretized Dirac delta function to distribute a boundary force,
restricting the velocity of the fluid to the velocity of the objects. Different dis-
tributive methods have different definitions of this force, leading to more or less
stable methods that only can be first order accurate in space.

Non-distributive immersed boundary methods, as the one by Mohd-Yusof
[24], involves an explicit force which is added to the Navier-Stokes equations
to specify the velocity at the immersed boundary.

In this work the effect from the immersed objects on the fluid is handled
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by the non-distributive second-order accurate immersed boundary method de-
veloped by Mark an co-workers [19, 23]. It is a hybrid mirroring immersed
boundary method which by an implicit boundary condition constrains the fluid
velocity at the immersed boundary to the velocity of the surface. A fictitious
velocity field is created inside the body which is excluded from the continuity
equation to ensure zero mass flux over the boundary.

The effect from the fluid on the fibers are calculated using a an empirical
drag force relation derived from experiments. The drag force per unit length, f ,
acting on a fiber is assumed to be given by the expression

f =
1

2
ρCDd̄|vrel|vrel, (2.14)

where CD is the drag coefficient, d̄ is the mean diameter of a fiber cross section,
and vrel is the relative velocity of the fiber and fluid calculated at the center of
the fiber cross section. The drag coefficient is calculated according to

CD =





9.689

Re0.78

(
1 + 0.147Re0.82

)
, if Re < 5,

9.689

Re0.78

(
1 + 0.227Re0.5

)
, if Re ∈ [5, 40),

9.689

Re0.78

(
1 + 0.0838Re0.82

)
, if Re ∈ [40, 400],

(2.15)

which originates from [30]. The Reynolds number is defined as

Re =
ρ|vrel|d̄
µ

, (2.16)

where µ is the dynamic viscosity of the fluid.

2.4 Object-Object Interaction Model
When investigating suspension flows it is customary to initially consider one
single object immersed in a fluid. If self-contact is neglected the three models
presented in the preceding; the fluid model, the object model, and the fluid-
object and object-fluid interaction model, are sufficient to describe the suspen-
sion flow. For the succeeding problem, of multiple objects immersed in a fluid,
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an additional phenomenon is introduced: the interaction between objects.
The interaction between immersed objects in a suspension becomes more

and more important when the concentration increases. For dilute suspension
the interaction can be neglected. For higher concentrations the effect can be of
major importance and is necessary to be included.

To model object interaction it is common to calculate contact forces be-
tween pairs of objects using formulas depending on the surface separation. The
expression for the contact force is often similar to

F (h) =
C

hD
, (2.17)

where h is the surface separation and C and D are constants. For common
choices of these constants the contact forces are non-physical, and the choices
are mainly an attempt to ensure numerical stability. As can be seen from these
formulas the force magnitude increases when the surfaces are approaching, and
eventually ends up in a singularity. This singularity is one reason to the numer-
ical instability.

Another aspect of interaction forces is that physical and chemical forces,
for example those included in the DLVO theory [7,40]; van der Waals and elec-
trostatic forces, vary considerably over distances of nanoscale. These apparent
variations over small distances require the motion of the objects to be resolved
at very small time steps which can be very time-consuming.

In this work a model for computing the interaction effects between fibers
is presented. The model is developed to resolve contact forces acting at small
scales without requiring the time step of the fiber motion to be reduced. It in-
cludes a steric repulsion force, adopted to, in a numerically stable way, manage
the repulsive forces acting on the smallest separation distances where overlaps
occur.

The model is based on so called contact points which are distributed over
the fibers. Between these contact points the contact forces are calculated. The
force formulas used in this work are the DLVO forces together with the steric
repulsion force mentioned above. By solving the motion of the contact points
locally during each fiber time step, average forces can be calculated which are
added to the fibers and incorporated into the fiber equations (2.9).
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2.4.1 Equation System for Contact Point Motion

In this section the ordinary differential equation system governing the motion
of the contact points is derived. A contact point is a position p ∈ R3 at which a
contact force is calculated.

Consider a fiber suspension with N suspension objects, where Oi(t) ⊂ R3

represents the volume object i is occupying in space at time t, 1 ≤ i ≤ N .
For each object a number of contact points is chosen. Let the total number of
contact points for all objects be M , and for contact point i denote its position,
velocity, and acceleration at time t by pi(t), vi(t), and ai(t), all belonging to
R3, 1 ≤ i ≤M .

Combining the differential relation between position and acceleration,
d2p

dt2
=

a, and Newton’s second law, F = ma, the following differential equation for
the position of contact point i is attained:

d2pi
dt2

=
Fi
mi

, (2.18)

where mi denotes the mass related to contact point i, and Fi is the total force
acting at position pi. In this model the following forces are considered to act on
contact point i:

• FG
i - The gravitational force.

• FDi - The drag force from the fluid.

• F Ii,j - The contact force from interaction with contact point j.

• miai,0 - The force from the intrinsic acceleration of the object, assumed
to be constant during a fiber time step.

Inserting the forces into equation 2.18 results in the following second order
differential equation system:

d2pi
dt2

= ai,0 +
1

mi


FGi + FGi +

∑

j∈Ji
F Ii,j


 , 1 ≤ i ≤M, (2.19)

where Ji is the set of indices of the contact points that contact point i interacts
with.
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The second order system 2.19 is rewritten to a first order system by intro-
ducing the variables

yi(t) =

{
pi(t), 1 ≤ i ≤M,

vi(t), M + 1 ≤ i ≤ 2M.
(2.20)

This results in the following initial value problem for the motion of the contact
points:





ẏi(t) = yi+M ,

ẏi+M (t) = ai,0 +
1

mi

(
FGi + FDi +

∑
j∈Ji

F Ii,j

)
,

{
yi(t0) = pi(t0),

yi+M (t0) = vi(t0),

1 ≤ i ≤M, (2.21)

where the initial positions and velocities of the contact points at time t0 are
given.

2.4.2 Calculation Procedure

In this section it is explained how the equation system (2.21) is used at each fiber
time step during a simulation to calculate the interaction which is transformed
into forces and moments that are added to the fiber equation (2.9). The ordinary
differential equations system (2.21) is solved using the Adam-Moulton based
ODE-solver SUNDIALS CVODE 1.

Given a time step at an iteration in the simulation procedure (see the algo-
rithm in Section 3.2) at time t0, contact points are distributed over the fibers
(see Section 2.4.3 for how the distribution is done). The velocity vi(t0) and the
intrinsic acceleration ai,0, are extracted from the fibers at the position pi(t0) for
each contact point included in the equation system (see Section 2.4.4 for how
the contact points included are chosen). The system is solved during the time
step ∆t, and the resulting positions of the contact points at time t0 + ∆t are

1http://computation.llnl.gov/projects/sundials-suite-nonlinear-differential-algebraic-equation-
solvers/cvode
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used to calculate an averaged force F̄i according to the formula:

F̄i =

(
1

β(∆t)2

(
pi(t0 + ∆t)− pi(t0)

)
− 1

β∆t
vi(t0)− 0.5− β

β
ai(t0)

)
mi,

(2.22)

where β is a parameter related to the Newmark-Wilson scheme [13]. The force
is what requires to move the contact point from its initial position at t0 to the
new position at t0 + ∆t. The resulting force F̄i is set to act at position pi(t0).

To include the force in the fiber equation (2.9), the force is transformed to
the nodes of the fiber element which the contact point belongs to, such that
the total force and moment acting on the fiber element are preserved, assuming
rigidity of the element.

For a contact point force acting on the centerline of a fiber element, the
transformation is done by adding two new forces acting on the element nodes,
preserving the total force and torque. For forces not acting on the centerline,
which is the most common case when considering rectangular cross section,
the force is divided into three orthogonal components aligned with the element
coordinate system.

The force component whose line of action passes through the centerline, is
handled in the same way as for the first case. For the remaining components
each force is first moved to the centerline, requiring a torque to be added to
compensate for the force translation. This torque is divided equally between
the nodes. Then the translated force, now acting on the centerline, is treated as
above. If it is parallel to the centerline it is divided equally between the nodes.
The resulting forces and torques are then added to the fiber equations (2.9),
which in turn is solved to attain the motion and deformation of the fiber.

2.4.3 Distribution of Contact Points

In this work two different approaches of distributing the contact points are em-
ployed, depending of the geometrical representation of the fibers. When re-
solving the motion of the fibers, the fiber equations (2.9) are solved using the
finite element method as described in Section 2.2. Each fiber is discretized into
several elements, and an element is considered to have one of two possible geo-
metrical shapes for the contact calculation, either a cylinder with circular cross
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section, or an cuboid with rectangular cross section.
For the case of cylindrical elements the contact points are uniformly dis-

tributed along the centerline of each element. The number of contact points are
chosen so that the total force on the fibers agree with known force relation for
infinite parallel cylinders. Each contact point is assigned equal mass, that is, the
total element mass divided by the number of contact points. For each contact
point a representative radius is given equal to the radius of the cylinder.

For the case of rectangular cross section the contact points are first dis-
tributed in the same way as for the circular cross section. When two contact
points at separate fibers are considered for interaction they are moved towards
one another along the line between their centers until they reach the surface of
their respective element. This will be the starting position for the contact points.

This way of moving contact points for rectangular cross section drastically
reduces the number of required contact points, compared to distributing contact
points in a rectangular layer normal to the cross section. The representative
radius for each contact point is chosen to the half of the smallest of the two
sides of the rectangular cross section.

2.4.4 Simplification of Equation System

The differential equation system (2.21) governing the motion of the contact
points will be very large if many fibers are considered. Solving such a large
system is computationally demanding. Therefore different simplifications are
employed.

In the simulations in this work the system is solved only for pairs of contact
points. Using this simplification, for a given contact point, the system is solved
several times with different interacting contact points. This still implies a lot of
calculations, most often between contact points whose interaction is very small.
Hence one further simplification is used, which is, for a given contact point, to
only solve the interaction with the closest contact point at each interacting fiber.

2.4.5 DLVO Theory

The contact force between fibers, F Ii,j , in equation system (2.21), is partly based
on the DLVO theory. The DLVO theory (Derjaguin and Landau [7], Vervey and
Overbeek [40]) describes force interactions between particles dispersed in a
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liquid. The idea of the DLVO theory is to calculate the total interaction through
summation of forces arising from two separate phenomena. These are:

• van der Waals forces,

• electrostatic forces.

Van der Waals forces are dipolar and multipolar forces. They are mostly attrac-
tive, while electrostatic forces are due to electric double layers and depend on
the sign and magnitude of the surface charge of the interacting objects. While
electrostatic forces are only nonzero when the surfaces are charged, van der
Waals forces are present in almost all situations.

An example of a van der Waals force curve is shown to the left in Figure
2.1. The curve describes the force acting on a single object interacting with
another object and depends on the surface separation distance. Negative value
indicates attraction. As can be seen, the magnitude increases as the separation
decreases. To the right in Figure 2.1 an electrostatic force curve is plotted for
an object interacting with a similarly charged object and hence the value of the
force is positive, which indicates repulsion.
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Figure 2.1: The two forces included in the DLVO theory. To the left the van der
Waals force and to the right the electrostatic force.

In the DLVO theory the two separate force contributions are added. To
the left in Figure 2.2 the total DLVO force resulting from addition of the two
forces in Figure 2.1 is plotted. It can be seen that at large separations, there is
a small attractive force, but that its magnitude is very close to zero. When the
objects get closer the attractive force becomes more significant. At a separation
distance of about 3 nm the force changes sign. This point where the force is
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zero is called the secondary minimum, since the interaction energy is locally
smallest there. It is a state of equilibrium where the objects are stuck together at
constant separation distance. However, a relatively small external force could
separate two objects stuck in this minimum.
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Figure 2.2: Representation of typical DLVO forces acting on a single particle
in contact with another particle. In the left part the forces in Figure 2.1 have
been combined to a single DLVO curve. To the right the resulting DLVO force
is shown when the surface charge of the particles has been decreased.

To reach a stronger state of attraction between objects, the repulsive maxi-
mum at 2-3 nm has to be overcome. It is an attractive state called the primary
minimum where a much larger force is required to separate the objects. The
force curve to the left in Figure 2.2 indicates that objects closer than 2 nm will
continue to attract and eventually collapse into each other. This is in reality
prevented by steric repulsive forces arising from overlap of electron clouds. At
sufficiently small separation distances the DLVO theory is not reliable.

If the surface charge of the objects is decreased, a resulting DLVO force
curve could look as the one to the right in Figure 2.2. It can be seen that the re-
pulsive hill no longer exists and therefore the objects stick together more easily.

Since the magnitude of the DLVO force is nonzero only at small surface
distances attraction will only occur if the particles are positioned very close to
each other. In the following two sections a description of the two DLVO force
components, van der Waals and electrostatic, is presented.
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2.4.5.1 Van der Waals Contribution

Van der Waals interactions describe forces acting between atoms and molecules.
These intermolecular interactions act on very small separation distances and
are in most cases attractive. Van der Waals interactions are due to the three
following types of forces:

• Keesom forces,

• Debye forces,

• London forces,

which all occur due to electrostatic interactions between molecular dipoles or
multipoles and differ in whether the dipole or multipole is permanently or tem-
porarily induced. The Keesom forces describe interactions between two perma-
nent poles, London forces between two temporarily induced poles and Debye
between permanent and temporarily induced poles. Keesom and Debye forces
can be analyzed in means of electrostatic theory while London forces require
quantum physics [1].

To calculate the resulting van der Waals forces on macroscopic objects,
Hamaker [11] utilized the energy additivity principle by summation over all
interacting atoms and molecules. In the case of two spherical objects, Hamaker
[11] derived the following expression for the energy:

VW = −A12

6

[
2r1r2

h(h+ 2r1 + 2r2)

+
2r1r2

(h+ 2r1)(h+ 2r2)
+ ln

h(h+ 2r1 + 2r2)

(h+ 2r1)(h+ 2r2)

]
,

(2.23)

which for h/ri � 1 reduces to [1]

VW = −A12

6h

(
r1r2

r1 + r2

)
. (2.24)
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A force formula for the van der Waals interaction is obtained by the negative

gradient of the potential, −dV
dh

, which gives

FW = −A12

6h2

(
r1r2

r1 + r2

)
. (2.25)

The included parameters are the radii, r1 and r2, of the two spheres, the
surface separation distance, h, and the Hamaker constant A12. The Hamaker
constant Aij is a compact way of describing all constants involved in the van
der Waals attraction.

2.4.5.2 Electrostatic Contribution

In principle all surfaces get charged to some extent when immersed in a liquid
media. The charging is usually due to one of three mechanisms, dissociation of
ionic groups on the surface, adsorption of ions from the liquid medium or quan-
tum mechanical charge transfer between atoms in surfaces brought very close
to each other. Irrespectively of charging mechanism a so called electric double
layer is created, consisting of the inner layer surface charge and a second layer
of oppositely charged counterions [14]. The establishment of double layers
enables electrical interactions between particle surfaces in liquids, eventually
leading to repulsive and attractive forces between the particles.

A common starting point for calculations of interactions between particles
in suspensions is the Poisson-Boltzmann (PB) equation

∇2Ψ = −e
ε

∑
zin

b
ie
−zieΨ/kT , (2.26)

where Ψ is the electric potential between the interacting surfaces, e the elemen-
tary charge, ε the permittivity of the liquid medium, zi the valency of ions of
type i, nbi the bulk number of ions of type i per unit volume, k the Boltzmann
constant and T the absolute temperature of the solution. As this equation is
non-linear and an analytical solution often is hard to find (except for in simple
cases such as that of two planar surfaces) a common method is to deal with the
linearized PB equation. It is also common to limit the work to the interaction
between two spherical objects [1].

The introduction of approximations gives restrictions on the intervals in
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which the solution is valid. Bell et al. [2] have derived an approximate so-
lution to the non-linear PB equation for the interaction between two colloidal
spheres resulting in

FE = 4πε

(
kT

e

)2

Ȳ 0
1 Ȳ

0
2

r1r2

R2
· (1 + κR)e−κ(R−r1−r2), (2.27)

where FE is the force due to interaction between the two spheres. New vari-
ables in (2.27) are ri, i ∈ {1, 2}, the radius of the first and second sphere
respectively, the distance between the center of the spheres R, the effective
surface potentials Ȳ 0

i , and κ, the inverse of the Debye length. This solution
is valid for any potential but only at distances between the spheres satisfying
κ(R− r1 − r2) > 1. The Debye length 1/κ is a property of the electric double
layer describing how far out from the surface the electrostatic effects are sig-
nificant. It is a property dependent only on the liquid solution and not on the
surface charge [14]. An approximate formula for the effective surface potential
of a spherical double layer in a 1:1 electrolyte (consisting of equally many ions
of valency +1 as −1) is found in [1] as

Ȳ 0
i =

8 tanh

(
eψd,i
4kT

)

1 +

[
1− 2riκ+ 1

(riκ+ 1)2
tanh

(
eψd,i
4kT

)]1/2
. (2.28)

The diffuse double layer potential ψd,i is unknown in (2.28). It is common that
the surface charge σ0

i is known but not the diffuse double layer potential. A
relation between the two quantities reads [1]

σ0
i = 2 sinh

(
eψd,i
2kT

)
+

4

κri
tanh

(
eψd,i
4kT

)
, (2.29)

from which ψd,i can be found by iteration, and hence Ȳ 0
i and the force in (2.27)

can be calculated.
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2.4.5.3 Extension of DLVO Forces

The DLVO force formulas are inaccurate at the smallest separations and they
diverge towards negative infinity when the separation goes to zero. The for-
mulas are therefore not used for separation distances smaller than h0. To get
a smooth translation at h = h0, the formulas are extended to h = 0. For the
van der Waals and electrostatic force, two splines are used to smoothly let the
function reach zero at zero separation. The new formulas have the forms

FW (h) =




−A12

6h2

(
r1r2

r1 + r2

)
, h ≥ h0,

gW (h), h < h0,

(2.30)

FE(h) =





4πε

(
kT

e

)2

Ȳ 0
1 Ȳ

0
2

r1r2

R2
(1 + κR)e−κ(R−r1−r2), h ≥ h0,

gE(h), h < h0.

(2.31)

Here the new functions, gi(h), i ∈ {E,W}, are defined as

gi(h) =





0, h ≤ 0,

aih
2, 0 ≤ h < h0

2
,

bih
2 + cih+ di,

h0

2
≤ h < h0,

(2.32)

where the constants coefficients ai, bi, ci and di are chosen so that

Fi

(
h0

2

)
= gi

(
h0

2

)
,

F ′i

(
h0

2

)
= g′i

(
h0

2

)
,

Fi(h0) = gi(h0),

F ′i (h0) = g′i(h0).

(2.33)

This choice guarantees smoothness preventing unstable behavior. The resulting
coefficients can be seen in the Appendix of Paper III 6.
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The extension of the van der Waals and electrostatic formulas are illustrated
to the left and right, respectively, in Figure 2.3. Adding these two extended
force formulas results in the extended DLVO force illustrated in Figure 2.4.
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Figure 2.3: The theoretical van der Waals and electrostatic formulas only apply
at separation distances larger than h0. The formulas are therefore extended
using splines to smoothly reach zero at zero separation distance. The transitions
between the curves are marked with arrows.

0 2 4 6 8 10 12 14 16 18 20
−30

−25

−20

−15

−10

−5

0

5

Separation Distance [nm]

F
[n
N
]

Extended DLVO Force

transition

Figure 2.4: The curves in Figure 2.3 are added to form a total DLVO force
curve. The sum of the extensions is shown in red and the sum of the theoretical
curves in blue. The transition between the curves is marked with an arrow.
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2.4.6 Steric Repulsion Force

In addition to the DLVO forces, a steric repulsion force is included in the in-
teraction force between fibers, F Ii,j . The purpose of the steric repulsion force,
FS , is to prevent objects from passing into each other and to repel objects that
overlap. Since the simulation framework uses discrete time stepping, fibers can
partially overlap after a time step. This constitutes extra requirements on the
construction of a numerically stable steric repulsion force. The force developed
in this work consists of four different forces according to

FS =

4∑

i=1

FSi , (2.34)

and they are only nonzero for separations h < h0. The four forces are given by

FS,1 = max

(
0, B1

2

t2R

hR − h− tRṽrel
1
m1

+ 1
m2

)
, (2.35)

FS,2 = B2
ṽrel|ṽrel|

hS

(
1
m1

+ 1
m2

) , (2.36)

FS,3 = B3
ṽrel|ṽrel|

hmin
1000

(
1
m1

+ 1
m2

) , (2.37)

FS,4 = B4
ṽrel|ṽrel|

hS

(
1
m1

+ 1
m2

) . (2.38)

The functions Bi = Bi(h), i = 1, 2, 3, 4, are bell-like with the purpose of
constraining the action of the forces to certain separation distances. The explicit
forms of the bell functions can be seen in the Appendix of Paper III 6. The
masses of the two contact points are denoted m1 and m2, and hmin = −r1 − r2

where r1 and r2 are the two representative radii of the contact points. The
separation hmin represents the minimum possible separation distance before the
points pass through each other.

The scalar valued function ṽrel is the relative velocity of the contact points
projected onto the direction vector n̂:

ṽrel = −n̂ · vrel, (2.39)
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where vrel = v2 − v1. The direction vector is a unit vector pointing between
the contact points, directed away from the contact point considered. The dis-
tances hR and hS are separations chosen as fixed parameters. Similarly tR is a
reference time.

The first force, FS,1, acts at separations h < hR and the instantaneous value
is calculated such that the separation will be equal to hR in time tR neglect-
ing all other forces and velocities. The value is also adjusted to not give any
attraction but only repulsion. This force acts to separate contact points.

The second force, FS,2, prevents contact points from reaching a separation
h = −r1 − r2, that is, to prevent them from passing through each other. The
third and fourth force, FS,3 and FS,4, both damp the velocities of the contact
points when they are moving away from each other so that the repulsive velocity
that is built up during the intersection stage will not lead to the DLVO forces
being ignored.
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2.5 Summary of the Governing Equations
In this section the governing equations of the fiber suspension model are sum-
marized.

The fluid is governed by the incompressible Navier-Stokes equations:

ρ
∂u

∂t
+ ρu · ∇u− µ∇2u = −∇p+ f,

∇ · u = 0.
(2.40)

The motion and deformation of the fibers are governed by the beam equations:

∂

∂S
n+ n̄ = Aρϕ̈0,

∂

∂S
m+

∂ϕ0

∂S
× n+ m̄ = Iρẇ + w × (Iρw).

(2.41)

The contact point motion is governed by the equation system:





ẏi(t) = yi+M ,

ẏi+M (t) = ai,0 +
1

mi

(
FGi + FDi +

∑
j∈Ji

F Ii,j

)
,

{
yi(t0) = pi(t0),

yi+M (t0) = vi(t0),

1 ≤ i ≤M. (2.42)



3. Simulation Framework

The motivation behind the development of the suspension flow model presented
in the preceding chapter was an aim to simulate the lay down part of the forming
section of a paper machine. In the forming section, a fiber suspension, consist-
ing of paper pulp diluted into water, is released through the head box. The
suspension flows down onto a forming fabric moving at high speed, and the
paper structure starts to form while most of the water passes through the holes
of the fabric.

By implementing the suspension model into the IBOFlow software a frame-
work has been developed that can be used to simulate the process described.
The simulation setup consists of a domain fully filled with a fluid into which
fibers are generated. At the lower part of the domain a small piece of a forming
fabric is held static and the fluid is accelerated over the fabric by an applied
pressure drop. The resulting flow moves the fibers downwards onto the fabric
and a structure is build up.

An additional feature that is included is a method to press the fiber structure
by letting a rigid plane move at constant velocity down onto the web, forcing
the fibers together and decreasing the thickness of the sheet.

In the following sections the different parts of the framework are presented.

3.1 Simulation Domain
The simulation domain is an axis-aligned rectangular box whose horizontal pla-
nar dimension is equal to the dimension of the piece of forming fabric. Nor-
mally a piece of 3× 3 mm is used in the simulations. The height of the domain
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is adapted depending on the number of fibers generated. The forming fabric
is positioned with its lower side 2 mm from the bottom of the domain. By in-
vestigating different vertical positions of the fabric it has been concluded that
this choice gives no effect on the permeability simulations. A snapshot of the
domain including forming fabric is shown in Figure 3.1.

Figure 3.1: The simulation domain used for the lay down simulations. At a
distance of 2 mm from the bottom a 3× 3 mm piece of a forming fabric is held
static. A pressure drop accelerates the fluid in the domain.

The domain contains a fluid which is accelerated by a pressure drop across
the domain in the vertical direction. This setup with a domain constantly filled
with a fluid resembles the film that is present in the real process. The fluid
flow is determined by the following boundary conditions: at the four vertical
boundaries a symmetry boundary condition is used, that is,

∂vi
∂xj

= 0, i ∈ {1, 2, 3},

∂p

∂xj
= 0,

(3.1)

where j ∈ {1, 2} depends on the boundary considered. At the top boundary the
pressure is set fixed and the velocity is governed by a Neumann condition in the
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following way:

∂vi
∂x3

= 0, i ∈ {1, 2, 3},

p = ∆p,

(3.2)

where ∆p is a prescribed pressure drop. Similarly for the bottom boundary:

∂vi
∂x3

= 0, i ∈ {1, 2, 3},

p = 0.

(3.3)

To prevent fibers from leaving the domain horizontally, four vertical planes are
surrounding the domain. These planes only affect the fibers and are not influ-
encing the fluid. The interaction between fibers and planes is calculated with
the contact model described in Section 2.4. Given a contact point on a fiber, the
closest points on the planes are chosen as interacting contact points. Fibers that
reach the bottom outlet face are removed from the simulation.

3.2 Simulation Procedure

The procedure of a paper forming lay down simulation is as follows:

1. The forming fabric is loaded into the simulation domain.

2. Fibers are randomly generated into the simulation domain.

3. Time stepping:

(a) The fluid flow is computed by solving the Navier-Stokes equations
resolving the object-fluid interaction by the immersed boundary method.

(b) The interaction between fibers are solved locally using the fiber-
fiber coupling model.

(c) The resulting object-object interaction is transformed into forces
and torques, which are added to the fiber equation.

(d) The motion of the fibers is calculated using the fiber model.
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If one-way coupling is used, which means that the fluid affects the fibers, but
the fibers do not affect the fluid, Step (a) only has to be performed once. In
that case only the fluid flow over the forming fabric is resolved, and the fluid
flow can be read from file directly at the beginning of the simulation, which
saves substantial time. If fully two-way coupling is used, Step (a) is performed
each time step. Other approaches are to resolve the fluid flow not every time
step but more seldom, or to only include fibers that are close to the fabric when
calculating the effect on the fluid.

3.3 Forming Fabric

The forming fabric used in the simulations is a 3× 3 mm piece of a PRINTEX
Q13 eight-shed double layer fabric from Albany International 1. The height of
the fabric is 0.637 mm. The geometry of the fabric is generated from tomog-
raphy images and described numerically by a cubic mesh. In Figure 3.2 the
forming fabric is visualized.

Figure 3.2: The 3×3 mm piece of a forming fabric represented by a cubic mesh.

When calculating the interaction between fibers and fabric the contact points
on the fabric are chosen in the following way: for a given contact point on a
fiber, the closest corner of the surface cubes in the fabric mesh is found. If this
point is close enough to the contact point of the fiber, the surface normal at the
closest point on the mesh is used to define a plane. The closest point in this
plane is used as interacting contact point.

1http://www.albint.com/en-us/Pages/default.aspx
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3.4 Fiber Generation

In this section a method for generating fibers is presented. When injecting a
fiber, first the shape is generated, thereafter the fiber is placed randomly into the
domain by assuring no intersection with already present fibers. The fiber shape
is based on the following three parameters: length, width, and curvature. In the
simulations presented later, experimental data for these three are given, and the
values are uniformly sampled from the data.

The first step when generating the fiber shape is to determine the node posi-
tions {pi}n+1

i=1 ⊂ R3. Here n is the number of fiber elements, related to how fine
the finite element mesh is. The position of each node is calculated recursively
according to

p1 = c,

pi+1 = pi + LE
x′i+1e1 + y′i+1e2 + z′i+1e3 − pi∣∣x′i+1e1 + y′i+1e2 + z′i+1e3 − pi

∣∣ , 1 ≤ i ≤ n.
(3.4)

The vectors {ei}i=1,2,3 ⊂ R3 constitutes an orthonormal coordinate system,
c ∈ R3 is a start point, and LE is the length of an element. Both {ei}i=1,2,3

and c are randomly generated and the element length is calculated as

LE =
L

n
, (3.5)

where L is the sampled fiber length parameter. The coordinates x′i, y
′
i and z′i,

2 ≤ i ≤ n+ 1, are calculated from the formulas:

x′i = (pi−1 − c) · e1 + LE .

y′i = a1,1 sin (q1,ix
′
i) ,

z′i = a2,1 sin (q2,ix
′
i) .

(3.6)

The amplitudes, a1,1 and a2,1, are given by

aj,1 = L(1− αj,1), j = 1, 2, (3.7)

where αi,j is a curvature parameter sampled for each node. The parameters q1,i

and q2,i, related to the periodicity, are calculated recursively in the following
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way:

qj,1 =
π

Lαj,1
, (3.8)

qj,i+1 =
3

4
qj,i +

1

4

π

Lαj,i+1
. (3.9)

Notice that the amplitudes used in formula (3.6) are the same for all node posi-
tions.

After the node positions are determined, the cross section at each node is
generated. Each cross section is defined by an orthonormal coordinate system
{tΓ(S, t)}Γ=1,2,3, as introduced in Section 2.2. The axis t3 is set to the mean
value of the directions of the two elements connected to the node. For a start or
end node the axis is set to the direction of the connected element. For the first
node, t1 will be randomly generated under the constrain that it is perpendicular
to t3. For each consecutive node, t1 is rotated around t3 by an angle randomly
generated from a given interval. The remaining vector, t2, is given by the other
two such that the requirements of an orthonormal system is fulfilled.

For each node, four radii are used to define a hollow elliptical cross section:
a1, a2, b1 and b2, where ai is the outer radius and bi is the inner radius of axis
ti respectively. Given a sampled width w, the outer radii are chosen differently
depending on what kind of cross section that is desired. In this work circular
and rectangular cross sections have been used for the contact calculation. For
circular cross sections, the outer radii a1 = a2 = w have been chosen. For
rectangular cross sections, the outer radii a1 = 0.8w and a2 = 0.2w have been
used which corresponds better to the cross section of a collapsed fiber. For
each node a small random variation of the radii is generated. In Figure 3.3 two
domains with generated fibers are shown, one with fibers with circular cross
section and one with fibers with rectangular cross section.

The distributions of the length, width, and curvature parameters used in the
lay down simulations are presented in Paper III 6.

3.5 Pressing

In the pressing section of a paper making machine the paper sheet is pressed be-
tween large rolls under high pressure. In this simulation framework a simplified
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(a) Circular fiber cross section. (b) Rectangular fiber cross section.

Figure 3.3: Two fibers clouds generated with the presented method. To the left
fibers have circular cross section and to the right they have rectangular cross
section.

approach of pressing has been employed.
After a lay down simulation, when the paper sheet has formed on the form-

ing fabric, the velocity field of the fluid is set to zero, and a horizontal rigid
plane is inserted. The plane moves downward at constant velocity to compact
the sheet structure. In the current implementation no force is driving the plate,
and no resulting force from the fibers is calculated. Therefore at some point the
plate will force the fibers together so much that they start to intersect unrealis-
tically. Hence it is manually chosen when the pressing is finished.

The interaction between fibers and the plane is calculated similarly as to the
interaction with the forming fabric. For each contact point on a fiber, the closest
point on the plane is used as the interacting contact point.
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4. Results

In this chapter, the validity of the fiber suspension flow model and of the sim-
ulation framework is evaluated. Partial validation of the framework was done
in [20], where the fluid-object interaction was studied by simulating a cantilever
fiber in a cross flow. In [37], a single fiber was simulated and compared to Jef-
fery’s equations [15], and to the experiments of Mason and co-workers [9, 10].
All these previous simulations showed excellent agreement with theory and ex-
periments.

In the first section of this chapter, the object-object interaction model is
examined in a number of test cases where two fibers interact. In the second
section, the results from the lay down simulations are presented.

4.1 Testing of Object-Object Interaction Model

In this section, some basic testing of the object-object interaction model is pre-
sented. Two test cases have been studied: one where two parallel fibers collide,
and one where two parallel fibers pass each other with a slight touch. In the first
case it is investigated whether the contact model can handle head-on collision,
and in the second case the adhesive contribution from the van der Waals force
is investigated.

4.1.1 Collision Test

In the collision test, two cylindrical fibers with lengthL = 0.1 mm and diameter
D = 14µm are positioned in parallel to the y-axis in the x-y-plane with an
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initial surface separation of h = 12µm. One of the fibers is given a constant
speed of v = 50 mm/s in direction towards the other fiber. The fibers collide and
the moving fibers pushes the other fiber forward. This is illustrated in Figure
4.1.

(a) t = 0.0 ms. (b) t = 0.2 ms. (c) t = 0.4 ms. (d) t = 1.0 ms.

Figure 4.1: Collision between two cylindrical fibers. The right fiber is moving
with a speed of v = 50 mm/s to the left. The black dot is a static reference point.

4.1.2 Adhesion Test

In the adhesion test, two cylindrical fibers with length L = 0.1 mm and diame-
ter D = 14µm are positioned in parallel to the y-axis in the x-y-plane with an
initial surface separation of h = 12µm. One fiber is translated ∆z = 12µm
in the direction of the z-axis and given a constant speed v in the x-direction
towards the other fiber. The two fibers touch each other, and depending on the
speed, the adhesion becomes long-lived or short-lived. For v = 10 mm/s the
adhesion becomes long-lived and for v = 50 mm/s short-lived. This can be
seen in Figure 4.2 for the case of v = 10 mm/s and in Figure 4.3 for the case of
v = 50 mm/s .

4.2 Lay Down Simulations
The simulation framework presented in the preceding chapter has been used to
simulate the lay down process of the forming section according to the procedure
explained in Section 3.2. The results of the simulations have been compared to
experimental data. In this chapter a review of the experimental setup and the
simulation results are presented. For a complete presentation of the results and
the simulation parameters, see Paper III 6.

Lay down simulations have been performed for two different cases, one
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(a) t = 0.0 ms. (b) t = 0.5 ms. (c) t = 1.0 ms. (d) t = 1.5 ms. (e) t = 2.0 ms.

(f) t = 2.5 ms. (g) t = 3.0 ms. (h) t = 3.5 ms. (i) t = 4.0 ms. (j) t = 4.5 ms.

(k) t = 5.0 ms. (l) t = 5.5 ms. (m) t = 6.0 ms. (n) t = 6.5 ms. (o) t = 7.0 ms.

Figure 4.2: Long-lived adhesion after partial collision between two cylindrical
fibers. The originally right fiber is moving with a velocity v = 10 mm/s to the
left. The black dot is a static reference point.

(a) t = 0.0 ms. (b) t = 0.2 ms. (c) t = 0.3 ms. (d) t = 0.4 ms. (e) t = 0.5 ms.

(f) t = 0.6 ms. (g) t = 0.7 ms. (h) t = 0.8 ms. (i) t = 0.9 ms. (j) t = 1.3 ms.

Figure 4.3: Short-lived adhesion after partial collision between two cylindrical
fibers. The fiber which is originally located to the right is moving with a velocity
v = 50 mm/s to the left. The black dot is a static reference point.



44 Chapter 4. Results

with circular fiber cross section and one with rectangular fiber cross section.
For each case the injection mass has been varied. The air permeability of the
resulting sheets has been simulated. Thereafter the sheets have been pressed,
and the air permeability of the pressed sheets has been simulated. The thickness
of the sheets at the various stages has been calculated.

The simulated permeabilities and thicknesses have been compared to ex-
perimental data. The experiments were executed by Albany International in
Halmstad as a part of the ISOP project. In the experiments, seven sheets with
different amounts of injected paper pulp were produced. After the lay down part
a light pressing procedure was performed. For each sheet the air permeability
and thickness were measured. Images of the different sheets were taken using a
SEM (scanning electron microscope).

In Figure 4.4, the air permeability and thickness of the seven experimental
sheets are plotted against the injection mass. In Table 4.1, the numerical values
for injection mass, permeability and thickness are listed. In the same table
also a scaled injection mass for the 3 × 3 mm piece of forming fabric is listed.
The forming fabric used in the experiments was approximately 16.3 m2. The
permeability is measured in CFM (cubic feet per square foot of sample per
minute). In Figure 4.5, SEM images of Sheet 1, Sheet 4 and Sheet 7 are shown.
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(a) Experimental permeability.
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(b) Experimental thickness.

Figure 4.4: The permeability and thickness of the seven experimental sheets.

The simulation setup was the following: first the water velocity field over
the forming fabric was simulated by applying a pressure drop across the do-
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Sheet
Injection
Mass [g]

Permeability [CFM] Thickness [µm]
Scaled Injection

Mass [µg]

1 24.5 310 0 13.5

2 49.0 255 10 27.1

3 81.7 175 82 45.1

4 114.0 105 93 62.9

5 163.0 58 97 90.0

6 244.0 17 141 134.7

7 325.0 5 149 179.4

Table 4.1: The injection mass and resulting permeability and thickness for the
seven experimental sheets. Also a scaled injection mass recalculated for the
3× 3 mm piece of fabric is shown. The forming fabric area was approximately
16.3 m2.

(a) Sheet 1. (b) Sheet 4. (c) Sheet 7.

Figure 4.5: SEM-images for experimental sheets 1, 4, and 7. Pictures courtesy
of Albany International.

main. This velocity field was saved and loaded at the beginning of each lay
down simulation. For each lay down simulation the fibers were generated and
accelerated by the flow against the forming fabric. Finally the fibers laid down
on the forming fabric and a paper sheet was formed. One-way coupling was
used for the fluid-object interaction to reduce the computation time.

After the lay down, the sheet was pressed using the approach explained in
Section 3.5. The sheets were pressed until a thickness was reached which was
approximately the same as for the experimental sheets. For circular fiber cross
section this was not possible without letting the fiber intersect unrealistically.
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Therefore the pressing was stopped earlier in the case of circular fiber cross
section.

At last the air permeabilities of the unpressed and pressed sheets were sim-
ulated by accelerating air over the forming fabric. This was done by applying
a pressure drop in the same way as was done for the water velocity field. In
these air simulations, the fibers were kept static and their effect on the fluid was
resolved using the immersed boundary method.

To generate fibers for a simulation, an injection mass is given, and fibers
are generated until the mass is reached. However, it is hard to exactly match
an experimental injection mass with a simulated injection mass, since there are
several parameters affecting how many fibers a given mass results in. Examples
of such factors are fiber shape, cross section shape, fiber wall thickness, and
fiber density. To circumvent this problem the SEM images have been used
to match a given injection mass in simulation with an experimental injection
mass to find a benchmark point for the comparison. This is further discussed in
Chapter 5.

In Table 4.2 the injection masses of the six simulation cases are listed. For
the variation of fiber mass, one base case, denoted A, was chosen with injection
mass MA = 35.7 µg. The number of fibers that was generated for each case is
shown in Figure 4.6.

Case Injection Mass

A 1.0MA

B 2.5MA

C 5.0MA

D 7.5MA

E 10.0MA

F 12.5MA

Table 4.2: Injection mass for the simulation cases, where MA = 35.7 µg.
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Circular cross section
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Figure 4.6: The number of fibers that are generated for each case. Note that the
number of fibers also includes fines.

In Figure 4.7 snapshots of the lay down simulation with the largest number
of fibers, Sheet F with rectangular fiber cross section, are shown after three
different time steps: one at the beginning after the injection of fibers, one half
way, and one when the fibers have laid down.

(a) After time step 0. (b) After time step 10000. (c) After time step 20000.

Figure 4.7: Snapshots from the lay down simulation of Sheet F with rectangular
fiber cross section.
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In Figure 4.8 side view and top view snapshots from three of the six sim-
ulations with circular fiber cross section are shown. The snapshots were taken
after the fibers had laid down onto the forming fabric. For snapshots of all six
cases, see Paper III 6.

(a) Sheet A. (b) Sheet C. (c) Sheet F.

(d) Sheet A. (e) Sheet C. (f) Sheet F.

Figure 4.8: Side view and top view snapshots of three of the six simulations with
circular fiber cross section. The snapshots were taken when the fibers had laid
down onto the forming fabric.
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In Figure 4.9 side view and top view snapshots from three of the six simu-
lations with rectangular fiber cross section are shown. The snapshot were taken
after the fibers had laid down onto the forming fabric. For snapshots of all six
cases, see Paper III 6.

(a) Sheet A. (b) Sheet C. (c) Sheet F.

(d) Sheet A. (e) Sheet C. (f) Sheet F.

Figure 4.9: Side view and top view snapshots of three of the six simulations with
rectangular fiber cross section. The snapshots were taken when the fibers had
laid down onto the forming fabric.
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In Figure 4.10 side view and top view snapshots of the pressed Sheet F for
circular and rectangular fiber cross sections are shown.

(a) Circular cross section. (b) Rectangular cross section.

(c) Circular cross section. (d) Rectangular cross section.

Figure 4.10: Snapshots sidelong and from above for pressed simulated Sheet F
with circular and rectangular fiber cross sections.
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In Figure 4.11 four different snapshots of the velocity fields from the air
permeability simulations are shown: one with unpressed Sheet A with circular
cross section, one with unpressed Sheet C with rectangular cross section, one
with pressed Sheet E with circular cross section, and one with pressed Sheet E
with rectangular cross section.

(a) Unpressed Sheet A with circular cross sec-
tion.

(b) Unpressed Sheet C with rectangular cross
section.

(c) Pressed Sheet E with circular cross section. (d) Pressed Sheet F with rectangular cross sec-
tion.

Figure 4.11: Snapshots showing the magnitude of the velocity field from the air
permeability simulations for four different sheets.
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In Figure 4.12 the thicknesses of the experimental and simulated sheets are
plotted versus both mass and number of fibers. In Figure 4.13 the permeabilities
are plotted in the same way as for the thickness. For the permeability, one case
without any fibers has been simulated.

 

Experiment Rectangular Unpressed Cicrular Unpressed Rectangular Pressed Circular Pressed

0 2.5 5 7.5 10 12.5 15 17.5
0

100

200

300

400

500

Mass Coefficient

T
h
ic
k
n
es
s
[µ
m
]

 

 

(b) Thickness versus injection mass.
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(c) Thickness versus number of injected fibers.

Figure 4.12: The thicknesses of the experimental and simulated sheets plotted
versus the injection mass and number of injected fibers. The injection mass is
given by the coefficient that is multiplied with MA.
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(b) Permeability versus injection mass.
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(c) Permeability versus number of injected
fibers.

Figure 4.13: The permeabilities of the experimental and simulated sheets plot-
ted versus the injection mass and the number of injected fibers. The injection
mass is given by the coefficient that is multiplied with MA.



5. Discussion and Conclusions

In this chapter the discussion and conclusions are presented. The discussion is
divided into three sections. The first section contains the discussion concern-
ing the results presented in Chapter 4 and in Paper III 6. This is followed by
two sections discussing the simulation framework and the model. Lastly the
conclusions are presented.

5.1 Discussion on the Results
The validity of the simulation framework presented in this thesis has been partly
evaluated in earlier works [20, 37]. By simulating a cantilever fiber in a cross
flow the fluid-fiber interaction model was validated. Moreover a single fiber was
simulated in a shear flow and the emerged configurations was compared to Jef-
fery’s equations and the experiments performed by Forgacs and Mason, show-
ing excellent agreement. In this work the framework has been further examined,
both by basic test cases investigating the features of the new object-object in-
teraction model, and by simulating the lay down process in the forming section
of a paper machine.

In the investigation of the object-object interaction model two cylindrical
fibers were exposed to a head-on collision. The results demonstrated that the
interaction model prevents objects from passing through each other. Further-
more one cylindrical fiber was set to move towards a static cylindrical fiber, this
time resulting in a partial collision. The objective of this test was to investi-
gate the possibility of adhesion, a feature the attractiveness of the van der Waals
forces can lead to.
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The results of the partial collision test demonstrated that long-lived adhe-
sion can occur where the static fiber sticks to the moving fiber following its
motion. Also short-lived adhesion took place when the two fibers was stuck
together only for a shorter duration. The duration of the adhesion depended
on the relative velocity between the fibers during collision. A large relative
velocity resulted in short-lived adhesion.

What remains to be done in regard to basic testing of the object-object in-
teraction model is a more detailed collision analysis, investigating the type of
collision, elastic or in-elastic, and to compare simulations with experiments.

The lay down simulations performed in this work is one important step in
evaluating the validity of the fiber suspension model. The properties that were
measured were air permeability and thickness of the simulated sheets. More-
over visual comparison, utilizing the SEM images that are available from the
experiments, was performed. The visual comparison is important since the
injection masses from experiments do not automatically match the injection
masses in the simulations because of uncertainty in the geometrical properties
of the fibers.

To find what injection mass in the simulation framework that corresponds
to a certain experimental injection mass the SEM images were compared with
snapshots of the pressed simulated sheets with rectangular cross section. The
reason behind choosing the sheets with rectangular cross section was that those
sheets look more similar to the experimental sheets.

When one base case for equivalence between experimental and simulated
injection mass was chosen the other points were assumed to fit linearly. That
is, if X g experimental injection mass is assumed to be equal to Y g simulated
injection mass, then 2X is assumed to be equal to 2Y and so on. It is of course
not trivial to judge visually if two sheets are in good comparison.

In Figure 5.1 the simulated Sheet A and experimental Sheet 1 are shown.
They look similar but for a case with so few fibers it is sensitive to set a base
case without additional comparison.

In Figure 5.2 Sheet B and Sheet 2 are shown. They are also similar regarding
the number of fibers but it can be seen that there are some differences concern-
ing other properties. In the experimental case the fibers seem more thread-like
and they seem to deform more tightly to each other and to the fabric. Also
smaller fibers (fines) are apparent.
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(a) Sheet A. (b) Sheet 1.

Figure 5.1: Snapshot of pressed simulated Sheet A with rectangular cross sec-
tions and SEM image of experimental Sheet 1. Picture courtesy of Albany In-
ternational.

(a) Sheet B. (b) Sheet 2.

Figure 5.2: Snapshot of pressed simulated Sheet B with rectangular cross sec-
tions and SEM image of experimental Sheet 2. Picture courtesy of Albany In-
ternational.

In Figure 5.3 Sheet C, Sheet 3, and Sheet 4 are shown. It looks reasonable
that Sheet C are somewhere in-between Sheet 3 and Sheet 4 regarding number
of fibers. If one chooses Sheet B to equal Sheet 2, Sheet C will lie in-between
Sheet 3 and Sheet 4 and Sheet A will lie close to Sheet 1. Hence Sheet B was
chosen to be equal to Sheet 2 when it comes to injection mass in this compar-
ison. This choice should however not be taken as a undoubtedly settled when
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analyzing the results. One should keep in mind that the curves can be moved
in either direction. What should be considered are the results in a more general
context.

(a) Sheet 3. (b) Sheet C. (c) Sheet 4.

Figure 5.3: Snapshot of pressed simulated Sheet C with rectangular cross sec-
tions in the middle and SEM images of experimental Sheet 3 and Sheet 4 to the
left and right respectively. Pictures courtesy of Albany International.

The thicknesses of the experimental and simulated sheets are plotted in Fig-
ure 4.12. From the graphs it is clear that the unpressed simulated sheets are
thicker than the experimental sheets which obviously should be true since the
experimental sheets are pressed. Comparing circular to rectangular cross sec-
tion it can be seen that the thickness is higher for the circular case, both when
the comparison is based on injection mass and number of fibers. In the compar-
ison when the thickness is plotted versus the number of fibers, it is logical that
circular cross section gives higher thickness because of the obvious difference
in cross section height.

The experimental values of thickness were used as guidelines when decid-
ing how much the simulated sheets were pressed. However for the circular cross
section it was not possible to reach the values without letting the fibers inter-
sect unrealistically. Therefore the pressing was stopped earlier for sheets with
circular fiber cross section.

By visually comparing SEM images with snapshots of the simulated sheets
it can be seen that the sheets with rectangular cross section look more like the
real sheets. There are however some features in the SEM images that are miss-
ing in the simulated sheets. The fibers in the SEM images are more thread-like
and appear to deform more tightly to each other and to the forming fabric. Also
the holes in-between larger fibers are filled up with fines. The fibers in the ex-
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periments seem also to have thinner cross section, both regarding width and
height.

In Figure 4.13 the air permeabilities of the experimental and simulated
sheets are shown. It can be seen that the values for the simulated sheets cor-
respond well to the experimental values for the lowest injection masses, both
for circular and rectangular cross section. However when the injection mass
increases the permeability of the simulated sheets does not decrease as much as
for the experimental sheets. This indicates that some feature is missing in the
simulation framework. Probably it is related do what was discussed about fibers
deforming tighter together and to the fabric, and the holes that are covered with
fines.

The trend implies that the permeability decrement is lesser for simulated
sheets and with the current framework it will probably not be possible to attain
lower permeability values than a certain limit. This may be explained by rea-
soning, that without pressing the fibers they will form a structure that adopts a
certain porosity even if additional fibers are laid down. To verify this suggestion
additional cases with higher injection mass have to be simulated.

When comparing unpressed with pressed simulated sheets there is no big
difference in permeability for lower injection masses but when the injection
mass increase the permeability of the pressed sheets decreases more. This ten-
dency would also need further simulations with higher injection masses to clar-
ify.

For a permeability comparison between circular and rectangular cross sec-
tion based on injection mass, it can be seen that the permeability decreases
slower for sheets with circular cross section when the injection mass increases.
However, when instead comparing based on number of fibers, this is not the
case.

The resulting discrepancies when it comes to comparison of permeability
and SEM images will be further discussed, in relation to the simulation frame-
work and model, in the following two sections.

5.2 Discussion on the Simulation Framework

One difference between the real lay down process and the simulation frame-
work, is that in the real case the fabric is moving at high speed in the horizontal
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direction, but in the simulations the fabric is held static. If this simplification is
one explanation for the differences between simulations and experiments dis-
cussed in the preceding section is difficult to say. Maybe the relative velocity
between fibers and fabric, that is present in a real lay down, leads to fibers lay-
ing down more closely to the each other and to the fabric. To determine if that
is the case a moving fabric has to be investigated in the future.

Another difference is that in the simulations only a small piece of fabric
is used. This restriction could lead to local tendencies resulting in unreliable
variance of the air permeability. Some small studies where the same injection
mass was laid down several times with different seeds of fiber generation have
been performed and showed no large apparent variance in permeability. This
remains however to be investigated more closely.

The boundary effects of the small piece of fabric is an additional uncertainty.
In the simulations, vertical planes are surrounding the fabric to prevent fibers
from falling off the fabric at the sides. How this affect the boundary behavior
of the sheets are not clear. In the future cyclic boundary conditions will be
developed such that fibers moving out on one side, come in on the opposite
side. By comparing that approach with the current one, analysis of boundary
effects can be performed.

The generation of fibers is something that can be investigated further. The
effects from varying the distributions of length, width, and shape, remain to
be studied. The number of fines in the real process is unclear as well as their
size. Also the cross section of the fibers is an interesting matter, such as the
shape and the thickness of the fiber wall. In the future it would be suitable to
perform experiments where the injected number of fibers are measured, as well
as experiments where the shape of fibers are more homogeneous.

The fluid flow has a direct effect on the fiber motion and consequently how
the sheet structure is built up. One question is how much effect the flow has,
and then, how accurate must the flow be resolved. In the simulations the flow
was resolved once before the fiber lay downs. This one-way coupling excludes
the impact from the fiber motion onto the flow during the lay down process.
How large effect this simplification has must be further analyzed; is it accurate
enough or does one have to resolve the fluid flow more often, or even with full
two-way coupling? By resolving the effects from the fibers on the flow, perhaps
the fibers will lay down tighter together, and more fines will stay on the sheet
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instead of passing through the fabric.
Another topic is the simulation of the air permeabilities of the simulated

sheets. The flow over such a complicated structure as a fiber web and a forming
fabric is computationally demanding to resolve. The simulations have shown
that there often is not one permeability value the flow converges to, but rather
that the value oscillates. Also sometimes it seems to have converged but if
simulating long enough it starts to vary again. Therefore it is hard to know
when the simulation has converged. These uncertainties when it comes to the
air permeability simulations are important to analyze further.

From the SEM images it seems that fines are not always isolated objects
but instead attached to fibers. By introducing attached fines in the simulation
framework it can be investigated how this affects the resulting permeability.
Most likely these fines will contribute to covering the holes in-between fibers
and reduce the permeability.

The mechanical properties of the fibers, such as bending and shearing stiff-
ness, may be investigated more closely in the future to see if the fibers can
deform more tightly to each other and to the fabric.

Parts of the above discussion will be continued in relation to the fiber sus-
pension flow model in the next section.

5.3 Discussion on the Model

Fluid Model

The fluid modeling is obviously connected to how accurate the fluid flow can
be resolved. The accuracy of the flow is important in two aspects in this work.
Firstly the fiber motion is dependent on the flow, and secondly the air perme-
abilities used for comparison with experiments are directly calculated from the
velocity field. Both these flows are highly complex and therefore the Navier-
Stokes equations, which describe general viscous flow, have been used to re-
solve them.

When resolving flows over complex structures such as fibers or a forming
fabric, the mesh size is always an intricate matter. How fine one has to resolve
the mesh, and in which way one can do it computationally cheap, are topics that
should be further studied. During this work it has been seen that the air per-
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meability values depend on the number of mesh refinements. For the presented
results, simulations with four refinements were used which corresponds to a
very fine grid, close to the limit of what is possible when it comes to memory
requirements.

Another tricky matter is when solving the flow field to steady state. Most
often there is no single steady state solution but the solution seems to oscillate.
Sometimes the oscillation is seemingly constant while in other cases it tends
to decrease. When simulating the air permeability for the simulated sheets an
average value has been chosen. All this would need further investigation.

Lastly the question of improving the speed of the convergence of solution
can be discussed. If two-way coupling should be used in the future probably a
speed up of the fluid solution would be desirable. This can maybe be attained
by considering the mesh generation as mentioned earlier, or by including some
turbulence model.

Object Model

To describe the motion of fibers a finite-strain beam model has been used in this
work since the fibers undergo large motions and deformations during a lay down
simulation. How appropriate this choice is has to be analyzed by investigating
the fundamental behavior of single paper fibers. That beam models can describe
complex fiber deformation in shear flow, such as the one observed by Forgacs
and Mason [9,10], is known. A beam description may in some other respect be
too simple and a more general body model would perhaps be needed. Hence
further comparison between experiments of single fibers and simulations would
be desirable.

As stated above the fiber model used in this work is based on a beam model
allowing very complex deformation. Complex deformation seems to be neces-
sary if the simulated fibers should lay down as tight as they do in the experi-
ments. By visual comparison it is seen that the simulated fibers do not lay down
tight enough. This is probably related to the fiber model but may as well depend
on the fiber-fiber interaction or the effect from the fluid on the fibers. Either the
stiffness of the fibers is too high or the beam model is not general enough to
describe this kind of deformation. The stiffness of the fibers should therefore
in the future be investigated closer, and probably it will be found that simulated
fibers with less stiffness will deform more like the real fibers. Also a more gen-
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eral three dimensional body motion model could be compared with the beam
model.

The chemical properties of a fiber in a water suspension is an intricate as-
pect that has to be investigated. The chemical behavior is partly connected to
interaction forces such as the DLVO forces included in the fiber-fiber interaction
model, but how the physical properties of fibers change in the fluid suspension
in the paper machine remain to be analyzed. For example features of wetness is
not yet included in this model.

Numerical aspects of the fiber model and how the motion is solved is im-
portant to consider. Currently the solution time of the fibers increase when the
fibers are thinner. The previous discussion suggests that the fibers have to be
thinner to correspond better to the experiments, and therefore an improvement
of the computation of the motion of such fibers is preferred to keep the simula-
tion time down. Hence the iterative method and how the fiber can be adaptively
refined should be investigated.

Fluid-Object and Object-Fluid Interaction Model

The effect on the fluid from the fibers are resolved using an immersed boundary
method. In Figure 4.11, it can be clearly seen how well the immersed boundary
method resolves the flow around detailed structures such as the fibers and fabric.
This is necessary since the air permeability is dependent on how many fibers
that are present on the fabric.

As mentioned in the setup of the simulations only one-way coupling was
used for the lay down to reduce computation time. That is, the flow was resolved
once, only over the fabric without any fibers. The resulting flow field was then
used for all lay down simulations. Thereof the effect from the fibers on the
fluid was excluded. As mentioned earlier, how this simplification influence the
resulting sheet structure has to be investigated. Maybe a two-way coupling will
increase the retention of fines since when fibers lay down the velocity field is
changing.

For the effect of the fluid on the fibers, an empirical drag force relation
for cylinders is used. This does not capture the full fluid effect for arbitrary
directed fibers. To improve this calculation would be desirable. The probably
most accurate approach is to integrate the fluid traction vector onto the fiber
surface. This is however more time consuming.
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Object-Object Interaction Model

What can be concluded from the simulated sheets is that the fiber-fiber interac-
tion model can handle the interaction between fibers during the lay down phase,
as well as their interaction when they have laid down on the fabric. Thousands
of fibers laying together in a sheet structure is a difficult task to simulate and
numerical instability is common. The interaction model developed in this work
can handle such interaction in a numerical stable way.

Currently it seems that too few fines are staying in the sheet, and instead
flow through the holes of the fabric. This may be explained by that most of
the fines in reality are attached to fibers, or that the interaction model does not
handle attractiveness good enough, or that the DLVO forces are not enough
to capture this feature. Phenomena such as hydrogen bonds, which are not
included in this model, may be important for the adhesion of fines.

Basic test cases of head-on collision and partial collisions have been per-
formed, showing that the model prevents object from passing through each
other, and that adhesion between object can occur. The accuracy of the in-
teraction model has to be further investigated by studying such basic test cases,
collisions between two objects, or a single object laying down on a rigid struc-
ture such as a cylinder or several parallel cylinders with small gaps in-between.
For these test cases corresponding experiments would be needed.

Concerning the equation system (2.21) for the contact point motions and
the simplifications used, mathematical analysis remains to be done in regard to
several aspects.

Firstly, contact points are distributed as belonging to fibers, but when the in-
teraction is solved during one fiber time step their motions are solved separately,
that the fibers in fact resist strain and deformation is neglected.

Secondly, when deciding how many contact points that should be distributed,
comparison is made with contact forces for infinite parallel cylinders. If the
number of points is accurate for arbitrarily oriented fibers is unclear.

Thirdly, when solving the contact point motion the equation system is sim-
plified by not considering all contact points at the same time. How different
approaches of including contact points into the system, and how their spatial
distribution, are affecting the solution has to be analyzed.

Extensions of variations of the current object-object interaction model are
for example to instead of considering contact points in the equation system,
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consider fiber elements, or even whole fibers. But for whole fibers one gets
back the problem of reducing the fiber time step, which currently is too costly.
Another study that is partly connected to the mentioned variation, is to calcu-
late DLVO force formulas for more general objects, such as arbitrary oriented
fiber elements, that is cylinders or cuboids, or for whole fibers. Mathematical
analysis of the steric repulsion force is also desirable.

5.4 Conclusions

In this work a fiber suspension model is presented together with a simulation
framework applying the model to simulations of the paper forming process. The
aim of the simulation framework is to be able to predict macro-structure paper
properties from micro-structure simulations. To make such predictions possible
the framework has to be validated.

In earlier works [20,37] the fluid-fiber interaction model and the fiber model
were evaluated showing excellent agreement with theory and experiments. In
this work the fiber suspension flow model is examined further. The features
of the object-object interaction model is evaluated by simulating collisions be-
tween two fibers. Furthermore the whole framework is used to simulate the lay
down process of the forming section.

The collision simulations demonstrate that the object-object interaction model
is capable of preventing objects from passing through each other. Moreover the
results show that the attractiveness of the van der Waals force gives rise to ad-
hesion between fibers.

In the lay down simulations performed, fibers are flowing down onto a fab-
ric, forming a paper sheet. The air permeability and thickness of the sheets
are thereafter compared with experimental data. The results demonstrate that
it is possible to simulate thousands of fibers in a suspension that flows down
onto a forming fabric to form a complex paper sheet structure. The interac-
tion is resolved by the novel object-object interaction model presented in this
work, which has proven capable of handling the complicated interactions in a
numerical stable way.

The air permeability agrees well with experiments for sheets with low den-
sity. When the density increases the permeability of the simulated sheets does
not decrease as much as in the experiments. This indicates that there currently
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are some features missing. Comparing SEM images with snapshots from the
simulations it can be seen that the fibers do not lay down as tight together and
to the fabric as they do in the real sheet. This can depend on the fact that the
stiffness of the fibers in simulation are too high.

Another feature that is missing is the retention of fines. Several reasons
may explain the low retention. The one-way coupling approach used during
lay down may lead to fines flowing through the holes of the fabric instead of
staying in the sheet. If two-way coupling is used the fibers may slow down the
flow such that the fines more easily stay on the fibers. Moreover, in the real
process fines are attached to fibers, automatically forcing them to stay in the
sheet during lay down.

One important factor for the retention of fines is the fiber-fiber interaction.
The low retention in the simulations may depend on that the fiber-fiber interac-
tion model currently including DLVO forces is not capturing the real phenom-
ena good enough, or that some interaction, such as hydrogen bonds, is missing
and lead to lower retention.

Altogether it can be concluded that the simulation framework in its current
state can be used to simulate processes involved in paper making. The frame-
work is robust and powerful enabling simulation of thousands of fibers flowing
down onto the forming fabric, at the same time resolving the complex interac-
tion between fibers. Specific features have to be investigated closer in the future
to improve the framework further.
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Paper I - Novel Contact Forces for Immersed Boundary Paper
Forming Simulations
Authors: G. Kettil, A. Mark, F. Svelander, R. Lai, L. Martinsson, K. Wester,
M. Fredlund, M. Rentzhog, U. Nyman, J. Tryding, F. Edelvik.

This conference proceeding is from the hundred years anniversary TAPPI con-
ference held in Atlanta, USA, in April 2015. It includes a brief presentation of
an early version of the object-object interaction model. Simulations results for
lay downs with fibers with circular fiber cross section are included.

Paper II - Detailed Simulations of Early Paper Forming

Authors: G. Kettil, A. Mark, F. Svelander, R. Lai, K. Wester, M. Fredlund, M.
Rentzhog, F. Edelvik.

This conference proceeding is from the final COST Action FP1005 conference
held in Trondheim, Norway, in June 2015. It is a concise review of the simu-
lation framework at a stage where novel implementations of rectangular fiber
cross section and pressing had been accomplished.
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Paper III - Simulation of Fiber Suspension Flow Using Im-
mersed Boundary Techniques and a Novel Fiber Interaction
Method
Authors: G. Kettil, A. Mark, F. Svelander, K. Wester, M. Fredlund, M. Rentzhog,
F. Edelvik.

This manuscript from August 2016 presents the suspension flow model and the
simulation framework used to simulate the lay down process of the forming
section of a paper machine. Simulation results are included and compared with
experimental data.
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