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Diffusion Estimation Over Cooperative Multi-Agent
Networks With Missing Data

Mohammad Reza Gholami, Member, IEEE, Magnus Jansson, Member, IEEE,
Erik G. Strom, Senior Member, IEEE, and Ali H. Sayed, Fellow, IEEE

Abstract—In many fields, and especially in the medical and
social sciences and in recommender systems, data are gathered
through clinical studies or targeted surveys. Participants are
generally reluctant to respond to all questions in a survey or they
may lack information to respond adequately to some questions.
The data collected from these studies tend to lead to linear
regression models where the regression vectors are only known
partially: some of their entries are either missing completely
or replaced randomly by noisy values. In this work, assuming
missing positions are replaced by noisy values, we examine how
a connected network of agents, with each one of them subjected
to a stream of data with incomplete regression information, can
cooperate with each other through local interactions to estimate
the underlying model parameters in the presence of missing
data. We explain how to adjust the distributed diffusion through
(de)regularization in order to eliminate the bias introduced by
the incomplete model. We also propose a technique to recursively
estimate the (de)regularization parameter and examine the per-
formance of the resulting strategy. We illustrate the results by
considering two applications: one dealing with a mental health
survey and the other dealing with a household consumption
survey.

Index Terms— Missing data, linear regression, mean-square-
error, regularization, distributed estimation, diffusion strategy.

I. INTRODUCTION

In data gathering procedures through clinical studies or
targeted surveys, it is common that some components of the
data are missing or left unobserved. For example, in a clinical
study, a participant may be reluctant to answer some questions
or may drop out of the survey and never return it [2]. Likewise,
in a recommender system using content based filtering [3], a
participant may prefer to leave some questions unanswered.
The phenomenon of missing data is prevalent in many fields
including the social sciences, medical sciences, econometrics,
survival data analysis, and machine learning [2], [4]-[11].
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In general, three patterns are considered for missing data:
missing at random (MAR), missing completely at random
(MCAR), and missing not at random (MNAR) [12]-[14]. In
MAR patterns, the probability of missing a variable in data
gathering is related not only to the value of the variable but
also to some other measured variables [2]. In comparison,
in MCAR scenarios, the probability of missing a variable is
solely related to the value of that variable [12]. For example,
if an observation is below a threshold, it may not be observed.
In MNAR, the probability of missing depends on unobserved
values. For example, in a cancer trial some patients may be
feeling weak and unable to participate in the study [2]. In
general it may not be easy to verify which pattern of missing
is happening for a study. For a survey on different missing
patterns, the reader may refer to, e.g., [2, Ch. 1] and the
references therein.

There have been many studies on inference problems for
missing data with several useful techniques proposed to ad-
dress the challenges associated with censored data. Many of
the approaches are based on heuristic methods, as already
noted in [15]. There are broadly two classes of techniques
to deal with estimation in the presence of missing data: impu-
tation and deletion (listwise or pairwise) [2], [10], [16]-[20].
If the positions of the missing data are known in advance, then
they can either be replaced by some deterministic or random
values (sometimes called single or multiple imputation), or the
corresponding data can be removed from the dataset altogether.
Removing data generally leads to performance degradation,
although this practice is accepted in some statistical software
packages, e.g., SAS, SPSS, GAUSS, and CDAS, mainly
because of ease of implementation. In contrast, data imputation
results in biased estimates [6], [14], [16], [19]. For a discussion
on different types of deletion and imputation in missing data
analysis, see [2, Ch. 2].

When data imputation is assumed, one may resort to a max-
imum likelihood procedure to estimate the missing data if the
distribution of the data happens to be known beforehand [21],
[22]. For example, the expectation-maximization (EM) tech-
nique provides one useful solution method [9]. However, the
EM implementation tends to be computationally intensive and
can suffer from convergence issues [23]. If the positions of
the missing data are unknown, a mixture model may be used
to describe the data model [24] and the EM algorithm can be
subsequently applied to estimate the missing data [25], [26].
However, the number of components can become large in high
dimensions. For other possible recovery techniques including
ordinary least-squares, inverse probability weighting, and fully



Bayseian methods, the reader may refer to, e.g., [4], [27]-[30].

In this work, we examine how a connected network of
agents, with each one of them subjected to a stream of data
with incomplete regression information, can cooperate with
each other to estimate the underlying model parameters in
the presence of missing data. In particular, we assume that
some entries of the regressor can be missed according to
the MCAR pattern, where the missing data are replaced by
random entries. Note that for nonstreaming data, there are
various techniques in the literature [31]-[33] to handle an
inference problem. These techniques are useful if agents are
able to collect the data and save them in buffers for batch or
centralized processing.

Indeed, one of the main approaches used in the literature
to address estimation in the presence of missing data relies
on centralized solutions, where the data is collected centrally
and processed by a fusion center. This approach has the
disadvantage of requiring a large amount of energy and
communication and may limit scalability and robustness of
the network. There are many situations, however, where the
data is already available in a distributed manner (e.g., separate
clinics collect surveys from their patients independently of
each other). Moreover, in many of these cases, privacy and
secrecy considerations may prevent the clinics or survey-
collectors to share or transmit the data to a central location.
In these situations, it is preferable to process the data in a
distributed manner. In this approach, only estimates of the
unknown parameter model, and not the raw collected data, are
exchanged between neighboring nodes. This paper focuses on
this approach and develops a distributed strategy for handling
missing data from results collected at dispersed locations. One
of the key challenges is to infuse the distributed procedure with
a mechanism to combat the bias that results from the presence
of censored data.

For this purpose, we shall rely on the idea of diffusion
adaptation [34]-[38] to design a fully distributed algorithm
that is able to adapt and learn from streaming data. Useful
consensus strategies can also be employed [31], [39]-[43].
We focus on diffusion strategies in this work due to their
proven enhanced stability ranges and improved mean-square-
performance properties over consensus networks when con-
stant step-sizes are employed for continuous adaptation and
learning [35]-[37], [44]; consensus networks are sensitive to
the network topology and their state error vectors can grow
unbounded when constant step-sizes are used. We will explain
how to adjust the diffusion strategy through (de)regularization
in order to eliminate the bias introduced by imputation. We
will examine the stability and performance of the proposed
algorithm and provide computer simulations on two applica-
tions: one dealing with a mental health survey and the other
dealing with a household consumption survey.

Notation. We use lowercase letters to denote vectors, up-
percase letters for matrices, plain letters for deterministic
variables, boldface letters for random variables. We use ® and
® for the Hadamard (elementwise) and Kronecker products,
respectively. In addition, diag{x1, ...,z x} denotes a diagonal
matrix with diagonal elements 1, ..., zy. We use col{a, b}
to represent a column vector with entries a and b, while I,

and 0j; denote the M x M identity and M x M zero matrices.
We use A;(A) to denote the i—th eigenvalue of matrix A. The
i—th and j—th entry of a matrix A is represented by A(i, j).

II. PROBLEM STATEMENT

Consider a connected network with N agents. Each agent
senses a stream of wide-sense stationary data {dj (i), ux;}
that satisfy the linear regression model:

dk(Z)ZUkﬂwo—i—’Uk)(l), k:177N (1)

where k is the node index and ¢ is the time index. The
row vector uy; denotes a zero-mean random process with
covariance matrix R, x = Euj ux; > 0, while vi(i) is a
zero-mean white noise process with variance o .. The column
vector w® € RM is the unknown parameter that the network
is interested in estimating.

Remark 1: Sometimes, as illustrated by the examples dis-
cussed later in Sec. V, we may encounter data models of the
form

dk(i):a—&-ﬁk,iwo—i—vk(i), k=1,....N 2)

where « is some deterministic intercept value, and 4y ; is a
row vector with nonzero mean. This model can still be reduced
to (1) by subtracting the mean of the measurement from both
sides of (2).

Assumption 1: Continuing with model (1), we assume
that the regression and noise processes are each spatially
independent and temporally white. In addition, we assume that
ug,; and vy (j) are independent of each other for all ¢, ¢, k, and
7. ]

In this study, we examine the situation in which some entries
in the regression vectors may be missing completely at random
due to a variety of reasons, including incomplete information
or censoring. We denote the incomplete regressor by uy, ; and
express it in the form:

g, = ug,i(Ip — Fri) + & i Fri 3)
where F; = diag{f,lc7i, ce f:fz} consists of random in-
dicator variables, ﬁ“ € {0,1}. Each variable ff“ is equal
to one with some probability p < 1 and equal to zero with
probability 1 —p. The value of p represents the likelihood that
the j—th entry of the regression vector uy, ; is missing at time
1. In that case, the missing entry is assumed to be replaced by
an entry from the zero-mean perturbation (row) variable & ;.

The model considered in (3) encompasses different types
of censoring such as left censoring, right censoring, interval
censoring, and random censoring [451-[47].! In the missing
data literature, the position of missing data is often assumed
to be known in advance [16]. In general, both scenarios
with known and unknown missing positions may happen in
practice. For example, a participant in a survey may leave a
question unanswered (known missing position), or may report
a wrong value (unknown missing position since the true value
is intentionally replaced by a wrong value); the latter may be

'In econometrics, the use of the “coded” terminology (such as top-coded
and bottom-coded) is more common than censoring [6], [48].



considered an outlier although usually an outlier is defined as
a measurement that is distant from other measurements. For
a known missing position, the imputation technique can then
be used to fill the position of data left unobserved yielding a
modified data model. If the analyst for the modified model is
not aware of the imputed position, we can still consider model
(3) with the assumption that the imputer and the analyst are
different and do not exchange information about the missing
position.

Remark 2: Model (3) is sometimes referred to as a mixture
model in the literature [26], [49]-[51]. In such models, it is
mainly assumed that the components follow Gaussian distri-
butions with different means or variances (or both). However,
in this study, we have no particular assumptions about the
distribution of the components or their first and second-order
moments. For mixture model approaches, if the distribution of
the data deviates from the normal distribution, a large number
of Gaussian components is then mixed to model the missing
data [52], [53]. In these cases, the design of the algorithms
can become more challenging.

Assumption 2: We assume that the random variables
Uk i, ﬁw” and &, are independent of each other. We
also assume that the random process & ; is temporally
white and spatially independent with covariance matrix
E& ki = Ug,kIM~ u

From model (1), the minimum mean-square-error (MMSE)
estimate of the unknown vector w® based on the data collected
at node k is given by [54]:

wy, = R;}C Tduk “4)
where
Tauk = Edy(i)ug ;. 5)

It is easy to verify from (1) that wy = w® so that the MMSE
solution allows node & to recover the unknown w® if the actual
moments {Ry k, 74y} happen to be known. The resulting
mean-square-error is [54]:

Jemin 2 Jp(wg) = E|ldy (i) — up ;wg|?
=0i— T;u,kR;}grduyk
=02, (6)

Let us now investigate the estimate that would result if we
use instead the censored regressor, u ;. The estimate in this
case is given by

Wy, = R;}C Tda,k @)
with the covariance matrix Ry ; computed as
Rax = Euy, ;g ;
CE((I - Fy)Rus(l - Fii)} + 02 E{FE )
= Ryk — PL O Ry +pof pIu
£ Ruk+ Rk ®)

where in (a) we used the independence of wuy; and & ;
(Assumption 2) and where the matrix R, j is defined as

Ry & —P1 O Ry +p0’§,kIM &)

in terms of

P2 (2p-p)lulyy — (p—p*)ur
Here, we are using the notation 1, to denote the M-column
vector with all its entries equal to one. Likewise, the cross
correlation vector rgg 1 in (7) is given by

(10)

raue = Edy (i), ,

=Edi(i)(I — Fri)up,; +Edi(i)F} i),
—_—
=0

(1)

We assume that the perturbed matrix %y j remains invertible.
Applying the matrix inversion lemma [55] to (8), we can relate
wy, from (7) to wy, from (4) as follows:

= (1 = p)Taqu,k-

wy = (I — Qr)(1 — p)w’ (12)
in terms of the matrix
Qk £ R;}gRr,k([M + R;}CRT,IC)71~ (13)

It is observed from (12) that the new estimate is biased relative
to w?. It is also obvious that the mean-square-error that results
from using (7) is lower bounded by Jj iin from (6), i.e.,

Jmiss,k £ Jk(wZ) 2 Jk,min- (14)

To mitigate the bias problem, we extend a construction
used in [56] in a different context and associate an alternative
(de-)regularized quadratic cost with each agent k, defined as
follows:

Ji(w) = Eldy, (i) — @ w]* — wllp, (15)

where T}, is a symmetric matrix to be chosen. The stationary
point of (15) is easily seen to occur at the following location,
where we again assume that the coefficient matrix (Rg 5 — 1)
is invertible as needed:

0y = (1 —p)(Rag — Ti) Taur. (16)

Therefore, if we refer to (8) and (9), we observe that if we
select T}, as

Ty, = pRuyr + Rrx
= —p)1Iu © Ry +p0g j Ins — (p— p*)Ruse (17)

then the solution w7 from (16) will agree with the unbiased
original estimate wy, from (4), i.e., Wy, = wy.

Now note that since p — p? is nonnegative for 0 < p <
1, the matrix T in (17) is seen to be the difference of two
nonnegative definite matrices. Therefore, T}, is in general sign
indefinite. More importantly, if the de-regularization matrix
T, is selected as in (17), the cost function in (15) becomes
strongly convex with a unique minimizer. This is because the

Hessian matrix of J;,(w) relative to w is positive-definite since
Ve Ji(w) = 2(Rap —Tx) =2(1 —p)Ruyp >0 (18)

for0 <p<1.



III. ADAPTIVE DISTRIBUTED STRATEGY

In this section, we develop a distributed strategy to recover
w’ from missing data by relying on the modified local
cost (15). For the remainder of the paper, we represent the
covariance matrix of the regression data in the following form.

Assumption 3: The covariance matrix R, is
diagonal, which is satisfied if the entries of the
regression vector uy; are uncorrelated with each
other. |
Under Assumption 3, it holds that

Ry, —pRuj + pog 1 I (19)
Ruy = (1=p)Ru +poglu (20)
T, = pogiplu 1)

where T} is now nonnegative definite. We shall first assume
that the parameters p and 05 . are known. Later, we estimate
U& . from the data, assuming an estimate for p is available
(a condition that is generally satisfied in practice — see Sec.
V-A where experimental settings are described).

To develop a distributed algorithm, we let N denote the
set of neighbors of agent k. The network then seeks to solve:

(22)

Following arguments similar to [36], [37], we can derive the
following modified Adapt-then-Combine (mATC) diffusion
strategy for the case of missing data:

er (1) = di(i) — upiwk,i—1
Qi = 1+ ukpog,k)wk,i_1 + Mkﬁ?;,iek(i)
Wk = D _en, @kPo

where pj, is a small step-size parameter and the convex
combination coefficients {a} satisfy [36], [37], [57]:

Zagkil, a/k:01f€¢./\/'k
[GN}V

(23)

ag; > 0, 24)

A. Estimation of Regularization Parameter

The distributed algorithm (23) requires knowledge of the
censoring noise variance, ag .- We now suggest one way to
estimate this noise power. From (3), we write

— & F ki,

and use this relation to re-write the measurement model (1) in
terms of uy ; as follows:

Up,; = Up; +Up i Fr (25)

dk(l) = ﬁ;m-wo + (u;“- — Ekyi)Fk,iwo + 'Uk(i). (26)

It is seen from (26) that
Eldy (i) — wyiw’|* = E|(up,; — & ;) Friw’|> + o) 4, (27)

and, hence

A 2
Jk,min = Uv,k

= E|dk(z) — ﬂk7iwo|2 — IE|(u;m
= E|dy (i) — agiw’* = pllw|lh, ,

- fk,i)Fk,iwo|2
— pog pollw ||
(23)

After a sufficient number of iterations, and for sufficiently
small step-sizes, the estimate wy; in (23) is expected to
approach the global minimizer of (22), which we already know
is w® [37]. If we therefore replace w® by wy ;1 in (28) we
get for i > 1:

o~ DOE g llwria .
(29)

Jemin ~ Elek(1)]* — pllwei—1l%

It is still not possible to estimate 05 i directly from (29) since
the expression depends on R, j and p. Suppose as indicated
earlier, that an estimate for p is available, say, p < 1. This is
a reasonable assumption since in many situations in practice,
it is generally known what percentage of the data is corrupted
(as illustrated by the examples in Sec. V). From (20), we can
then estimate IR, j by writing:

! Rax P

Ry,r =~ — —
u.k 1—-p 7 1-—

(30)

2
~0¢ 1.l
) 3

Substituting into (29) and solving for an estimate for a? i WE
obtain

52, ~ (1- 13)]E|ek(i)A|2 - ﬁllivk,i—rll?zﬂ,k
Pl = 2p)|[wy i [
(@ (1—P)Elex())]* - Plwriilk, , a1
- P~ 2p)[[wi i1
where in (a) we assumed that the noise variance, av & 1S
sufficiently small compared to [|wy;—1]%, , . Since E|ek( )2
and the diagonal matrix Ry are unknown, we estimate them
by means of smoothing filters from data realizations:

—(1—Day

Ry (i) = (1 — a1)Rag(i — 1) + o (@) ;8x,:) © Iy (32)
Ger(i) = (1 — 9)Ter(i — 1) + azlex(i)]? (33)
(1- )Ue k(i ) Dl|wg ¢71||%‘ ,
. ’ ﬂ'k(l)
= 34
67 (1) = (1 — a3)5% 4 (i — 1) + asgy (i) (35)

where 0 < o, < 1, for m = 1,2,3. To prevent large
fluctuations in estrrnatrng 0'5 . (i), we also use a smoothing
filter for updating o-5 . (1) in (35). Since the covariance
matrix of the regressor is assumed to be diagonal, we use
the Hadamard product in (32). It is noted that the algorithm
does not require knowledge about the statistics of the data,
e.g., the correlation matrices are assumed to be unknown.
The resulting diffusion algorithm, henceforth called modified
ATC (mATC), is listed in Algorithm 1.

It is clear from the listing of the algorithm that the operation
of the diffusion strategy (37)—(38) is coupled to steps (39)—(42)
for estimating 05 k- Proper operation of the algorithm requires
a reliable estimate for 0§ - There are at least two ways to
assist in this regard. One way is to use a small step-size a3
in (42). A second way is to first run a few iterations of the
standard diffusion algorithm without bias correction, i.e.,

¢k,i =

Wk, =

Wi i1+ prtg, ;[dy (1) — g w1

Z a€k¢é,i

LEN

(43)



Algorithm 1 Modified diffusion algorithm (mATC) for miss-
ing data

ex(i) £ dy(i) — tpiwp,i—1 (36)
p; = (1+ Mkp&?k(i — D)wyg i1 + pruy, e (i)

37
Wi = Y ampy; (38)
ZGNk
Ra’k(i) = (1 — al)Rﬁ’k(i - 1) + Oél(’l_l/;;’i’llkﬂ) O Iy
(39)
Ger(i) = (1 — )Ter(i — 1) + azlex(i)|? (40)
— D)6 (i) — Pllwp ;112
g,(i) = A =D7esld —Blwrinlp,
p(1 —2p)||wg,i-1 |
Ge (i) = (1 — a3)57 4 (i — 1) + asgy (i) (42)

and then switch to the censored version shown in the above
listing. In the simulations section we illustrate both scenarios.

Remark 3: Since the estimate for E'ék(i) in (42) needs to
be nonnegative, we can modify (41) to

(1 =D)oe k(i) — Dllwk,i—1 H%ﬁ,k(i)
p(1 = 2p)[[we,i—1|? 7

gi (i) = maX{

(44
IV. PERFORMANCE ANALYSIS
A. Error Dynamics
We associate with each agent the error vectors
g)k,i £ w’ — ¢y, (45)
Wy, & W’ — wy . (46)

Now, if we subtract w° from both sides of (37) and (38) and
replace dj (i) by (26), we obtain

<~Pk,i =1+ ukpt??,k(i - 1))17’k,i—1 - uk-p&?,k(i - Dw’—
prg (g Wy i1 + (ug; — &g ;) Friw’ + v (i)
47

Wii= Y andy,. (48)

[GN}V

We collect the errors from across the network into the block
vectors:

P, £ COI{&;LI‘, T

~ A ~
w; = col{wy 4, -

(49)
(50)

7¢N7i}
77]}N,i}

and note from (47)—(48) that they satisfy the following recur-
sions:

¢; =[Inm — M(R; — pICiq))|wi—1 — Ms;—
MR+ pKi_1)w?

(S
(52)

where we introduced the quantities:

w? 21y ®w’ (33)
AL AR Iy (54)
R, & diag{u] ;41,3 U2, .., UN ;UN; } (55)
R, = diag {{u} ;(ur; — &5 ;) Frite=1,..N} (56)
Kio1 2 diag {&21(@' — Dy, ... ,EE’N(i - 1)IM} (57)
M & diag{p1 I, polnsy - unIn} (58)
s; = col{u] v1(i),. .., uy vn (i)} (59

where the matrix A is left-stochastic, i.e., AT1,; = 1, with
its (¢, k) entry equal to ag. If we now combine (51) and (52)
we find that w; evolves according to the following dynamics:

ﬂ)i = .AT[INM — M(ﬁz - p’ci—l)]ﬂji—l - -ATMSi

— ATM(Rei + pKio1)w? (60)
From the definitions in (55), (56), and (59), we get
Es;, =0 (61)
S £ Es;s; = diag{o, Ra1,....00 yRan} (62
RE2ER;
= diag{Rg’l, ceey RTL,N}
= (1—-p)R+ pdiag{o? Ins,..., 02 nIna}  (63)
Re £2ER.; = —pdiag{of 1 Inr, .., 07 nIar} (64)
where
R £ diag{Ru1,..., Run} (65)

and where we used the following result to compute R in (64):

Eﬂzl(um - ‘sk,i)Fk,i
=E{[(In — Fri)up; + Fri&p ) (uri — &) Fri}
=E{(Iny — Fyi)RuuFri} — ot JEF},

=0

= —pO’ékI]w. (66)

B. Long-Term Approximations

It is clear from (39)—(42) that the operation of the diffusion
strategy (37)—(38) is coupled with the estimation of the noise
power agk. This is because the estimate &z’k(i) in (42) is
dependent on wy, ;1. This coupling makes the performance
analysis of the algorithm rather challenging. Since we are
mainly interested in assessing the performance of the solution
in the infinite-horizon after sufficient iterations have elapsed,
and after the algorithm has been given sufficient time to learn,
we are going to proceed from this point onwards under the
assumption that ¢ > 1 and that the smoothing filters (39)-
(42) have approached steady-state operation. Specifically, in
steady state, i.e., for ¢ — oo, taking the expectation of both



sides of Eq.(39) and considering (1 — a;)® — 0 for i >> 1,
we obtain:

ERq (i) = Y a1(l— o) E(uj juk ;) © Lu
7=0

1-— (]. — al)”l
= ———R; I
Q1 —(0—a) FAON Vs
= Rap, i>1 (67)

so that IA%,—”C tends on average to the true value Ry ;. Similarly,
for Eqgs. (40)—(42), they approach steady-state operation with

(63)
(69)

EG. (i) — Elex(i)[*, i>1

EG; (i) — gy (i), i> 1.
We now estimate Eg, (i) by employing a first-order Taylor
series approximation. Let z = [z1,..., 2z,] be a real random
vector with mean Ez = [Ezy, ..., Ez,]. The first-order Taylor
series expansion of a differentiable real function f(z) about

the mean Ez can be expressed as follows [58, p. 241]- [59,
p- 295]:

f(z) = f(Ez) + Z % (2k)|zp=Ez, (21 — Ezg).  (70)
k=1 ""F

If we evaluate the expectation of both sides of (70) with respect
to the random vector z, we get the follwoing approximation:
Ef(z) = f(Ez). (71)

Now consider a function of the ratio of two random variables
as f(x,y) = x/y, and assume that y has nonzero mean. From
(71), we can write

(72)

To approximate Eg, (i), we apply (72) to (41) as follows:

o U-PESLO B (el o)
9x(i) ~ A1 — 2 Elwr P -
For tractability, we assume that, in steady-state:
E (lwkil, ) ~ e, , (74)
so that
. (1—Dp)E[ex(i)]* = pllw°%,
Egy, (i) ~ =

p(1 —2p)[jwe|?

(@) (1= P)(Elex(i)]” = Pllwll%, ) — P*of illw
p(1 —2p)|Jwe]?

) (1= D)(07 ), + Pog lw°|*) — P*0f i l|w

p(1 —2p)[jwe]?

0”2

Q

o||2

=

(

Q

() 2

~

~ ol (75)

where in (a) we replace Ry from (20), in (b) we use the
relation from (28), and in (¢) we assume that the term (1 —
p)o ;. is sufficiently small compared to p(1 — 2p)a? ; [|w®||.
Therefore, in steady state, we set

K £ lim EX; ~ diag {07 1 Ins, .., 02 xInr } -

71— 00

(76)

C. Mean Stability Analysis
First note that, in steady state, from (64) and (76) we have

lim E(R.,; + pk;i_1) = 0. )

1—00

Now, since the variables uy ; and §;, ; are temporally white
and spatially independent, then the error vectors w, ; are
independent of uy, ; and &, ; for all j if k #  and for k = (£ if
7 <1 — 1. Therefore, taking expectation of both sides of (60)
for large enough 7 gives under the long-term approximations
of the previous section:

Ew; = AT [Ina — (1 — p) MR|Ew;_ 1,

This recursion is stable if the step sizes are sufficiently small
and satisfy

i>1. (78)

2
(1 - p))\max(Ru,k)
where Apax(-) denotes the maximum eigenvalue of its matrix

argument. In this case, the estimator becomes asymptotically
unbiased, i.e., lim;_,, Ew; = 0.

0 <y < (79)

D. Mean Variance Analysis

We rewrite (60) more compactly as

w; = B,w;—1 — Gs; — D;w? (80)
where
B, & AT Iy — M(Ri — pIKCiy))] (81)
D, & ATM['Re,i + pKCi_1] (82)
G2 AT M. (83)

The mean-square error analysis of the algorithm relies on
evaluating a weighted variance of the error vector. Let X
denote an arbitrary nonnegative-definite matrix that we are
free to choose. We express the weighted square measures on
both sides of (80) as
@[3, =|Biwi—1 — Gs; — Dywe]f3;
=w;_B;SBw;_1 + 5;GTEGs; + w D;SD;w?
- @i_lB:EgSZ‘ - sngEBiﬂ)i_l
—w;_1B;EYD;w; — w D} EBw; -1
+ 8]GYXDwl + wi*D;XGs,;. (84)

We now compute the expectation of both sides of (84) in
steady state. Since lim; .., Ew; = 0, Es; = 0, and w;_1
and s; are independent of each other, we get the following
results:
Ew; B;XGs; =0 (85)
Ew?*DIEGs; = 0 (86)
Jim By B.XDwl = lim E[E(@]_,B]SDils, )u

o

= lim Ew}_,[E(B;XD;|q, ,)]uw’
1—00

= lim E®]_, [EASD;Jw? + O(M?)
1— 00

~ lim E®]_, [EASD;]w?
1—> 00

~ 0,

87)



since from (77)

ED; =0, i> 1 (88)

Noting that the cross-terms are either zero or negligible under
expectation, we conclude from (80)—(87) that

lim E|w;|% = lim [E(w]_,B;SBw;_1)+ E(s;G"5Gs;)
71— 00 71— 00
+ ]E(wg*’DfZ’Dlwg)] (89)

We now evaluate the terms that appear on the right-hand side
of (89). The first term can be written as

lim E(w;_B;YBw;_1) = lim El|w;_ 1|2  (90)
11— 00 11— 00
where
¥ £ lim E(BLB;)
71— 00
=AY AT — (1 — p)RMASAT — (1 — p)AXAT MR
+O(M?), 1)
in view of the fact that
lim E(’f\’,l — pICZ,l) = (1 — p)R (92)

i—00
with R defined by (65). For sufficiently small step-sizes, the
term O(M?) in (91) is negligible and we set

Y = AXAT — (1 - p) RMATAT — (1 — p)AZAT MR.
93)

The second term on the right-hand side of (89) can be
calculated as
E(s;GT¥Gs;) = ETr(GTEGs;s7) = Tr(GTEGS).  (94)
Now it is clear from expression (56) that R.; depends on
random variables that are available at time ¢, while expression
(57) shows that /C;_; depends on different random variables
up to time ¢ — 1. Therefore, R.; and IC;,_; are independent
of each other. Then, the last term on the right-hand side of
(89) can be computed as follows:
lim E(w* D XD;w?)
71— 00
= lim [2pw*Re{ER; MASAT MIC;_ }uw?
1—00 ’
+ w*E(R; ;MASAT MR i )w?
+ PPwE(K;_  MASAT MK )w?]

W 90 R MASAT MR w?

+ lim w2*E(R} ;MASAT MR ;)w?

1—00
+ lim p*wS E[K;_  MASAT MIC; _1JwS.  (95)
1—> 00
In (a), we used the independence of R.; and IC,_; and the
fact from (77) that ER.; = —pEK;_1, ¢ > 1. In order to
obtain a more compact representation for the variance relation,
we use the following vector notation:

o=vec(X), o =vec(X'), (96)

where the vec operator vectorizes a matrix by placing its
columns on top of each other. We also use the following
Kroneceker product properties [37]:

vec(ABC) = (CT @ A)vec(B)

Tr(AB) = [vec(BT)]"vec(A). 97
Then, from (93) we can write
o' = Fo, (98)
where
FLAARA-(1-pAQRMA—-(1-p)RTMA® A.
99)
Likewise, we have
Tr(GT2GS) = Tr(2GSGT) = [vec(GSTGT) . (100)

In a similar manner, we can express the right-hand side of
(95) using the vec operator as follows:

lim E(w*D;XD;w?)

1—> 00

= 2Tr(SAT MR wlw?* R MA)
+Te(SATM lim E(Re jwiw? R ) MA)
+p?Tr(ZAT M Zlgglo E(K;_1wlw* ICE Y MA)
= —2[vec(AT MR w?w* R MA) T o
+ [vec(AT M lim E(R.jwiw R JMA)!] o

+ p?[vec(AT M _gn E(K;_1wlw? K] ) MA)T ] 6.

A1

(101)
It is noted that the quantity E(R. wiw¢*R; ;), in general,
does not have a closed form expression. We can approximate

it by means of ensemble averaging.
The last term on the right-hand side of (101) can be
approximated as follows. Let Q = w2w?* be a Hermitian
block matrix, whose (n,m) block is given by

Qpm = wow. (102)
The (n,m)-th block of IT can be obtained as follows:
Wy = B(GF,, (i — 1), m (i — 1))
= O mE(G,(i = 1)5,n(i = 1) (103)

From (42), we can write

Ten(D)Tem (1) =(1 — a3)°5¢ , (i = 1)3¢ (i — 1)
+ 039, (1)g,, (1)
+ 043(1 - a3)[b\'§,n(i - 1)gm(7')
+0¢ (i — Dg,, (i), (104)
In steady state, we have E&?n(i)&zm(i) = Eaén(i -

1)8’2m(i —1). We further benefit from the following approx-
imations for 7 > 1:

Elen(j)|*lem(0)|* ~ Elen (7)|*Elen (i)
Ellwn,i-1|?wm,i-1]* ~ [w’]*
EHwn,i—lH%ﬁ’n(i)”wm,i—ln%‘ﬁ'm(i) ~ HwOH%ﬂm”wO”%ﬂ,m'

(105)



We again use a first-order Taylor series expansion to approx-
imate the following terms as:

Eg,, ()9, (i) ~ Eg,,()Eg,, (i) % 0f .02, (106)
EG; (i — 1)g,,(i) ~ B¢, (i — 1)Eg,, (i) ~ 02,02 .-
(107)
Using the above expressions and (104), we obtain
(203 — a3)EG ()52 . (i) ~(205 — 03)07 ,02 - (108)

Hence, in steady state, the matrix II is approximated as

II ~ Kw®w®* K (109)
and in steady state, expression (95) is approximated as
lim E(wS*DiYDw?) = [vec(ZT)| "o (110)
1—00
where
Z2 AT MR ww* R MA
+ A" ME(R. jwlw?* R} ) MA. (111)

Referring back to (89), and using the notation ||z||2 inter-
changeably with ||z||%, we get

lim E||lw;||, = lim E||w;_1||rs + [vec(ZT + V)T o
1—> 00 1—> 00

(112)
where
Y £6sgT. (113)
It follows that
lim E||w;|(;-7)s = [vec(ZT +YT)]"o (114)

1— 00

Based on the variance relation (114), different quantities can
be computed. For example, we can evaluate the network
and individual mean-square deviation (MSDs), respectively,
defined as

N
Jlim ZEHwMHQ = lim Ell@;|%

=1

MSDnctwork AL

MSD; £ lim I[-EH'w;“H2 = lim E||wiHIk (115)
1—00 1— 00
where Z;, £ diag{0,...,0,Iy7,0,...,0}, with the identity
matrix appearing in the k—th block location.

In order to derive the network MSD from variance relation

(114), we select the weighting vector o such that

(I -F)o= %Vec(INM). (116)
Then, the network MSD can be calculated as
MSD etverk — %[Vec(ZT + YOI = F) vee(Inm).
(117)
Likewise, the individual MSD can be computed as
MSDy, = [vec(ZT + YI)NT(I — F) " tvec(Z).  (118)

V. DESIGN EXAMPLES

In this section, we evaluate the performance of the pro-
posed diffusion algorithm through computer simulations. In all
simulations, we consider the connected network of 7 agents
shown in Fig.1 and employ the uniform combination rule
agr = 1/|Ng| [57] and set the step-sizes across the agents
to a uniform value, p, = p. To evaluate the MSD, we run
400 experiments and compute the average MSD across these
experiments for different approaches.

Some distributed techniques that rely on EM techniques,
of the form studied in [60]-[62], have been proposed for
useful but different applications over sensor networks, such
as clustering or density estimation, but not for missing data
scenarios considered in this study. We therefore compare our
solution against centralized processing techniques. We also
mentioned earlier that the missing data model considered in
this paper is more general than the models investigated in the
missing data literature. Therefore, to assess the performance
of the proposed approach against existing techniques, first we
try to detect the missing position and then employ existing
techniques that require knowledge of these positions. Note that
the suggested approach in this section may not be optimal.
It may be possible to improve the performance of exiting
approaches if we pursue joint detection of the missing position
and the estimation of the unknown parameter vector rather than
follow the two-step procedure used in this section.

Suppose the j—th component of the regressor uy ; at the
k—th node at time i, denoted by 'u,fm, is missing. For such
a scenario, F; = diag{07...,fii, ...,0}. We define two
hypotheses Ho and #; as follows: ’

Ho :
Hl ‘u _?@ g {c,i
Since there are prior beliefs about Hy and H;, we consider
the Bayesian hypothesis testing approach to detect the missing
position [63]. That is, we should decide H; ( fj = 1) if the

likelihood ratio (LLR) test is larger than a threshold v as [64,
Ch. 3]:

(119)
(120)

uk?,_ukz

b

LLR 2 P, (uk z) Hi

St ) (121)
b

kv

P, (uk z)

where py, (ﬂfm) and py, (@ ;) are the probability density

functions under hypotheses Hy and H;, respectively.

In general, evaluating the decision rule in (121) might be
difficult. In this example, we assume that u;, , and &, ; are
normally distributed. Then, ’ ’

(uf,) ! P (122)
PH\UL ;) = ——= €Xp | — .
orTh, 2nR, k(4,7) 2Ry 1(4,7)
o 1 |ﬂii|2
le(ufc’i) = exp | = 3 (123)
1/277‘752,k O¢k

The LLR is accordingly given by

Ru,k(ja j)
Tk

LLR =

al P el
2Ru,k(ja j) 20’2]@



and the decision rule can be expressed as follows:

_j 1 1 | (1-p)*oZ,
|Uk"2 Ru,k(]h?) Ug7k1 ” log (ﬁgRu,k(ja]) . (125)
It is still seen that for evaluating the decision rule (125),
we need to know the variances R, i(j,j) and ag 5 To
make the detection approach feasible, we assume that a good
approximation for the ratio Ry, (7, 7) /02 . = T is available.
Note that for the proposed mATC algorithm, we do not need

to know the ratio ri. From (20), we have

My,
~ . - . 1 i i
(1= D) Run(f,J) + 9o ) = Rax(4, j) = My, ;uivi“kﬂ
(126)

where M}, is the number of measurements collected by node ..
Substituting R,, 1 (7, j) by rkagk in (126), we can approximate
the variance ag’ 4> denoted by ég’ &> @S

») L N
T V(TR ;ukuk (127
The variance R, ;(j,7) can be estimated as
Rui(5.3) = roi (128)

We note that the estimate of the variance og’ & in (127) needs
the ratio r; to be known and also the estimate is based on a
batch processing.

Once the missing positions have been identified, we then
apply two state-of-the-art centralized techniques to centrally
estimate the unknown vector w. In the first approach, the
detected missing position is filled by the mean of the data and
then a least-squares construction is applied (Imput-LS). For
details on this approach, the reader may refer to [65]. In the
second approach, we obtain the maximum likelihood estimator
(MLE) assuming known distributions for the regressor and
perturbation vy (7). The details of the MLE for missing data
can be found in [4], [21], [65], [66].

Remark 4: The two-step approach above may not be an
optimal implementation for the centralized solution. It may
be possible to develop more efficient centralized algorithms
based, for example, on the EM algorithm and mixture models
[24]-[26], [67], [68]. It is noted that if a mixture model for
the missing data in (3) is considered, then a large number of
components may be needed.

In the first simulation, we assume a Gaussian distribution
for the process noise, vy (i) ~ N(0,02,) with o2, = 0.01.
The regressor uy; has Gaussian distribution with diagonal
covariance matrix, R, = diag{1,1.6,0.8,0.95,1.2}. The
probability of missing is set to p = 0.3 or p = 0.4, which
is assumed to be known in advance. We set the unknown
vector w® = [1, —0.5, 1.2, 0.4, 1.5]T. We also assume that
&; ~ N(0,0Z,) with variances oF | = 0.02, 07, = 0.44,
0273 = 0.04, 05’4 = 0.09, 025 = 0.15, a?_ﬁ = 0.26, and
o¢ 7 = 0.13. The step size p is set to 0.04 for every node.
In the simulation, we assume that the first component of the
regressor is missing. In this simulation, the recursions for
estimating the variance O’%k, i.e., Egs. (39)—(42), start after

Fig. 1. Topology of the network used in the simulations.

50 iterations (z = 50) of Eqgs. (37)-(38). We set a1 = g =
az = 0.01.

Figures 2(a) and 2(b) show the MSD learning curves for
different approaches for p = 0.3 and p = 0.4. As it is
observed, the mATC shows a promising performance com-
pared to centralized approaches. As the probability of missing
increases, the proposed mATC considerably outperforms other
approaches. The reason is that the error of missing position
detection will increase as the probability of missing increases.
Therefore, the performance of centralized approaches will be
degraded more with increasing the probability of missing p.

In the next sections, we consider two specific applications.

A. Household Consumption

In this section, we evaluate the performance of the proposed
algorithm for a household consumption application. Household
consumption depends on a number of parameters such as
income, wealth, family size, and retirement status [6]. It is
assumed that the wealth variable is missed in the survey. We
consider the following log model for household consump-
tion [6], [69]:

In ey, (i) =a + (Inly,;) 61 + (Inmy ;) Bz + (Inmy ;)53
+ t,i 04 + vi (i) (129)

where « is Incg (i) intercept, ¢k (i) is the consumption of
household k at time ¢, I, ; is the total wealth, which is assumed
to be censored, mzl is the permanent part of the income (a
long-term measurement of average income that depends on a
number of parameters such as family income and education)
[69]-[73], ti; refers to the retirement status and family size.
The modeling error €4 (i) is assumed to be zero-mean. In a
manner similar to [6], we only consider the first 4 components
of the regressor, i.e., we set 54 = 0. As suggested by the earlier
Remark 1, we subtract the mean of the measurements, which
is given by

E(Incg (i) =a+ E(lnly ;)81 + E(In miﬁi)ﬁz
+ E(Inmg, ;)3 + Etg i

from both sides of (129) and arrive at the model

d, (i) = uj jwe + i (i) (130)
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Fig. 2. The MSD learning curves for different diffusion algorithms at node
1 for (a) p = 0.3 and (b) p = 0.4.

where

we = [B1 B2 Bs]"
di.(i) = Incy (i) — E (In cx (i)

uf; = [Inly, Inmy ; Inmg ;]

(131)

Inmi ;] - E[lnly; Inmj,

Using a complete set of data, the authors in [6] reported
the estimate @, = [0.054, 0.182, 0.204]7 for the unknown
parameters. We generate data according to w, and assume that
the regressor uy, ; has Gaussian distribution. We model v ()
by a zero-mean Gaussian random variable. We further assume
that the log of wealth is randomly missed and we consider a
uniform distribution over [—g, g] for the missing variable, thus
02 » = °/3. In the simulation, we use ¢ = 0.5. In the survey,
it has been observed that approximately 30% of total wealth,
including housing and stock market, is censored [6], i.e., p =
0.3. In the simulation, we use i = 0.025. The updating step
for estimating the variance 05 & 18 executed from the beginning
i = 1. We also set oy = ao = 0.001, and a3 = 0.0001.

To derive a decision rule for this example, we first consider

Fig. 3. Decision regions and scaled probabilities with prior beliefs about Hg
and Hj.

two distributions under hypotheses Hg and H1:

| 1 Rl
P, (uy);) = exp v 132
o\, 27 Rye 1 (7, J) 2R (3,4)
, L if lay)] <
ey L 50 1 q 133
p?—tl(uk,z) { 0, otherw1se (59

In the scenario for |@) .| < g the LLR is obtained as
|,a5j'|2

— | gl <
2meUJJ =
(134)

271—Ruc,k(j7j)
2q

LLR =

Since ¢ and Ry x(j,j) are unknown a priori, we need to
approximate them from the data. Similar to the previous case,
we assume a good approximation of the ratio 7y, is available
that helps us to obtain estimates of ¢ and IR,.; similar to
(127)—(128). Then, we find an estimate for g as

M;,

E u('_] —C]*.

Using (134) and (121), we obtain the following decision
rule:

(135)

My ((1 = Dp)ri + D)

2(1-D)q

P/ 27 Rue (4. 9)

(136)

. . ~ Cei 2HL A~ L.
if |u?m.\ <q: |uzj’l > 2Rye (4, j) log

where we replaced Rye (j, j) and g, respectively, by their
estimates Ruc (4, 9) and §. Figure 3 shows an example of two
distributions scaled by p and (1 — p) and the corresponding
decision regions.
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Fig. 4. The MSD of different algorithms for the household data for node 1.

Figure 4 shows the MSDs of the estimators for the house-
hold consumption data. As it is observed, the proposed mATC
shows comparable performance with the centralized approach.

B. Mental Health Survey

In the last simulation, we consider the following model,
motivated by a mental health survey study run by various
companies [65], [74]:

di(i) = B+ g w+ (i), i=12,...,N  (137)

where dy (i) is the square root of the total depression score
for every individual i, 3 is the d}(i) intercept, uy,; denotes
the regressor (covariate) for every individual 4, and v (¢) is
the modeling error. Index k refers to the company index and %
is used for participant’s index. The elements of uy, ;, defined
in [74] are shown in Table I and they include variables such
as income, age, and martial status.

The square root of the total depression score d (i) is mea-
sured based on individual answers to 20 questions regarding
feeling about depression [74]. For example, the answer to the
second question “I felt depressed” can be a number between
0 and 3; O for less than 1 day feeling, 1 for one to two days, 2
for occasionally or a moderate amount of time (3 to 4 days),
and 3 for most of the time (5 to 7 days) [74].

We apply the least squares technique to a subset of the
data provided in [74] to find an estimate for [@ @] in (137)
as [a w?] = [0.1,0.27,—0.03, —0.06, 0.13,0.73, —0.28, 0.22].
We then use the estimate for @ to generate zero-mean square
root total depression scores as follows. Again, as indicated by
the earlier Remark 1 and similar to the previous application,
we modify the model of (137) as follows. Consider the mean
of both sides of model (137), which is given by

Edy (i) = fo + (Bt )w, (138)

then, we subtract the above mean from both sides (137) to get
di(i) £ di (i) — Edy (i)

—upw+vp(i), i=1,2,...,N, (139)
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Fig. 5. The MSD of different approaches for the mental health survey data
for node 1.

where uy; = ur,; — Euy,; is a zero-mean random vector.
To generate uy ;, we uniformly generate the regressor uy ;
according to Table I and then subtract the mean. We further
assume that the income is missed with probability 0.3 in the
simulation study. We consider a zero-mean Gaussian distribu-
tion with variance 0.004 for missing parts, i.e., ogk = 0.004.

The covariance matrix of the discrete regressor uy, ; is given
by

Ry, = diag{0.25,252,2,2.967,0.11,1.25,4}.  (140)

The algorithm needs a smaller step size than the one in the
previous simulation to converge due to the largest eigenvalue
of the covariance matrix in (140). In the simulation, we set y =
0.0025. We assume a Gaussian distribution for measurement
noise, vy (i) ~ N(0,07 ;) with o7 ; = 0.01. In this scenario,
the updating for the estimate of variance &z’ i (7) starts from the
beginning ¢ = 1. Hence, the proposed algorithm is expected
to have a slower convergence rate at smaller step-sizes. We
set v = g = a3 = 0.0001.

Figure 5 shows the MSDs of different approaches for mental
health survey. As it is observed the proposed mATC approach
shows promising results compared to centralized techniques.
One way to improve the convergence rate is to estimate the
curvature information of the cost function and modify the
update step (37) based on the curvature information. Finally,
Table II shows the estimate of the variance ag i at different
nodes in steady state. It is seen that every node can obtain a
good estimate for ag i using the proposed mATC algorithm.

VI. CONCLUSIONS

In this paper, we examined the estimation of an unknown
vector over a connected network of agents, with each agent
subjected to a stream of data with incomplete regressors. We
have shown that the estimator in general is biased; hence, we
have modified the cost function by a (de)regularisation term
to mitigate the bias and obtained a distributed approach based
on diffusion adaptation techniques. We have also suggested
a technique to estimate the (de)regularization term from the



TABLE I

DEPRESSION COVARIATE FOR THE -TH INDIVIDUAL AT THE k—TH COMPANY (’L’Zk,z =

~1 ~2 -3 ~4 ~5 ~6 ~7
[uk,iruk,ivuk,ivuk,iruk,ivuk,ivuk,iD [74].

Covariate [

Range

Gender: ﬁllm’
Age in year: ﬁi’i
Marital: ﬁz’i
Education: ﬁi,i

Log of Income: ﬁz’i
Religion: 'Egyi
Employment: @, ,;

=1 if the i-th responder is male; =2 for the female
19,20,...,73

master’s degree; =7 finished doctorate
log 4000 to log 55000

=1 Protestant; =2 Catholic;
=1 full time; =2 part time;

=3 Jewish; =4 none; =5 other
=3 unemployed; =4 retired; =5 houseperson; =6 in school; =7 other

=1 never married; =2 married; =3 divorced;=4 separated; =5 widowed
=1 less than high school; =2 some high school; =3 finished high school; =4 some college; =5 finished bachelor’s degree; =6 finished

TABLE I

ESTIMATES OF VARIANCE 02 . IN DIFFERENT NODES FOR THE MENTAL

HEALTH SURVEY DATA.élz'HE TRUE VALUE OF THE VARIANCE IS
0Z = 0.004.

Node 1 | Node 2 | Node 3 [ Node 4 [ Node 5 [ Node 6 | Node 7 |

[0.0047 | 0.0046 | 0.0048 | 0.0049 | 0.0046 | 0.0049 | 0.0047 |

data. We have studied the performance of the proposed al-
gorithm under some simplifying assumptions and considered
two applications in mental health and household consumption
surveys. Simulation results show a comparable performance
compared to existing centralized approaches based on impu-
tation techniques.
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