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Diffusion Estimation Over Cooperative Multi-Agent
Networks With Missing Data

Mohammad Reza Gholami, Member, IEEE, Magnus Jansson, Member, IEEE,
Erik G. Ström, Senior Member, IEEE, and Ali H. Sayed, Fellow, IEEE

Abstract—In many fields, and especially in the medical and
social sciences and in recommender systems, data are gathered
through clinical studies or targeted surveys. Participants are
generally reluctant to respond to all questions in a survey or they
may lack information to respond adequately to some questions.
The data collected from these studies tend to lead to linear
regression models where the regression vectors are only known
partially: some of their entries are either missing completely
or replaced randomly by noisy values. In this work, assuming
missing positions are replaced by noisy values, we examine how
a connected network of agents, with each one of them subjected
to a stream of data with incomplete regression information, can
cooperate with each other through local interactions to estimate
the underlying model parameters in the presence of missing
data. We explain how to adjust the distributed diffusion through
(de)regularization in order to eliminate the bias introduced by
the incomplete model. We also propose a technique to recursively
estimate the (de)regularization parameter and examine the per-
formance of the resulting strategy. We illustrate the results by
considering two applications: one dealing with a mental health
survey and the other dealing with a household consumption
survey.

Index Terms– Missing data, linear regression, mean-square-
error, regularization, distributed estimation, diffusion strategy.

I. INTRODUCTION

In data gathering procedures through clinical studies or
targeted surveys, it is common that some components of the
data are missing or left unobserved. For example, in a clinical
study, a participant may be reluctant to answer some questions
or may drop out of the survey and never return it [2]. Likewise,
in a recommender system using content based filtering [3], a
participant may prefer to leave some questions unanswered.
The phenomenon of missing data is prevalent in many fields
including the social sciences, medical sciences, econometrics,
survival data analysis, and machine learning [2], [4]–[11].
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In general, three patterns are considered for missing data:
missing at random (MAR), missing completely at random
(MCAR), and missing not at random (MNAR) [12]–[14]. In
MAR patterns, the probability of missing a variable in data
gathering is related not only to the value of the variable but
also to some other measured variables [2]. In comparison,
in MCAR scenarios, the probability of missing a variable is
solely related to the value of that variable [12]. For example,
if an observation is below a threshold, it may not be observed.
In MNAR, the probability of missing depends on unobserved
values. For example, in a cancer trial some patients may be
feeling weak and unable to participate in the study [2]. In
general it may not be easy to verify which pattern of missing
is happening for a study. For a survey on different missing
patterns, the reader may refer to, e.g., [2, Ch. 1] and the
references therein.

There have been many studies on inference problems for
missing data with several useful techniques proposed to ad-
dress the challenges associated with censored data. Many of
the approaches are based on heuristic methods, as already
noted in [15]. There are broadly two classes of techniques
to deal with estimation in the presence of missing data: impu-
tation and deletion (listwise or pairwise) [2], [10], [16]–[20].
If the positions of the missing data are known in advance, then
they can either be replaced by some deterministic or random
values (sometimes called single or multiple imputation), or the
corresponding data can be removed from the dataset altogether.
Removing data generally leads to performance degradation,
although this practice is accepted in some statistical software
packages, e.g., SAS, SPSS, GAUSS, and CDAS, mainly
because of ease of implementation. In contrast, data imputation
results in biased estimates [6], [14], [16], [19]. For a discussion
on different types of deletion and imputation in missing data
analysis, see [2, Ch. 2].

When data imputation is assumed, one may resort to a max-
imum likelihood procedure to estimate the missing data if the
distribution of the data happens to be known beforehand [21],
[22]. For example, the expectation-maximization (EM) tech-
nique provides one useful solution method [9]. However, the
EM implementation tends to be computationally intensive and
can suffer from convergence issues [23]. If the positions of
the missing data are unknown, a mixture model may be used
to describe the data model [24] and the EM algorithm can be
subsequently applied to estimate the missing data [25], [26].
However, the number of components can become large in high
dimensions. For other possible recovery techniques including
ordinary least-squares, inverse probability weighting, and fully
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Bayseian methods, the reader may refer to, e.g., [4], [27]–[30].
In this work, we examine how a connected network of

agents, with each one of them subjected to a stream of data
with incomplete regression information, can cooperate with
each other to estimate the underlying model parameters in
the presence of missing data. In particular, we assume that
some entries of the regressor can be missed according to
the MCAR pattern, where the missing data are replaced by
random entries. Note that for nonstreaming data, there are
various techniques in the literature [31]–[33] to handle an
inference problem. These techniques are useful if agents are
able to collect the data and save them in buffers for batch or
centralized processing.

Indeed, one of the main approaches used in the literature
to address estimation in the presence of missing data relies
on centralized solutions, where the data is collected centrally
and processed by a fusion center. This approach has the
disadvantage of requiring a large amount of energy and
communication and may limit scalability and robustness of
the network. There are many situations, however, where the
data is already available in a distributed manner (e.g., separate
clinics collect surveys from their patients independently of
each other). Moreover, in many of these cases, privacy and
secrecy considerations may prevent the clinics or survey-
collectors to share or transmit the data to a central location.
In these situations, it is preferable to process the data in a
distributed manner. In this approach, only estimates of the
unknown parameter model, and not the raw collected data, are
exchanged between neighboring nodes. This paper focuses on
this approach and develops a distributed strategy for handling
missing data from results collected at dispersed locations. One
of the key challenges is to infuse the distributed procedure with
a mechanism to combat the bias that results from the presence
of censored data.

For this purpose, we shall rely on the idea of diffusion
adaptation [34]–[38] to design a fully distributed algorithm
that is able to adapt and learn from streaming data. Useful
consensus strategies can also be employed [31], [39]–[43].
We focus on diffusion strategies in this work due to their
proven enhanced stability ranges and improved mean-square-
performance properties over consensus networks when con-
stant step-sizes are employed for continuous adaptation and
learning [35]–[37], [44]; consensus networks are sensitive to
the network topology and their state error vectors can grow
unbounded when constant step-sizes are used. We will explain
how to adjust the diffusion strategy through (de)regularization
in order to eliminate the bias introduced by imputation. We
will examine the stability and performance of the proposed
algorithm and provide computer simulations on two applica-
tions: one dealing with a mental health survey and the other
dealing with a household consumption survey.

Notation. We use lowercase letters to denote vectors, up-
percase letters for matrices, plain letters for deterministic
variables, boldface letters for random variables. We use � and
⊗ for the Hadamard (elementwise) and Kronecker products,
respectively. In addition, diag{x1, . . . , xN} denotes a diagonal
matrix with diagonal elements x1, . . . , xN . We use col{a, b}
to represent a column vector with entries a and b, while IM

and 0M denote the M×M identity and M×M zero matrices.
We use λi(A) to denote the i−th eigenvalue of matrix A. The
i−th and j−th entry of a matrix A is represented by A(i, j).

II. PROBLEM STATEMENT

Consider a connected network with N agents. Each agent
senses a stream of wide-sense stationary data {dk(i),uk,i}
that satisfy the linear regression model:

dk(i) = uk,iw
o + vk(i), k = 1, . . . , N (1)

where k is the node index and i is the time index. The
row vector uk,i denotes a zero-mean random process with
covariance matrix Ru,k = Eu∗k,iuk,i > 0, while vk(i) is a
zero-mean white noise process with variance σ2

v,k. The column
vector wo ∈ RM is the unknown parameter that the network
is interested in estimating.

Remark 1: Sometimes, as illustrated by the examples dis-
cussed later in Sec. V, we may encounter data models of the
form

d̄k(i) = α+ ūk,iw
o + vk(i), k = 1, . . . , N (2)

where α is some deterministic intercept value, and ūk,i is a
row vector with nonzero mean. This model can still be reduced
to (1) by subtracting the mean of the measurement from both
sides of (2).

Assumption 1: Continuing with model (1), we assume
that the regression and noise processes are each spatially
independent and temporally white. In addition, we assume that
u`,i and vk(j) are independent of each other for all `, i, k, and
j. �

In this study, we examine the situation in which some entries
in the regression vectors may be missing completely at random
due to a variety of reasons, including incomplete information
or censoring. We denote the incomplete regressor by ūk,i and
express it in the form:

ūk,i = uk,i(IM − F k,i) + ξk,iF k,i (3)

where F k,i = diag
{
f1
k,i, . . . ,f

M
k,i

}
consists of random in-

dicator variables, f jk,i ∈ {0, 1}. Each variable f jk,i is equal
to one with some probability p < 1 and equal to zero with
probability 1−p. The value of p represents the likelihood that
the j−th entry of the regression vector uk,i is missing at time
i. In that case, the missing entry is assumed to be replaced by
an entry from the zero-mean perturbation (row) variable ξk,i.

The model considered in (3) encompasses different types
of censoring such as left censoring, right censoring, interval
censoring, and random censoring [45]–[47].1 In the missing
data literature, the position of missing data is often assumed
to be known in advance [16]. In general, both scenarios
with known and unknown missing positions may happen in
practice. For example, a participant in a survey may leave a
question unanswered (known missing position), or may report
a wrong value (unknown missing position since the true value
is intentionally replaced by a wrong value); the latter may be

1In econometrics, the use of the “coded” terminology (such as top-coded
and bottom-coded) is more common than censoring [6], [48].
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considered an outlier although usually an outlier is defined as
a measurement that is distant from other measurements. For
a known missing position, the imputation technique can then
be used to fill the position of data left unobserved yielding a
modified data model. If the analyst for the modified model is
not aware of the imputed position, we can still consider model
(3) with the assumption that the imputer and the analyst are
different and do not exchange information about the missing
position.

Remark 2: Model (3) is sometimes referred to as a mixture
model in the literature [26], [49]–[51]. In such models, it is
mainly assumed that the components follow Gaussian distri-
butions with different means or variances (or both). However,
in this study, we have no particular assumptions about the
distribution of the components or their first and second-order
moments. For mixture model approaches, if the distribution of
the data deviates from the normal distribution, a large number
of Gaussian components is then mixed to model the missing
data [52], [53]. In these cases, the design of the algorithms
can become more challenging.

Assumption 2: We assume that the random variables
uk,i,f

j
k,i, and ξk,i are independent of each other. We

also assume that the random process ξk,i is temporally
white and spatially independent with covariance matrix
E ξ∗k,iξk,i = σ2

ξ,kIM . �
From model (1), the minimum mean-square-error (MMSE)

estimate of the unknown vector wo based on the data collected
at node k is given by [54]:

wok = R−1
u,k rdu,k (4)

where

rdu,k , Edk(i)u∗k,i. (5)

It is easy to verify from (1) that wok = wo so that the MMSE
solution allows node k to recover the unknown wo if the actual
moments {Ru,k, rdu,k} happen to be known. The resulting
mean-square-error is [54]:

Jk,min , Jk(wok) = E|dk(i)− uk,iwok|2

= σ2
d,k − r∗du,kR−1

u,krdu,k

= σ2
v,k. (6)

Let us now investigate the estimate that would result if we
use instead the censored regressor, ūk,i. The estimate in this
case is given by

w̄ok = R−1
ū,k rdū,k (7)

with the covariance matrix Rū,k computed as

Rū,k , Eū∗k,iūk,i
(a)
= E{(I − F k,i)Ru,k(I − F k,i)}+ σ2

ξ,kE{F
2
k,i}

= Ru,k − P1 �Ru,k + pσ2
ξ,kIM

, Ru,k +Rr,k (8)

where in (a) we used the independence of uk,i and ξk,i
(Assumption 2) and where the matrix Rr,k is defined as

Rr,k , −P1 �Ru,k + pσ2
ξ,kIM (9)

in terms of

P1 , (2p− p2)1M1
T
M − (p− p2)IM . (10)

Here, we are using the notation 1M to denote the M -column
vector with all its entries equal to one. Likewise, the cross
correlation vector rdū,k in (7) is given by

rdū,k , Edk(i)ū∗k,i

= Edk(i)(I − F k,i)u∗k,i + Edk(i)F k,iξ
∗
k,i︸ ︷︷ ︸

=0

= (1− p)rdu,k. (11)

We assume that the perturbed matrix Rū,k remains invertible.
Applying the matrix inversion lemma [55] to (8), we can relate
w̄ok from (7) to wok from (4) as follows:

w̄ok = (IM −Qk)(1− p)wo (12)

in terms of the matrix

Qk , R
−1
u,kRr,k(IM +R−1

u,kRr,k)−1. (13)

It is observed from (12) that the new estimate is biased relative
to wo. It is also obvious that the mean-square-error that results
from using (7) is lower bounded by Jk,min from (6), i.e.,

Jmiss,k , Jk(w̄ok) ≥ Jk,min. (14)

To mitigate the bias problem, we extend a construction
used in [56] in a different context and associate an alternative
(de-)regularized quadratic cost with each agent k, defined as
follows:

J ′k(w) , E|dk(i)− ūk,iw|2 − ‖w‖2Tk
(15)

where Tk is a symmetric matrix to be chosen. The stationary
point of (15) is easily seen to occur at the following location,
where we again assume that the coefficient matrix (Rū,k−Tk)
is invertible as needed:

w̄ok = (1− p)(Rū,k − Tk)−1rdu,k. (16)

Therefore, if we refer to (8) and (9), we observe that if we
select Tk as

Tk = pRu,k +Rr,k

= (p− p2)IM �Ru,k + pσ2
ξ,kIM − (p− p2)Ru,k (17)

then the solution w̄ok from (16) will agree with the unbiased
original estimate wok from (4), i.e., w̄ok = wok.

Now note that since p − p2 is nonnegative for 0 ≤ p <
1, the matrix Tk in (17) is seen to be the difference of two
nonnegative definite matrices. Therefore, Tk is in general sign
indefinite. More importantly, if the de-regularization matrix
Tk is selected as in (17), the cost function in (15) becomes
strongly convex with a unique minimizer. This is because the
Hessian matrix of J ′k(w) relative to w is positive-definite since

∇2
wJ
′
k(w) = 2(Rū,k − Tk) = 2(1− p)Ru,k > 0 (18)

for 0 ≤ p < 1.
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III. ADAPTIVE DISTRIBUTED STRATEGY

In this section, we develop a distributed strategy to recover
wo from missing data by relying on the modified local
cost (15). For the remainder of the paper, we represent the
covariance matrix of the regression data in the following form.

Assumption 3: The covariance matrix Ru,k is
diagonal, which is satisfied if the entries of the
regression vector uk,i are uncorrelated with each
other. �
Under Assumption 3, it holds that

Rr,k = −pRu,k + pσ2
ξ,kIM (19)

Rū,k = (1− p)Ru,k + pσ2
ξ,kIM (20)

Tk = pσ2
ξ,kIM (21)

where Tk is now nonnegative-definite. We shall first assume
that the parameters p and σ2

ξ,k are known. Later, we estimate
σ2
ξ,k from the data, assuming an estimate for p is available

(a condition that is generally satisfied in practice — see Sec.
V-A where experimental settings are described).

To develop a distributed algorithm, we let Nk denote the
set of neighbors of agent k. The network then seeks to solve:

min
w∈RM

N∑
k=1

J ′k(w). (22)

Following arguments similar to [36], [37], we can derive the
following modified Adapt-then-Combine (mATC) diffusion
strategy for the case of missing data:

ek(i) = dk(i)− ūk,iwk,i−1

φk,i = (1 + µkpσ
2
ξ,k)wk,i−1 + µkū

∗
k,iek(i)

wk,i =
∑
`∈Nk

a`kφ`,i

(23)

where µk is a small step-size parameter and the convex
combination coefficients {a`k} satisfy [36], [37], [57]:

a`k ≥ 0,
∑
`∈Nk

a`k = 1, a`k = 0 if ` /∈ Nk. (24)

A. Estimation of Regularization Parameter

The distributed algorithm (23) requires knowledge of the
censoring noise variance, σ2

ξ,k. We now suggest one way to
estimate this noise power. From (3), we write

uk,i = ūk,i + uk,iF k,i − ξk,iF k,i, (25)

and use this relation to re-write the measurement model (1) in
terms of ūk,i as follows:

dk(i) = ūk,iw
o + (uk,i − ξk,i)F k,iwo + vk(i). (26)

It is seen from (26) that

E|dk(i)− ūk,iwo|2 = E|(uk,i − ξk,i)F k,iwo|2 + σ2
v,k, (27)

and, hence

Jk,min , σ
2
v,k

= E|dk(i)− ūk,iwo|2 − E|(uk,i − ξk,i)F k,iwo|2

= E|dk(i)− ūk,iwo|2 − p‖wo‖2Ru,k
− pσ2

ξ,k‖wo‖2.
(28)

After a sufficient number of iterations, and for sufficiently
small step-sizes, the estimate wk,i in (23) is expected to
approach the global minimizer of (22), which we already know
is wo [37]. If we therefore replace wo by wk,i−1 in (28) we
get for i� 1:

Jk,min ≈ E|ek(i)|2 − p‖wk,i−1‖2Ru,k
− pσ2

ξ,k‖wk,i−1‖2.
(29)

It is still not possible to estimate σ2
ξ,k directly from (29) since

the expression depends on Ru,k and p. Suppose, as indicated
earlier, that an estimate for p is available, say, p̂ < 1. This is
a reasonable assumption since in many situations in practice,
it is generally known what percentage of the data is corrupted
(as illustrated by the examples in Sec. V). From (20), we can
then estimate Ru,k by writing:

Ru,k ≈
1

1− p̂
Rū,k −

p̂

1− p̂
σ2
ξ,kIM . (30)

Substituting into (29) and solving for an estimate for σ2
ξ,k we

obtain

σ̂2
ξ,k ≈

(1− p̂)E|ek(i)|2 − p̂‖wk,i−1‖2Rū,k
− (1− p̂)σ2

v,k

p̂(1− 2p̂)‖wk,i−1‖2

(a)
≈

(1− p̂)E|ek(i)|2 − p̂‖wk,i−1‖2Rū,k

p̂(1− 2p̂)‖wk,i−1‖2
(31)

where in (a) we assumed that the noise variance, σ2
v,k, is

sufficiently small compared to ‖wk,i−1‖2Rū,k
. Since E|ek(i)|2

and the diagonal matrix Rū,k are unknown, we estimate them
by means of smoothing filters from data realizations:

R̂ū,k(i) = (1− α1)R̂ū,k(i− 1) + α1(ū∗k,iūk,i)� IM (32)

σ̂e,k(i) = (1− α2)σ̂e,k(i− 1) + α2|ek(i)|2 (33)

gk(i) =
(1− p̂)σ̂e,k(i)− p̂‖wk,i−1‖2R̂ū,k(i)

p̂(1− 2p̂)‖wk,i−1‖2
(34)

σ̂2
ξ,k(i) = (1− α3)σ̂2

ξ,k(i− 1) + α3gk(i) (35)

where 0 < αm � 1, for m = 1, 2, 3. To prevent large
fluctuations in estimating σ̂2

ξ,k(i), we also use a smoothing
filter for updating σ̂2

ξ,k(i) in (35). Since the covariance
matrix of the regressor is assumed to be diagonal, we use
the Hadamard product in (32). It is noted that the algorithm
does not require knowledge about the statistics of the data,
e.g., the correlation matrices are assumed to be unknown.
The resulting diffusion algorithm, henceforth called modified
ATC (mATC), is listed in Algorithm 1.

It is clear from the listing of the algorithm that the operation
of the diffusion strategy (37)–(38) is coupled to steps (39)–(42)
for estimating σ2

ξ,k. Proper operation of the algorithm requires
a reliable estimate for σ2

ξ,k. There are at least two ways to
assist in this regard. One way is to use a small step-size α3

in (42). A second way is to first run a few iterations of the
standard diffusion algorithm without bias correction, i.e.,

φk,i = wk,i−1 + µkū
∗
k,i[dk(i)− ūk,iwk,i−1]

wk,i =
∑
`∈Nk

a`kφ`,i (43)
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Algorithm 1 Modified diffusion algorithm (mATC) for miss-
ing data

ek(i) , dk(i)− ūk,iwk,i−1 (36)

φk,i = (1 + µkpσ̂
2
ξ,k(i− 1))wk,i−1 + µkū

∗
k,iek(i)

(37)

wk,i =
∑
`∈Nk

a`kφ`,i (38)

R̂ū,k(i) = (1− α1)R̂ū,k(i− 1) + α1(ū∗k,iūk,i)� IM
(39)

σ̂e,k(i) = (1− α2)σ̂e,k(i− 1) + α2|ek(i)|2 (40)

gk(i) =
(1− p̂)σ̂e,k(i)− p̂‖wk,i−1‖2R̂ū,k(i)

p̂(1− 2p̂)‖wk,i−1‖2
(41)

σ̂2
ξ,k(i) = (1− α3)σ̂2

ξ,k(i− 1) + α3gk(i) (42)

and then switch to the censored version shown in the above
listing. In the simulations section we illustrate both scenarios.

Remark 3: Since the estimate for σ̂2
ξ,k(i) in (42) needs to

be nonnegative, we can modify (41) to

gk(i) = max

{
(1− p̂)σ̂e,k(i)− p̂‖wk,i−1‖2R̂ū,k(i)

p̂(1− 2p̂)‖wk,i−1‖2
, 0

}
.

(44)

IV. PERFORMANCE ANALYSIS

A. Error Dynamics

We associate with each agent the error vectors

φ̃k,i , w
o − φk,i (45)

w̃k,i , w
o −wk,i. (46)

Now, if we subtract wo from both sides of (37) and (38) and
replace dk(i) by (26), we obtain

φ̃k,i =(1 + µkpσ̂
2
ξ,k(i− 1))w̃k,i−1 − µkpσ̂2

ξ,k(i− 1)wo−
µkū

∗
k,i(ūk,iw̃k,i−1 + (uk,i − ξk,i)F k,iwo + vk(i))

(47)

w̃k,i =
∑
`∈Nk

a`kφ̃`,i. (48)

We collect the errors from across the network into the block
vectors:

φ̃i , col{φ̃1,i, · · · , φ̃N,i} (49)

w̃i , col{w̃1,i, · · · , w̃N,i} (50)

and note from (47)–(48) that they satisfy the following recur-
sions:

φ̃i = [INM −M(R̄i − pKi−1))]w̃i−1 −Msi−
M(Re,i + pKi−1)woe (51)

w̃i =AT φ̃i (52)

where we introduced the quantities:

woe , 1N ⊗ wo (53)

A , A⊗ IM (54)

R̄i , diag{ū∗1,iū1,i, ū
∗
2,iū2,i, . . . , ū

∗
N,iūN,i} (55)

Re,i , diag
{
{ū∗k,i(uk,i − ξk,i)F k,i}k=1,...,N

}
(56)

Ki−1 , diag
{
σ̂2
ξ,1(i− 1)IM , . . . , σ̂

2
ξ,N (i− 1)IM

}
(57)

M , diag{µ1IM , µ2IM , . . . , µNIN} (58)

si , col{ū∗1,iv1(i), . . . , ū∗N,ivN (i)} (59)

where the matrix A is left-stochastic, i.e., AT1M = 1M , with
its (`, k) entry equal to a`k. If we now combine (51) and (52)
we find that w̃i evolves according to the following dynamics:

w̃i = AT [INM −M(R̄i − pKi−1)]w̃i−1 −ATMsi

−ATM(Re,i + pKi−1)woe (60)

From the definitions in (55), (56), and (59), we get

Esi = 0 (61)

S , Esis∗i = diag{σ2
v,1Rū,1, . . . , σ

2
v,NRū,N} (62)

R̄ , ER̄i

= diag{Rū,1, . . . , Rū,N}
= (1− p)R+ pdiag{σ2

ξ,1IM , . . . , σ
2
ξ,NIM} (63)

Re , ERe,i = −p diag{σ2
ξ,1IM , . . . , σ

2
ξ,NIM} (64)

where

R , diag{Ru,1, . . . , Ru,N} (65)

and where we used the following result to computeRe in (64):

Eū∗k,i(uk,i − ξk,i)F k,i
= E{[(IM − F k,i)u∗k,i + F k,iξ

∗
k,i](uk,i − ξk,i)F k,i}

= E{(IM − F k,i)Ru,kF k,i︸ ︷︷ ︸
=0

} − σ2
ξ,kEF

2
k,i

= −pσ2
ξ,kIM . (66)

B. Long-Term Approximations

It is clear from (39)–(42) that the operation of the diffusion
strategy (37)–(38) is coupled with the estimation of the noise
power σ2

ξ,k. This is because the estimate σ̂2
ξ,k(i) in (42) is

dependent on wk,i−1. This coupling makes the performance
analysis of the algorithm rather challenging. Since we are
mainly interested in assessing the performance of the solution
in the infinite-horizon after sufficient iterations have elapsed,
and after the algorithm has been given sufficient time to learn,
we are going to proceed from this point onwards under the
assumption that i � 1 and that the smoothing filters (39)–
(42) have approached steady-state operation. Specifically, in
steady state, i.e., for i → ∞, taking the expectation of both
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sides of Eq. (39) and considering (1 − α1)i → 0 for i � 1,
we obtain:

ER̂ū,k(i) =

i∑
j=0

α1(1− α1)i−jE(ū∗k,jūk,j)� IM

= α1
1− (1− α1)i+1

1− (1− α1)
Rū,k � IM

→ Rū,k, i� 1 (67)

so that R̂ū,k tends on average to the true value Rū,k. Similarly,
for Eqs. (40)–(42), they approach steady-state operation with

Eσ̂2
e,k(i)→ E|ek(i)|2, i� 1 (68)

Eσ̂2
ξ,k(i)→ Egk(i), i� 1. (69)

We now estimate Egk(i) by employing a first-order Taylor
series approximation. Let z = [z1, . . . ,zn] be a real random
vector with mean Ez = [Ez1, . . . ,Ezn]. The first-order Taylor
series expansion of a differentiable real function f(z) about
the mean Ez can be expressed as follows [58, p. 241]– [59,
p. 295]:

f(z) ≈ f(Ez) +

n∑
k=1

∂

∂zk
f(zk)|zk=Ezk

(zk − Ezk). (70)

If we evaluate the expectation of both sides of (70) with respect
to the random vector z, we get the follwoing approximation:

Ef(z) ≈ f(Ez). (71)

Now consider a function of the ratio of two random variables
as f(x,y) = x/y, and assume that y has nonzero mean. From
(71), we can write

Ef(x,y) ≈ Ex
Ey

. (72)

To approximate Egk(i), we apply (72) to (41) as follows:

Egk(i) ≈
(1− p̂)Eσ̂2

k,e(i)− p̂E
(
‖wk,i‖2R̂ū,k(i)

)
p̂(1− 2p̂)E‖wk,i‖2

. (73)

For tractability, we assume that, in steady-state:

E
(
‖wk,i‖2R̂ū,k(i)

)
≈ ‖wo‖2Rū,k

. (74)

so that

Egk(i) ≈
(1− p̂)E|ek(i)|2 − p̂‖wo‖2Rū,k

p̂(1− 2p̂)‖wo‖2

(a)
≈

(1− p̂)(E|ek(i)|2 − p̂‖wo‖2Ru,k
)− p̂2σ2

ξ,k‖wo‖2

p̂(1− 2p̂)‖wo‖2
(b)
≈

(1− p̂)(σ2
v,k + p̂σ2

ξ,k‖wo‖2)− p̂2σ2
ξ,k‖wo‖2

p̂(1− 2p̂)‖wo‖2
(c)
≈ σ2

ξ,k (75)

where in (a) we replace Rū,k from (20), in (b) we use the
relation from (28), and in (c) we assume that the term (1 −
p̂)σ2

v,k is sufficiently small compared to p̂(1− 2p̂)σ2
ξ,k‖wo‖2.

Therefore, in steady state, we set

K , lim
i→∞

EKi ≈ diag
{
σ2
ξ,1IM , . . . , σ

2
ξ,NIM

}
. (76)

C. Mean Stability Analysis

First note that, in steady state, from (64) and (76) we have

lim
i→∞

E(Re,i + pKi−1) ≈ 0. (77)

Now, since the variables uk,i and ξk,i are temporally white
and spatially independent, then the error vectors w̃`,j are
independent of uk,i and ξk,i for all j if k 6= ` and for k = ` if
j ≤ i− 1. Therefore, taking expectation of both sides of (60)
for large enough i gives under the long-term approximations
of the previous section:

Ew̃i = AT [INM − (1− p)MR]Ew̃i−1, i� 1. (78)

This recursion is stable if the step sizes are sufficiently small
and satisfy

0 < µk <
2

(1− p)λmax(Ru,k)
(79)

where λmax(·) denotes the maximum eigenvalue of its matrix
argument. In this case, the estimator becomes asymptotically
unbiased, i.e., limi→∞ Ew̃i = 0.

D. Mean Variance Analysis

We rewrite (60) more compactly as

w̃i = Biw̃i−1 − Gsi −Diw
o
e (80)

where

Bi , AT [INM −M(R̄i − pKi−1)] (81)

Di , ATM[Re,i + pKi−1] (82)

G , ATM. (83)

The mean-square error analysis of the algorithm relies on
evaluating a weighted variance of the error vector. Let Σ
denote an arbitrary nonnegative-definite matrix that we are
free to choose. We express the weighted square measures on
both sides of (80) as

‖w̃i‖2Σ =‖Biw̃i−1 − Gsi −Diw
o
e‖2Σ

=w̃∗i−1B
∗
iΣBiw̃i−1 + s∗iGTΣGsi + wo∗e D∗iΣDiw

o
e

− w̃∗i−1B
∗
iΣGsi − s∗iGTΣBiw̃i−1

− w̃∗i−1B
∗
iΣDiw

o
e − wo∗e D∗iΣBiw̃i−1

+ s∗iGΣDiw
o
e + wo∗e D∗iΣGsi. (84)

We now compute the expectation of both sides of (84) in
steady state. Since limi→∞ Ew̃i = 0, Esi = 0, and w̃i−1

and si are independent of each other, we get the following
results:

Ew̃∗i−1B
∗
iΣGsi = 0 (85)

Ewoe
∗D∗iΣGsi = 0 (86)

lim
i→∞

Ew̃∗i−1BiΣDiw
o
e = lim

i→∞
E[E(w̃∗i−1B

∗
iΣDi|w̃i−1

)]woe

= lim
i→∞

Ew̃∗i−1[E(B∗iΣDi|w̃i−1
)]woe

= lim
i→∞

Ew̃∗i−1[EAΣDi]w
o
e +O(M2)

≈ lim
i→∞

Ew̃∗i−1[EAΣDi]w
o
e

≈ 0, (87)
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since from (77)

EDi ≈ 0, i� 1. (88)

Noting that the cross-terms are either zero or negligible under
expectation, we conclude from (80)–(87) that

lim
i→∞

E‖w̃i‖2Σ = lim
i→∞

[
E(w̃∗i−1B

∗
iΣBiw̃i−1) + E(s∗iGTΣGsi)

+ E(wo∗e D∗iΣDiw
o
e)
]
. (89)

We now evaluate the terms that appear on the right-hand side
of (89). The first term can be written as

lim
i→∞

E(w̃∗i−1B
∗
iΣBiw̃i−1) = lim

i→∞
E‖w̃i−1‖2Σ′ (90)

where

Σ′ , lim
i→∞

E(B∗iΣBi)

=AΣAT − (1− p)RMAΣAT − (1− p)AΣATMR
+O(M2), (91)

in view of the fact that

lim
i→∞

E(R̄i − pKi−1) = (1− p)R (92)

with R defined by (65). For sufficiently small step-sizes, the
term O(M2) in (91) is negligible and we set

Σ′ = AΣAT − (1− p)RMAΣAT − (1− p)AΣATMR.
(93)

The second term on the right-hand side of (89) can be
calculated as

E(s∗iGTΣGsi) = ETr(GTΣGsis∗i ) = Tr(GTΣGS). (94)

Now it is clear from expression (56) that Re,i depends on
random variables that are available at time i, while expression
(57) shows that Ki−1 depends on different random variables
up to time i − 1. Therefore, Re,i and Ki−1 are independent
of each other. Then, the last term on the right-hand side of
(89) can be computed as follows:

lim
i→∞

E(wo∗e D∗iΣDiw
o
e)

= lim
i→∞

[
2pwo∗e Re{ER∗e,iMAΣATMK∗i−1}woe

+ wo∗e E(R∗e,iMAΣATMRe,i)w
o
e

+ p2wo∗e E(K∗i−1MAΣATMKi−1)woe
]

(a)
= −2wo∗e ReMAΣATMRewoe

+ lim
i→∞

wo∗e E(R∗e,iMAΣATMRe,i)w
o
e

+ lim
i→∞

p2wo∗e E[K∗i−1MAΣATMKi−1]woe . (95)

In (a), we used the independence of Re,i and Ki−1 and the
fact from (77) that ERe,i = −pEKi−1, i � 1. In order to
obtain a more compact representation for the variance relation,
we use the following vector notation:

σ = vec(Σ), σ′ = vec(Σ′), (96)

where the vec operator vectorizes a matrix by placing its
columns on top of each other. We also use the following
Kroneceker product properties [37]:

vec(ABC) = (CT ⊗A)vec(B)

Tr(AB) = [vec(BT )]Tvec(A). (97)

Then, from (93) we can write

σ′ = Fσ, (98)

where

F , A⊗A− (1− p)A⊗RMA− (1− p)RTMA⊗A.
(99)

Likewise, we have

Tr(GTΣGS) = Tr(ΣGSGT ) = [vec(GSTGT )]Tσ. (100)

In a similar manner, we can express the right-hand side of
(95) using the vec operator as follows:

lim
i→∞

E(wo∗e D∗iΣDiw
o
e)

= −2Tr(ΣATMRewoewo∗e ReMA)

+ Tr(ΣATM lim
i→∞

E(Re,iw
o
ew

o∗
e R∗e,i)MA)

+ p2Tr(ΣATM lim
i→∞

E(Ki−1w
o
ew

o∗
e KT

i−1)MA)

= −2[vec(ATMRewoewo∗e ReMA)T ]Tσ

+ [vec(ATM lim
i→∞

E(Re,iw
o
ew

o∗
e R∗e,i)MA)T ]Tσ

+ p2[vec(ATM lim
i→∞

E(Ki−1w
o
ew

o∗
e KT

i−1)︸ ︷︷ ︸
,Π

MA)T ]Tσ.

(101)

It is noted that the quantity E(Re,iw
o
ew

o∗
e R∗e,i), in general,

does not have a closed form expression. We can approximate
it by means of ensemble averaging.

The last term on the right-hand side of (101) can be
approximated as follows. Let Ω , woew

o∗
e be a Hermitian

block matrix, whose (n,m) block is given by

Ωn,m = wowo∗. (102)

The (n,m)-th block of Π can be obtained as follows:

Πn,m = E(σ̂2
ξ,n(i− 1)Ωn,mσ̂

2
ξ,m(i− 1))

= Ωn,mE(σ̂2
ξ,n(i− 1)σ̂2

ξ,m(i− 1)). (103)

From (42), we can write

σ̂2
ξ,n(i)σ̂2

ξ,m(i) =(1− α3)2σ̂2
ξ,n(i− 1)σ̂2

ξ,m(i− 1)

+ α2
3gn(i)gm(i)

+ α3(1− α3)[σ̂2
ξ,n(i− 1)gm(i)

+ σ̂2
ξ,m(i− 1)gn(i)]. (104)

In steady state, we have Eσ̂2
ξ,n(i)σ̂2

ξ,m(i) = Eσ̂2
ξ,n(i −

1)σ̂2
ξ,m(i− 1). We further benefit from the following approx-

imations for i� 1:

E|en(j)|2|em(i)|2 ≈ E|en(j)|2E|em(i)|2

E‖wn,i−1‖2‖wm,i−1‖2 ≈ ‖wo‖4

E‖wn,i−1‖2R̂ū,n(i)
‖wm,i−1‖2R̂ū,m(i)

≈ ‖wo‖2Rū,n
‖wo‖2Rū,m

.

(105)
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We again use a first-order Taylor series expansion to approx-
imate the following terms as:

Egn(i)gm(i) ≈ Egn(i)Egm(i) ≈ σ2
ξ,nσ

2
ξ,m (106)

Eσ̂2
ξ,n(i− 1)gm(i) ≈ Eσ̂2

ξ,n(i− 1)Egm(i) ≈ σ2
ξ,nσ

2
ξ,m.

(107)

Using the above expressions and (104), we obtain

(2α3 − α2
3)Eσ̂2

ξ,n(i)σ̂2
ξ,m(i) ≈(2α3 − α2

3)σ2
ξ,nσ

2
ξ,m. (108)

Hence, in steady state, the matrix Π is approximated as

Π ≈ Kwowo∗K (109)

and in steady state, expression (95) is approximated as

lim
i→∞

E(wo∗e D∗iΣDiw
o
e) ≈ [vec(ZT )]Tσ (110)

where

Z ,−ATMRewoewo∗e ReMA
+ATME(Re,iw

o
ew

o∗
e R

∗
e,i)MA. (111)

Referring back to (89), and using the notation ‖x‖2σ inter-
changeably with ‖x‖2Σ, we get

lim
i→∞

E‖w̃i‖σ = lim
i→∞

E‖w̃i−1‖Fσ + [vec(ZT + YT )]Tσ

(112)

where

Y , GSGT . (113)

It follows that

lim
i→∞

E‖w̃i‖(I−F)σ = [vec(ZT + YT )]Tσ. (114)

Based on the variance relation (114), different quantities can
be computed. For example, we can evaluate the network
and individual mean-square deviation (MSDs), respectively,
defined as

MSDnetwork , lim
i→∞

1

N

N∑
k=1

E‖w̃k,i‖2 = lim
i→∞

E‖w̃i‖21
N

MSDk , lim
i→∞

E‖w̃k,i‖2 = lim
i→∞

E‖w̃i‖2Ik (115)

where Ik , diag{0, . . . , 0, IM , 0, . . . , 0}, with the identity
matrix appearing in the k−th block location.

In order to derive the network MSD from variance relation
(114), we select the weighting vector σ such that

(I −F)σ =
1

N
vec(INM ). (116)

Then, the network MSD can be calculated as

MSDnetwork =
1

N
[vec(ZT + YT )]T (I −F)−1vec(INM ).

(117)

Likewise, the individual MSD can be computed as

MSDk = [vec(ZT + YT )]T (I −F)−1vec(Ik). (118)

V. DESIGN EXAMPLES

In this section, we evaluate the performance of the pro-
posed diffusion algorithm through computer simulations. In all
simulations, we consider the connected network of 7 agents
shown in Fig. 1 and employ the uniform combination rule
a`,k = 1/|Nk| [57] and set the step-sizes across the agents
to a uniform value, µk = µ. To evaluate the MSD, we run
400 experiments and compute the average MSD across these
experiments for different approaches.

Some distributed techniques that rely on EM techniques,
of the form studied in [60]–[62], have been proposed for
useful but different applications over sensor networks, such
as clustering or density estimation, but not for missing data
scenarios considered in this study. We therefore compare our
solution against centralized processing techniques. We also
mentioned earlier that the missing data model considered in
this paper is more general than the models investigated in the
missing data literature. Therefore, to assess the performance
of the proposed approach against existing techniques, first we
try to detect the missing position and then employ existing
techniques that require knowledge of these positions. Note that
the suggested approach in this section may not be optimal.
It may be possible to improve the performance of exiting
approaches if we pursue joint detection of the missing position
and the estimation of the unknown parameter vector rather than
follow the two-step procedure used in this section.

Suppose the j−th component of the regressor uk,i at the
k−th node at time i, denoted by ujk,i, is missing. For such
a scenario, F k,i = diag{0, . . . ,f jk,i, . . . , 0}. We define two
hypotheses H0 and H1 as follows:

H0 : ūjk,i = ujk,i (119)

H1 : ūjk,i = ξjk,i. (120)

Since there are prior beliefs about H0 and H1, we consider
the Bayesian hypothesis testing approach to detect the missing
position [63]. That is, we should decide H1 (f jk,i = 1 ) if the
likelihood ratio (LLR) test is larger than a threshold γ as [64,
Ch. 3]:

LLR ,
pH1(ūjk,i)

pH0(ūjk,i)

H1

> γ ,
(1− p̂)
p̂

(121)

where pH0(ūjk,i) and pH1(ūjk,i) are the probability density
functions under hypotheses H0 and H1, respectively.

In general, evaluating the decision rule in (121) might be
difficult. In this example, we assume that ujk,i and ξjk,i are
normally distributed. Then,

pH0
(ūjk,i) =

1√
2πRu,k(j, j)

exp

[
−
|ūjk,i|2

2Ru,k(j, j)

]
(122)

pH1
(ūjk,i) =

1√
2πσ2

ξ,k

exp

[
−
|ūjk,i|2

2σ2
ξ,k

]
. (123)

The LLR is accordingly given by

LLR =

√
Ru,k(j, j)

σ2
ξ,k

exp

[
|ūjk,i|2

2Ru,k(j, j)
−
|ūjk,i|2

2σ2
ξ,k

]
(124)



9

and the decision rule can be expressed as follows:

|ūjk,i|
2

[
1

Ru,k(j, j)
− 1

σ2
ξ,k

]
H1

> log

(
(1− p̂)2σ2

ξ,k

p̂2Ru,k(j, j)

)
. (125)

It is still seen that for evaluating the decision rule (125),
we need to know the variances Ru,k(j, j) and σ2

ξ,k. To
make the detection approach feasible, we assume that a good
approximation for the ratio Ru,k(j, j)/σ2

ξ,k = rk is available.
Note that for the proposed mATC algorithm, we do not need
to know the ratio rk. From (20), we have

(1− p̂)Ru,k(j, j) + p̂σ2
ξ,k = Rū,k(j, j) ≈ 1

Mk

Mk∑
i=1

ūjk,iū
∗j
k,i

(126)

where Mk is the number of measurements collected by node k.
Substituting Ru,k(j, j) by rkσ2

ξ,k in (126), we can approximate
the variance σ2

ξ,k, denoted by σ̌2
ξ,k, as

σ̌2
ξ,k =

1

Mk((1− p̂)rk + p̂)

Mk∑
i=1

ūjk,iū
∗j
k,i. (127)

The variance Ru,k(j, j) can be estimated as

R̂u,k(j, j) = rkσ̌
2
ξ,k. (128)

We note that the estimate of the variance σ2
ξ,k in (127) needs

the ratio rk to be known and also the estimate is based on a
batch processing.

Once the missing positions have been identified, we then
apply two state-of-the-art centralized techniques to centrally
estimate the unknown vector w. In the first approach, the
detected missing position is filled by the mean of the data and
then a least-squares construction is applied (Imput-LS). For
details on this approach, the reader may refer to [65]. In the
second approach, we obtain the maximum likelihood estimator
(MLE) assuming known distributions for the regressor and
perturbation vk(i). The details of the MLE for missing data
can be found in [4], [21], [65], [66].

Remark 4: The two-step approach above may not be an
optimal implementation for the centralized solution. It may
be possible to develop more efficient centralized algorithms
based, for example, on the EM algorithm and mixture models
[24]–[26], [67], [68]. It is noted that if a mixture model for
the missing data in (3) is considered, then a large number of
components may be needed.

In the first simulation, we assume a Gaussian distribution
for the process noise, vk(i) ∼ N (0, σ2

v,k) with σ2
v,k = 0.01.

The regressor uk,i has Gaussian distribution with diagonal
covariance matrix, Ru,k = diag{1, 1.6, 0.8, 0.95, 1.2}. The
probability of missing is set to p = 0.3 or p = 0.4, which
is assumed to be known in advance. We set the unknown
vector wo = [1, − 0.5, 1.2, 0.4, 1.5]T . We also assume that
ξk,i ∼ N (0, σ2

ξ,k) with variances σ2
ξ,1 = 0.02, σ2

ξ,2 = 0.44,
σ2
ξ,3 = 0.04, σ2

ξ,4 = 0.09, σ2
ξ,5 = 0.15, σ2

ξ,6 = 0.26, and
σ2
ξ,7 = 0.13. The step size µ is set to 0.04 for every node.

In the simulation, we assume that the first component of the
regressor is missing. In this simulation, the recursions for
estimating the variance σ2

ξ,k, i.e., Eqs. (39)–(42), start after

1

2

3

4

5

6

7

Fig. 1. Topology of the network used in the simulations.

50 iterations (i = 50) of Eqs. (37)–(38). We set α1 = α2 =
α3 = 0.01.

Figures 2(a) and 2(b) show the MSD learning curves for
different approaches for p = 0.3 and p = 0.4. As it is
observed, the mATC shows a promising performance com-
pared to centralized approaches. As the probability of missing
increases, the proposed mATC considerably outperforms other
approaches. The reason is that the error of missing position
detection will increase as the probability of missing increases.
Therefore, the performance of centralized approaches will be
degraded more with increasing the probability of missing p.

In the next sections, we consider two specific applications.

A. Household Consumption

In this section, we evaluate the performance of the proposed
algorithm for a household consumption application. Household
consumption depends on a number of parameters such as
income, wealth, family size, and retirement status [6]. It is
assumed that the wealth variable is missed in the survey. We
consider the following log model for household consump-
tion [6], [69]:

ln ck(i) =α+ (ln lk,i)β1 + (lnmp
k,i)β2 + (lnmc

k,i)β3

+ tk,iβ4 + vk(i) (129)

where α is ln ck(i) intercept, ck(i) is the consumption of
household k at time i, lk,i is the total wealth, which is assumed
to be censored, mp

k,i is the permanent part of the income (a
long-term measurement of average income that depends on a
number of parameters such as family income and education)
[69]–[73], tk,i refers to the retirement status and family size.
The modeling error εk(i) is assumed to be zero-mean. In a
manner similar to [6], we only consider the first 4 components
of the regressor, i.e., we set β4 = 0. As suggested by the earlier
Remark 1, we subtract the mean of the measurements, which
is given by

E (ln ck(i)) =α+ E(ln lk,i)β1 + E(lnmp
k,i)β2

+ E(lnmc
k,i)β3 + Etk,iβ4

from both sides of (129) and arrive at the model

dck(i) = uck,iwc + vk(i) (130)
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Fig. 2. The MSD learning curves for different diffusion algorithms at node
1 for (a) p = 0.3 and (b) p = 0.4.

where

wc = [β1 β2 β3]T

dck(i) , ln ck(i)− E (ln ck(i))

uck,i , [ln lk,i lnmp
k,i lnmc

k,i]− E [ln lk,i lnmp
k,i lnmc

k,i].

(131)

Using a complete set of data, the authors in [6] reported
the estimate ŵc = [0.054, 0.182, 0.204]T for the unknown
parameters. We generate data according to ŵc and assume that
the regressor uck,i has Gaussian distribution. We model vk(i)
by a zero-mean Gaussian random variable. We further assume
that the log of wealth is randomly missed and we consider a
uniform distribution over [−q̄, q̄] for the missing variable, thus
σ2
ξ,k = q̄2/3. In the simulation, we use q̄ = 0.5. In the survey,

it has been observed that approximately 30% of total wealth,
including housing and stock market, is censored [6], i.e., p =
0.3. In the simulation, we use µ = 0.025. The updating step
for estimating the variance σ2

ξ,k is executed from the beginning
i = 1. We also set α1 = α2 = 0.001, and α3 = 0.0001.

To derive a decision rule for this example, we first consider
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−q

h0
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p1

Fig. 3. Decision regions and scaled probabilities with prior beliefs about H0

and H1.

two distributions under hypotheses H0 and H1:

pH0(ūcjk,i) =
1√

2πRuc,k(j, j)
exp

[
−

|ūcjk,i|2

2Ruc,k(j, j)

]
(132)

pH1
(ūcjk,i) =

{
1
2q̄ , if |ūcjk,i| ≤ q̄

0, otherwise
(133)

In the scenario for |ūjk,i| ≤ q̄ the LLR is obtained as

LLR =

√
2πRuc,k(j, j)

2q̄
exp

[
|ūcjk,i|2

2Ruc,k(j, j)

]
, |ūjk,i| ≤ q̄.

(134)

Since q̄ and Ruc,k(j, j) are unknown a priori, we need to
approximate them from the data. Similar to the previous case,
we assume a good approximation of the ratio rk is available
that helps us to obtain estimates of q̄ and Ruc,k similar to
(127)–(128). Then, we find an estimate for ̂̄q as

̂̄q =
√

3σ̌2
ξ,k

=

√√√√ 3

Mk

(
(1− p̂)rk + p̂

) Mk∑
i=1

ūcjk,iū
cj∗
k,i . (135)

Using (134) and (121), we obtain the following decision
rule:

if |ūjk,i| ≤ ̂̄q :
∣∣ūcjk,i∣∣2 H1

> 2R̂uc,k(j, j) log

 2(1− p̂)̂̄q
p̂
√

2πR̂uc,k(j, j)


(136)

where we replaced Ruc,k(j, j) and q̄, respectively, by their
estimates R̂uc,k(j, j) and ̂̄q. Figure 3 shows an example of two
distributions scaled by p̂ and (1 − p̂) and the corresponding
decision regions.



11

0 50 100 150
−30

−28

−26

−24

−22

−20

−18

−16

−14

−12

−10

xlabel

y
la

b
e

l

 

 

mATC (Simulation)

mATC (Theory)

MLE

LS−Imput

Fig. 4. The MSD of different algorithms for the household data for node 1.

Figure 4 shows the MSDs of the estimators for the house-
hold consumption data. As it is observed, the proposed mATC
shows comparable performance with the centralized approach.

B. Mental Health Survey

In the last simulation, we consider the following model,
motivated by a mental health survey study run by various
companies [65], [74]:

d̄k(i) = β + ũk,iw + vk(i), i = 1, 2, . . . , N (137)

where d̄k(i) is the square root of the total depression score
for every individual i, β is the d̄k(i) intercept, ũk,i denotes
the regressor (covariate) for every individual i, and vk(i) is
the modeling error. Index k refers to the company index and i
is used for participant’s index. The elements of ũk,i, defined
in [74] are shown in Table I and they include variables such
as income, age, and martial status.

The square root of the total depression score d̄k(i) is mea-
sured based on individual answers to 20 questions regarding
feeling about depression [74]. For example, the answer to the
second question “I felt depressed” can be a number between
0 and 3; 0 for less than 1 day feeling, 1 for one to two days, 2
for occasionally or a moderate amount of time (3 to 4 days),
and 3 for most of the time (5 to 7 days) [74].

We apply the least squares technique to a subset of the
data provided in [74] to find an estimate for [α̂ ŵT ] in (137)
as [α̂ ŵT ] = [0.1, 0.27,−0.03,−0.06, 0.13, 0.73,−0.28, 0.22].
We then use the estimate for ŵ to generate zero-mean square
root total depression scores as follows. Again, as indicated by
the earlier Remark 1 and similar to the previous application,
we modify the model of (137) as follows. Consider the mean
of both sides of model (137), which is given by

Ed̄k(i) = β0 + (Eũk,i)w, (138)

then, we subtract the above mean from both sides (137) to get

dk(i) , d̄k(i)− Ed̄k(i)

= uk,iw + vk(i), i = 1, 2, . . . , N, (139)
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Fig. 5. The MSD of different approaches for the mental health survey data
for node 1.

where uk,i = ũk,i − Eũk,i is a zero-mean random vector.
To generate uk,i, we uniformly generate the regressor ũk,i
according to Table I and then subtract the mean. We further
assume that the income is missed with probability 0.3 in the
simulation study. We consider a zero-mean Gaussian distribu-
tion with variance 0.004 for missing parts, i.e., σ2

ξ,k = 0.004.
The covariance matrix of the discrete regressor uk,i is given

by

Ru,k = diag{0.25, 252, 2, 2.967, 0.11, 1.25, 4}. (140)

The algorithm needs a smaller step size than the one in the
previous simulation to converge due to the largest eigenvalue
of the covariance matrix in (140). In the simulation, we set µ =
0.0025. We assume a Gaussian distribution for measurement
noise, vk(i) ∼ N (0, σ2

v,k) with σ2
v,k = 0.01. In this scenario,

the updating for the estimate of variance σ̂2
ξ,k(i) starts from the

beginning i = 1. Hence, the proposed algorithm is expected
to have a slower convergence rate at smaller step-sizes. We
set α1 = α2 = α3 = 0.0001.

Figure 5 shows the MSDs of different approaches for mental
health survey. As it is observed the proposed mATC approach
shows promising results compared to centralized techniques.
One way to improve the convergence rate is to estimate the
curvature information of the cost function and modify the
update step (37) based on the curvature information. Finally,
Table II shows the estimate of the variance σ2

ξ,k at different
nodes in steady state. It is seen that every node can obtain a
good estimate for σ2

ξ,k using the proposed mATC algorithm.

VI. CONCLUSIONS

In this paper, we examined the estimation of an unknown
vector over a connected network of agents, with each agent
subjected to a stream of data with incomplete regressors. We
have shown that the estimator in general is biased; hence, we
have modified the cost function by a (de)regularisation term
to mitigate the bias and obtained a distributed approach based
on diffusion adaptation techniques. We have also suggested
a technique to estimate the (de)regularization term from the
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TABLE I
DEPRESSION COVARIATE FOR THE i-TH INDIVIDUAL AT THE k−TH COMPANY

(
ũk,i = [ũ1

k,i, ũ
2
k,i, ũ

3
k,i, ũ

4
k,i, ũ

5
k,i, ũ

6
k,i, ũ

7
k,i]
)

[74].

Covariate Range

Gender: ũ1
k,i =1 if the i-th responder is male; =2 for the female

Age in year: ũ2
k,i 19,20,. . . ,73

Marital: ũ3
k,i =1 never married; =2 married; =3 divorced;=4 separated; =5 widowed

Education: ũ4
k,i =1 less than high school; =2 some high school; =3 finished high school; =4 some college; =5 finished bachelor’s degree; =6 finished

master’s degree; =7 finished doctorate
Log of Income: ũ5

k,i log 4000 to log 55000

Religion: ũ6
k,i =1 Protestant; =2 Catholic; =3 Jewish; =4 none; =5 other

Employment: ũ7
k,i =1 full time; =2 part time; =3 unemployed; =4 retired; =5 houseperson; =6 in school; =7 other

TABLE II
ESTIMATES OF VARIANCE σ2

ξ,k IN DIFFERENT NODES FOR THE MENTAL
HEALTH SURVEY DATA. THE TRUE VALUE OF THE VARIANCE IS

σ2
ξ,k = 0.004.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7
0.0047 0.0046 0.0048 0.0049 0.0046 0.0049 0.0047

data. We have studied the performance of the proposed al-
gorithm under some simplifying assumptions and considered
two applications in mental health and household consumption
surveys. Simulation results show a comparable performance
compared to existing centralized approaches based on impu-
tation techniques.
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