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ABSTRACT 

The operational level is where a company’s manufacturing strategy becomes reality and where 

customer orders are fulfilled through transforming raw materials into finished goods. The 

research presented here examines the productivity and capacity of operational processes in 

manufacturing firms. Though both terms are well established in industry, overall, there is 

ambiguity in their measurement and interpretation across the hierarchal levels of organizations, 

all the way to the national level. Similar ambiguity is also found in the academic field of 

operations management, in which much of the related research in recent decades has 

concentrated on narrow sets of problems, distant from actual shop floor operations.  

As a result, many existing approaches to assessing the productivity and capacity of production 

systems either narrowly focus on certain functions of a production process or address them at 

such an aggregated level that there is insufficient detail to determine the root causes of 

production system losses. This leads to the risk that improvement potential at an operational 

level may be disregarded when strategic decisions are made, making it difficult to improve 

economic efficiency and preventing the sustainable utilization of a firm’s current manufacturing 

resources. The purpose of this research is accordingly to increase the understanding of the 

improvement potential of real operational processes by developing a framework for identifying 

and objectively measuring the relevant characteristics of real-life operational processes related 

to the improvement of shop floor operations. This research, which incorporates five empirical 

studies, builds on the theory of performance frontiers and on the body of industrial engineering 

knowledge.  

The research illustrates how the analytical logic and structure of the framework can be applied 

in determining the overall productivity and capacity of firm operations from the micro level and 

up, by relying on first-order time data measured at the operational level. This establishes a direct 

link between firm-level capacity utilization and the causes of shop floor productivity losses. It 

constitutes the foundation on which to build knowledge of the effects on plant-level capacity 

utilization that come from realizing operational improvement potentials. The results are also 

intended to provide guidance for decision-making in manufacturing companies.  

Keywords: Productivity, Capacity, Capacity utilization  
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1 Introduction 

This chapter presents the practical relevance and theoretical positioning of the research, which 

constitute the basis for the formulated purpose and research questions. The chapter ends by 

clarifying key concepts and outlining the thesis. 

1.1 Challenges in manufacturing: the practical relevance 
Since the industrial revolution, manufacturing has been one of the most important economic 

activities promoting growth. However, over the last three decades, developed countries in 

Western Europe and North America have experienced deindustrialization (Szirmai et al. 2013; 

Rodrique et al. 2014), resulting in considerable job loss and the global redistribution of 

manufacturing production (UNIDO 2013; Westkämper 2013). Companies in developed 

countries had already started to face competition from low-wage countries in the 1970s, which 

contributed to closures and restructurings of primarily labor-intensive industries. In the 1990s, 

the number of startups and acquisitions in low-wage regions of Southeast Asia and later China 

increased (UNIDO 2013). After the fall of the Berlin Wall, the low-wage regions of Eastern 

Europe also became accessible for foreign investment. This increased internationalization and 

offshoring of production activities was enabled by extensive financial market deregulation, 

improved information technology, and expanded infrastructure that lowered transportation 

costs (Bengtsson 2008). The business climate in low-wage countries gradually improved, 

further facilitating foreign establishments for on-site manufacturing and as a base for 

subcontractors (UNIDO 2013).  

As Europe and North America recover from the latest recession, governments and 

policymakers, grasping the importance of a strong industry sector for economic resilience, are 

now concerned about the loss of strategic manufacturing industries. Several initiatives have 

been launched to promote reindustrialization with the overall objective of creating jobs and 

maintaining disposable income at the national level (Westkämper 2013; Foresight 2013; 

Näringsdepartementet 2016). While earlier offshoring strategies were mainly motivated by 

anticipated cost reductions (Bengtsson 2008; Fill and Visser 2000), the current challenge of 

reindustrialization is far more complex (Westkämper 2013). Deindustrialization has resulted in 

a loss of manufacturing knowhow, which has moved to new countries, and finding suitably 

skilled labor is a bottleneck for reindustrialization initiatives (Westkämper 2013; Foresight 

2013; Näringsdepartementet 2016). Cost is still an important factor, but the cost focus has begun 

to shift from just labor costs to total costs that fully account for global supply networks 

(Manyika 2012; Rodrique et al. 2014). However, as many low-wage regions have evolved into 

large markets with developed supply chains and improved infrastructure, traditional national 

manufacturing companies have become global actors with sites in multiple locations (Manyika 

2012; Dachs et al. 2012). This means that there is now global competition even among factories 

within the same company.  

Individual companies are not homogenous entities that respond equally to certain actions. Their 

ability to compete in various markets is determined by several key attributes (i.e., availability 

of skilled labor, speed of delivery, and access to raw material and suppliers), some of which are 

more important than others depending on the industry type (Manyika 2012). Nevertheless, the 
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fundamental objective of any factory is to transform raw material into finished goods, and this 

conversion process introduces a core concept of this thesis: productivity. Productivity, generally 

defined as the relationship between input and output, has always been a key driver of 

competitive development in manufacturing (Tangen 2005). As outlined by Bernolak (1997), 

“productivity means how much and how good [sic] we produce from the resources used.” The 

manufacturing strategy of an enterprise determines where and how resources are deployed, but 

it is at the operational level in the factory that strategy becomes reality and that customer orders 

are filled (Slack and Lewis 2002). High productivity in the operational processes of enterprises 

in general, and of manufacturers in high-wage regions in particular, is therefore a prerequisite 

for economic efficiency and the sustainable utilization of resources (Jovane et al. 2008).  

The underlying principles of productivity apply to both macroeconomic and microeconomic 

considerations, meaning that it is a relative concept (Bernolak 1997). At the national level, 

output is measured as gross domestic product (GDP), while firm-level output typically refers to 

the quantity or value of the products produced (Obstfeld et al. 1996). In these cases, the industry 

or firm is seen as the transformation entity and inputs constitute multiple factors, typically 

capital, labor, materials, and energy (Prokopenko 1987). In firms, top managers have a strategic 

perspective on productivity that differs from the more operational view of the shop floor 

(Tangen 2005). The means of achieving high productivity may therefore be level specific, 

ranging from focusing on the actual and potential output of a production process to optimizing 

the allocation of resources between manufacturing sites (Tangen 2005; Prokopenko 1987; 

Coelli et al. 2005). However, this understanding can lead to confusion and misconceptions. 

Bernolak (1997) argues that most managers do not know what productivity really means and 

therefore do not know how to measure and analyze it. Tangen (2004) states that people are 

generally unaware that different definitions of productivity are used simultaneously.  

Strategic decisions to offshore production activities made by many European companies were 

based on the perception that improving the productivity of existing production processes in the 

original company had only limited potential to cut costs and increase capacity (Dachs et al. 

2006). This perception at the beginning of the millennium is today acknowledged to have led 

to decisions with only short-term benefits (Westkämper 2013). The results of extensive 

measurements of shop floor productivity in Swedish industry between 2005 and 2011 reveal 

that the possibility of decreasing costs and increasing capacity by improving productivity at the 

operational level had been neglected, and that the improvement potential is often considerably 

higher than company management imagines (Almström and Kinnander 2011, 2008). While 

firm-level productivity can be calculated using the same type of data used in accounting and 

financial management (i.e., resource cost, worked hours, and output quantities), productivity 

measures at the operational level are dependent on the systematic measurement and analysis of 

shop floor operations (Prokopenko 1987). It is clear that the representation of actual shop floor 

productivity in higher-level measures has suffered from a decline of work studies in industrial 

engineering and a shift of focus from the operational level (Almström and Kinnander 2011; 

Bailey and Barley 2005). Together with the overall ambiguity in the measurement and 

interpretation of productivity, this means that even future strategic decisions in companies may 

be made without sufficient knowledge of actual conditions and potentials at the operational 

level. Consequently, the challenge is to ensure that operational improvement potential is not 
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neglected when strategic decisions are made, and this challenge provides the practical relevance 

of this research. 

1.2 The research field 
This research belongs to the operations management (OM) field, which covers the application 

of resources to the production and delivery of products and services. OM is thus concerned with 

the tactical actions taken to plan, schedule, and control activities (Slack et al. 2010). As an 

academic discipline, OM has been evolving since the era of “scientific management,” and 

besides manufacturing, now also includes areas such as service, healthcare, retail, and 

transportation (Walker et al. 2015). The OM field is broader than the scope of this thesis, which 

primarily concerns the measurement and modeling of shop floor operations and the 

improvement of operational processes.  

Microeconomic theory is usually employed in OM to model and analyze differences in 

productivity and performance among firms (Fisher 2007). Schmenner and Swink (1998) have 

noted that while microeconomic theory can be applied in OM to provide help to understand 

differences in observed productivity among firms, it is limited as a complete explanation of 

these differences. In response, Schmenner and Swink (1998) formulated the theory of 

performance frontiers, derived from microeconomic theory and from the empirical and 

deductive laws of manufacturing system behavior. It constitutes the main theoretical foundation 

of which the findings of this thesis have been elaborated. 

Productivity as a performance measure requires quantification of the efficiency or effectiveness 

of actions (Neely et al. 1995). Performance measurement originates in the studies of workers, 

their work, and management conducted by Frederick W. Taylor (1911) and in subsequent 

studies of motion, skill, fatigue, and management psychology by the Gilbreths (Mousa and 

Lemak 2009). The systematization and standardization of shop floor operations together with 

driven conveyer belts were among the key success factors for Henry Ford’s assembly lines 

(Wilson 2013). It was these ideas that later inspired Japanese industry (Robinson and Robinson 

2003) and the development of the widely cited Toyota Production System (Ohno 1988). Mass 

production in the United States accelerated during World War II, when knowledge from earlier 

shop-floor studies was used in combination with engineering methods and statistical process 

control (Sprague 2007). This set the stage for the post-war direction of OM, which involved the 

introduction and application of analytical methods from operations research (OR), such as 

mathematical programming, queuing theory, and simulation (Hopp and Spearman 2008).  

According to Slack et al. (2004), the scholarly contribution of OM has been to identify, model, 

and categorize empirical phenomena. Early-twentieth-century studies of work provided OM 

researchers with an empirical understanding of operational processes (Bertrand and Fransoo 

2002). Starting in the 1950s, further developments in work measurement resulted in universal 

standard data for work measurement and predetermined time standards (Zandin 2001a; Niebel 

and Freivalds 2003). However, OM research has recently focused on increasingly narrow sets 

of problems (Sprague 2007; Slack et al. 2004). Many of these problems are idealized and distant 

from actual shop floor operations and, consequently, are of little relevance to industrial 

implementation or real managerial issues (Bertrand and Fransoo 2002; Meredith 1993). 
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Meredith et al. (1989) identified the shortcomings of past OM research as narrow instead of 

broad scope, focus on techniques instead of on knowledge, and abstract instead of real 

perspective. Though these shortcomings were identified almost three decades ago, there is still 

ongoing debate concerning the practical relevance of OM research output (MacCarthy et al. 

2013; Taylor and Taylor 2009) and a need to close the gap between theory and practice in the 

OM community has been identified (Schmenner et al. 2009; Sprague 2007). In addition, in a 

systematic review of the past three decades of literature on performance measurement systems, 

Choong (2014) identified a research gap specifically related to performance measurement, 

noting great overlaps in the meanings and definitions of terms related to data and measurement 

attributes. Choong (2014) concludes that, overall, there is no consensus about what to measure 

and what to communicate to stakeholders. 

1.3 Main research purpose and objective 
The purpose of this research is to increase the understanding of the improvement potential of 

real operational processes. This purpose was formulated to meet the academic challenge of 

increasing the usability and relevance of OM research, in particular, of addressing problems 

related to effective performance measurement and the improvement of shop floor operations. 

The research also addresses the industrial challenge of ensuring sustainable resource utilization 

and the high productivity of operational processes, which require that operational improvement 

potential not be neglected when strategic decisions are made.  

The objective is to contribute to existing OM knowledge by providing a framework for 

identifying and objectively measuring the relevant characteristics of real-life operational 

processes related to the improvement of shop floor operations.  

1.4 Research questions 
Based on the purpose and objective, three research questions have been formulated:  

RQ1:  What key constructs are needed to describe the operational improvement  

 potential of a production system?  

RQ2: How can the key constructs be represented in an integrated model to explain  

 the operational improvement potential of a production system? 

RQ3:  How can the operational improvement potential be captured to support  

 decisions about improvement initiatives?  

Research question one concerns what to measure and how to measure it in order to capture the 

most relevant characteristics of a production system related to its operational improvement 

potential.  

Research question two addresses how the acquired data should be conceptually organized as 

information in a generic production system model.  
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Research question three builds on research questions one and two and addresses how the 

operational improvement potential should be captured in practice. In this context, “capture” 

means “to succeed in representing or expressing something intangible,” as defined in the 

Cambridge Dictionary of English (Procter 1995). 

1.5 Delimitations 
Performance measurement and performance measurement systems constitute a large research 

field in itself owing to the many different performance measures (Neely et al. 1995; Choong 

2014). In this thesis, performance measurement focuses on shop floor productivity, particularly 

the improvement of shop floor productivity in the interest of increasing capacity. Sundkvist 

(2014) noted that increasing capacity is among the most common objectives of production-

improvement initiatives.  

The term resource is limited to humans (i.e., labor) and equipment, aligned with the 

international standard for manufacturing data management (MANDATE) (ISO 2005). 

Resources in terms of energy and material are not considered.  

In addition, this research concerns measuring and improving operations in existing production 

systems and, consequently, does not cover performance evaluations or the design of new 

production systems.  

1.6 Thesis outline 
The thesis is structured according to the outline presented in Table 1.1.  

Table 1.1. Thesis outline 

Chapter Content 

1. Introduction 

The first chapter presents the practical relevance and theoretical 

positioning of the research. These provide a basis for the purpose and 

research questions formulated.  

2. Frame of reference 

The second chapter introduces the theoretical foundation of the thesis. 

Theory of production systems, shop floor data, productivity, and capacity 

are discussed. The theory of Performance frontiers of which the proposed 

framework is based upon is also presented. The chapter ends by describing 

the research gap.  

3. Methodology 

The third chapter describes how the research has been conducted by 

presenting the research process in relation to the adopted view of science. 

The main research methods and techniques used are also described.  

4. Results 
The fourth chapter sums up the results of the appended papers, focusing 

on the contributions to answering the research questions.  

5. Discussion The fifth chapter covers the discussion of how the main results relate to 

the research questions and the objective of the thesis. This is followed by 
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discussion of the academic contribution and industrial relevance of the 

research. 

6. Conclusions and 

future research 

In the sixth and final chapter, the main conclusions are presented together 

with suggestions for future research. 
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2 Frame of reference 

This chapter introduces the theoretical foundation of the research. Theories of production 

systems, shop floor data, productivity, and capacity are discussed. The theory of performance 

frontiers, on which the proposed framework is based, is also presented. The chapter ends with 

a brief summary and a problem formulation.  

2.1 Production systems 
It is generally acknowledged that applying a systems perspective facilitates the description and 

understanding of production systems (Bellgran and Säfsten 2009). Modern system studies 

originate from the general system theory (GST) of Ludwig von Bertalanffy (Von Bertalanffy 

1950). A system is often defined as a number of components forming a whole that differs from 

the sum of the components themselves (see, e.g., Blanchard et al. (1990); Wu (2012); Dekkers 

(2015). System theory combines a number of principles used to describe and explain complex 

phenomena in which a single component cannot be understood without considering its context 

(Von Bertalanffy 1950). This view, i.e., that the whole is more than the sum of its parts, is 

referred to as the principle of holism and its formulation dates to the time of Aristotle (Skyttner 

2005). Reductionism, which can be seen as the opposite to holism, is when complex phenomena 

are reduced to simpler structures and the whole is understood by analyzing its parts (Skyttner 

2005). However, to obtain a better understanding of complex systems, reductionism and holism 

are sometimes incorporated as complementary strategies (Anderson 1999).  

Production systems can be classified according to three perspectives corresponding to the 

functional, structural, and hierarchal concepts (Bellgran and Säfsten 2009). Viewed in isolation, 

these perspectives might each lead to specialized theories, but they can be connected and unified 

within GST (Skyttner 2005). In the functional concept, the system is viewed as an entity that 

transforms inputs to outputs and the function describes the purpose of the system (Dekkers 

2015). It is not difficult to relate this to the fundamental objective of a production system, which 

is to transform raw material into finished goods (Hopp and Spearman 2008). Boer et al. (2015) 

argue that it is this process of converting inputs to outputs that underpins virtually everything 

done in the OM discipline. The functional concept typically involves a “black-box” approach 

in which the external structures of a system are investigated but without identifying any of the 

internal components (Bellgran and Säfsten 2009). The behavior of the system is thereby 

analyzed as if it were a single component (Dekkers 2015).  

In the structural concept, aligned with the principle of holism, a system comprises a set of 

elements and a set of relationships between them (Von Bertalanffy 1950). These elements can 

be physical objects as well as theoretical constructs, and the relationships describe the 

dependencies among them (Dekkers 2015). A structural view of a production system can, for 

example, refer to the descriptions and relationships between personnel and machines on the 

shop floor (Bellgran and Säfsten 2009). Finally, the hierarchal view of systems implies that a 

system can constitute a subsystem of a larger system (Skyttner 2005). For a production system 

the hierarchical view often refers to organizational levels, such as the operational, tactical, and 

strategic levels employed in operations strategy (Slack and Lewis 2002) or, as in the example 

cited by Bellgran and Säfsten (2009), to a production system consisting of one production 
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system and one assembly system. The structural concept can turn into the hierarchal concept if 

the elements are themselves regarded as nested subsystems (Skyttner 2005). 

A production system is an open system and thereby interacts dynamically with the surrounding 

environment (Bellgran and Säfsten 2009). A system boundary is used to distinguish between 

the environment and what is inside the system; it also represents the contact point between the 

system and other systems (Wu 2012). According to Bellgran and Säfsten (2009) and Wu (2012), 

production systems are goal seeking and their various subsystems differ in their importance for 

goal fulfillment. They are also characterized by equifinality, meaning that the goal or an end 

state can be reached in many ways.  

2.1.1 Production system modeling  

Models of production systems are found in a variety of fields, such as process planning (Feng 

and Song 2003), performance measurement (Mathur et al. 2011), manufacturing resource 

capability modeling or selection (Vichare et al. 2009), business process modeling (Giaglis 

2001), and modeling for manufacturing system design (Bellgran and Säfsten 2009; Wu 2012). 

As modeling approaches differ in how they cognize the real world, the key is to understand 

where an approach does and does not apply. Modeling methods and languages can be based on 

one or several modeling approaches. In the following, two specific modeling languages of 

interest are presented. 

Unified modeling language (UML) provides several types of graphic modeling diagrams mostly 

targeting systems modeling but also used to model production processes (Dekkers 2015). UML 

has become an industry standard for modeling software-intensive systems (OMG 2011). It is 

based on the object-oriented approach and therefore considers both data and functions that 

enable a picture of the whole process and the associated actors and processes. An object 

represents real or intended things and a class defines the object’s properties and behaviors. The 

UML language’s notations and rules are designed to represent data requirements in terms of 

object-oriented models. Use case diagrams can be created to capture a system’s functionality 

and class diagrams to capture its vocabulary. There are also several kinds of diagrams used to 

describe system behavior and to represent implementation, interaction, and deployment 

activities. 

The EXPRESS modeling language is part of the Standard for the Exchange of Product model 

data (STEP) and is defined in ISO 10303-11. It is usually used for integration between different 

manufacturing system applications, often with an orientation toward machining (ISO 1994). It 

consists of language elements that allow unambiguous data definition and the specification of 

constraints on the data defined and is based on the object-oriented approach. It uses a textual 

representation with graphic subsets available; this graphic representation is called EXPRESS-

G. 

2.2 Shop floor data acquisition 
The operational improvement potential of a production system cannot be captured without 

acquiring data. This section introduces some of the traditional work measurement techniques 
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that are fundamental for studying manual work. An overview of automatic systems for the 

acquisition, modeling, and communication of manufacturing data is also presented.  

2.2.1 Time data determination and work measurement 

Time data must be determined to set requirements and develop standards for process planning 

and design at the operational levels of a plant (Kuhlang et al. 2014). They also constitute the 

foundation for developing and applying measures for production planning, followup, and 

control at the tactical and strategic levels (Dionne and Kempf 2011; Lödding 2012).  

Three principal approaches to determining time data for manual activities are based on 

historical records, direct time studies, and time studies using predetermined time systems 

(Niebel and Freivalds 2003). Historical records do not indicate how long an operation should 

have taken but only how long it actually took (Niebel and Freivalds 2003). Direct time studies 

are employed to measure operation cycle times based on the presence of a real observation 

environment (Saito 2001). These studies employ a stopwatch technique in which the durations 

of all subtasks are measured and then summed to calculate the total operation duration. Besides 

measuring operation times for planning purposes, direct time studies can also be used for 

performance rating in which the speed of work is assessed in relation to the defined standard 

time for that work task (Niebel and Freivalds 2003).  

Predetermined time systems is a motion-based technique in which the operation times are 

created using sequences of building blocks in which target times are assigned to single motion 

elements. Of over fifty predetermined time systems, the methods-time measurement (MTM) 

(Maynard et al. 1948) and Maynard operation sequence technique (MOST) are the most 

common system families (Niebel and Freivalds 2003). In MTM-based systems, elements are 

expressed as time measurement units (TMUs), each corresponding to 36 milliseconds. Many 

Swedish companies use the sequence-based activity and method analysis (SAM) MTM-based 

system (IMD 2004). While direct time studies require real-life observations, predetermined time 

systems can be applied in designing activities and determining their duration even though an 

operation exists only on paper during the planning phase. Nevertheless, for defined work content, 

there is a tradeoff in the accuracy needed to determine time data and the effort required to use 

predetermined time systems (Czumanski and Lödding 2016; Kuhlang et al. 2014). MTM-1 is an 

example of a very detailed time determination method with a ratio of 1:200, meaning that it 

would take 200 minutes to analyze one minute of work content (Niebel and Freivalds 2003). 

For a less detailed predetermined time system, MTM-SAM has a ratio of 1:25–30 (IMD 2004). 

Recent research initiatives have attempted to automate the required data collection and analysis 

by applying motion capture systems and augmented reality (e.g., Sung et al. (2015)).  

For automatic activities, historical records and direct-time studies can also be applied for time 

data determination. Direct-time studies are then incorporated to measure the time duration for 

each produced unit when an individual equipment resource is operated in isolation and under 

stable processing conditions, i.e., unaffected by factors such as blocking, starvation, and 

disturbance (Hedman  et al. 2014). Theoretical cycle times are typically derived based on 

information from the equipment supplier. However, an efficient way to derive cycle times is 
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through the use of production planning software, such as computer-aided manufacturing 

(CAM) software (Yusof and Latif 2014).  

Work sampling is a statistical technique developed by Tippett (1935) in which random objects 

are studied at fixed time intervals or fixed object sequences are studied at random time intervals. 

It is applied to determine the amount of time a resource spends performing defined activities in 

order to derive a measure of work distribution (Zandin 2001b). It is possible to conduct work 

sampling studies of both manual and automatic activities as well as of administrative work 

(Niebel and Freivalds 2003; Murgau 2009). The data collection can be performed both by 

analysts who observe work and through self-reporting (Niebel and Freivalds 2003). 

2.2.2 Automatic data acquisition 

Modern systems for automatically acquiring shop floor data have increased the amount of data 

collected in industry and cover both the organization and communication of the acquired data. 

The digitalization of industry is greatly emphasized in several ongoing reindustrialization 

initiatives (Rübmann et al. 2015; Näringsdepartementet 2016; Westkämper 2013), meaning that 

the volume of shop floor data collected will continue to increase. Digitalization has also led to 

the formulation of new concepts related to smart factories, sometimes referred to as new 

manufacturing paradigms, for example, the industrial Internet of things (Da Xu et al. 2014), 

cloud manufacturing (Zhang et al. 2014; Helo et al. 2014), and the fusion of the physical and 

virtual world in cyber–physical systems, which is a key design component of Industrie 4.0 

(Hermann et al. 2015). 

One of the most-established current architectures for shop-floor data acquisition is the ISA95 

standard for enterprise control system integration, which defines a manufacturing organization 

in a five-level functional hierarchy model (Figure 2.1) (ISA95 2013). Sensors and 

programmable logic devices (PLCs) that monitor and control the actual production processes 

correspond to the model’s lower levels, i.e., levels 0–2. Manufacturing operations management, 

comprising manufacturing execution systems (MESs), refers to the third level in this hierarchy. 

It models the management of production, maintenance, quality, and inventory operations. Its 

objective is to optimize manufacturing processes and resources and to provide higher-level 

systems, i.e., enterprise resource planning (ERP) systems, with manufacturing data so they can 

manage enterprise operations, such as business planning and logistics. 

Moreover, two international standards associated with the ISA95 standard target the 

organization and communication of shop floor data: ISO 10303-11 and ISO 15531 (Chen and 

Vernadat 2004). ISO 10303-11 is the Standard for the Exchange of Product model data (STEP), 

which is used to exchange data between systems for computer-aided design, manufacturing, 

and engineering (i.e., CAD, CAM, and CAE) (Feng and Song 2003). ISO 15531 is the 

international standard for manufacturing data management (MANDATE) and defines 

production and resource information (ISO 2005). Both standards use the EXPRESS modeling 

language described in the previous section. 
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2.3 Productivity and capacity 
Productivity and capacity are two central concepts frequently cited throughout this thesis. Even 

though these terms are used in an industrial context, they are interpreted differently depending 

on whether one is speaking with an economist or a production engineer.  

2.3.1 Firm-level productivity 

Productivity changes are movements in the productivity performance of a nation, or the sectors 

of a nation’s economy, over time (Bernolak 1997). They can refer to either total factor 

productivity, which includes all production factors, or partial productivity measures, such as 

labor productivity (Coelli et al. 2005). Economists typically employ production functions to 

model and analyze productivity (Coelli et al. 2005; Bernolak 1997). It is common to use the 

term frontier to emphasize that the production function gives the maximum output that is 

technological feasible (Coelli et al. 2005). Inputs are typically classified as capital, labor, and 

other, while the outputs involve information about output quantities and price. Some of the most 

common techniques used, based on the concept of production functions, are data envelopment 

analysis (DEA) and the stochastic frontier approach (Singh et al. 2000; Coelli et al. 2005). 

Several of these techniques are incorporated at the microeconomic level, but the focus is on the 

performance of individual firms rather than of the economy as a whole (Chen et al. 2015). As 

stated, output is then measured in quantities, such as produced goods, sometimes also including 

price information.  

Plant productivity corresponds to how efficiently a firm utilizes its input to produce output 

(Bernolak 1997; Tangen 2003). Production economists are therefore primarily interested in 

input and output quantities, together with their respective prices and quality characteristics 

(Rasmussen 2012). As the entire firm is viewed as the entity that transforms inputs to outputs, 

aggregate descriptions of technology are used (Rasmussen 2012). Production economists also 

focus on assessing firms, for example, by investigating a firm’s performance compared with 

that of its competitors, and on whether a firm has improved its productive capacity over time 

Figure 2.1. Functional manufacturing hierarchy; adapted from ISA95 (2013). 
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(Rasmussen 2012). The relative performance of a firm is measured in terms of its distance from 

the industry’s efficient frontier, which is in turn estimated based on the (observed) inputs and 

outputs from a representative sample of the firms in a given industry (Coelli et al. 2005). This 

approach addresses allocative efficiency, which describes the ability of firms to use their inputs 

in optimal proportions, given the respective input prices and the available production 

technology (Färe and Zelenyuk 2003). A firm can be technically efficient but may still be able 

to improve its productivity by exploiting scale economies (Coelli et al. 2005). Balk (2001) has 

identified three primary sources of total factor productivity growth at the firm level:  

 technical change resulting from a shift in production technology 

 efficiency change associated with the firm’s ability to use the available technology and 

to make more efficient use of its inputs 

 scale efficiency change, referring to improvements in the firm’s scale of operations  

 

Prokopenko (1987) categorizes the factors affecting the productivity of a firm as either external 

or internal. External factors are beyond the control of the individual company. They correspond 

to macro-productivity factors, such as social and structural changes, economic changes, and 

government policies and infrastructure. Internal factors are controllable and include what 

Prokopenko (1987) calls hard factors (i.e., fixed assets, materials, and products) and soft factors 

(i.e., people, management policies, and organization). 

2.3.2 Capacity 

Capacity measures the output that can be produced with the available resources of a 

manufacturing facility. The concept of capacity plays a central role in long-term production 

planning and short-term activity scheduling (Hopp and Spearman 2008). Productivity is always 

defined as the relationship between input and output, even though the measurement and 

interpretation of productivity differ depending on the context in which the concept is used. In 

contrast, as there is overall ambiguity in the fundamental definitions of capacity (Perry 1973; 

Elmaghraby 2011), Elmaghraby (2011) stresses that it is vital to define what is meant by 

capacity as a prerequisite for its measurement.  

At the highest level, capacity, also called productive capacity, equals the maximum possible 

output of an economy (Nelson 1989). Production economists define plant-level capacity as the 

maximum output level than can be produced with existing plant and equipment (Johansen 1968; 

Coelli et al. 2002). Individual applications of these definitions may differ, however, in the extent 

to which they consider labor availability, material supply, and other variables related to plant 

capacity. The actual output of a plant relative to a measure of full capacity is defined as capacity 

utilization, or the capacity utilization rate (Klein et al. 1973). The capacity utilization of an 

industry, or industry group, is an aggregate of plant-level measures and is typically used in 

business cycle analysis. It is intended to indicate how well productive capabilities are being 

utilized, with low levels of capacity utilization indicating slowing economic activity and high 

levels suggesting strong activity and therefore inflationary pressures (Corrado and Mattey 1997; 

Greenwood et al. 1988).  
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In production planning and control, Elmaghraby (2011) states that not one but many capacities 

are used in practice, defining them as nominal capacity, operational capacity, planned capacity 

utilization, and actual utilized capacity. The nominal capacity corresponds to the productive 

capability assuming continuous availability of manufacturing resources; it is also referred to as 

theoretical or maximal capacity. The operational capacity is the productive capability when 

anticipated losses have been subtracted from the nominal capacity. Elmaghraby (2011) argues 

that these unavoidable losses include the optimal setup time, or changeover time, between 

products and the standard rate of rejects (i.e., quality yield). Finally, the planned capacity 

utilization is the actual utilized capacity as a proportion of the operational capacity that is 

planned to be used, which naturally corresponds to what is actually utilized in transforming 

input to output.  

2.3.3 Shop floor productivity  

In firms, production and industrial engineers are concerned with the design, improvement, and 

installation of integrated systems of personnel, materials, equipment, and energy (Zandin 

2001a), leading to a focus on internal productivity factors. This focus leads to actions such as 

resource optimization, lead time reduction, and other initiatives to improve productivity and 

increase capacity. Most previous research into how to measure and improve shop floor 

productivity is related to many of the well-known continuous improvement methodologies such 

as Lean Production, Total Quality Management (TQM), and the hybrid approaches of Lean and 

Six Sigma (Bhamu and Sangwan 2014; Muthiah and Huang 2006; de Mast and Lokkerbol 

2012). Schmenner and Swink (1998) have formulated the theory of swift and even flow, giving 

the theoretical basis for the relationship between Lean Production and productivity (Boer et al. 

2015). The theory posits that the swifter and more even the flow of materials through a process, 

the more productive the process is (Schmenner and Swink 1998). It follows that productivity 

should increase with the speed of material flow through a process, and decline with increases 

in the variability associated with the flow.  

Productivity on the shop floor level is defined as the ratio of potential output to actual output 

of a process (Prokopenko 1987). In OM and OR queuing theory, the conventional approach to 

understanding the performance of operational processes and much previous research in this area 

have specifically focused on automatic and equipment processes (Walker et al. 2015). Formulas 

used to calculate the operating characteristics of a system assume that the arrival process as 

well as the service time are stochastic and characterized by specific statistical distributions with 

known parameters (Blanchard et al. 1990). For example, Godinho Filho and Uzsoy (2013) 

combine system dynamics with queuing models to examine the potential outcomes of 

improvement projects. Mauri et al. (2010) have developed a parameter for operating system 

effectiveness that detects causes of low productivity to be used when implementing process 

improvement measures. Similar approaches are also found in the axiomatic model-based 

research, for example, of Li and Meerkov (2008), Curry and Feldman (2011), and Hopp and 

Spearman (2008).  

Aligned with the theory of swift and even flow, Hopp and Spearman (2008) state that factors 

that negatively affect shop floor productivity and, consequently, capacity are usually related to 

variability. They further argue that the principal sources of variability can be classified into two 
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categories: flow variability and process variability. Flow variability is caused by variation 

arising when jobs are either entering or leaving a system, or when jobs are moving between 

work stations. This is associated with the design of the production system and with the planning 

and control policy adopted by management. Process variability is caused by natural variation 

in process times and by variability arising from preemptive and non-preemptive outages. The 

difference between preemptive and non-preemptive outages concerns the extent to which it is 

possible to control the event causing the outages.  

Hopp and Spearman (2008) model the interactions among types of variability by combining 

queuing theory and Little’s law (Little 1961), which essentially defines the relationship between 

work in process (WIP), throughput rate, and cycle time. This constitutes the foundation for what 

they define as the law of best-case performance for an operational process. It is divided into the 

best-case cycle time (Equation 2.1) and best-case throughput rate (Equation 2.2):  

    (2.1)      (2.2)  

where w is a given WIP level and W0 is the critical WIP level. The raw processing time is 

expressed as T0 and the bottleneck rate as rb. 

Saito (2001) and Helmrich (2003) have defined three dimensions of productivity to better 

understand what factors to measure and assess when seeking to improve the productivity of 

shop floor operations. The method factor (M) describes how an operation, or work content, 

should be executed. It is calculated as the inverse of the ideal cycle time for the specific work 

task and corresponds to the ideal, or intended, productivity rate of an operation. The 

performance factor (P) refers to the speed of the operation in relation to its ideal cycle time, i.e., 

working faster or slower than normal. The utilization factor (U) represents how much of the 

available working time is spent on the intended method and incorporates aspects of the degree 

of resource utilization. Table 2.1 presents Saito (2001) compilation of techniques and actions 

that can be used for assessing each factor. This approach has been used in productivity 

improvement initiatives in combination with value stream mapping (Kuhlang et al. 2011) and 

in the PPA studies that, as stated, underlie much of the research presented here (Almström and 

Kinnander 2011). 

Furthermore, one of the best-established specific performance measures for automatic 

activities, often associated with productivity, is overall equipment effectiveness (OEE) 

(Jonsson and Lesshammar 1999; Andersson and Bellgran 2015). The OEE measure typically 

serves as an important driver of improvement initiatives and has been developed to capture 

losses related to downtime, speed, and quality. OEE is essentially defined as the ratio between 

the time spent producing goods of approved quality and the scheduled time (i.e., loading time) 

(Nakajima 1988), formulated as follows: 

  (2.3) 
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Availability is calculated as the planned production time minus downtime (i.e., breakdowns and 

changeovers). Performance efficiency is the ideal cycle time multiplied by the number of 

products produced during actual runtime. The quality rate is the ratio between the number of 

quality-approved products and the total number of products produced. In relation to the three 

dimensions of productivity, the OEE measure can be seen as equivalent to the P and U factors 

multiplied by the quality yield for equipment activities (Almström and Kinnander 2011).  

Table 2.1. Techniques and actions for analyzing productivity losses; adapted from Saito (2001). 
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2.4 The theory of performance frontiers 
The manufacturing strategy literature defines the link between manufacturing objectives and 

market requirements as competitive priorities constituting the dimensions of quality, delivery, 

cost, and flexibility (Slack and Lewis 2002). Operational measures of manufacturing 

performance typically coincide with the manufacturing objectives and their corresponding 

dimensions (Slack and Lewis 2002). Manufacturing capabilities are characterized by the set of 

practices in use at a firm and constitute the basis of operational performance. These capabilities 

can be defined as a plant’s actual performance relative to that of its competitors (Schoenherr et 

al. 2012). They are often conceptualized as the intended or realized competitive performance 

of a business unit and are assessed using operational performance measures (Flynn and Flynn 

2004). Though all performance dimensions are to some extent vital to all operations, which one 

is the most important is a matter of competitive positioning (Ward et al. 1998). Nevertheless, 

there is ongoing debate as to whether firms improve manufacturing performance in a 

cumulative manner or trade off one measure against another, such as cost versus quality or cost 

versus flexibility (Schroeder et al. 2011; Amoako-Gyampah and Meredith 2007).  

In the theory of performance frontiers, output is expanded to include all dimensions of 

manufacturing performance and inputs to include choices affecting the design and operation of 

a manufacturing firm. A performance frontier is defined as “the maximum performance that 

can be achieved by a manufacturing unit given a set of operating choices” (Schmenner and 

Swink 1998). Tradeoffs and cumulative improvements are not seen as mutually opposed, but 

rather constitute functions of a firm’s positioning relative to its maximum performance frontier 

(Schmenner and Swink 1998). Using a cost–performance diagram (Figure 2.2), Schmenner and 

Swink (1998) illustrate two types of performance frontiers: one formed by choices in plant 

design and investments (i.e., the asset frontier) and another formed in plant operations (i.e., the 

operating frontier). The performance of a plant is bounded by its operating frontier, which is in 

turn bounded by its asset frontier.  

Schmenner and Swink (1998) argue that the theory can be applied for strategic comparisons 

both between and within firms. If sufficient slack is available and a firm is positioned below its 

operating and asset frontiers, it can make simultaneous improvements along multiple 

performance dimensions without negatively affecting other dimensions. However, as firms 

become more efficient and remove slack from their systems, it becomes increasingly difficult 

to make improvements simultaneously in multiple dimensions without negatively affecting 

other dimensions. This suggests that firms are subject to tradeoffs and have to choose between 

competing priorities when they are at the frontier.  

In Figure 2.2, the left panel shows two firms, A and B, which have similar investments in plant 

design and technology and therefore share an asset frontier. Firm B, however, employs different 

management policies and operates closer to its asset frontier than does Firm A, which implies 

that Firm B makes more efficient use of its inputs than does Firm A. The right panel in Figure 

2.2 illustrates how one firm can move, or reshape, its operating frontier by altering 

manufacturing operating policies, a process that Schmenner and Swink (1998) refer to as 

“betterment.” In comparison, Schmenner and Swink (1998) distinguish “improvement” as what 

happens when a firm removes inefficiencies in transformation processes without making any 
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changes in its operating policy or physical assets and, consequently, does not alter the shape of 

the frontiers. 

 

 

 

 

 

Figure 2.2. The concept of performance frontiers; adapted from Schmenner and Swink (1998). 

The theory of performance frontiers was extended by Vastag (2000) two years after Schmenner 

and Swink (1998). In this extension, Vastag (2000) identified similarities between the 

definitions of the performance frontiers and terms traditionally used in capacity management, 

in which the asset frontier can be interpreted as the design capacity of a plant and the operating 

frontier as the actual output, or effective capacity. Vastag (2000) further argued that cost 

belongs to the performance dimension, so the diagram is rearranged to depict the performance 

dimension on the vertical axis and the input dimension on the horizontal axis (Figure 2.3). The 

stepwise shape of the asset frontier symbolizes asset-related performance improvements. The 

operating frontier is represented as a concave trajectory path, its downward drops illustrating 

the initial performance decreases that may occur when introducing new technology or new ways 

of working. Its shape also reflects the aggregate learning effects of resources, which are central 

to learning curve theory (Adler and Clark 1991).  

Figure 2.3. The redesign of the performance frontier diagram; adapted from Vastag (2000). 
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2.5 Research gap 
This section has established the theoretical foundation for the research presented here. It has 

covered the description and modeling of production systems, including how to acquire shop 

floor data to capture the operational improvement potential. As the overall focus is on the 

improvement of shop floor productivity in the interest of increasing capacity, the basis for 

defining and measuring productivity and capacity has been presented.  

The theory of performance frontiers has the ability to provide explanatory insight into 

productivity differences within and between firms (Schmenner and Swink 1998) and is well 

established in the OM community (Boer et al. 2015; Walker et al. 2015). While the concept of 

performance frontiers is conceptually elegant, previous research has identified several 

challenges that limit the practical applicability of the theory. These mainly concern how actually 

to measure a manufacturer’s position relative to a performance frontier. Sarmiento et al. (2008) 

argued that it is unclear whether performance frontiers and the phenomena that take place inside 

their boundaries should actually be measured and, if so, how they should be measured. Cai and 

Yang (2014) stated that it is difficult, if not impossible, to measure the asset and operating 

frontiers directly in terms of their possible output levels.  

In the original paper, Schmenner and Swink (1998) suggested metrics thought to proxy for slack 

by, for example, measuring nearness to a product range or product cost frontier using a metric 

based on the ratio of throughput time and processing time. In extending the theory, Vastag 

(2000) defined the inputs of manufacturing practices based on item-level measurements that 

are aggregated to an index using summed scales or factor scores. However, how this is to be 

conducted in practice was outside the scope of the paper by Vastag (2000). Other researchers 

have suggested parametric methods, such as DEA, and non-parametric methods, such as the 

deterministic and stochastic frontier models, along with assigning proxy metrics for estimating 

firm performance frontiers (Coelli et al. 2005; Rosenzweig and Easton 2010; Clark 1996). 

However, Rosenzweig and Easton (2010) argue that an estimated positioning relative to an 

empirically derived frontier may not correspond to positioning relative to the actual frontier, 

and that it is difficult to evaluate the difference between the two. In addition, these methods are 

data intensive and difficult to execute in practice (Singh Srai et al. 2013), and as they originate 

in economic theory they are not designed, and therefore insufficient, to identify the root causes 

of productivity losses at an operational level (Czumanski and Lödding 2016; Klassen and 

Menor 2007).  

Although several publications have tested and supported the propositions of Schmenner and 

Swink (1998) and Vastag (2000) concerning cumulative capabilities and tradeoffs, rarely has 

anyone attempted to graphically plot the asset and operating frontiers using empirical data. As 

of June 2016, the Web of Science database listed 242 articles citing Schmenner and Swink 

(1998) and 30 articles citing Vastag (2000). Of these, only the following authors present graphs 

including both asset and operating frontiers: Lapré and Scudder (2004), Cai and Yang (2014), 

and Singh Srai et al. (2013). Lapré and Scudder (2004) use the theory of performance frontiers 

to suggest how best to improve airline operations. Singh Srai et al. (2013) argue that they 

provide “the first comprehensive empirical validation of the integrated operations capability 

model where both asset and operating frontiers have been used,” also in the airline industry. In 
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these cases, the asset frontier corresponds to an airline’s capacity to serve passengers, derived 

by multiplying the number of seats available in a flight by the distance over which the seats are 

flown. The operating frontier corresponds to the proportion of available seats actually occupied 

and utilized, representing the effective capacity of an airline. Cai and Yang (2014) are the only 

authors who plot both the asset and operating frontiers in a manufacturing context. They adopt 

a survey approach to explore the connections between business environments and firms’ 

competitive priorities. They use three organizational characteristics as proxies for the asset 

frontier: investments in operation functions, number of employees, and firm profitability. 

Operation processes are seen as indicators of the operating frontier, using four items based on 

Malcolm Baldrige National Quality Award criteria to measure operation processes. 

Nevertheless, these items are not further specified and the publication from which they were 

adopted describes seven items (see Lau et al. (2004), which makes it difficult to establish how 

the operating frontier has been constructed.  

Lastly, Rosenzweig and Easton (2010) and Sarmiento et al. (2008) advocate the use of 

longitudinal empirical data to monitor the development of capabilities and to enable firm 

performance comparisons based on the frontier approach. Their approach concerns internal 

aspects, i.e., changes in performance over time, and as well as external aspects, i.e., industry 

and competition levels. In addition, both argue that the detailed level of understanding required 

for such research may require case study methodology, which is supported by Boyer and Pagell 

(2000).  
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3 Methodology 

This chapter describes how the research has been conducted by describing the research process 

in relation to the adopted view of science. The main research methods and techniques used are also 

presented.  

3.1 Research approach 
Research can be defined as an activity that contributes to the understanding of a phenomenon 

(Kuhn 1996). Selecting a research approach will indirectly determine what view of science is 

adopted, as the selection involves the role of theory and its relationship to research. As stated 

by Bacharach (1989), theory can be defined as a set of constructs and the relationships among 

them, along with boundary conditions, assumptions, and constraints. A theory should be 

parsimonious and describe or make predictions about the phenomena of interest. According to 

Wacker (1998), theory consists of four elements: conceptual definitions, domain limitations, 

relationship building, and predictions. As defined by Meredith (1993), in the normal research 

cycle, following an iterative process, descriptive models are expanded into explanatory 

frameworks, which are tested against reality until they eventually develop into theories. The 

initial conceptual models constitute sets of concepts, with or without propositions, used to 

represent an event, object, or process (Naumann 1986; Meredith 1993). Explanatory conceptual 

frameworks are collections of two or more interrelated propositions that explain an event, 

provide understanding, or suggest testable hypotheses. Finally, a theory corresponds to a group 

of interrelated concepts and propositions used as principles of explanation and understanding 

(Meredith 1993).  

Two fundamental relationships between research and theory concern whether data are collected 

to test or build theories (Chalmers 1999; Popper 2002). When following a deductive strategy, 

the researcher uses existing theory to formulate hypotheses and thereafter collects data in an 

attempt to falsify the theory (Popper 2002). Conversely, when following an inductive strategy, 

the researcher uses observations and findings to build theories (Popper 2002). Quantitative 

research methods are typically related to a deductive strategy while qualitative research 

methods relate to an inductive strategy. However, the distinctions between the two strategies 

and their related methods are not as clear cut in practice as they are in formal definitions 

(Bryman and Bell 2007; MacCarthy et al. 2013). A selected research approach might include 

both inductive and deductive components in different parts of the research process. These two 

strategies should therefore be seen more as tendencies than as sharply distinguished entities 

(Bryman and Bell 2007). 

3.1.1 Empirical model-based quantitative research 

Meredith et al. (1989) have defined two dimensions of research approaches that shape the 

philosophical basis of research activities in OM: the rational/existential dimension and the 

natural/artificial dimension. The first dimension relates to the epistemological structure of the 

research process, i.e., the approach adopted to generate knowledge. The second dimension 

concerns the source and kind of information used in the research. In quantitative modeling, it 

is assumed that objective models can be built that can explain the behavior of real-life 

operational processes and capture related decision-making problems (Bertrand and Fransoo 
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2002). This is classified as a rational knowledge-generation approach by Bertrand and Fransoo 

(2002), using the terminology of Meredith et al. (1989). Moreover, Bertrand and Fransoo (2002) 

clearly distinguish between axiomatic quantitative modeling research and empirical 

quantitative modeling research. Axiomatic research is typically normative and tends to follow 

a deductive strategy (Bertrand and Fransoo 2002). It is therefore methodologically prescribed 

and uses formal methods from other branches, such as mathematics and statistics (Meredith et 

al. 1989). On the other hand, empirical model-based research is primarily descriptive and driven 

by empirical findings and measurements (Bertrand and Fransoo 2002; Filippini 1997).  

The research presented here is positioned within empirical model-based quantitative research. 

A systems approach has been adopted to investigate the characteristics and behavior of 

production systems and their shop floor operations. As stated, a systems approach assumes that 

the reality or problem situation can be objectively modeled and is constructed of components 

that are mutually dependent (Von Bertalanffy 1972). In contrast to a strictly positivistic 

analytical approach, system components are not summative because they influence each other 

and create synergies (Von Bertalanffy 1972). Bertrand and Fransoo (2002) argue that because 

empirical model-based research is a rational and objective scientific approach, it requires 

systematic, objective, and situation-independent procedures when identifying and measuring 

real-life operational processes. This is referred to as the conceptual modeling of a system 

(Bertrand and Fransoo 2002; Mitroff et al. 1974), which is also often the initial step when 

conducting research, regardless of whether the research is descriptive, exploratory, or 

confirmatory (Meredith 1993).  

Mitroff et al. (1974) have presented a generic approach to research methodology in OM, based 

on a systems view of problem solving (Figure 3.1). The conceptualization involves specification 

of the variables that will be used to define the nature of the problem to be studied. In the 

modeling step, the actual quantitative model is built by defining the significant relationships 

between the variables. Model solving involves the deduction of conclusions from the scientific 

model. Mitroff et al. (1974) claim that the actual research process can begin at any point in the 

diagram, further discussing the benefits or risks of choosing different paths. The complete 

research cycle, including all stages of the model (Figure 3.1), typifies empirical normative 

research. Such research largely incorporates research output from axiomatic descriptive 

research, which has developed paths for the modeling and model-solving stages (Bertrand and 

Fransoo 2002). Nevertheless, in developing the framework presented here, the selected 

methodological path is aligned with the “conceptualization–modeling–validation” cycle, which 

Bertrand and Fransoo (2002) claim is typical of empirical descriptive research. They further 

argue that validation is a core process in such research and acknowledge the related risk 

identified by Mitroff et al. (1974), namely, that researchers may be overly concerned with 

validation, attempting to achieve a perfect fit between model and reality.  

The source and kind of information used are elaborated on in subsequent sections describing 

the research design and incorporated research and data-collection methods.  
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Figure 3.1. Research model of Mitroff et al. (1974). 

3.2 Research design 
The research presented here was conducted from 2011 to 2015 and involves case studies, the 

secondary analysis of datasets, and one survey. In total, five empirical studies referred to as 

Studies 0, I, II, III, and IV were performed. They are arranged chronologically in the research 

timeline in Figure 3.2. Study 0 corresponds to the Chalmers Electronics Production (ChePro) 

project funded by the Swedish Foundation for Strategic Research (SSF) and the ProViking 2 

research program. It began two years before the employment of the author, while the remaining 

studies (I–IV) were initiated and designed by the author. A description follows of the 

characteristics of the research methods used, how they relate to the empirical studies, and their 

association with the appended papers.  

 

Figure 3.2. Research timeline. 

3.2.1 Case study 

The use of case studies is well established in the OM community (Voss et al. 2002; Flynn et al. 

1990) and has proven particularly suitable when it comes to studying phenomena in their natural 

Conceptual 
model 

Reality, 
problem 
situation 

Scientific 
model 

Solution 

Validation 

Feedback 
(narrow sense) 



Methodology 

24 

 

settings (Eisenhardt and Graebner 2007). Case studies can be designed to have different 

emphases depending on the research purpose. This means that they can be used for theory 

building and theory testing, as well as theory elaboration (Voss et al. 2002; Ketokivi and Choi 

2014). Early in research projects, case studies are often employed to uncover areas for research 

and theory development (Voss et al. 2002). Case studies constitute the research design used in 

Studies 0, I, and II.  

In Study 0, five case studies were performed, structured as multi-site case studies with a theory-

building emphasis. These studies took place in the Swedish electronics manufacturing industry. 

The case companies were selected based on their participation in the ChePro project. Four of 

the five case companies are categorized as small and medium-sized enterprises (SMEs) with 

50–250 employees, and one is considered a large company. The author participated in gathering 

and analyzing the empirical data in three of the five case studies and co-authored the paper 

describing the findings, i.e., Sundkvist et al. (2012). For the purpose of this research, the units 

of analysis were the identified key constructs needed to describe the operational improvement 

potential of a production system, thereby primarily addressing RQ1. Consequently, findings 

from Study 0 correspond to the formulation of the reality and problem situation underlying the 

subsequent conceptualization and modeling activities. These activities resulted in a production 

system model presented in Papers A and B, in which the development of the modeling approach 

constituted the research presented in the author’s Licentiate thesis (Hedman 2013). The 

production system model has also been incorporated into a framework that explains how shop 

floor productivity improvements can provide financial benefits (Sundkvist 2014) and 

implemented in a software prototype as part of a Bachelor’s thesis (Bengtsson et al. 2014) 

supervised by the author.  

The case studies of Studies I and II were structured as single-case studies and primarily 

conducted as part of the process of validating the proposed framework. They emphasized theory 

elaboration and therefore follow a logic similar to that of theory testing, though the empirical 

findings are not anticipated by the a priori formulation of propositions (Ketokivi and Choi 

2014). In this type of case research, a general theory that can be used to approach the empirical 

context is identified and the actual elaboration involves concepts and combinations from several 

theories (Ketokivi and Choi 2014). The theory of performance frontiers (Schmenner and Swink 

1998; Vastag 2000) had previously been identified by Sundkvist (2014) as the general theory 

on which the theory extension efforts would be based. In both studies, the units of analysis were 

the case companies’ production systems and associated operational processes. The studies 

aimed to contribute primarily to RQ3 in how the operational improvement potential can be 

captured to support decisions about improvement initiatives, but as it covers the application of 

the model from Papers A and B it also contributes to RQ 1 and 2. 

The case company in Study I is a medium-sized electronics manufacturer selected based on two 

criteria: the operational characteristics of automated production and ongoing operational 

improvement initiatives. An initial study was conducted to establish a current-state description 

of the system. This involved direct measurements at an operational level using work study 

techniques such as work sampling. These measurements were made as part of a Master’s thesis 

project (Bergström and Plamkvist 2014) supervised by the author. Raw data from the direct 



Methodology 

25 

 

measurements were modeled, further analyzed, and incorporated into the proposed framework 

by the author. Supplementary unstructured interviews with production managers and onsite 

visits were conducted by the author. After one year, a followup study was conducted by the 

author by means of structured interviews and the acquisition of historical production data.  

In Study II, the case company is a large-sized engine manufacturer selected based on two 

criteria: the operational characteristics of manual assembly and the company’s novel system for 

automatic data acquisition developed specifically for manual assembly. A separate analysis of 

this system and its data acquisition capabilities was performed structured as a best-in-class case 

study. The findings are presented in Paper D and the process of validation, based on Studies I 

and II, is presented in Paper C. Study II was designed by the author, who also performed all the 

data collection and analysis.  

3.2.2 Secondary analysis  

Secondary analysis is defined by Bryman and Bell (2007) as the analysis of data that the 

researcher has not participated in collecting, which could be data collected by organizations or 

other researchers as well as official statistics. Bryman and Bell (2007) claim that a main benefit 

of using secondary data is the opportunity to employ large datasets based on large samples, 

while a typical limitation is the lack of control over data quality. The secondary analysis of 

datasets was conducted in Study III and in parts of Study IV.  

Study III was based on a large dataset of production-followup data from 23 companies and 

884 machines covering six months of production. The dataset was provided by Good Solutions 

AB, an industrial software company specializing in real-time production followup and 

disturbance management. The study was initiated and designed by the author and the data 

modeling was performed as part of a Master’s thesis project (Subramaniyan 2015) supervised 

by the author. Furthermore, the study aimed to identify critical factors when using automatic 

data-acquisition systems to measure equipment efficiency. It also involved an analysis of the 

extent to which operators can affect OEE. The author was responsible for the analysis and 

classification of 499 unique stop categories. The findings of Study III contribute mainly to RQ1 

and RQ3 and are presented in Paper E. 

The secondary analysis in Study IV was based on official statistics regarding the capacity 

utilization of Swedish industry. The author acquired raw data from Statistics Sweden’s business 

tendency survey, and the resulting large dataset contained reported capacity utilization rates 

from 2005 to 2008. In total there were 28,943 cases, each corresponding to one company and 

its reported capacity utilization rate. The data were sorted and categorized using the Swedish 

Industrial Classification (SNI) standard. Study IV was initiated to obtain a national overview 

on the operational improvement potential in production systems. It is therefore not directly 

related to the development of the proposed framework, though it contributes directly to RQ3; 

the findings are presented in Paper F. 

3.2.3 Survey 

The survey is the most common quantitative research method used in OM (Flynn et al. 1990; 

Taylor and Taylor 2009). A survey was performed as part of Study IV. The purpose was to 
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explore the extent to which respondents to Statistics Sweden’s business tendency survey 

consider capacity-influencing factors when reporting capacity utilization rates. The population 

consisted of Swedish manufacturing companies belonging to the same industry groups as those 

in the secondary analysis of the official statistics. This corresponded to 998 companies, 

according to the Retriever business database. A sample of 244 randomly selected companies 

was contacted by telephone. Complete responses were obtained from 105 companies, 

corresponding to a response rate of 43.0%. Using telephone interviews as a survey method is 

beneficial as it allows the control of question order, the wide geographic distribution of the 

sample, and a fairly low risk of response bias (Blair et al. 2013). However, it also requires that 

the questions be made short and simple. In addition, it is difficult to get information about 

refusals and non-contacts (Blair et al. 2013). The major challenge of this survey was to contact 

the right person at each company. As a result, the most common reason for non-response was 

that the requested person could not be reached. A test of non-response bias was nevertheless 

conducted, and chi-square statistics revealed no significant differences at the p < 0.05 level 

between respondents and non-respondents regarding industry group and company size. The 

results of the survey are presented in Paper F.  

3.3 Contribution to research questions 
An overview of how the empirical studies and appended papers address the research questions 

is depicted in Figure 3.3. In summary, the two initial papers (A and B) present the conceptual 

production system model that is central to the framework for identifying and objectively 

measuring the relevant characteristics of real-life operational processes. This framework and 

the underlying model are empirically validated in Paper C. Paper D covers some of the practical 

issues concerning how the operational improvement potential can be captured and proposes a 

holistic approach for doing this. Paper E emphasizes the key constructs of automatic activities 

and how they relate to capturing the operational improvement potential of automated processes. 

Paper F identifies how the ambiguity of and different perspectives on the capacity concept have 

resulted in a misleading view of the manufacturing industry at a national level, where the 

operational improvement potential is obviously neglected.  

 

Figure 3.3. Relationships between the studies, appended papers, and research questions. 
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4 Results 

This chapter summarizes the results of the appended papers. The focus is on the contributions 

of each paper to answering the research questions.  

4.1 Papers A and B 
Title (Paper A): Object-oriented modeling of manufacturing resources using work study 
inputs 
 
Title (Paper B): Reference model of manufacturing resources 

A reductionist viewpoint was adopted when developing the production system model presented 

in Papers A and B. This means that efforts were made to reduce the production system 

complexity to a manageable level by concentrating on the specific relationships between the 

identified constructs that describe the operational improvement potential. These constructs and 

their relationships were, as stated, primarily formulated based on the findings of Study 0 and 

on the body of industrial engineering knowledge. Paper A describes the first version of the 

model and proposes how input from work measurement techniques can be used to describe the 

characteristics of the model’s entities. Paper B builds on this and extends the model description 

into a reference model to be operationalized in software for rapid scenario analyses or to provide 

input data to more advanced simulation tools. Both papers emphasize manual operations.  

4.1.1 Production system model 

The three fundamental entities of the model are “Manufacturing resource,” “Activity,” and 

“Facility” (Figure 4.1). The definition of “Manufacturing resource” was adopted from ISO 

15531 MANDATE, which states that a manufacturing resource is “any device, tool, and means, 

except raw material and final product components, at the disposal of the enterprise to produce 

goods or services.” Therefore, “Manufacturing resource” has two subclasses, “Equipment” and 

“Human,” that inherit its properties. As seen in Figure 4.1, there are two different hierarchies 

in the model: the compositions of “Activity” and “Facility.”  

“Activity” comprises one or several “Sub-activities’ that in turn comprise one or several 

“Elements.” The elements correspond to basic movements, as defined in a predetermined time 

system. As each element therefore has a defined standard time, the target time duration of the 

activity equals the sum of its ingoing elements. A “Production process” is defined as a 

“structured set of activities or operations performed upon material to convert it from the raw 

material or a semi-finished state to a state of further completion” (ISO 2005). Analogously, the 

target time duration of a production process equals the sum of its ingoing activities. A 

production process equals an operational process. To avoid ambiguity, the summaries of 

remaining appended papers will henceforth refer to production processes as operational 

processes, even though this term was not used in Paper A or B.  

The “Facility” entity represents defined areas in a production system. As presented below, it is 

hierarchal, composed of the entities “Factory,” “Subsystem,” and “Workstation.” Subsystems 

are defined areas in a factory (i.e., departments) and a subsystem consists of one or several 
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workstations, which, in turn, are defined areas in the subsystem. These facility levels are 

incorporated to define system boundaries when capturing and assessing the operational 

improvement potential of an operational process. An operational process can thus be seen as 

the entire process of converting raw material to finished products (i.e., the Factory view) or as 

a delimited set of activities performed in a “Subsystem” or at a “Workstation.” Production 

systems are open systems, so the delimited part of the production system will be affected by the 

surrounding environment, such as other subsystems, regardless of any system boundaries. 

However, by defining a system boundary, it is possible to isolate what effects can be related to 

the delimited system and what effects result from interdependencies with the environment. 

 

Figure 4.1. Production system model (Paper A). 

4.1.2  Resource characteristics  

Adopting the ISO 15531 MANDATE definition, manufacturing resources are described based 

on four characteristics: “administration,” “capability,” “constitution,” and “capacity” (Figure 

4.2). “Capability” is the characteristic that describes manufacturing resources’ ability to 

perform shop floor activities relative to a defined standard time: for manual activities, that 

capability is related to skill and physical ability; for automatic activities, it is determined by the 

physical condition and operating status of the equipment and also by the skill of the operator 

handling the equipment. “Administration” concerns the identification of a resource. “Capacity” 

describes the potential workload of the resource, expressed as the available capacity that can be 

allocated as planned production time. Finally, “constitution” is not applicable to humans 

because it primarily concerns equipment-related attributes such as functions, tolerances, and 

technical specifications. 
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Figure 4.2. Manufacturing resource characteristics (Paper B). 

4.2 Paper C 
Title: Capacity frontiers: Capturing the operational improvement potential of production 

systems 

The purpose of this paper was to present an approach based on the theory of performance 

frontiers for capturing and assessing the operational improvement potential of production 

systems. It also presents a proposed framework that can be used for identifying and objectively 

measuring the characteristics of operational processes, referred to as the capacity frontier 

framework.  

4.2.1 Key points of the capacity frontier framework 

A capacity frontier is defined as the maximum throughput rate of a production process, given 

the design of its operations and the capabilities of assigned resources. There are two distinct 

types of capacity frontiers: ideal capacity and real capacity frontiers. The ideal capacity frontier 

represents the composition of a process’s ingoing activities and, consequently, the current 

standard for how activities are planned or intended to be performed. It is derived by inverting 

the target cycle time of the bottleneck activity and corresponds to the ideal productivity rate of 

the process. The real capacity frontier equals the actual throughput rate of a process in a defined 

period. Consequently, the relationship between the two frontiers is a measure of capacity 

utilization.  

There are two primary approaches to improving an operational process, i.e., increasing its ideal 

capacity or increasing its real capacity. The ideal capacity can be increased through investments 

in new equipment or changing the production system layout. It also involves improving the 

planning and design of shop floor activities, thereby improving the current standard. The real 

capacity can be increased by capturing and reducing production system losses or by improving 

the capabilities of resources. The operational improvement potential should only be assessed in 

relation to planned capacity, which corresponds to planned production time. Two categories of 

losses are defined in the framework: performance losses and utilization losses. Performance 

losses, as defined in Table 4.1, are directly associated with the resource characteristic 

“capability,” which is related to skill and physical ability. Utilization losses are classified 

according to the variables in Table 4.2 and are intended to capture system losses caused by 

outages related to production system design, disturbances, and policy decisions. 
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Table 4.1. Performance factors (Paper C) 

Variable Description  

Personal performance rate (PP) 
Determined by the individual’s physical ability and his or her 

motivation to perform activities relative to the standard time.  

Skill-based performance rate (PS) 

Determined by the individual’s previous training and 

experience, which affect his or her ability to perform specific 

activities relative to the standard time.  

Equipment performance rate (PE) 

Determined by the operating status (condition) of the 

equipment. In addition, it is affected by the operator’s ability 

to operate the equipment according to the defined speed 

standard. 

 

Table 4.2. Utilization factors (Paper C) 

Variable Description: Human Description: Equipment 

Need-based 

utilization rate 

(UN) 

Defined as lost production time, 

which is determined by the need 

for relaxation and personal time. It 

is often regulated by agreements at 

the workplace. It includes paid 

breaks and losses before and after 

breaks. 

Defined as lost production time when 

equipment is idle due to preventive 

maintenance and tool changes during 

planned production time. 

System-designed 

utilization rate 

(US) 

Defined as operator idle time 

caused by non-preemptive 

outages. Typically includes 

balancing losses found on 

assembly lines and at semi-

automated workstations; it also 

includes material shortage.  

Defined as equipment idle time caused 

by non-preemptive outages such as 

balancing losses (i.e., blocking or 

starvation) and idle time during setups. It 

also includes idle time during operator 

meetings, breaks, and shift changes if 

they occur during planned production 

time. 

Disturbance-

affected utilization 

rate (UD) 

Defined as lost production time 

caused by preemptive outages. It 

includes the time from discovery 

of the disturbance until the work is 

performed at full speed again. 

Defined as equipment idle time caused 

by preemptive outages. It also includes 

running time when the equipment is 

producing defective units (if applicable). 

 

  



Results 

31 

 

The capacity frontiers and the operational improvement potential are visualized in a diagram 

(Figure 4.3). This is a redesign of the extended performance frontier diagram in which the 

horizontal axis represents time instead of a set of inputs and the vertical axis represents 

manufacturing performance defined as the throughput rate of a process. The frontiers are 

constructed bottom–up starting from the workstation level. Aggregation is conducted according 

to the facility hierarchy of the production system model (Papers A and B) and follows a 

constraint-based approach: the ideal capacity frontier at a workstation level is determined by 

the constraining activity, the ideal capacity frontier at a subsystem level is determined by its 

constraining workstation, and so forth. Performance and utilization losses are measured at each 

facility level depending on the required, or feasible, level of detail. Independent of the type of 

loss, the common measurement unit is always time or, more specifically, lost time. Performance 

and utilization losses can be distinguished when the actual time duration exceeds the target 

cycle time.  

 

Figure 4.3. Conceptual capacity frontier diagram (Paper C). 

4.2.2 Implications of Studies I and II 

Unlike more aggregate approaches, the capacity frontier framework can be used to capture the 

operational improvement potential. It provides a deeper understanding of the underlying 

reasons why some firms are more productive than others and of the types of operational 

improvements that should be prioritized to improve productivity and increase capacity. The 

capacity frontiers were determined and the corresponding diagrams constructed based on the 

results of Studies I and II. In Study I, the findings were used to evaluate and benchmark the 

differing improvement potentials of two operational processes performed in the same 

subsystem. Study II illustrated how the framework can be applied to increase the capacity of an 

automated process by focusing on equipment losses as well as operator losses and their 

interdependencies. Both studies revealed how the validity of the standard, i.e., the ideal capacity 

frontiers, directly affects how well the operational improvement potential can be captured and 

evaluated. 
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4.3 Paper D 
Title: A state of the art system for managing time data in manual assembly 

This paper addresses the practical issues encountered in capturing the operational improvement 

potential of a production system through using an automatic data-acquisition system, with an 

emphasis on manual operations. Focusing specifically on the quality of operation times, its 

purpose was to demonstrate how accurate operation times can be confirmed and sustained. 

Previous research has demonstrated that many companies do not update the operation times in 

their planning systems. This results in an accumulation of allowances, with the gap between 

planned and actual operation times continually increasing and the operational improvement 

potential remaining hidden. Inaccurate time data at the operational level have negative 

synergies all the way to the strategic levels of an enterprise and can negatively affect decisions 

related to investments, price setting, and customer offers. At the tactical level, inaccurate 

operation times will lead to operational inefficiencies: for example, production planners will 

have extra work when they are forced to make adjustments to compensate for inaccurate 

operation times, and any detailed planning or optimization also becomes unattainable. 

In Study II the system was evaluated in relation to the processes of time data management 

(TDM), which had been derived from a state of the art TDM morphology. The system integrated 

two functions, i.e., process planning and design and production follow-up, involving the 

primary stakeholders of operation times: process planners, operators, and managers responsible 

for production planning and control. The system enabled seamless integration, so that if process 

planners changed an operation time, it was automatically updated for the remaining 

stakeholders. In principle, process planners update the operation times every time there is a 

process change (≈150 per year) or change in product design (≈200 per year). Operation times 

are determined using the predetermined time system MTM-SAM. Operators provide 

continuous feedback on the quality of the time data and the performance of the operational 

process by digitally reporting deviations at a workstation level. Production control collects the 

follow-up data and initiates improvement initiatives through the maintenance function when 

needed. They also use the updated operation times to make order plans that are communicated 

to the process planners. However, evaluation results indicated that the company operating the 

system did not exploit its full potential. This primarily concerned the administration of follow-

up data and disturbance management as well as the misinterpretation of predefined loss 

categories.  

Nevertheless, the identified technical potential of the system constitutes the basis for a holistic 

view of the lifecycle of operation times, shown in Figure 4.4, which confirms and sustains 

updates the quality of operation times. This view integrates the three primary functions centered 

on the manual assembly activities. Standards should be developed from the determined time 

data based on the work content of the manual assembly activities. The “standards loop” 

represents the process of continuously evaluating the standards so that their duration and work 

content conform to the actual operations that they represent, which requires continuous 

feedback from the shop floor. An incorrectly set time standard will directly affect the quality of 

the output of process planning. This can force operators to work beyond their capabilities, in 
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terms of performance, or result in inefficiencies being built into the operational process. In both 

cases, this will prevent the sustainable use of manufacturing resources.  

The performance of operational processes and, consequently, the results of production control 

policies are evaluated by production planning and control in the “planning loop.” This is 

accomplished by comparing the actual versus planned outcome of a process measured as either 

output, such as produced units, or duration. Operational process performance is influenced by 

the capabilities of assigned resources and the disturbances in the system. Identifying the 

operational improvement potential requires that the process performance be evaluated relative 

to valid time standards and that disturbances and deviations be captured.  

As continuously evaluating both standards and operational process performance will facilitate 

the identification of operational improvement potentials, there is also a need to systematically 

manage improvement initiatives. In the “improvement loop,” initiatives should be prioritized 

and directed to focus either on standards, through improving methods or investing in new 

equipment, or on reducing disturbances and improving the abilities of resources to reach 

existing standards.  

 

Figure 4.4. The lifecycle approach to operation times (Paper D). 

4.4 Paper E 
Title: Analysis of critical factors for automatic measurement of OEE  

The automatic measurement of OEE is a primary reason why companies invest in 

manufacturing execution systems. The purpose of this paper is to identify the critical factors 

and potential pitfalls when operating systems for the automatic measurement of OEE. The paper 

concentrates on the key constructs of automatic activities, the relationship between equipment 

and operators, and how that relationship affects equipment efficiency. The extent to which OEE 

measures the operational improvement potential is determined by companies’ data collection 
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ability and accuracy in doing so. Before Study III, it had already been recognized that varied 

interpretations of the underlying loss factors of OEE constitute a common reason for variation 

between companies.  

Study III aggregated the OEE measures calculated for four industry groups (Figure 4.5), and 

the results indicated that the overall median OEE of all 23 companies is 70%, whereas the 

average OEE is 65%. It was impossible to determine whether or not the individual equipment 

constituted bottleneck machines. Nevertheless, the data were cleaned by excluding planned 

downtime losses so that the calculated OEE measures represent the equipment efficiency 

relative to planned production time. It was also found that 702 out of 884 machines (80%) had 

a recorded performance rate of 100% and that 796 out of 884 machines (90%) had a recorded 

quality rate of 100%. It was concluded that such a large proportion of machines is unlikely to 

be operating at full efficiency. This conclusion was supported by the fact that “100%” 

constitutes the default value for speed and quality efficiency in the measurement system. 

Moreover, previous research also revealed that many companies do not measure cycle times or 

have sufficient knowledge of the theoretical maximum performance, which is required to 

determine speed efficiency. This implies that most calculated OEE values measure availability 

rather than overall equipment effectiveness.  

 

Figure 4.5. OEE comparison of industry groups (Paper E). 

The distribution of recorded loss times is shown in Figure 4.6, where it can be seen that 

unclassified losses represent approximately 19% of the scheduled production time for all 

machines. This corresponds to more than half of all recorded loss time and negatively influences 

the applicability of the data for directing improvement initiatives. The operational improvement 

potential cannot be considered captured if the causes of losses are not communicated to those 

responsible for prioritizing and investing in improvement initiatives.  
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In addition, the losses that could be classified were categorized in relation to the extent to which 

the loss is operator influenced based on the following definitions: 

 Operator-influenced loss time is loss in which the duration of downtime, from when a 

failure occurs until the point when the equipment returns to operation, is dependent on 

the activities carried out by operators (i.e., detection and repair). This also includes 

manual activities performed during equipment idle time, such as changeovers, 

measurements, and adjustments.  

 May be operator influenced loss time; is loss in which the duration of downtime may 

be dependent on the activities performed by operators. It primarily concerns categories 

related to material shortage and waiting time. In such cases, it is impossible to determine 

whether the equipment is idle waiting for an operator to attend (i.e., refill material or 

attend the blocking/starvation of the machine) or whether the idle time is more influenced 

by factors other than the operator, for example, caused by an overall lack of material in 

the inventory or balancing losses due to production system design.  

 Not operator-influenced loss time is loss in which the duration of downtime is 

independent of operator activities, for example, due to lack of material from supplier and 

external deliveries.  

As seen in Figure 4.6, approximately 90% of the recorded classifiable downtime was directly 

related to supporting activities performed by operators and not to the automatic process itself. 

This reflects the complex interdependencies between individual equipment and the surrounding 

environment, where the internal efficiency of the equipment largely depends on operator actions 

and on companies’ production and control policies. 

 

Figure 4.6. Classification of loss time by levels of operator influence (Paper E). 
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4.5 Paper F 
Title: On the measurement of capacity utilization in industry: A critical reflection from a shop 

floor perspective  

This paper represents the beginning and end of the performed research. Chronologically, it was 

among the last parts of the research to be written up, but it emphasizes a main motive for 

initiating the PPA studies, which subsequently motivated the performance of the research 

presented here.  

Capacity utilization in industry is an economic indicator employed by policymakers and central 

banks for analyzing and predicting business cycle fluctuations. It constitutes the basis for 

formulating monetary policies that affect the investment behavior of companies. The statistics 

were collected at a plant level through business tendency surveys in order to reflect how much 

of a plant’s production capability is being utilized. The results are also communicated to the 

daily press and reach stock traders as well as enterprise managers. This paper focuses 

specifically on the business tendency survey administered by the governmental agency 

Statistics Sweden. The respondent companies are required by law to report their capacity 

utilization for the last quarter, defined as: 

… the ratio between actual production and full production capacity, where actual 

production corresponds to the degree to which the industrial organization’s machinery 

has been utilized during the current working schedule for the latest quarter, and full 

production capacity refers to the maximum level of production that is reachable with the 

existing machinery and current working schedule. 

In the first part of Study IV, raw data from the business tendency survey were acquired. They 

were sorted and categorized to include companies from the industry groups that participated in 

the PPA studies during the 2005–2008 period. For that period, it was found that in over 38% of 

the 7441 cases the capacity utilization rate was reportedly 100% or more. This contradicted the 

findings of the PPA studies, which indicated that the average utilization of bottleneck machines 

was 62% and that, in general, companies had considerable potential to increase the utilization 

of existing resources. 

In the second part of Study IV, the respondents to Statistics Sweden’s business tendency survey 

were contacted to explore how well the survey captures the practical reality in factories. It was 

found that over half the sampled companies neglected principal factors affecting capacity 

utilization derived from a review of the engineering and industrial organizational literature. 

Moreover, the results indicated that there was no consensus on how to measure capacity and 

that the individuals responsible for reporting capacity utilization, with few exceptions, worked 

in the accounting departments of the companies and had little knowledge of manufacturing 

system characteristics. As the definition of capacity utilization used in the survey directly 

implies that the internal efficiency of production systems is being captured, the criticism of the 

capacity utilization measure was twofold:  
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1.  Companies that do not consider the principal influencing factors of product mix, 

scrap rate, and production disturbances are not reporting a capacity utilization that 

represents the practical reality in factories.  

2.  Companies that report a capacity utilization of 100% (or more), by definition, are 

not reporting a capacity utilization that represents the internal efficiency of their plants.  

Based on the findings of this paper, it can be argued that a misleading view of industry is 

conveyed by the reported capacity utilization statistics. Recommendations were made for a 

redesigned business tendency survey that more clearly distinguishes between plant-internal and 

plant-external influencing factors. It was also proposed that cumulative measures of downtime 

and scrap should be collected and included in the analysis of the current state of the 

manufacturing industry, an analysis that would be based on a more holistic view of plant-level 

capacity utilization.  
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5 Discussion 

This chapter discusses how the main results relate to the research questions and the objective 

of the thesis. This is followed by discussion of the academic contribution and industrial 

relevance of this research. 

5.1 Answering the research questions 
The following sections’ answers to the research questions are intended to fulfill the stated 

purpose of advancing our understanding of the improvement potential of real operational 

processes.  

5.1.1 What key constructs are needed to describe the operational 
improvement potential of a production system? 

In the most abstract sense, constructs are the building blocks of theories that are used to explain 

phenomena and correspond to the conceptual vocabulary of a domain. Variables are used to 

operationalize and measure the constructs, each of which can be represented by several 

variables.  

Paper C presented how the operational improvement potential of a production system is 

evaluated based on its intended versus actual state. The intended state is operationalized as the 

ideal capacity of a production system’s operational processes. It is classified and measured 

using the composition of activities presented in the production system model in Papers A and 

B. The potential to improve the ideal capacity can be identified from the lowest level by 

eliminating unnecessary movements (elements) to higher-level improvements, such as 

redesigning the production system layout or acquiring new equipment and tools. This is also 

referred to as the method potential, using the vocabulary of Helmrich (2003) and Saito (2001). 

It is clearly stated that the ideal capacity should not be interpreted as being the same as the 

optimal capacity. As the ideal capacity should be defined based on how the ingoing activities 

are to be performed, it corresponds to the current standard. If a standard has been formulated 

accurately, it should be possible to distinguish what constitutes the norm time duration of the 

activities from the time elements added as allowances (Niebel and Freivalds 2003), as in the 

case presented in Study II (Paper C). The formulated standard should therefore be based on the 

skill- and physical-ability-related capabilities of the resources that are to perform the activities. 

The standard for automatic activities should be formulated based on the theoretical maximum 

performance of the equipment. It will otherwise be impossible to capture any improvement 

potential related to its speed efficiency, as seen in Paper E. Consequently, if a standard is 

missing or poorly defined, the method potential part of the operational improvement potential 

cannot be described and it becomes significantly more difficult to align production control 

polices with the capabilities of resources. It also becomes difficult to distinguish between 

increased production and increased productivity.  

While the ideal state of a production system exists only on paper, the construct’s real state is a 

direct result of how well resources are able to perform planned activities. The construct’s real 

state is operationalized as the real capacity of a production system’s operational processes and 

measured as the actual output of a process given a defined period. However, to explain the real 
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capacity and how it potentially differs from the ideal capacity, the losses and synergies that 

occur when resources perform activities must be captured. This can be done at different levels 

of detail depending on the degree of accuracy that is required or feasible. These levels 

correspond to the facility hierarchy of the production system model. Paper C illustrates how the 

losses and, consequently, the operational improvement potential of the real capacity are 

captured by measuring performance and utilization losses using their defined variables.  

5.1.2 How can the key constructs be represented in an integrated 
model to explain the operational improvement potential of a 
production system? 

The production system model (Papers A and B) illustrates how the key constructs are integrated 

to describe the operational improvement potential of a production system. Paper C provides a 

more comprehensive picture of the interdependencies between model components based on the 

empirical data from Studies I and II. Reductionism and holism were incorporated as 

complementary strategies because the model was developed following a reductionist approach, 

while the resulting model incorporated in the framework (Paper C) was intended to contribute 

to advance our understanding of the improvement potential of a production system as a whole. 

As a result, the object-oriented design of the model arranges the data so that it is possible to 

zoom in on different levels using the facility hierarchy or activity composition to investigate 

the details of the system. Zooming out results in an ability to distinguish the emergent properties 

of the system as a whole, facilitating examination of the external structure of the system. 

Visualization of the characteristics and constitution of the shop floor productivity losses is 

enabled, even at aggregated levels. 

As production systems are open systems, the system boundary, defined using the facility 

hierarchy of the model, cannot stop the system from interacting with its environment. It is 

nevertheless possible to distinguish between losses caused by surrounding system effects and 

internal causes that can be isolated. Paper C presents how this constitutes the fundamental 

distinction between performance losses and utilization losses, which have been elaborated 

based on the original definitions presented by Helmrich (2003) and Saito (2001). Performance 

losses are directly associated with the capabilities of individual resources and can therefore be 

isolated. Utilization losses, on the other hand, are affected by disturbances from both inside and 

outside a system boundary.  

The production system model is conceptual and can describe the relationships between 

resources, activities, and their properties. However, the formal, or scientific, model derived 

from the modeling process must be incorporated in order to explain the phenomenon and how 

it occurs. This can be seen in Paper C, which introduces the capacity frontier framework, 

demonstrating how to explain and evaluate the effects of the interactions between resources, 

activities, and surrounding system effects.  

Finally, even though the adopted definitions of manufacturing resources and the structure of 

the resource characteristics are formulated in EXPRESS, the model is expressed using UML. 

Nothing prevents the model from incorporating EXPRESS or any other similar modeling 



Discussion 

41 

 

language, but UML was chosen to facilitate software implementation, which was a primary 

focus of the initial part of the research process.  

5.1.3 How can the operational improvement potential be captured to 
support decisions about improvement initiatives? 

This research question was formulated to ensure that the operational improvement potential is 

not neglected when strategic decisions are made. Based on the findings presented here, the 

operational improvement potential of a production system is arguably derived by assessing its 

capacity utilization.  

Operational improvement potentials are realized through improvement initiatives, which in turn 

correspond to investments. The magnitude of an improvement initiative can range from minor 

investments, for example, in new tools and other aids, to large investments involving, for 

example, education and training programs, new equipment, and new production system design. 

In general, decisions concerning smaller investments are not made at a strategic level. However, 

the underlying rationale for assessing internal capacity utilization from a bottom–up perspective 

is that many small productivity improvements could potentially lead to a large increase in 

capacity. Neglecting them will obstruct companies from improving their existing operations 

before considering larger investments in new equipment or other assets and will, consequently, 

not contribute to the sustainable utilization of existing resources.  

Decision-makers at a strategic level are likely not interested in the method improvement 

potential of the individual operations or various performance and utilization losses found in 

particular subsystems. However, they are interested in what their plant can produce relative to 

what it is actually producing. This information is depicted using capacity frontier diagrams, as 

seen in Paper C. For decision-makers, the diagrams indicate whether efforts should be directed 

to align the ideal capacity to meet the requested capacity (i.e., what is requested by the 

customer) or to increase the real capacity by reducing slack to its ideal capacity frontier. In 

terms of improvement initiatives intended to increase capacity, this translates into decisions as 

to whether investments are to be made in fixed assets and production system design (i.e., 

improving the ideal capacity frontier) or in operation improvements through, for example, 

workforce training and reducing productivity losses (i.e., improving the real capacity frontier).  

When assessing the capacity utilization of a plant, the capacity frontier framework first depicts 

the capacity utilization of the plant’s production system and the internal efficiency of the plant. 

The aggregation strata of the capacity frontier framework enable the visualization of detailed 

productivity losses from the workstation level to the factory level. In theory, this logic is 

straightforward; however, the empirical findings presented here identify several practical 

challenges: 

First, to capture the full operational improvement potential, the standard must be accurately 

defined, as discussed in the answer to RQ1. Paper D demonstrates, in practice, how a valid time 

standard for manual operations can be determined and sustained by using the holistic life cycle 

approach to operation times. However, previous research has demonstrated that this is often 

neglected by both practitioners and academics (Kuhlang et al. 2014; Almström and Winroth 
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2010). This is also aligned with the findings of Paper E concerning automated processes, which 

imply that many companies do not measure cycle times or have insufficient knowledge of the 

theoretical maximum performance of their equipment resources. Compared with manual 

operations, standards for automatic activities should be more easily formulated through the use 

of process-planning software or the like. However, the standard and, consequently, the ideal 

capacity of an automated process also involves the management of supporting manual 

operations that significantly influence the overall efficiency, as demonstrated in Paper E and in 

the second case study of Paper C.  

Second, the potential to improve the real capacity is captured by measuring performance and 

utilization losses. This can be done in several ways, for example, using work study techniques 

or automatic data-acquisition systems. However, previous research has identified a decline in 

work studies (Almström and Kinnander 2011; Bailey and Barley 2005), while the practical 

difficulties of using automatic data-acquisition systems were identified in Papers D and E. The 

mere existence of predefined loss categories in systems for automatic data acquisition, or of the 

system itself, does not guarantee that the information acquired is accurate, as also outlined by 

Saenz de Ugarte et al. (2009). Paper D found that the loss categories for manual operations were 

interpreted differently by different operators. Paper E found that more than half of the recorded 

loss time could not be classified and, moreover, that key parameters representing speed and 

quality efficiency were left at default values, resulting in a misleading view of the OEE measure.  

Finally, Paper F illustrates how national statistics intended to reflect the capacity utilization of 

industry based on plant-level capacity utilization measures in fact do not represent the internal 

efficiency of plants. This misleading view of industry is conveyed to policy-makers, who in 

turn formulate monetary policies that affect the investment behavior of firms. The view is also 

reported in the daily press, reaching investors and informing decision-makers in firms about the 

current state of their industries. This research has not investigated the extent to which investors 

and decision-makers actually make use of official statistics. Though lack of capacity was one 

of the main motives for offshoring (Bengtsson 2008), a desire to increase capacity utilization 

in the home country’s existing plants is now a main motive for back-shoring (Dachs and Zanker 

2014). 

5.2 Quality of research 
Empirical research into OM requires that reliability and validity can be demonstrated (Flynn et 

al. 1990).  

5.2.1 Reliability 

Reliability concerns whether the results of research are repeatable, which also entails 

demonstrating that the results did not occur by chance (Bryman and Bell 2007). In case research, 

this corresponds to the extent to which the operations of a particular study can be repeated with 

the same results (Yin 2009) and is closely associated with how the empirical data are collected 

and compiled. The repeatability of the case studies performed in this thesis has been ensured 

through the use of industrial engineering techniques, which, according to Flynn et al. (1990), 

can typically be employed to systematically structure the collection of empirical data. The 

replicability of the multiple case studies reported in Study 0 is considered high, because these 
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studies followed the method described by Sundkvist (2011), which is based on the highly 

standardized PPA method (Almström and Kinnander 2011). The replicability of Studies I and 

II is strengthened through the case descriptions and methodology of Papers C and D. 

Nevertheless, full replicability can never be ensured, because the case studies were performed 

in production systems that are themselves subject to constant change and evolution.  

The replicability of the studies involving secondary analysis has been ensured by describing the 

methodologies used to model and analyze the data found in the appended papers. Datasets not 

protected by confidentiality agreements are also available on request.  

5.2.2 Validity 

Two interrelated aspects of validity need to be considered: first, the validity of the data collected 

in the empirical studies, which is tested by examining the studies’ construct validity, internal 

validity, and external validity (Voss et al. 2002; Bryman and Bell 2007) and, second, the 

validity of the model on which the proposed framework is based. 

Construct validity, which can also be referred to as measurement validity, states whether or not 

a construct developed for a phenomenon really reflects the phenomenon it is intended to 

represent (Bryman and Bell 2007; Landry et al. 1983). This was achieved by incorporating 

multiple sources of evidence, meaning that the constructs originate from previous production 

and operation management research, the adoption of international information standards, and 

the findings of the empirical studies. Construct validity was also the primary focus of RQ1.  

Internal validity relates to causality and therefore to the relationships between and internal 

consistency of constructs when they are assembled in a model (Bryman and Bell 2007). It is 

directly related to the conceptual validation of models when the researcher investigates whether 

the problem situation is being considered from the appropriate perspective. It also involves 

evaluating the extent to which the constructs of the model are linked in order to represent the 

reality and problem situation (Landry et al. 1983). This was ensured in Studies I and II in which 

the developed model was systematically evaluated in an empirical context. The outputs from 

implementing the model, in terms of the capacity frontier diagrams, were presented and 

discussed with the stakeholders at the case companies. 

Moreover, logical validation concerns the capacity of the formal model, or scientific model, to 

accurately describe the reality and problem situation as defined in the conceptual model (Landry 

et al. 1983). It is similar to internal validity, as described above, but also entails assessing the 

impact of the modeling language on the modeling process. This was primarily achieved when 

the conceptual model was implemented in a software prototype later used to some extent to 

manage the empirical data collected in Study II. Model validation can also include testing 

operational validity and experimental validity (Landry et al. 1983); however, these are 

associated with implementation and model-solving processes and were consequently not the 

focus of this research.  

External validity relates to whether the results of the performed research can be generalized 

outside the specific research context and to the plausibility, usability, and relevance of the 
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research (Bryman and Bell 2007). This criterion is further discussed in relation to the academic 

contribution and industrial relevance of the present research in the subsequent sections. 

5.3 Academic contribution  
The research presented here contributes to the existing body of OM knowledge by proposing 

the concept of capacity frontiers, an explanatory conceptual framework intended to advance our 

understanding of the operational improvement potential of production systems. The stated 

objective was met by demonstrating how the framework can be applied to identify and 

objectively measure the relevant characteristics of real-life operational processes related to 

improving shop floor operations. In particular, this contributes to what Bertrand and Fransoo 

(2002) identify as a weak area in empirical model-based research.  

Schmenner and Swink (1998) formulated the theory of performance frontiers after identifying 

the limitations of microeconomic theory in explaining productivity differences among firms. 

As outlined, this theory is well established in the OM community and has been applied in 

previous research to make strategic comparisons both between and within firms. It is 

acknowledged that the suggested methods and techniques for measuring and constructing the 

actual frontiers are well suited for strategic decisions and the long-term adaptation of production 

processes. However, as argued in Section 2.5, the theory’s identified shortcomings concern its 

practical implementation and detailed representation of real operational processes. The lack of 

cases in which anyone has attempted to graphically plot the asset and operating frontiers using 

empirical data from a manufacturing context further supports this contention.  

In an attempt to bridge the gap between theory and practice, the present research has sought to 

overcome the practical shortcomings of the theory of performance frontiers by addressing it 

from an operational perspective. This refers to the measurement and construction of frontiers 

based on real shop-floor data, using established industrial engineering techniques and existing 

systems for automatic data acquisition. The original initiative to address the theory of 

performance frontiers from an operational perspective was made theoretically in the doctoral 

dissertation of Sundkvist (2014), which also incorporated the production system model. The 

research presented here has empirically validated the model and further developed the initial 

work into the capacity frontier framework. The use of the term capacity frontier is aligned with 

the logic of Vastag (2000), who views the asset frontier and operating frontier as analogous to 

the design capacity and effective capacity of a plant. Singh Srai et al. (2013) interpret this 

capacity analogy in the same way, applying it in an airline context.  

The underlying rationale for relying on direct measurements, as opposed to conceptualizing 

firm-specific capabilities, is based on the fact that capacity in manufacturing can be expressed 

in directly measurable constructs, in this case, time. Based on the present findings, this is also 

required to capture the operational improvement potential. In addition, the development of the 

capacity frontier framework has been aligned with the recommendations of Rosenzweig and 

Easton (2010) and Sarmiento et al. (2008) to incorporate longitudinal empirical data to be able 

to monitor the development of capabilities. 
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As the capacity frontier framework has been elaborated based on the theory of performance 

frontiers, the conclusions and explanations presented here are to be interpreted as theoretical 

propositions, not as constituting a new theory. These theoretical propositions constitute the 

foundation on which to build more knowledge of the effects on plant-level capacity utilization 

that come from realizing operational improvement potentials.  

5.4 Industrial relevance  
The present research was initiated to meet the industrial challenges of achieving sustainable 

resource utilization and high productivity in operational processes. These challenges have been 

met by linking firm-level performance measures to the causes of shop-floor productivity losses 

through the capacity frontier framework. The alignment with established industrial engineering 

techniques and existing systems for automatic data acquisition promotes the practical 

applicability of the proposed framework. It can then also be used to evaluate the effects of 

decisions made. For example, have investments in workforce training increased the real 

capacity by reducing skill-based performance losses? Has a change in production system layout 

increased the real capacity or has it resulted in additional disturbances? Have reduced resources 

assigned to a process, as a result of a policy decision, increased the need-based utilization 

losses?  

In addition, the findings highlight the need to revitalize the industrial engineering competencies 

needed in order to formulate time standards and to classify and measure time losses for both 

manual and automatic operations. This is aligned with the conclusions of studies conducted in 

the Unities States (Bailey and Barley 2005) and Germany (Kuhlang et al. 2014; Kuhlang et al. 

2013). As systems for automatic data acquisition are becoming increasingly common due to the 

ongoing digitalization of industry, it is even more important that companies not distance 

themselves from managing the fundamental characteristics of their operational processes. In 

particular, manual operations must be studied in detail. These core competencies are needed to 

keep operational costs down by efficiently utilizing assets, including both people and 

equipment. Accurate and updated time standards in planning systems also affect the planning 

precision in production and, consequently, the ability of firms to perform tasks as expected and 

to respond to change and unforeseen events. Lastly, a time standard that represents the actual 

work content of an operation is a prerequisite for ensuring that production is planned so that 

resources are not forced to exceed their capabilities, risking personal injuries and product 

quality defects.  
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6 Conclusions and future research 

The purpose of this research was to advance our understanding of the improvement potential of 

real operational processes. It was formulated to ensure that operational improvement potential 

is not neglected when strategic decisions are made. This has been accomplished by presenting 

the analytical logic and structure for deriving the overall productivity and capacity of the 

operations of a firm from the micro motions and up. This establishes a direct link between 

firm-level capacity utilization and the causes of shop-floor productivity losses.  

The main conclusions are as follows: 

  The common measurement unit for all the factors related to capturing the 

operational improvement potential of capacity or productivity is time. This concerns the 

formulation of planned time duration, the measurement of actual time duration, and the 

identification of the factors that cause time losses. 

  To capture the operational improvement potential, the formulation of a time 

standard is as important as the classification and measurement of time losses.  

  The quality of time data, which directly influence the quality of decisions made 

at all levels in an organization, depends just as much on the management and on the 

control and follow-up policies at the tactical and strategic levels as on the actual 

reporting and acquisition procedures at the operational level.  

  It is possible to apply the proposed framework to identify and objectively measure 

the relevant characteristics of real-life operational processes. 

 

6.1 Future research 
It is proposed that the concept of capacity frontiers should be used in future research for the 

purpose of further developing the predictive power of the framework. This could be done by 

applying the framework in a setting where the effects on capacity and capacity utilization of 

different types of operational improvements are further evaluated. Simultaneously, by applying 

the cash conversion framework of Sundkvist (2014), it would be possible to explore the link 

between these operational improvements and the corresponding financial effects. An alternative 

approach would to apply the logic of Singh Srai et al. (2013), i.e., to match changes in operation 

capabilities (i.e., quality, delivery, cost, and flexibility) with firms’ capacity frontiers and 

financial performance.  

Finally, it cannot be guaranteed that operational improvement potential will be realized, even 

if decision-makers are made aware of it. Strategic decisions related to investments and 

manufacturing facility locations are made based on many factors. It would accordingly be 

interesting to further investigate the extent to which knowledge of the operational improvement 

potential affects decision-maker actions.  
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