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Abstract—In this report, we investigate the implementation
and efficiency of different types of branch predictors. A config-
urable VHDL model of a branch predictor unit, composed of a
branch direction predictor and a branch target buffer, has been
implemented. In order to make informed hardware decisions,
different branch predictor configurations are simulated using the
open source SimpleScalar simulator and the MiBench benchmark
suite. The target architecture is a 7-stage 32-bit MIPS-based
pipeline with two instruction fetch stages.

I. INTRODUCTION

Conditional branch instructions in a pipelined processor give
rise to performance penalties. Since they are evaluated in the
execution stage of the pipeline, the processor potentially has to
discard instructions in the previous stages of the pipeline or
stall the fetching of new instructions [1]. However, in real-
life applications, branches often display patterns or strong
tendencies, such as loops, which can be detected and used by
a branch predictor. Furthermore, branches often branch to the
same target repeatedly. By storing branch targets in a Branch
Target Buffer (BTB), it is possible to predict the target address.
Branch direction predictors attempt to predict which way a
branch will take, i.e., taken or not taken, before the branch
condition is evaluated, potentially saving cycles. In doing so,
predictors can consider the global branch pattern history, the
local history for separate branch instructions, or a combination
of these. The BTB is essentially organized in the same manner
as a cache memory, storing past branch target address in a
table. This table can be organized in a set-associative manner,
using some (re)placement policy to decide where a particular
entry is to be placed.

By using branch direction prediction and branch target
buffering, we can improve the performance of the pipeline.
Due to the earlier mentioned typical branch behavior, pre-
dictors can be highly accurate (90 %) when executing real-
life applications. When designing a BTB, the table size, the
associativity, and the replacement policy are the main points
of interest [2].

In this report, we investigate the accuracy and impact in
terms of pipeline performance of different branch predic-
tor configurations using SimpleScalar simulations [3] and a
proven set of benchmarks (MiBench [4] and SPEC [5]). Two
main types of direction predictors, the two-level adaptive
predictor and the simpler bimodal predictor, are in focus in
this work. We examine the trade-offs involved in designing
the branch direction predictor and the BTB, specifically be-

tween power and area, and performance. In evaluating branch
predictor configurations we consider performance in terms of
execution time, time taken to execute a benchmark, expressed
in clock cycles. Execution time is then normalized with respect
to the execution time of a prefect predictor and this normalized
metric is referred to as the execution time ratio. Lower the
execution time ratio, better the performance of the branch
predictor. We also consider prediction accuracy, area, and
power of the synthesized branch predictor design.

The remainder of this report is organized as follows: Sec-
tion II briefly reviews work related to our paper. Section III
introduces the simulation environment and benchmarks used to
evaluate branch predictor configurations. Section IV describes
the implementation of the branch direction predictor and
the BTB. Section V details the verification process of the
branch predictor. Section VI describes the synthesis results
and important design trade-offs. Finally, in Section VII we
give our conclusions and briefly mention future work.

II. RELATED WORK

The design of the branch predictors is a well explored area
in the processor community, with notable research being done
in the early 1990’s. Trade-offs related to the BTB design and
implementations were explored early on [6]. Yeh et al. [7],
[8] focused on describing and investigating two-level adaptive
branch predictors and their implementation, discussing the
possible variations of two-level branch predictors and defining
the different types according to the manner in which the
table content is kept (Global-Private-Set). This classification
yielded variations of the two-level adaptive predictor, e.g.,
GAg (Global-And-global) or PAg (Private-And-global). In the
remainder of this paper, we shall use these notations [7].
McFarling looked at more complex predictors and the pos-
sibility of combining global and local predictors for improved
accuracy [9]. Later, Jimenez concluded that the hardware
cost of many complex predictors do not show a propor-
tionate performance increase [10]. Instead Jimenez presented
a simple branch predictor design approach. For our BTB
implementation, we make use of our previous work [11] to
implement a BTB model with configurable size, associativity
and replacement policy.

III. SIMULATIONS

The SimpleScalar simulator [3] is an open source pipeline
simulator written in C. SimpleScalar is able to simulate
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Fig. 1. Performance values of different branch predictors obtained using MiBench benchmark suite.

the PISA and Alpha instruction set architectures and pro-
duces simulation statistics and results used to evaluate the
pipeline configuration. Here, we use SimpleScalar with the
PISA instruction set, in combination with the MiBench [4]
and SPEC [5] benchmarks. The MiBench benchmark suite
comprises 35 benchmarks written in C, representing typical
embedded applications.

By varying the branch direction predictor type and table
size as well as the BTB values for table size and associativity,
we can study the effects on performance and obtain estimates
for area and power consumption. In total, 74 branch predictor
configurations were simulated and evaluated. The results were
compared to a theoretically perfect predictor with 100 % accu-
racy. To extract and compile the results, perl scripts were used
for automation. In these simulations, we have chosen to limit
our exploration to predictor table sizes in the range 64-4,096
branch entries. It is a tedious process to simulate all the branch
predictor configurations using SPEC benchmarks, because this
suite comprises bigger applications than MiBench. Hence, a
few of the best performing branch predictor configurations are
selected by evaluating them using the MiBench benchmark
suite; then the selected configurations are reevaluated using
the SPEC benchmark suite.

Fig. 1 shows the performance values of the selected branch
predictor configurations, while Fig. 2 shows the performance
of these selected configurations for the SPEC benchmark
suite. The figures we present use the following notation style,
{Type}/{Table 1 Size}/{Table 2 Size}. Note that the bimodal
predictors use only one table level. BTB configurations use
the notation {Table Size}/{Associativity}. Note that in Fig. 1
and Fig. 2, the BTB configuration is kept constant, using a
direct-mapped table containing 16 entries.

Fig. 1 and Fig. 2 show that the selected branch predictors
perform similarly, irrespective of the size of the application.
The standard deviation is included as a measure on how well a
branch predictor performs over different benchmarks. A high
standard deviation could be due to the aliasing effects that arise
in some of the benchmarks, as we observe higher standard
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Fig. 2. Execution time ratio of different branch predictors obtained using
the SPEC benchmark suite.
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Fig. 3. Performance for different BTB table sizes and associativities.

deviation values for smaller table sizes and BTB configurations
with a lower level of associativity. It should be noted that these
power estimates serve only as a hint, and are not completely
accurate.

Fig. 3 shows the performance of a branch predictor with



respect to different BTB table size and associativity. LRU
(Least Recently Used) is used as replacement policy, while the
direction predictor configuration is kept constant. It should be
noted that while a large BTB table size and high associativity
give the best performance in terms of cycles (Fig. 3), there
will also be a significant increase in circuit complexity, area
and power due to increased table size and associativity. The
predictor group that performed best in terms of accuracy and
execution time in our simulations were the large PAp-type
predictors. However, these come at a significant hardware
cost compared to simpler predictors, and the performance
increase is not proportional to the increase in hardware cost.
Bimodal, GAg and Gshare predictors perform well in relation
to the estimated hardware cost and power values. In our
simulations, large bimodal predictors (table size 2,048-4,096
entries) saturate at around 94 % direction prediction accuracy.

IV. IMPLEMENTATION

A configurable branch predictor module is implemented
in VHDL. The module is designed with modularity and
configurability in mind, and comprises three main blocks: the
direction predictor, the Branch Target Buffer (BTB) and the
control logic. Configuration is done by setting generics at
design time. Fig. 4 shows the block diagram of the branch
predictor module.
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Fig. 4. Branch predictor module block diagram.

The branch predictor module uses information from the
pipeline instruction fetch stage to make a BTB lookup in
every cycle. Depending on whether the instruction in the
instruction fetch stage is a branch or not, the control logic
block makes a prediction. If the instruction is a branch, then
the direction prediction information for that branch instruction
along with the target address read from the BTB are used to
determine the next instruction, else the pipeline continues to
execute as normal. The branch direction and the target address
for the branch instruction are evaluated in the EX stage.
This information is fed back to the branch predictor, which
updates the direction predictor and the BTB if necessary.
In the case of a mispredicted branch direction or address,

the branch predictor updates the BTB entry, the direction
predictor and passes the correct branch target to the PC.
Branch misprediction results in flushing the instructions in the
IF and ID stages.

Fig. 5 shows the structure of a two-level predictor. The first
table, the Branch History Table (BHT), is indexed using the
PC from the IF2 stage. Each BHT entry is a shift register
containing the branch history for that index. The second table,
the Pattern History Table (PHT), is indexed using the content
of the BHT entry.
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Fig. 5. Generic two-level adaptive predictor.

Each PHT entry is a two bit saturating counter, similar
to how a bimodal predictor works. Our direction predictor
can be configured for type (two-level or bimodal predictors
are supported in the VHDL model) and table sizes at design
time. Using a global branch history (as in GAg, GAp and
Gshare configurations) is a variation of the two-level predictor
where the BHT consists of a single shift register. The direction
predictor implementation uses register-based tables.

Fig. 6 gives an overview of the BTB structure. The BTB
is SRAM-based and can be configured at design time. The
configuration parameters are the number of sets and the set
associativity. There are a number of fixed size SRAM blocks
available, in sizes 32x32b, 128x32b, 512x32b, 1024x32b and
2048x32b. When synthesized, the BTB implementation will
select the smallest SRAM block possible with the given
configuration. This means that, e.g., two BTBs of size 16
and size 32 will both use the 32x32b SRAM. There is also
a configuration variable for changing the replacement policy
when using a set-associative BTB; selecting between LRU and
Random replacement.

V. VERIFICATION

The branch predictor module has been integrated into a
existing 5-stage pipeline and verified using the EEMBC bench-
mark. Since the branch predictor is designed for two-cycle
access, the existing 5-stage pipeline has been modified to
accommodate this feature. Fig. 7 shows the branch predictor
module integrated into the 5-stage pipeline. The Instruction
Fetch stage (IF) is subdivided into two stages, IF1 and IF2.
The branch instructions are evaluated in Instruction Decode
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Fig. 7. Branch predictor module integrated into a 5-stage pipeline, which has been modified to accommodate two-cycle access to the predictor.
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Fig. 6. BTB block diagram.

stage (ID). The result from branch predictor is obtained during
the IF2 stage. The BTB is indexed with the instruction address
(PC) in IF1 stage, followed by the tag comparison in IF2 stage.
The direction predictor and the control logic is accessed in
IF2 stage. The branch misprediction penalty is 1 clock cycle,
considering that a branch instruction is followed by the branch
delay slot instruction as per MIPS ISA.

VI. RESULTS

The VHDL implementation was synthesized using Cadence
Encounter RTL Compiler with the settings as given in Table I.
Fig. 8 and Fig. 9 show area and power evaluations for four
selected branch direction predictor configurations. The BTB
configuration is kept constant at 32:1. The figures also show

the amount of BTB area (and power) as part of total area (and
power).

TABLE I
SYNTHESIS SETTINGS

Clock period 1400 ps
Toggle rate (on primary inputs) α = 0.1
Cell library 65 nm LP, 1.2V, SVT Library
Optimization Effort Medium

The results show that the bimodal predictor is much smaller
(88 %) than the GAg and Gshare predictors (when looking
at the direction predictor only). However, the decrease in
execution time is only 1.5 %, and the power is smaller by a
factor of 4. A large PAp predictor is included for comparison.
By looking at the amount of the area and power made up by
BTB, we see that the predictor units utilizing smaller direction
predictors are dominated by the BTB, whereas the branch
predictor unit with a large PAp predictor is dominated by the
direction predictor.
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Fig. 8. Post-synthesis results with respect to area for different direction
predictors.

The GAg and Gshare predictors give a higher prediction
accuracy than the bimodal predictor, both around 3 % better.
While these results have to be put into context and are
relative to the rest of the pipeline, the bimodal predictors



seem to offer a better performance-area and performance-
power trade-off. For the branch predictor unit in isolation,
using the synthesis power estimates, a good trade-off between
performance and hardware complexity could be combining a
GAg:1:1024 direction predictor and a 32:2 BTB. Fig. 10 and
Fig. 11 show area and power evaluations for different BTB
configurations. The direction predictor is fixed as Bimod 128.
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Fig. 9. Post-synthesis results with respect to power for different direction
predictors.
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Fig. 10. Post-synthesis results with respect to area for different BTB
configurations
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Fig. 11. Post-synthesis results with respect to power for different BTB
configurations.

We see that increasing associativity greatly increases the
area and power. The BTB area and power numbers include
the LRU unit. We note that the difference in area and power
between the BTB configurations with 32 and 128 sets is not
proportional to the increase in the number of sets. This is
because for small SRAM blocks, the peripheral circuitry is
dominant. Only after sizes of 4,096 sets and up, the area of
the BTB starts scaling in a more linear manner.

VII. CONCLUSION

In this paper, we have described the simulation, imple-
mentation, and synthesis of different branch predictor con-
figurations and obtained preliminary values for area, power,
and performance. From the obtained results, we evaluated
the branch predictor configurations and made suggestions on
which configuration to use in our 7-stage pipeline. We draw
the conclusion that large two-level predictors offer the best
performance, but exhibit poor (disproportionate) performance-
power and performance-area ratios compared to the simpler
predictors, which is in agreement with previous work [10].
Using a BTB with large table sizes and high associativity
reduces the executed cycles, at the cost of higher area and
power. The values for area and power have to be related to
the hardware budget of the whole pipeline design in order
to properly evaluate what is feasible. Using a large direction
predictor will only make sense if it is combined with a large
enough BTB. Further improvements can be made to improve
the performance of the branch predictor, one such attempt
being the optimization of the BTB content.
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